For Microlithography Applications

#### **DESCRIPTION**

MEGAPOSIT SPR955-CM Series Photoresist is a general purpose, high-throughput, i-Line photoresist for 0.35 µm front-end and back-end applications.

#### **ADVANTAGES**

#### 0.35 µm Design Rules

- Dense lines/spaces and isolated lines on polysilicon
- Dense lines/spaces in high-aspect ratio films on TiN
- Contact holes on oxide
- Isolated spaces (trenches)

#### **Fast Photospeed**

- 165 mJ/cm<sup>2</sup> at 0.25 µm lines/spaces in 0.97 μm resist thickness
- 245 mJ/cm<sup>2</sup> at 0.40 µm lines/spaces in 1.40 µm resist thickness

| Table I. Recommended Process Conditions |                                                 |  |
|-----------------------------------------|-------------------------------------------------|--|
| Contact Holes                           |                                                 |  |
| Thickness                               | 0.70–1.20 μm                                    |  |
| Softbake                                | 90°C/90 sec. Proximity Hotplate                 |  |
| PEB                                     | 120°C/90 sec. Proximity Hotplate                |  |
| Developer                               | Recommended for 0.26N;<br>Compatible with 0.24N |  |

| Table 2. Recommended Process Conditions |                                                 |  |
|-----------------------------------------|-------------------------------------------------|--|
| Lines/Spaces                            |                                                 |  |
| Thickness                               | 1.00–2.30 μm                                    |  |
| Softbake                                | 100°C/90 sec. Proximity Hotplate                |  |
| PEB                                     | 110°C/90 sec. Proximity Hotplate                |  |
| Developer                               | Recommended for 0.26N;<br>Compatible with 0.24N |  |

Figure 1.

**Dense Contact Holes** 

 $0.300 \, \mu m$  $0.350 \, \mu m$ 





FT: 0.865 μm SUB: 3,000Å Silicon DEV: MF<sup>TM</sup>-501 (0.24N)

## **Isolated Trench**

 $0.300 \ \mu m$ 



FT: 0.910 μm SUB: Si<sub>3</sub>N<sub>4</sub> DEV: MF-501 (0.24N)

### Dense and Isolated Lines/Spaces

0.325 µm Dense Lines/Spaces 0.250 µm Isolated Line





FT: 0.970 µm SUB: Polysilicon DEV: MF CD-26 (0.26N)

### **Dense Metal Features** 0.340 µm Dense Lines/Spaces

FT: 1.40 μm SUB: 400Å Titanium Nitride DEV: MF-501 (0.24N)

Figure 2. Interference Curves on Silicon at  $0.70-1.15~\mu m$  Thickness

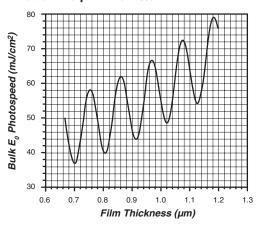
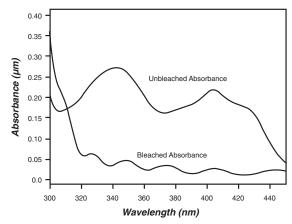
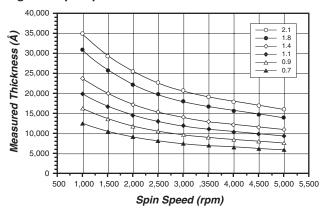
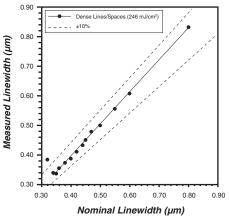



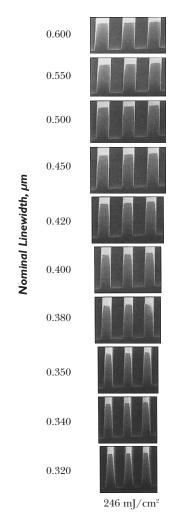

Figure 3. Absorbance Curves



| Table 3. Cauchy Coefficients |            |  |
|------------------------------|------------|--|
| n <sub>l</sub>               | 1.6463     |  |
| n <sub>2</sub>               | -2.2496e+6 |  |
| n <sub>3</sub>               | 6.3448e+13 |  |

Figure 4. Interference Curves on Silicon at 1.20–1.65 µm Thickness



Figure 5. Spin Speed Curve



| Table 4. Dill Parameters |           |  |
|--------------------------|-----------|--|
| Dill A Value             | 0.76 μm-I |  |
| Dill B Value             | 0.05 μm-I |  |

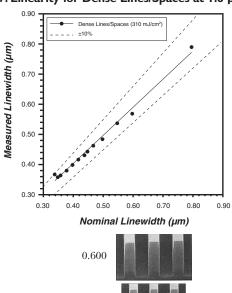
Figure 6. Linearity for Dense Lines/Spaces at 1.4  $\mu m$ 

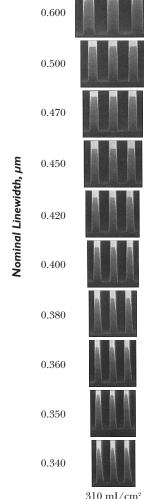




SUB: 400Å TiN over 100 nm silicon

FT: 1.40 μm ±50Å


SB: 100°C/60 sec. contact hotplate


EXP: GCA XLS 7500 i-Line (0.55 NA, 0.54σ)

PEB: 110°C/60 sec. contact hotplate

DEV: MF-701, 60 sec. SP

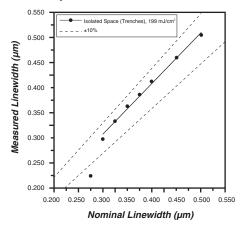
Figure 7. Linearity for Dense Lines/Spaces at 1.8  $\mu m$ 

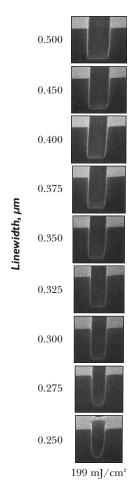




SUB: 100 nm on Si, 1,600Å Brewer BARC

FT: 1.80 μm ±50Å


SB: 100°C/90 sec. contact hotplate


EXP: GCA XLS 7500 i-Line (0.55 NA, 0.54σ)

PEB: 110°C/60 sec. contact hotplate

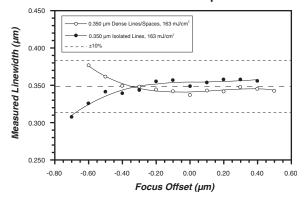
DEV: MF-501, 60 sec. SP

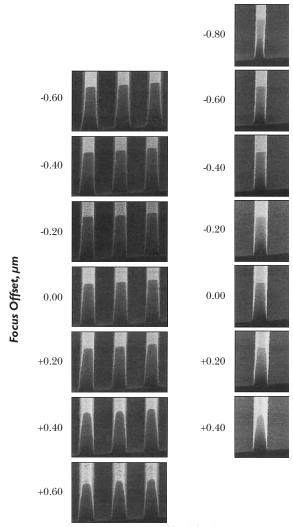
Figure 8. Linearity for Isolated Trenches





SUB: 3,000Å Si $_3\text{N}_4$  on Si FT: 9,100Å  $\pm25\text{Å}$ 


SB: 100°C/90 sec. contact hotplate


EXP: ASML PAS5500™/200 (0.55 NA, 0.65σ)

PEB: 110°C/90 sec. contact hotplate

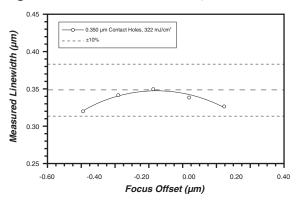
DEV: MF CD-26, 60 sec. SP

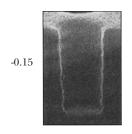
Figure 9. Focus Latitude for 0.350  $\mu m$  Dense and Isolated Lines/Spaces

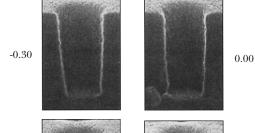


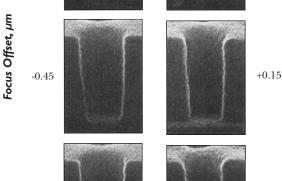


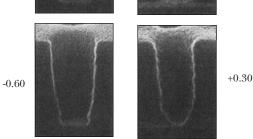
 $163 \text{ mJ/cm}^2$ 


SUB: 1,100 Å Brewer ARC™ XHRi-11 on Poly Si on Si


FT: 9,700Å ±25Å


SB: 100°C/90 sec. proximity hotplate EXP: ASML PAS5500/200 (0.55 NA, 0.65σ) PEB: 110°C/90 sec. contact hotplate


DEV: MF CD-26, 60 sec. SP


Figure 10. Focus Latitude for 0.350 µm Contact Holes





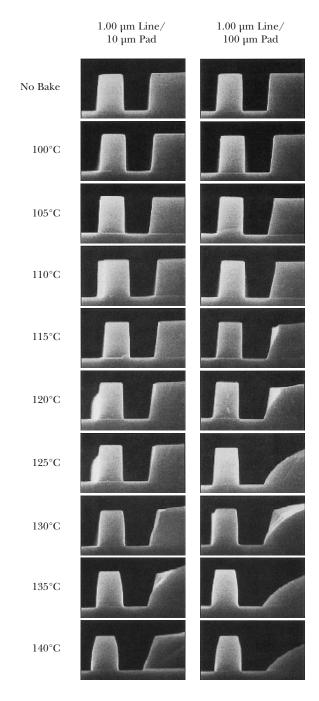






SUB: 1.00 mm Si with 1,100Å XHRi-11 Brewer ARC

FT:  $8.65 \mu m \pm 25 Å$ 


SB: 90°C/60 sec. contact hotplate

EXP: GCA XLS 7500 i-Line (0.55 NA, 0.54σ)

PEB: 110°C/60 sec. contact hotplate

DEV: MF CD-26, 30 sec. SP @ 21°C (TCU)

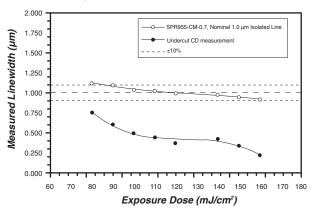
Figure 10. Thermal Flow Characteristics



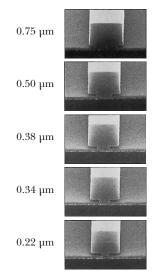
SUB: 1.00 mm Si with 1,100 Å XHRi-11 Brewer ARC

FT:  $1.41 \mu m \pm 25 Å$ 

SB: 100°C/90 sec. proximity hotplate


EXP: GCA XLS 7500 i-Line (0.55 NA, 0.54σ)

PEB: 110°C/90 sec. proximity hotplate


DEV: LDD-26W, 60 sec. SP @ 21°C

HB: As indicated, 3 min. contact hotplate

Figure 11. Thin Film Head Application 1.0 µm Isolated Lines

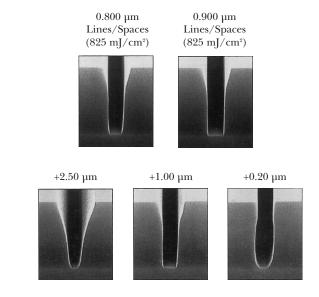


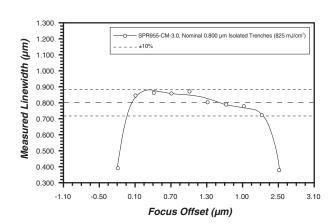
**Undercut CD Measurement** 



SUB: 100 μm NiFe/850Å LOL™1000

FT:  $0.80 \mu m \pm 25 Å$ 


SB: 90°C/120 sec. proximity hotplate


EXP: GCA XLS 7500 i-Line (0.55 NA, 0.54σ)

PEB:  $115^{\circ}C/60$  sec. contact hotplate

DEV: LDD-26W, 40 sec. SP @ 21°C (TCU)

Figure 12. High Energy Implant Application





SUB: 100 mm Si FT: 5.0 μm ±25Å

SB: 90°C/120 sec. contact hotplate

EXP: ASML PAS5500/200 (0.55 NA, 0.54 $\sigma$ ) PEB: 110°C/60 sec. proximity hotplate DEV: MF-501, 30/30 sec. DSP @ 21°C

### HANDLING PRECAUTIONS

Before using this product, consult the Material Safety Data Sheet (MSDS)/Safety Data Sheet (SDS) for details on product hazards, recommended handling precautions and product storage.

**CAUTION!** Keep combustible and/or flammable products and their vapors away from heat, sparks, flames and other sources of ignition including static discharge. Processing or operating at temperatures near or above product flashpoint may pose a fire hazard. Use appropriate grounding and bonding techniques to manage static discharge hazards.

**CAUTION!** Failure to maintain proper volume level when using immersion heaters can expose tank and solution to excessive heat resulting in a possible combustion hazard, particularly when plastic tanks are used.

### **STORAGE**

Store products in tightly closed original containers at temperatures recommended on the product label.

#### **DISPOSAL CONSIDERATIONS**

Dispose in accordance with all local, state (provincial) and federal regulations. Empty containers may contain hazardous residues. This material and its container must be disposed in a safe and legal manner.

It is the user's responsibility to verify that treatment and disposal procedures comply with local, state (provincial) and federal regulations. Contact your Rohm and Haas Electronic Materials Technical Representative for more information.



Circuit Board Technologies

**CMP Technologies** 

Flat Panel Display Technologies

Microelectronic Technologies

**Packaging and Finishing Technologies** 

For locations and information please visit; http://electronicmaterials.rohmhaas.com

MEGAPOSIT, MF, SPR, Rohm and Haas, and Rohm and Haas Electronic Materials are trademarks of Rohm and Haas Company, Philadelphia, PA, USA, or its affiliates. PAS 5500 is a trademark of ASML ARC is a trademark of Brewer Science, Inc.

UNITED STATES JAPAN ASIA EUROPE
Marlborough, MA Tokyo Hong Kong Paris, France

Tel: 800.832.6200 Tel: +81.3.5213.2910 Tel: +852.2680.6888 Tel: +33.1.40.02.54.00 Fax: 508.485.9113 Fax: +81.3.5213.2911 Fax: +852.2680.6333 Fax: +33.1.40.02.54.07

For Industrial Use Only. This information is based on our experience and is, to the best of our knowledge, true and accurate. However, since conditions for use and handling of products are beyond our control, we make no guarantee or warranty, expressed or implied, regarding the information, the use, handling, storage or possession of the products, or the applications of any process described herein or the results sought to be obtained. Nothing herein shall be construed as a recommendation to use any product in violation of any patent rights.