[CED™
DRC-NT Design Rules Checker

22
P
i
. il - =
T ﬂﬂ:zmq::zﬂ:ﬁz%m
o Pz e
l g
3
;
4 = 0 Fnl
= =
frr = . s L

Version 3.xx

|C Editors, Inc.

© 2001 by IC Editors, Inc.

No part of the information contained in this manual may be represented in any form without the
prior written consent of 1C Editors, Inc.

The software described in this manual is subject to change without notice. Although all
information is given in good faith, neither IC Editors, Inc. nor its agents accept any liability for
any loss or damage arising from use of the software or from use of any of the information
provided herein.

Acknowledgments:

The majority of this manual was written or revised by Ference Professional Services in Sonora,
CA. We are aso responsible for formatting the text and creating the screen captures that
illustrate the exampl es.

Michael Gentry of MGC, Inc. created the layout that is used on the cover and as a frontispiece. It
isasection of aCMOS simulation of a 74181 4-bit ALU.

Bob Fleming of Aether Wire & Location, Inc. provided arule set used for parts of the Advanced
Tutorial.

Table of Contents

Table of Contents

IO 110 L@ I 1 T PSS 5
QLI 0 (A0 o 1= 0oL USSR 6
V= g LU = @ o= [SRS 7
Other AVailahle PrOgIaMScoiiieiee ettt ettt e bbb e ae st e s b e se e besbesbesbesaesne e e aneees 8
GETTING STARTED ..ottt sttt st se bt s s b e se e b e st e s e s sesesessensesessestenenseseenenns 9
PrOgram REQUITEMENEScveiieeieceeeee sttt e e e st e st tesaeese e e e s e se e tesaesaeeseeseeseesanteseessesseeneenennsensesenns 10
TS = = (o) o USSR 11
QUICK TULOTTAl .vvvviiteeeteeiteeie ettt sttt ettt e e et e et e e ebeebesaaesbeesbeebeeasesaeeabeanbeenbesatessaesbeesteebesnsesnsesnsesseenseebenns 12
Please read the following section before any technical support cals.
I (01010 1=S 10T 1o o TR RS 27
FUNDAMENTALS OF DESIGN RULE VERIFICATIONoocoiiieisee et 31
What Ar€ DESIGN RUIES? ...ttt ettt e et e s te s tesae st e e neesa e e e aeseeseesbestesneeneenseneeneens 32
How D0 Design RUIE ChECKErSWOIK?ouoieieeeeee ettt st st sae e e e 39
HOW THE DRC WORKS.......ctii ettt sttt st st e st s ae e stesae et saesesbe e enesteneeseasenteneens 45
Generating the Input Files and RUNNING the Program..........ccccoeeieeieeieeieeeesesese e s seeeas 47
LOOKING 8L thE RESUITS ...ttt ettt e e e et e s ee et e bt ebe e st eneeneesbesaeeneeneeneaneeseens 49
LAY Er PrOCESSING.....eeueeueetertesiesteeteseeseestestesteseestesseasesseessesessestesseasesseeseessenseseeseeasesseaseeneenteseestesaeeneenennsnnsnsenns 55
o= ol oo IV o= (o] o USSP 84
Other VErifiCatioN RUIES........ccoiiiie ettt st sttt sttt st be bt be b 103
E1ECEITCal CONMECLIONS.......ceiiiee ettt ettt sttt ae e e et e e e e e besee et e s et eaeese e e ensessenbeseesaeeaeeneeneeanentees 110
= e 000 o S 118
Hierarchical Checking and Hierarchical OULPULoouiuiiiriire et e 134
OPtiMIZING DRC RUNS.......ccuiiiieieiestisese st st seeseeeesees e sees e ssessessesseeseeseessessessessesseesesseessesessessesseseensensessens 151
DRC RULES SYNTAX ittt ettt sttt sttt sttt b et b et et st e st s be e et st et e nesbesbe e e 171
GeNEral SYNEAX RESIIICHIONS........ciiiieiiteie ettt ettt e e s e e b e bt b e beeaeeae e e e sbesaesne e e aneeseens 172
2 ONLY (D] (@R /= £ o] g olo] g 11 (o) SRS 176
286 ONLY (D] SRV (=To] g Rere 011 o] IS 178
3 ONLY (D] (@R /= £ o] g ol] 311 (] RSO 179
ALL _DANGER Prevent cell flattening for dangerous operations............cccceeeeererennene 180

DRC User Manual 1

Table of Contents

ALL_SAFE Force cell flattening for dangerous operations...........ccoceeeeeeeeeeieeseeenee 181
ALLOW_QUICK Avoid warning prompt for QUICK _PASS processingcccceereeeeenn. 182
AND Boolean AND Of tWO [@YEIS.......ccoviiiiirereeeeee e 183
ASPECT_RATIO Classify shapes by relative dimensions...........ccccevcevcenievesenceeseneseennn, 184
The Assignment Rule Copy layer or iINVErse of 1aYer ... ieierieeieerese e 187
BAD_POLY Assign layer number for bad polygons..........cccceeeevvnievecevcecsese e 189
BLOAT EXPANd SNEPEScveeeeeieieie et 190
BLOAT_ANGLE Define angle for BLOAT FUIE.......ooeieiice et 191
BORDER Explicitly define panel overlap ... 193
BOUNDS Classify shapes by the size of their bounding boXcccceeveierennnnnn, 194
BRIDGE Recognize air DridgES.......covieieeeeree e 196
CONNECT Electrically CONNECt [aYErS.......vceeeeeeece s 200
CONST Define CoNStant VaIUE.ccooiiiiiiieneeeeree e 203
CUT_RESOLUTION Place cut 1ines on SPeCific grid.......ccoevererievinie v 205
DANGER_CELL Prevent cell flattening for dangerous operations............ccceeeeererennenn 207
DANGER _LAYER Override cell flattening for certain layersccoovveeveevceeveeveresce e, 209
DETAIL Turn detailed 10gging 0N OF Offcoiiiiiiie e 210
HOLE_AREA_FRACTION Classify polygonswith hol€s..........cccocvveiececicere e, 211
IN_CELL Classify shapesin certain CallS.......oouiiiiiiiinine e 215
INCLUDE Allow rules file NESLINGocveeeeeeerc e 216
INPUT LAYER DefiNe INPUL TQYEIS.....oieieeeeeeee e e 217
IS BOX Classify rectangles by SIZE.......ccccovevevenieii e 222
IS CIRCLE Classify polygons with circular shape...........ccceoereienenenerieeieseee 225
ISLANDS FINA HOIES......cociiie e 230
MAX_ANGLE Find sharp pointSin NOLChESccoeiiiiiireee e 231
MAX_COUNT Change maximum number of errors found before warning................... 233
MAX_SPACING Classify shapes by diStanCe........cccevereieiinireree e 235
MIN_ANGLE Find Sharp POINES.......ccceiireciceeee et eesnens 242
MIN_AREA Find SMall ShapEsS.......coe i e 243
MIN_FILL Verify layer coverage of design area........ccevevevevvveseceeneenesee e 245
MIN_NOTCH Find small NOLCNESccuveiiee e s 248
MIN_SIDE Find shapes with at least one small Side.........cccovvevieeerceencre e 251
MIN_SPACING Find SPACING EITOISc.veieiiterieeieeee ettt s ee e 252
MIN_WIDTH Find shapes with small Width...........cccoovviiiiiinicc e 271
2 DRC User Manual

Table of Contents

MODIFY LAYER Define layer used as both an input and output layercccceeeenene 273
NO_CHECK_INPUT Prevent some bad polygons from being markedcccccocveveveienene. 276
NO_HIER_WARNING Prevent warning during hierarchical Outputccooeeirieeiniiicinins 277
NO_PANELS Execute DRC on entire design at ONCE..........coceveerereeererseeieseeneseesnens 278
NO_RUL Prevent warning when source rules file ismissing........cccoeeeevenenenenne 279
NO_WARN_ACUTE Prevent marking aCut€ anglesS........cocvvvvueereeeererere s seese e seesee e 280
NOT COopY INVErSE Of [QYENoviieieieeeee e 281
OFF_GRID Find vertices that are not on resolution grid.........ccccceeeveverenievesenienn 282
OR Boolean OR Of tWO 1YErS.........cooviiiieiinereeeee e 283
OUTPUT LAYER Define layer fOr QULPUL..........c.ooeierie e 284
OVERLAPPING Find shapes with COMmMON area..........cocceceieniienereee e 288
PANEL VERTICES Control number of vertices per panel........cccoeeveeevievenievcesescere e, 290
PANELX and PANELY Define maximum panel SIZe.........oocoiiiiiiieeeeee e 293
RULE_SET Define sets of rulesto control eXecution...........cccvvvveeeeceeieseseneneens 295
SAFE_CELL Flatten only certain cells for dangerous operations...........ccccccererenene 297
SAFE LAYER Force cell flattening for critical |ayers.........ccoovvveevieereeresere e 299
SCRATCH LAYER Define temporary layerc.ooeoereieneneeeeee e e 300
SHRINK Shrink shapes UNiformlyccooeeeviresere e 302
SNAP Relocate vertices on resolution grid.........coeeeeeeieeie s 304
SNAP45 Relocate vertices on resolution grid preserving slope of 45° angles.....306
STAMP Electrically connect poor CONAUCEONS...........coereriiene e 308
STOP_ON_MAX_COUNT Halt DRC on maximum number of errors..........cccvvvivvesvvceeceeceeseeneens 310
TOUCHING Find touching shapes on different layers.........c.oovvveniniciece e 311
WARN_ACUTE Assign layer number for acute angle warning markscccccevvveennee. 313
WIRE_WIDTH Set error wire width for al error layers........cooeveiieniienenceeceee, 315
XOR B00lean eXCIUSIVE ORccoiiriirenreerrrce e 316
RUNNING THE DRC ..ottt n e 317
(B (O B (=Y @e] 1] F= o o H PR RUS 319
01T o R T I S 329
(D] O @0 17011 1 = F USSP 361

DRC User Manud

Table of Contents

ADVANCED TUTORIAL ..ottt 379
SIMPIE SPACING CHECK ...ttt ettt et e se et e s eeeb e e et eaeene e e e eeseesbesaesaeeneensaneeseens 381
Directional SPaCing ChECKiiiiiii sttt sr e te e saesre e e e e e nnentenes 391
Finding Errors Involving TOUCING ShADES.........coiiiriereii ettt sb e sbe e e 397
Tests That Involve Electrical CONNECLIONS.........coorerierireiresree s 402
Creation Of ShapeS fOr EXPOIToiiieeeee et e e bbb e e e e e 418
[[T= =t g 1oL S 429
Speeding LONg DRC RUNS.......co.oiiee ettt see bt se e beseesbesaeebe s e e seensessesbesaesneensaneeseens 440
L0000 11 L] o ST SEPSTTRS PP STRN 448
APPENDIX A: OBSOLETE SYNTAX .ottt nene s snene s 449
ODSOIELE DIRC RUIES.......ctiitiitieieie ettt sttt bbbt bt e e e eese e besbeebe s et eaeeaeene e beseeebesbesbesneensaneeseens 449
MAX_QUAD Limited air bridge recognition...........ccccvveveienesierece e 450
RECTANGLES Find shapes that are not rectangles of Specific SIZeS......cocvvrrieiiiiiiii e 451
SKIPPED_POLY Assign layer number for shapes unknown to DRC...........ccocvvveneveverierereeeeenn 452
OUTPUT LAY ER ODSOIEt8 KEYWOITS.cueuiiieieieriniiisieieesisiee sttt 453
INDEX ..ottt sttt stttk b bbbt b b4 b et A b2 e 4 e e b e Rt e A e b2 Re 4 A e R e R e e A e b e ReeE b e R £ b e b e e b e bt ne b e R e b ne s 455

4 DRC User Manual

Introduction

Introduction

DRC User Manual 5

Introduction

The DRC (Design Rules Checker) program from IC Editors, Inc. is a rules-
driven program to manipulate layout data and verify technology specific layout
restrictions for integrated circuit mask sets. The agorithms used by the DRC
allow it to process the data for an entire semiconductor chip on most personal
computers at reasonabl e speeds.

The DRC program combines layer generation algorithms (such as bloats, shrinks,
and Boolean operations) with size, spacing, and shape rules to verify that your
design meets technology dependant design criteria. The program can aso be
used to generate mask layers for import back into your design.

Target Audience

There are two different classes of DRC users;

 Design RuleWriters These users create DRC rules files and use them
on design data and/or testcases.

e EndUsers These users are provided with rules files from
another party, but they are responsible for running
the program on design data and possibly for
installing the program as well.

Design rule writers will be able to do their job best after reading this entire
manual. Familiarity with how to execute the program is required in addition to
familiarity with the syntax of rulesto test rule sets. A thorough understanding of
the fundamentals of design rule verification as well as the specifics of how the
DRC verifies huge amounts of data with only the memory available on a PC is
critical to ensure that all design errors are found by the program.

End users may be able to skip ahead to “Running the DRC” on page 317, but
they will be better able to troubleshoot problems if they read everything with the
possible exception of the “DRC Rules Syntax” section.

6 DRC User Manual

Introduction

Manual Organization

If you will not
bewriting a
DRC rule s,
you may want
to skip ahead to
"Running the
DRC" after
reading the
"Getting
Started"
information.

Recent versions
of the layout
editor support
executing
simple DRC
operations from
inside of the
layout editor.
However this
manual does not
specificaly
cover this use of
the DRC.

This manual is organized into the following sections:

" Getting Started" covers the program requirements and installation. This
section also includes a brief tutorial covering the basic steps for preparing the
input files and running the rules compiler and the DRC program.

"Fundamentals of Design Rule Verification" introduces the processes
involved in verifying design rules and presents the reasons for some of the more
complex features of the DRC. This section is intended primarily for users who
have little experience with design rule checkers.

"How the DRC Works" coversthe theory behind all DRC featuresin a detailed
manner. Once you have completed this section, you will have at least a basic
understanding of how the DRC works. To use the DRC effectively, you will
have to read the more detailed syntax sections of features you want to use, but
you will have learned enough to know where to look to solve unique problems
and avoid common hazards.

"DRC Rules Syntax" covers the syntax for all statements in a DRC rule set.
Detailed examples areincluded. Therules are listed in alphabetical order.

"Running the DRC" describes how to execute the rules compiler and the DRC
program after you have a complete rule set. All command line options are
covered with examples. The output files are completely described. Y ou will
also learn how to import the results of the DRC run into the ICED™ layout editor.

The " Advanced Tutorial" uses examples provided on the installation diskettes
to take you through all the steps in the verification of a realistic semiconductor
design.

" Obsolete Features' mentions some of the rules and command line options that
were used by older versions of the program. These features are still supported in
the current version so users with older rule sets may ill use them without
modification.

DRC User Manual 7

Introduction

Other Available Programs

The DRC isintended to be executed in conjunction with the ICED™ layout editor
available separately from IC Editors, Inc. This layout editor is required to export
the input data file for the DRC from the layout data, and to import the geometry
created by the DRC.

The DRC program uses many of the same rules and features as the NLE utility.
The NLE utility contains additional rules that allow you to perform device
recognition and electrical connection check (ECC) tests to find shorts and opens.
The layout netlist generated by the NLE can be compared to a schematic netlist
with the LV S utility. (Both the NLE and LVS utilities are available separately
from IC Editors, Inc.)

8 DRC User Manual

Getting Started

Getting Started

DRC User Manual 9

Getting Started: Program Requirements

Program Requirements

The DRC program may execute with as little as 8 Megabytes, but run times are
likely to be long. We recommend that you execute the DRC program on a
computer with at least 16 Megabytes of memory. The DRC does create scratch
files for virtual memory, however this disk swapping will slow the program
down.

The scratch files created by the DRC can grow very large. We have seen scratch
files over 1 Gigabyte in size for large chips. If you have limited memory for the
DRC, you will need plenty of free disk space.

Y ou must use version 2.0, or amore recent version, of the ICED™ layout editor to
generate the data for the DRC. Recent versions of the layout editor support
executing simple DRC operations from inside of the layout editor. However this
manual does not specificaly cover this use of the DRC. Longer DRC runs
should be executed in a DOS console window, outside of the layout editor.

The DRC requires a key on your printer port or USB port for copy protection.
IC Editors, Inc. provides this key when you purchase the program. Install the
key on the appropriate port. (Connect your printer cable to the key if necessary.)
The customized copy protection program DRCnNAUX.EXE will ook for this key.
Do not remove or rename this program. Do not copy it when sending files to
other users. Y ou may overwrite their customized copy.

10

DRC User Manud

Getting Started: Installation

Installation

TheDRC
requires akey
on your printer
port or USB
port.

Close the
console window
by typing EXIT
at the prompt or
by clicking the
‘X" in the upper
right corner of
the window.

Follow the instructions provided in the installation software. Y ou will need to
specify the name of the ICED™ layout editor installation directory. Thiscan be a
new or an existing directory. If you specify a directory that does not already
exigt, it will be created. You can specify an existing directory from a previous
DRC or ICED™ installation. All executable fileswill be stored here. We refer to
this directory throughout this manual as QMCED. Whenever you see
"Q\ICED", replace the 'Q" with the drive letter you chose during installation.
Replace "ICED" with the name of the installation directory.

Some useful examples are included during installation. We will be using some
of these filesin the tutorial below. Seealist of rule file examples on page 26.

The recommended method to launch any of the ICED™ products isto first open
a DOS console window with the icon created on your desktop during
instalation. This icon is labeled “ICED” and displays a representation of a
silicon wafer. You can type the DRC and rules compiler command lines at the
prompt in console window. The path to the executable files is already added to
the system search path when you execute the programs in this manner.

Change the current directory to the desired directory with the DOS command
“CD dir_name” before executing the DRC program. See how this works in the
following tutorial.

DRC User Manual 11

Getting Started: Installation

Quick Tutorial

Thistutorial will cover one of the examples provided with the installation.

The flow of data
to prepare the | ¢

input files is DRC RulesFil Layout Files
shown in Figure RUL .CEL

1.

To run the DRC, DRC Rules ICED]
you must have Compiler Layout Editor
two input files.

Thefirst contains
rules for ma
nipulation of the
layers and for
design rule test-

Compiled Rules
BB
ing. These rules

must be com-

piled by the DRC DRC
rules compiler
prior to execut-

ing the DRC. ‘
The second file COET;’"”" File
contains layout

data generated

Bin:
Layout Data
POK

by the DRC com-
mand in the ICEDO
ICED™ layout Layout Editor Program
editor.
The : :

Figure 1: Theflow of datatorun the DRC.
recommended

method to launch any of the ICED™ products is to first open a DOS console
window with the icon created on your desktop during installation. Thisicon is

12

DRC User Manud

Getting Started: Quick Tutorial

The exact
location and
name of the
tutorial
directory is not
important.
Createit
wherever itis
convenient.

labeled “ICED” and displays a representation of a silicon wafer. Click thisicon
now using the left button of your mouse.

The executable search path is modified before the console window opens. This
means that the operating system will automatically search in the correct place for
the DRC programs. The current directory is set to the ICED™ directory,
Q:\ICED.

Copy the files for this tutorial to a new, empty working directory. This alows
you to keep the original copies of the samplefilesintact for future reference.

Before we create the new directory, we need to make the current DOS drive a
drive with some available space. Replace the drive letter "C" in the following
command to a disk drive with free space and type at the console prompt:

C:
Now create the new directory with the command:

MD DRCTUTR

Make this new directory the current directory with the command:
CDDRCTUTR

Now copy the required files with the following commands:

COPY Q:\ICED\SAMPLESDRC\TRIVIAL.CEL
COPY Q:\ICED\SAMPLESDRC\EXAMPLE1.RUL

! Throughout this manual, Q: and \ICED are used to represent the drive and directory path where
you have installed the DRC. If you have installed the software on your C drive in the directory
\ICWIN, you should replace Q: with C: and \ICED with \ICWIN.

DRC User Manual 13

Getting Started: Quick Tutorial

Preparing the RulesFile

N

DRC RulesFilg

RUL

DRC Rules
Compiler

The rules file we will
be using is
EXAMPLE1.RUL.
The contents of the file
are shown in Figure 2.
The lines that are not
bolded are comments.

This rules file must be
compiled by the DRC
rules compiler. The
command must be
typed at the console
prompt. Type the
following:

D3RUL-NT? EXAMPLE1

D3RUL-NT.EXE is
the name of the
program and the rules
file is EXAMPLEI-
.RUL. This program
will create the
compiled rulesin afile
named EXAMPLEL-
.BB. We will use this
file later when we run
the DRC.

3ONLY! Tells DRC version 2 to ignore next line.

ALL_SAFE

IWill be explained later. For now, use ALL_SAFE in all rule sets.
input layer 1 boxes; 3 one_box;

I ICED layer 1 will be referred to as "boxes" in the following
!rules.

I ICED layer 3 will bereferred to as "one_box"

I The semi-colon between layersis required. The semi-colon

| at the end of any lineis optional.

output layer 20 too_closel; 20 too_close2;
I Two layers, referred to as "too_closel" and "too_close2" in
! these rules, will be output to ICED layer 20.

DETAIL ON

I This should NOT normally be used. In most real runs, it will
! produce atoo-long log file. Use DETAIL ON only for small

I subsets of normal runs.

output layer 20 narrow;
I Layer "narrow” will be output to ICED layer 20.

const min_distance=10;
I Thename "min_distance" can now be used instead of 10.

too_closel=minspacing(boxes, boxes, min_distance)
I Check spacing between polygonsin layer 1.

too_close2=minspacing(boxes, one_box, 7)
I Check spacing between layer 1 and layer 3.

narrow=minwidth(boxes, min_distance);
I Check width.

badpoly 0

! Bad polygon output is suppressed. (“Bad polygons' will be
! explained later.) A non-zero number would have copied bad

! polygonsto an ICED layer.

Figure2: EXAMPLE1.RUL

2 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versions is named D3RU-NTX.EXE.

14

DRC User Manud

Getting Started: Quick Tutorial

If you are not
aready familiar
with an ASCII
file editor, use
the editor that
comes with your
DOS
installation,
EDIT.COM.

The console messages will be very brief. The version of the compiler, along
with a copyright notice is followed by areport of how much memory is available
to the compiler. When the compiler finds no errors, the next lineis:

Done.
Thisindicates a successful compile.

The log file created by the rules compiler is EXAMPLEL.RLO. When the
compiler finds an error, a message will be printed both on your screen and in this
file. Browse or edit this file now. The version and copyright information is
followed by the contents of the source rules file. This is followed by lines
similar to Figure 3.

5 layersused.
Name Number Line Type
1 BOXES 1 4 INPUT
2 ONE_BOX 3 4 INPUT
3 TOO_CLOSE1 20 11 OUTPUT
4 TOO_CLOSE2 20 11 OUTPUT
5 NARROW 20 20 OUTPUT
1 named constants.
Name Line Value
MIN_DISTANCE 23 10

5 actions, requiring 3 passes.
Pass 1. Processinput and:
Pass 2:
1. CONNECT BOXES[1]
(Generated)
2. CONNECT ONE_BOX[3]
(Generated)
Pass 3:
3. TOO_CLOSE1[20] = MIN_SPACING(BOXES[1], BOXES[1], 10/DET)
(Rulesline 26)
4. TOO_CLOSEZ2[20] = MIN_SPACING(BOXES[1], ONE_BOX[3], 7/DET)
(Rulesline 29)
5. NARROW[20] = MIN_WIDTH(BOXES[1], 10/DET)
(Rulesline 32)
Done.

Figure 3: Portion of contents of the EXAMPLE.RLO
compiler log file.

Note that each rule has been assigned a number. These numbers are occasionally
useful.

DRC User Manual 15

Getting Started: Quick Tutorial

Preparing the Binary Layout Data File

N
N

Layout File
S

ICED™
Layout
Editor

/_\
BiEmerTy
Data

_POK__

Typethe DRC
command line
inaDOS
console window
or create a batch
file.

We create the layout data file in the ICED™ layout editor. Launch the layout
editor to edit the file TRIVIAL.CEL. If you use the Windows version, launch
the layout editor with the following command in the console window:

ICWIN TRIVIAL

The shapes in this cell should look | | * © = © [
similar to Figure 4. The cell contains | ° oo :
two shapes on layer BOXES: one
rectangle and a larger polygon with a
5 user unit "neck”. Thereis also one
rectangle on layer ONE_BOX.

v 5 units

i g
5 units

|<>|5 units

Once in the editor, we create the
binary layout data for the DRC using
the DRC command without any
parameters. Type the following
command:

. [1BOXES []ONE BOX

DRC

Figure4: Shapesin TRIVIAL.CEL
This will export the entire layout

contained in the cell to the file TRIVIAL.POK. Once the command is
completed, use the QUIT command to terminate the editor.
Now we are ready to run the DRC. The DRC command lineis:

DRC3-NT® EXAMPLE1 TRIVIAL DRCOUT SLOW

3 The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.

16

DRC User Manud

Getting Started: Quick Tutorial

The end of the console messages should look similar to:

Done.

100% of chip done.

***No input skipped.

***No bad | CED polygons.

***Error count=7 (raw=10)

***Total output non-error output count=0
O total figuresoutput to non-error layers.
7 total figuresoutput to error layers.

This indicates that the DRC has generated 7 error marks. Most errors generate a
pair of error marks. When error marks on the same layer overlap, they may be
merged into single shapes. After looking at the error marks, we will see that
these 7 error marks represent 4 errors in the layout. We will now cover how to
locate these errors using the command file generated by the DRC.

DRC User Manual 17

Getting Started: Quick Tutorial

Looking at the Output

DRC

Command
File

ICED O

Layout Editor

To view the errors found by the DRC, we
will use the ICED™ layout editor. Launch
the layout editor again to edit the
TRIVIAL cell. You can use the same
DOS command we mentioned earlier:

ICWIN TRIVIAL

Once in the editor, type the following
command:

@DRCOUT

This command will execute the
DRCOUT.CMD command file generated
by the DRC. The error wires shown in
Figure 5 are now added to the cell. Your

display will probably look somewhat different.

........

sy

AR AR AR

£
=

\

SRR

Figure 5: Error marks generated
by rulesin EXAMPLE1.RUL.

We have changed the layer

patterns with the LAY ER command in the editor to highlight the error marks.

You can change the layer color or pattern of the error wires with the LAYER
command if you desire. (See the layout editor reference manual.)

Now we want to select the error wires in the upper right to determine why this
error has been marked. Type the following command:

SELECT LAYER 20 IN

18

DRC User Manud

Getting Started: Quick Tutorial

RNy

H

N
0
S

TR

RN

53
S

[IBoxes = [Z] ONEBOX | . [lBoxes = TlJonEBOX
Figure 6: Selecting error wires. Figure7: Selected error wires.

Note that the cursor has changed to the select cursor shaped like an 'X'. Click the
two points as shown in Figure 6 to select the error wires.

The two error wires should be selected as shown in Figure 7. To see why these
error wires were created, type the following command on the command line:

SHOW *

Thiswill report the following information about the selected shapes:

ADD WIRE LAYER=20 ID=19 TAG=4 TYPE=2 WIDTH=2.000 AT (10.0,-2.0) &
(10.0, 0.0) (39.899, 0.0)

ADD WIRE LAYER=20 ID=20 TAG=4 TYPE=2 WIDTH=2.000 AT (35.0, 7.0) &
(35.0, 5.0) (10.0, 5.0) (10.0, 10.0) (12.0, 10.0)

Figure 8: Information reported by SHOW command.

The tag number refers to the rule that generated the error shapes. If you refer to
the rules compiler listing shown in Figure 3 on page 15, you will see that rule
number 4 is:

4. TOO_CLOSE2[20] = MIN_SPACING(BOXES[1], ONE_BOX[3], 7/DET)

DRC User Manual 19

Getting Started: Quick Tutorial

This rule indicates that the minimum distance between shapes on layers BOXES
and ONE_BOX is 7 user units. The distance between the shapesin the cell is5
user units.

Note that the DRC has marked an error on the left side of the ONE BOX
rectangle as well. We can assume that this error is caused by a violation of the
same rule since this is another case of a shape on layer BOXES being closer than
7 user units to a shape on layer ONE_BOX. If you want to verify this by
selecting this error wire as well and repeating the SHOW command, do so how.

We should fix both errors by moving the shape on layer ONE_BOX 2 user units
up and to the right. We want to unselect the currently selected shapes, then
temporarily hide the error wires to allow us to see the design more clearly by
typing the following commands:

UNSELECT ALL
BLANK LAYER 20

We need to select the shape on layer ONE_BOX. Try the following command:
SELECT LAYER ONE_BOX IN
The layout editor will report the following error:

SELECT LAYER <<ONE_BOX>> IN
ERROR: Layer name not in use

This is due to the fact that the layer name in the rule set is not the same as that
used in the cell. We can see the layer number of layer ONE_BOX in the line
from the rules compiler listing shown on page 15. The number in sguare
brackets following the layer name, "ONE_BOX [3]", indicates the number of the
layer. The layer number is always the same in the rule set and the cell, but
the layer name in the rule set can be any convenient string.

In the rule set (shown on page 14) the name ONE_BOX was associated with the
layer number 3 in the following rule:

Input layer 1 boxes; 3 one_box;

20

DRC User Manud

Getting Started: Quick Tutorial

To select the shape we need to
move, let us select it by number.
Type the following command:

SELECT LAYER 3IN

Now use the cursor to select the
rectangle in the upper right of the
cell. The shape should be
indicated with select marks as | =~ = = |
shown in Figure 9. S

We can move the selected shape
2 user units up and to the right
with the following command:

MOVE BY 2,2 Figure 9: Theshapeon layer 3isselected.

This should fix the errors caused by rule number 4.

Now let us unselect the current shape and then see the error wires again by
typing the following command:

UNSELECT ALL

UNBLANK ALL
Now let us select the error wires around the neck of the lower shape with the
command:

SELECT LAYER 20IN

Then use the cursor to select the wires in the neck of the lower shape so the two
error wires are selected as shown in Figure 10 on the next page.

DRC User Manual 21

Getting Started: Quick Tutorial

Y ou can write
therule set to
place error
marks from
different rules
on different
error layer
numbers. This
way you do not
have to use the

We can find out the rule number
that created these error wires with
the command:

SHOW *

When you do this, you will see
that the tag number is 5. This
means that rule number 5
generated the error wires. From
the rules compiler log we see that
rule number 5is:

R
AR R 3
R e)

&
N

SHOW 5. NARROWI[20] =
command to see MIN_WIDTH(BOXES[1], 10/DET)
which rule Figure 10: Error wires in "neck" area
generatedeach This rule states that shapes on are selected.
error mark. layer number 1 must be at least 10
user unitswide. We can see that the neck indicated by the error marksis only 5
user units wide. We must fix this by moving one side of the neck 5 more user
units away from the other.
First let us unselect the selected error marks, and then hide all of them with the
commands:
UNSELECT ALL
BLANK LAYER 20
To select the desired side, use the command:
SELECT SIDEIN
22 DRC User Manual

Getting Started: Quick Tutorial

Use the cursor to indicate a very small box around the left
side of the neck to select the side shown in Figure 11. Now
move this side 5 units to the |eft with the command:

MOVE SIDE BY -5,0 L

Thisfixes the error found by rule number 5.

Let us unselect the side and turn the display of the error
marks back on again with the commands: Figurell

UNSELECT ALL
UNBLANK ALL

Now let us select the error marks we have not yet looked at with the command:
SELECT LAYER 20IN

Select the error wires shown in
Figure 12.

To determine the rule number that |- + Click
generated this error, type: . : here\'

SHOW * . . Then .

The tag number associated with |. 5
these error marks is number 3. |. | %
Rule3is:

3. TOO_CLOSE1[20] =
MIN_SPACING(BOXES[1],
BOXES[1], 10/DET)

Figure 12: Remaining error wires
This rule indicates that shapes on gglected.

layer 1 must be at least 10 user
units from other shapes on the same layer. We can see from the cell that the
indicated sides are only 5 user units apart.

DRC User Manual 23

Getting Started: Quick Tutorial

Unselect the selected error wires, and hide all of the error wires with the

commands:

UNSELECT ALL
BLANK LAYER 20

Now select the side of the lower shape with the command:

SELECT SIDEIN

Use the cursor to select the side
indicated in Figure 13. Shift
this side away from the other
shape on layer 1 with the
command:

MOVE SIDE BY 5,0

We have accounted for all error
found by the DRC. Let us
unblank and delete the error
marks with the following
commands:

UNSELECT ALL
UNBLANK ALL

SEL LAY 20ALL
DELETE

Figure 13: Side of shapeon layer 1is
selected.

To test that al errors have been fixed, we will execute the DRC again. It isvery
important to remember to always recreate layout data file (TRIVIAL.POK in
this case) when you have changed the design. If you forget to recreatethisfile
with the DRC command in the layout editor, the DRC will use the same
obsolete layout data that you used in thelast run.

Type the command to regenerate the layout data for the DRC:

DRC

24

DRC User Manud

Getting Started: Quick Tutorial

TheDRC
program can
have severa
different
executablefile
names. See

page 16.

Close the
console window
by typing EXIT
at the prompt or
click the*X’
button.

We are done with the layout editor. The following layout editor command will
save our changesto TRIVIAL.CEL and terminate the editor:

EXIT

You should now be back at the console prompt. Execute the DRC again by
typing the following command at the console prompt or in a batch file:

DRC3-NT EXAMPLE1 TRIVIAL DRCOUT SLOW

We can tell that no errors have been found by this run of the DRC by the last line
of the console messages:

0O total figures output to error layers.

This concludes the tutorial. There are severa other sample rule and cell files
included in the Q:\I CED\"SAMPLES\DRC\ directory. See the table on the next
page for a list of these samples and the pages in this manual where they are
discussed.

* Remember that Q:\ICED represents the drive letter and path where you have installed
the DRC.

DRC User Manual 25

Getting Started: Quick Tutorial

Rulesfile Related cell file Rule covered Page
ALLALL.RUL TOUCH.CEL MIN_SPACING
ALLIN.RUL TOUCH.CEL MIN_SPACING/IN
ALLOUT.RUL TOUCH.CEL MIN_SPACING /OUT
CONTACT.RUL CONTACTS.CEL | MIN_SPACING/IN
ENCLOSUR.RUL | ENCL.CEL MIN_SPACING/IN /OUT |91
EXAMPLELRUL | TRIVIAL.CEL MIN_SPACING and 14
MIN_WIDTH
EXAMPLE2.RUL Removal of redundant rule
by compiler
IN.RUL TOUCH.CEL MIN_SPACING/IN
INALL .RUL TOUCH.CEL MIN_SPACING/IN
ININ.RUL TOUCH.CEL MIN_SPACING/IN
ININI.RUL TOUCH.CEL MIN_SPACING/IN
INOUT.RUL TOUCH.CEL MIN_SPACING/IN /OUT
INOUTI.RUL TOUCH.CEL MIN_SPACING /IN /OUT
LEXAMPL.RUL LEXAMPL.CEL MIN_SPACING /LENGTH
NOTCHSP.RUL WIRECELL.CEL | MIN_SPACING (doesnot | 87
mark spacing problemsin
single shape)
MIN_NOTCH
OUTALL.RUL TOUCH.CEL MIN_SPACING /OUT
OUTIN.RUL TOUCH.CEL MIN_SPACING /IN /OUT
OUTINI.RUL TOUCH.CEL MIN_SPACING /IN /OUT
OUTOUT.RUL TOUCH.CEL MIN_SPACING /OUT
OUTOUTI.RUL TOUCH.CEL MIN_SPACING /OUT
OVERLAP.RUL GATE.CELL MIN_SPACING /IN /OUT

Figure 14: Rulesfilesincluded with DRC installation

26

DRC User Manud

Getting Started: Troubleshooting

Troubleshooting

If the DRC crashes while you are trying to run the tutorial test case, or at any

later date, try to look your problem up in the table below. Try the
recommended fixes before you call technical support.
Symptom Possible Recommended Fix Refer
Cause to page
DOSversion Long Best Solution: Change to Windows version. N/A
Crashes on directory or | Otherwise, rename or move directories (including
Windows filenames | installation directories and data directories) to
operating names that have no more than 8 charactersin any
system one string. Do not use blanks in names.
Use file names that follow the classic 8.3 format (no
more than 8 characters beforethe*.” and 3
characters for the extension). Do not use blanksin
names.
Cell names do not have to be less than 8 characters,
only file names.
Long Best Solution: Change to Windows version.
environment | Otherwise, ensure that all environment variables 359
variables have no more than 127 charactersin the entire
var=value string. Use DOS SET command to verify
and/or change values.
” Change to Windows version. Sometimesthe DOS | N/A
version will not run under Windows for other
reasons that cannot be fixed. If the two other fixes
above do not fix the problem, you must changeto
the Windows version.
DRC User Manual 27

Getting Started: Troubleshooting

Symptom Possible Recommended Fix Refer
Cause to page

Mysterious Not enough | Check top of log file for actual amount of memory | 339
crash very memory to | availableto the DRC. Try USE or HOG options to
early inrun start reserve more memory for program.

program Reboot or free more memory in operating system.
Options with Operating Replace ‘=" with ‘# in optionswherethe ‘=" is 333
‘=" inthe system removed by operating system before the DRC is
command line | command passed the command line. The DRC considers the
not read lineparsing | two equivalent, but the ‘# symbol is not stripped by
correctly the operating system.
Copy Operating Obtain new copy protection package from IC 10
protection systemin- Editors, Inc.
(DRCNAUX.EXE) compatibili-
failsin ties
Windows
MIN_SPACING | Polygons Add aMIN_NOTCH rule to test spacing between 87
not marking aremerged | fingers of asingle shape. All touching shapeson a
errors between | toform single layer are merged and MIN_SPACING marks
shapeson same | single only errors between different shapes.
layer. shape.
MIN_SPACING | QUICK- Remove QUICK_SPACING from command line. 100
not marking _SPACING
other errors. option

hiding

errors
Hierarchicdl Cell Quirks of hierarchical processing are covered on the | 149
output isnot flattening on | indicated page.
generating input, safe
shapesinthe processing,
correct cells. etc.

28

DRC User Manud

Getting Started: Troubleshooting

Symptom Possible Recommended Fix Refer
Cause to page
Somerulesare | QUICK- Remove from command line. This option speeds up | 337
not being _PASS DRC runs at the cost of not executing rules that
executed option reguire more than one pass.
DO option Remove from command line. This option restricts | 347
which rules are executed at run time.
Fdseerors Resolution | Vertices of output shapes may be shifted to lie on 79
gridissues | more restrictive resolution grid.
Panel Shapes that are cut at panel boundaries may result 76
processing in acute angles.
QUICK_PASS option may be forcing problems at | 129
panel boundaries.
Other See guide to removing miscellaneous false errors. 156
causes

DRC User Manud

29

Getting Started: Troubleshooting

30 DRC User Manual

Fundamentals of Design Rule Verification

Fundamentals of Design Rule
Verification

DRC User Manual 31

Fundamentals of Design Rule Verification: What are Design Rules?

What Are Design Rules?

Each integrated circuit technology has design rules determined by the fabrication
process used to manufacture the chip. Factors like the resolution of the
photographic process and misalignment of layers during manufacture require that
shapes on certain layers have a minimum width, are a certain distance apart, etc.

The engineers who develop new technologies usually specify these design rules.
These specifications are documented and distributed to chip developers. Designs
that have violations of these design rules will often fail to perform as expected.

Some chip designers modify these design rules for certain purposes:

More stringent rules may be required to insure a longer life for the chip,
or because of the uniqueness of a particular design.

If you are developing a standard cell library, you may need to add
restrictions so that you can verify that al cells obey the added
requirements required for features like interchangeability or automatic
placement.

Some designers may need to relax certain criteria in some areas of the
design to get the very best performance or density from the technology.
These types of modifications to the design rules should be made only
after careful consideration and review.

32

DRC User Manud

Fundamentals of Design Rule Verification: What are Design Rules?

How Design RulesAre Verified

Minimum Spacing Rules

In simple terms, a minimum spacing rule is arule that checks that shapes on one
layer are far enough apart from other shapes on the same layer, or from shapes
on a second layer. Due to the ever-increasing density of modern integrated
circuits, spacing criteria are increasingly complex.

What design rule verification programs actualy check is the distance from a
given side of a shape to sides of shapes on the other specified layer. Therefore,
one pair of shapes may result in several violations of a spacing rule if several
different pairs of sides are too close.

Simple spacing rules that verify that each side of one shape is at least a minimum
distance in all directions from a second, non-overlapping shape are easy to
understand. However, to allow as much density as possible, minimum spacing
rules are often modified to allow exceptionsin certain situations.

Inside/outside criteria: These types of exceptions restrict the spacing
rule to sides of shapes that are found looking toward the interior of a
shape, or toward the outside.

End caps: Often the minimum spacing is critica only along the
length of aside. Sides a minimum distance away from an end vertex in a
diagonal direction are acceptable. This area around the end vertex of a
sideis called the end cap of the side.

I nter sections of sides: Sometimes the direction of sides is critical to a
design rule. Wires that cross may be acceptable, while wires that travel
parallel to each other need to be a minimum distance away.

Electrical connections: Whether or not two shapes are part of the same
electrical net is often important to spacing rules.

Minimum length: Many design rules allow very short violations to
be present, however, longer violations must be fixed.

DRC User Manud 33

Fundamentals of Design Rule Verification: What are Design Rules?

Other Verification Rules

Most other design rules are more straightforward than spacing rules. A common
category of rules insures that shapes on a given layer are not smaller than a
certain minimum dimension. However, even this simple concept can require
some careful thought to write design rules that will catch al possible problems.

A common rule in this category is a minimum width rule. This type of rule
insures that a polygon is at least a minimum distance wide in any direction. The
primary reason for this type of rule is that opens may occur due to processing
issuesif ashapeistoo small at any point.

Verifying this type of rule comes down to testing each side of a shape to seeif it
istoo close to another side. However, this is more complicated than it seems at
first.

Al \ Bl c1

A2 B2

C2

VY

Figure 15: Various side-side distances.

Refer to the figure above. Sides Al and A2, or any adjacent pair of sides, will
violate a minimum width rule if the program does not prevent adjacent sides
from being marked as errors. You can see that adjacent sides cannot be
considered a violation. However, in this case, sides B1 and B2 cannot be
considered to be a violation. When sides are allowed to be at any angle, this
type of problem must be found with a different rule.

Y ou can see that you must understand how a program verifies even such asimple
rule as a minimum width check to insure that all violations are found.

34 DRC User Manual

Fundamentals of Design Rule Verification: What are Design Rules?

Sides C1 and C2 may be closer than a minimum distance, however they do not
represent a minimum width violation. To avoid marking this pair of sides, a
program must consider whether the distance is measured through the inside of
the polygon, or across a gap.

The gap between sides C1 and C2 is called a "notch”. Minimum notch rules are
also common in some technologies. Minimum notch rules have all the same
problemsin verification that minimum width rules have.

It is often important to test more than just minimum width for some layers.
Most devices must be tested to insure that they have at least a minimum area in
addition to being a minimum width wide. Occasionally, it is important to test
each side to insure that it is at least a minimum distance in length. This type of
ruleisusualy referred to asaminimum side rule.

The software used to create masks often adds additional design rules.
Configurations such as self-intersecting shapes and acute angles must often be
eliminated before a layout can be used to create a mask set. The hole that is |eft
when a shape intersects itself can often not be fabricated properly. Acute angles
can result in unexpected results when a shape is bloated prior to creating a mask.
Bloats of acute angles will make the shape grow disproportionately long.

Eliminating False Errors

A false error is a shape or relationship between sides that violates the design
rules, but for some reason is not considered areal error.

One cause of false errors may be that the design is incomplete. Let us say that
you are verifying a subcell. This cell will be connected to other cells with wires
at a higher level in the design. You have rule that states that all contact shapes
must be covered by metal, but the metal is not contained in the subcell. It will
be added in the higher level cell.

When you run the rules on the subcell, violations will be marked for all
uncovered contact holes. Y ou consider these to be false errors. One way around
this problem is to simply ignore the false errors. However, if the subcell is a

DRC User Manual 35

Fundamentals of Design Rule Verification: What are Design Rules?

large complicated cell, and you have many false errors that you ignore, it is very
easy to ignore some real errors aswell.

One way to avoid false errorsis to add shapes on non-design layers (often called
dummy layers) to the design. You could add shapes on layer TEMP_METAL
that cover the contact holes, then modify the rules to say that contacts covered by
TEMP_METAL are not errors.

However this type of processing has risks as well. Let us say that you forget to
remove the shapes on TEMP_METAL when you are testing rules on the higher
level design. You have real uncovered contacts at this level, however the errors
will never be reported since you are still using the TEMP_METAL processing.

When you add shapes on dummy layers, you should always think carefully
about how they may prevent real errorsfrom being found. Remove shapes
on dummy layers, or add methods to insure that they are not hiding real
errors, beforeyou run design rule verification on the final design.

A more risk-free method to prevent the false errors mentioned above is to create
atemporary cell with shapes on the real metal layer, then add your subcell to this
cell. Output the data to test the subcell from this temporary cell. This method
requires no non-design shapes in your design cell, and no risk of missing real
errors at the higher level.

Other false errors that do not result from missing shapes at a lower level may
require other solutions. Let us say that wide metal wires must be at least 5
microns apart, but narrow wires can be 3 microns apart. If your rulestest that all
metal wires are at least 5 microns apart, you would consider error marks on some
narrow wiresto be false errors. However, if you just try to ignore these errors, it
isvery likely that you will missreal spacing errors hidden among the rest.

To solve this problem, you need to filter the metal layer into groups that are
tested with different rules. When the rule set takes into account why some
shapes should be tested with different rules, the rule set is more risk-free. In the
case of the metal wires, you can use layer processing to classify the wires and
put wide wires into one layer and narrow wires into another. Then write
separate spacing rules for each layer. (An example of this process is covered on

page 65.)

36

DRC User Manud

Fundamentals of Design Rule Verification: What are Design Rules?

Layer Manipulation Prior to Rule Verification

It is almost always required to process the layers in a design before they can be
verified. Even if false errors are not an issue, you must often combine or filter
layers to isolate shapes that represent devices or other special shapes that must
be checked with a different set of design rules.

Sometimes the layers you use in the layout must be bloated, shrunk, or combined
with Boolean operations to simulate the fabrication process before the design
rules can be applied.

For example, if you are building a design in a FET technology, you must create
the gate layer using a Boolean AND operation on the diffusion and polysilicon
layers. The gate layer device shapes are very likely to have different design rules
than either the diffusion or polysilicon layers.

Some design rules are tested with Boolean operations or with rules that test if
one shape touches another. This can be an important distinction. Let us use the
example of contact holes again. Consider a restriction that all contact holes must
not only be covered by metal, but also must be surrounded by a non-zero amount
of metal on all sides. This

is sometimes referred to as
enclosure verification. Casel Cae2 Case3 Cae4

Look at Figure 16. Case 1
is the only case where the
contact hole does not
violate the rule stated

above. If you use a
Boolean rule to test this [J METAL CONTACTS
restriction, such as

"CONTACTS AND NOT Figure 16: Contact hole positions.
METAL", it will find cases

2 and 3, however case 4 will not be found. Case 4 can be tricky to find even
with a spacing rule. There are cases where complex spacing rules will not mark
coincident edges. It is best to find this type of error with a pair of rules such as
the following:

DRC User Manual 37

Fundamentals of Design Rule Verification: What are Design Rules?

NOT_METAL = NOT METAL
ERR = CONTACTSTOUCHING NOT_METAL

Creation of Layersfor Import Back Into Design

The same layer generation methods that combine or transform layers before
design rules are verified can be used to manipulate layers for import back into
design cells. This alows you to perform layer manipulation that cannot be
accomplished with the functions available in the layout editor.

You can use this feature to generate mask layers from simpler layers in your
design. Layers like diffusion layers or wells can be far easier to design if you
use layer manipulation in the verification program to generate the layers exactly
to specification. The layout designer does not have to worry as much about
following the design rules for layers like this, since they will be generated
automatically based on the presence of other layers.

Generated layers can be created and then verified with design rules in the same
rule set. The rule set can be written to not only verify the new layer, but to
automatically modify it to obey the design rules.

38

DRC User Manud

Fundamentals of Design Rule Verification: How Do Design Checkers Work?

How Do Design Rule Checkers Work?

Seethe
NO_RUL rule
description for
details on how
the DRC
verifiesthat a
modified rule
set has been
recompiled.

The basic flow of data into and out of a design rule checker is the same for all
programs of thistype. There are two primary input files: the design rules and the
layout data.

The design rules are trandated from written specifications to the programming
language of the design checker. This step can be complicated and requires quite
a bit of careful thought. The most dangerous mistake beginners make is
assuming that stupid mistakes will not be made in the layout. Y ou must assume
that every possible error will be present in the layout, no matter how silly it may
seem. Layout designers often turn the display of most layers off as they design a
layer, so even the most obvious problems between two layers are not visible to
them as they are working. Problems like shifting a shape or a cell often cause
problems beyond the portion of the design visible on the screen. Everybody
makes mistakes, and the writer of the design rules must insure that all of them
will be found.

Some programs (like the DRC) compile the source rules set into a compact form
that allows the program to execute faster. Since this an extra step, you must be
careful to remember to compile a modified rule set before executing the design
checker again. By default, the DRC will warn you if your rule set has changed
since the last compile.

The layout data is usually exported from the layout editor into a compact
machine-readable format. Thisis also an extra step that you must be careful not
to forget, otherwise after you make a change to the layout, you will verify the old
data again rather than the updated layout. There is no way the DRC can warn
you if one of your cells has changed since the last time you created the DRC
data.

The primary output from a design rule checker is areport of al violations of the
design rules found by the program. It is easiest to locate these errors if this
report is in the form of graphic data that enables you to see the errors in the
layout editor rather than finding them from lists of coordinate data. Thisis the
method used by the DRC.

DRC User Manual 39

Fundamentals of Design Rule Verification: How Do Design Checkers Work?

A Few Definitions

Before we go into the details of how design rule checkers process data, let us
define afew terms.

Cell

Hierarchy

Leve

Flattening

A cell isacollection of shapesthat is stored
as a group with a name associated with it.

This term refers to the nesting of cellsin a
design. When cell A is added as a compo-
nent to cell B, we say that cell A is nested

ﬂ

in cell B, or that cell A is asubcell of cell

B. Cdl B has hierar-
chy, or is hierarchi-
cally nested. That is,
it contains other cells
as components.

The level of a cdll
refers to its place in
the hierarchy. In the
example above, if cell
A has no cells nested

ﬂ _____ | ﬂ

Figure 18: A nested cell.

init, it isthe lowest level cell. Cell B is a higher level cell. If
cell B is added to cell C, and cell C is not added to any other
cells, it isthe highest level cell, or the main cell.

When you replace a
nested cell with the
shapes contained in the
cell, you have flattened
it. Ungrouping is an-
other term for
flattening.

|l

Cell B

Figure 19: Cell B after flattening.

40

DRC User Manud

Fundamentals of Design Rule Verification: How Do Design Checkers Work?

Pass A pass is a collection of operations that can be performed by a
design rule checker with one sweep through all shapes in the
database.

Sometimes, the rules require that all shapes must be processed
several times to complete all operations. We will discuss later
what types of operations require this type of processing. For
now let us just say that if some types of operations were
executed with a single pass through the data, errors could be
missed, or false errors could be generated.

How L arge Amounts of Data Are Processed

One of the biggest problems with design rule checkers is the huge amount of
datainvolved in verifying the design of an entire chip.

To reduce this problem, and speed the verification of your chip, it is best to
verify smaller portions of your design first. The time and storage required to
verify the design rules for a NAND circuit is negligible. If you find most of the
design errors in subcells first, there will be fewer runs required on the entire
design. However, you must run the design rules checker on the entire chip
before you can release it for fabrication. Areas where cells meet or overlap are
common places for design rule violations.

Other programs that verify design rules allow true hierarchical verification by
imposing design constraints. These constraints are usually forbid cells to
overlap. Wiring in the main cell is not alowed to travel over subcells. Some
programs allow some overlap by forcing all devices to be in one area of a cell
with only wiring and contacts allowed in a border area. This border area may
overlap wiring in the main cell. Both of these methods waste design space.

The DRC program imposes no design constraints. Any customization allowed
by the technology is supported. When no constraints are imposed, a design rule
checker must flatten a design prior to verifying the design rules to find all errors
where cells meet or overlap.

DRC User Manual 41

Fundamentals of Design Rule Verification: How Do Design Checkers Work?

For example, let us say that your design contains 10,000 NAND cells. These
cells are added to a cell called WIRING that contains metal wires that connect
the NAND cells. It isnot sufficient for a program to verify a single copy of the
NAND cell, then verify the wire shapes that are contained in the WIRING cell.
There may be design rule violations between shapes in the NAND cells and
shapes in the WIRING cell. Each copy of the NAND cell must be flattened (or
unnested) so that every shape in each copy of the NAND cell is verified against
the wire shapesin itsvicinity.

When you flatten a hierarchically nested design, the amount of data increases
dramatically. In the example above, if we assume that the NAND cell contains
50 shapes, and the WIRING cell contains 20,000 shapes, the flattened design
contains 520,000 shapes. Just one layer of a modern dense chip design may
contain millions of vertices.

In addition to the coordinates of every vertex of every shape in the design, the
program stores temporary data for every vertex to enable the program algorithms
to execute at reasonable speeds. When an entire chip is verified, the huge
amount of data that must be stored is usually far too much for a personal
compulter.

Panel Processing

The solution to the storage problem for a whole chip is to divide the design into
panels and process only asingle panel at atime.

The portion of the design that is not included in the current panel can remain
hierarchically nested to conserve storage space. In the example above, if each
panel contains only 50 copies of the NAND cell, only 50 copies must be
flattened at atime, resulting in a database of only 22,500 shapes.

Panel processing has overhead associated with it. An area outside the boundary
of each panel must be tested to insure that no violations occur between the
shapes in the current panel and its neighbors. This area is called the panel
border.

42

DRC User Manud

Fundamentals of Design Rule Verification: How Do Design Checkers Work?

N
Border o~ f : i Panel
distance ! : ' / boundary
1 ' 1 !
: Pand 1 i : Pand 2 . Border
: o .« boundary
1 1 i

'
[
|

Figure 20: Panelsand borders

The shapes in the panel borders are tested at least twice. The shapes near the
interior corner of a panel are tested at least 4 times. In the diagram above, a
shape in the lower right corner of panel 1 will be verified once when panel 1 is
checked, then again when panels 2, 3, and 4 are checked.

The border distance is determined by the design rules. If your rule set contains a
single rule that verifies that each shape on the metal layer is at least 2 units away
from all other shapes on the metal layer, the border distance must be at least 2
units. In this case, if a shape on the metal layer isright at the panel boundary, a
violation in a neighboring panel that isless than 2 units away will be found.

Thereis atradeoff between the storage savings in testing one panel at a time and
the overhead in testing the border area multiple times. The optimum panel size
for a particular design and rule set can be determined only by trial and error.

DRC User Manual 43

Fundamentals of Design Rule Verification: How Do Design Checkers Work?

Hierarchical Processing

A design must be flattened to verify design rules. However, many layer-
processing operations that must be performed prior to applying the design rules
can be performed while the design is till nested hierarchically.

Remember the chip with 10,000 NAND cells? Let us say that this NAND cell
needs to have the GATE layer generated from the diffusion and polysilicon
layersto test FET device design rules. The generation of the GATE layer can be
performed only once on the nested NAND cell, rather than 10,000 times. Only
one copy of the shapes on the GATE layer must be stored. Thiswill not prevent
design rule errors from being found.

Each pass through the data requires that intermediate data must be stored for the
next pass. If the design is being processed in panels, the program cannot test the
GATE layer in the same pass that generatesit. All data for the new layer must
be stored until the next pass can use it. When you have many generated layers,
and several passes, this amount of data can be huge. If it is stored hierarchicaly,
significantly less storage space is required.

There is overhead incurred when processing layers in this manner. The layer
stored for ahigher level cell must have the data in the lower level cell subtracted
from it, or you may generate several copies of the shapes. These subtractions
take processing time. Also, shapes in a higher level cell may modify a layer
stored in a lower level cell. This must be checked at every level, or incorrect
results may be generated.

Due to these types of problems, there is trade off between time saved by
hierarchical processing and the time spent in the extra calculations. The best
solution isto flatten small cells and those cells used few times.

Now that we understand most of the issues involved in testing design rules, let us
go into the specifics of how the DRC deal s with these issues.

DRC User Manud

How the DRC Works

How the DRC Works

DRC User Manual 45

How the DRC Works

This chapter is an overview of how the DRC operates. Once you have
completed this material, you should have at least a basic understanding of all
features.

The theory behind the more complex features is described completely. To use
these features, you will have to read the relevant syntax sections. However, this
chapter covers the key ideas that will allow you to solve problems you may
encounter, and to avoid al major pitfalls.

Every subject is followed by a table of references to other places in the manual
where you can find more details and examples. You may find these tables
especially useful if you need to review a particular subject in detail at a later
date.

46

DRC User Manud

How the DRC Works: Generating the Input Files and Running the Program

Generating the Input Files and Running the
Program

The DRC requires two
input files: a compiled Y

rules file and a binary DRCRUSFI Layout Files
layout datafile. RUL .CEL

The source rules file can

be written using any

) DRC Rules ICED32]
ASCII text editor. We Compiler Layout Editor
suggest that you use a

.RUL extenson for |
thesefiles.

Binar
Layout Data

The rules file must be POK

compiled with D3RUL-
NT.EXE®. The compiled
rules file will be created DRC
with the same file name
as the source rules file
with a file extension of

.BB.
Command .
. . . Files File
Afewhintson The binary layout datais
using the DRC

created by the DRC

layout editor din th ™

command are comman In e ICED Program
provided on layout editor. A ICED32].

page 159. complete description of Layout Editor

the DRC command is

provided in the layout
editor reference manual. Figure 21: Theflow of data to run the DRC.

5 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versionsis named D3RU-NTX.EXE.

DRC User Manual 47

How the DRC Works: Generating the Input Files and Running the Program

Once both of the input files are prepared, the DRC program is executed outside
of the layout editor. There are many command line options for the program.
Y ou should be familiar with them before executing the program. The purpose of
each option is mentioned below in this chapter, but they are more fully described

later in the manual when we discuss the syntax of the DRC command line.

The DRC program generates few console messages. The fina line of a
successful run is the most important one.

n total figuresoutput to error layers.

If n =0, then the DRC has found no errors in your layout. (We will describe
exactly what an error layer isin afew pages.)

Subject Description Page
Rule syntax Detailed syntax and examples for every rulein 171
alphabetical order
NO_RUL rule and | Avoid warning prompt from DRC when source rules 277
NO_RUL command | fileisnot present and
line option 349
Rule compilation Details on compiler and syntax of command line 319
DRC program Details on DRC command line syntax and output files | 329

Figure 22: Referencesfor running the program

48

DRC User Manud

How the DRC Works: Looking at the Results

Looking at the Results

The third parameter on the DRC command line (output_file_base name) is the
string used to create the two primary DRC output files: the log file and the
command file.

The DRC LogFile

You will be
warned in the
console
messages when
you need to
check thelog
file for warnings
or error
messages from
the program.

The log file will have the name output_file base name.DLO. The log file
contains all messages about program errors or warnings. Some other
information provided in this file includes details on how the design was
flattened, the panel size, and the border dimensions.

There are some DRC command line options that will add information to thisfile.
See thelist below.

The number of shapes created on each output layer, including error layers, will
belisted in thelog file. Thisisaquick way of seeing how many violations were
found by each design rule checked. The coordinates of each violation are
usually not listed in the log file. Since the DRC is designed to verify large
designs, if all violation coordinates were printed, the log file could grow to be
unreasonably large.

Subject Description Page

Log file description | Detailed description of contents 362

LIST_RULES DRC command line option to add rulelisting to log file | 350

SHOW_BORDER | DRC option to add border calculationsto log file 348

SHOW_SCALES DRC command line option to add vertex resolution 350
parameter information to log file

DRC program Details on DRC command line options and output files 329

Figure 23: Referencesfor DRC log file

DRC User Manual 49

How the DRC Works: Looking at the Results

Detailed L ogging

. . N MIN_NOTCH
Y ou can enable detailed logging of violations for some MIN_SPACING

rules. Detailed logging may be helpful when you | \/in"WiDTH
cannot determine why a particular side has been -

marked as an error. The coordinates of pairs of sides
that violate the rules listed in Figure 24 will be listed
in the log when detailed logging is enabled.

Figure 24: Rulesthat
can produce detailed
listingsin log file.

Use detailed logging only for small areas of your design when you cannot
determine the exact cause of an error. The log file gets unreasonably large
quickly when this featureis used.

The more common way to mark errors is the command file that creates shapesin
the layout editor. (We over this subject next.) If many error marks are
generated, it can be difficult to determine from these error marks which specific
pair of sides violates arule. Since the detailed log messages explicitly list each
pair, this can help you pinpoint a problem.

The marks in the command file mark only the portions of sides that violate the
rule. However, the messages printed when detailed logging is enabled are the
coordinates of the entire side, not just the portionsin error.

4. RESULTI[11] = M N _SPACING A[1], A[1], 20
/ +~CONN/ P/ | NTER/ OVER/ CROSS/ T/ END/ DET)

1: 1 (-29.5,19.5)-(-29.5,-5) <-> 2 (-30, -10)- (- 20, - 10)
2: 1 (-29.5,19.5)-(-29.5,-5) <-> 2 (-30, -10)- (- 30, - 15)

Figure 25: Sample log messages produced when detailed logging is enabled.

All violations for a specific rule will be preceded by a listing of the rule. The
rule number (“4” in the sample above) isindicated first.

Each violation message begins with an incremented error number. Next aunique
number for the polygon containing an edge in error will be listed. The vertex

50

DRC User Manud

How the DRC Works: Looking at the Results

coordinates for the edge in error is printed followed by the symbol “<- >". Next
comes the number of the polygon containing the edge that was too close, and
finally the coordinates of the vertices of this edge. Figure 25 above shows two
error messages printed for violations of aMIN_SPACING rule. A single edge of
polygon number 1 istoo close to two different edges of polygon humber 2.

There are two ways to enable detailed logging. The rule DETAIL ON enables
detailed logging until a DETAIL OFF rule disables the feature. The other
method is to add the /DET option to specific rules. (The rules listed above in
Figure 24 al have this option.) If detailed logging has been enabled with
DETAIL ON, the /~DET option in arule disables detailed logging for only that

rule.
Subject Description Page
DETAIL ON/OFF Rule to enable/disable detailed logging 210
MIN_NOTCH Spacing rule for notches 248
MIN_SPACING Spacing rule for separate shapes 252
MIN_WIDTH Spacing rule for width of individual shapes 271
Limiting Area Checked | Overview of methodsto check only part of a 159

layout.

TOP, BOT, etc Restrict area to check on the command lineat run | 350
command line options time.
IN option of layout Restrict areato check in input layout file. 159
editor's DRC command

Figure 26: Referencesfor detailed logging

DRC User Manual 51

How the DRC Works: Looking at the Results

The DRC Command File

The coordinates
for each error
shape are
included in the
commands in
the command
file. Youcan
browse thisfile
to read the
coordinates if
you desire.

See page 62 for
achart that
indicates which
rules generate
wires and which
generate

polygons.

See an example
of setting wire
width and wire

type on page
367.

The command file is used to create shapes in the ICED™ layout editor. The DRC
will create ADD commands in the command file for all shapes on output layers
at the end of the DRC run. These shapes will include both error marks and
shapes on all other output layers. You execute this command file in the layout
editor to add the shapesto acell.

The name of the file is output_file_base name.CMD, where output_file_base-
_hame is the third parameter on the DRC command line. You execute the
command file in the layout editor with the command:

@output_file_base name

The shapes will be created in the current cell. (Except in the case of hierarchical
output. We will cover this special case later.) If the current cell is your design
cell, it will be modified when you execute the above command. We suggest that
you execute the command file in a temporary cell until you are familiar with the
process. You can add your design cell to this temporary cell to see the error
marks at the same time as your design.

Most verification rules generate wires for error marks. This is due to the fact
that wires can clearly mark the sides of polygons. Only the portions of sides that
areinviolation of arule will be marked. If the DRC marked entire polygons, it
would make the error marks much more ambiguous.

One helpful feature of wiresis that you can set their width to be consistent with
the size of the shapes they are marking. Unless you use the WIRE_WIDTH rule
or the WIRE_WIDTH command line option, the command file does not set the
size of the wires it creates. The default width for the layer in the cell file will be
used as the width of the wires. If you have shapes that are usually 10 user units
wide, you can set the width of the layer for the error wiresto 1 or 2 user units to
clearly mark the edges. If you are marking errors on shapes that are only 2 user
units wide, you can set the default width of the error layer to .3 user units.

52

DRC User Manud

How the DRC Works: Looking at the Results

You can set
these layer
propertiesin a
command file
that you can
reuse as
required. See
page 355 for
details on
executing such
acommand file
automatically
when you
execute the
DRC command
file.

It isdifficult to change the width of wires after they are created. Y ou want to set
the default width of your error layers befor e you execute the command file. The
LAYER command in the layout editor sets the default width. You also set the
color and fill pattern of the layer with this command. The default end type of all
wiresis set with the USE command. Y ou should always set the default end type
to type O wires before executing the command file.

If you do not want to customize the width for every error layer in the cell file
before you execute the DRC command file, you should add a WIRE_WIDTH
rule to the rule set to set the width of all error wire marks.

Some errors are marked in separate subcell error command files. The errors for
a specific subcell will be created in a separate file with a .ERR file extension.
The shapes are created in the coordinate system of the subcell. These files
facilitate fixing the type of errors found in nested cells. (Remember that most
errors can be found only after the layout has been flattened.) Execute these
command files while editing the corresponding subcell.

Subject Description Page

Command file description Detailed description of contents and how to 365

import shapes into the layout editor
Set width for all error wires created by the 315

WIRE_WIDTH rule

and command line option command file. 346
Simple tutorial Example of use of command file 12
Hierarchical output Overview of how hierarchical output is 146

handled in command file

Subcell error command files

Detailed description of .ERR command files | 375

Figure 27: Referencesfor DRC command files

DRC User Manual 53

How the DRC Works: Looking at the Results

Additional Uses of the DRC

See an example
of how useful
this feature can
be on page 71.

In addition to finding design rule violations, the DRC can be used to manipulate
layout data. You can use the layer manipulation operations to transform input
layout data into mask layers or other useful layers.

Combining the DRC with the ICED™ layout editor allows you to perform
operations too complex for the layout editor alone. These operations include:

Boolean operations
Shrinks or bloats

Isolation of subsets of shapes by size, touching criteria, or other

characteristics

The output data created by these operations can be hierarchical. This means that
the structure of a nested design can be preserved in the output data.

One more feature of the DRC is the ability to compare two designs. The
SECOND_CELL command line option allows you to compare two layouts or to
combine the data in two cells with the control available with the layer generation
operations mentioned above.

Subject Description Page
Layer manipulation Overview of rules that manipulate layers 63
Hierarchical output Overview of how hierarchical output is handled 146
Mask layer generation | Overview of mask layer generation issues 70

SECOND_CELL

DRC command line option to import second layout | 335

file

Figure 28: Referencesfor additional uses of the DRC

DRC User Manud

How the DRC Works: Layer Processing

Layer Processing

Layer Definition

All layers in a DRC rule set must be defined before they are used in a rule.
These definition rules associate the DRC layer name in the rule set with the layer
number in the ICED™ cell. The only place in the rule set where the layer number
is used is the layer definition rule. The rest of the rule set uses only the DRC
layer name. The name of the layer in the ICED™ cell isignored completely

UsetheLAYER DY the DRC.

or TEMPLATE _

commands in DRC layer names may be up to 30 characterslong. The first character must be a

IthEICEngM letter. The remaining characters can be letters, digits, or any of the following

ayout ItOI’ tO 1 Ty 1 (WAl

determine the specia characters. ' ', '~','$, ", or '#.

layer number . . : o

fromthelayout ~ YOou may define up to 2100 unique layers in a rule set. Layer definitions are

cell’s layer usually grouped together at the top of the file, but thisis not required.

name.
Name of rule Use Page
INPUT LAYER Defines input layers 217
OUTPUT LAYER Defines output layers 284
MODIFY LAYER Defines layers used as both input and output layers | 273
SCRATCH LAYER Defines temporary layers used in the rule set 300

Figure 29: Layer definition rules

DRC User Manual 55

How the DRC Works: Layer Processing

Usethe
assignment rule
to copy alayer.
See page 187
for details.

See an example
of thistype of
scratch layer
definition on
page 152.

Input Layers

Input layers correspond to layers in the input ICED™ layout. Only input layers
will be read in from the layout data file. Other layers are ignored. Input layers
cannot be modified during the rule set (unless they are defined by a MODIFY
LAYER rule. This is covered on the next page.). If you want to modify the
shapes on an input layer, you must first copy the input layer to an output or
scratch layer.

Output Layers

Shapes on output layers will be included in the command file generated by the
DRC. Shapes on other layers in the DRC database will be discarded at the end
of the DRC run. Output layers can be either error layers or non-error layers. We
will cover this subject alittle later.

The OUTPUT LAYER rule assigns a layer number to the DRC layer name used
in the rest of the rule set. Multiple DRC layers can all be combined into one
output layer number at the end of the DRC run. The layers are processed
separately during the run.

Output layers can be useful for diagnosing problems with your rule set as well as
finding errorsin your layout. If the rule set is not creating the shapes you think
it should, or not marking errors you think it should, the problem is often that the
rules that process intermediate layers are incorrectly written. When you look at
these intermediate layers the problem is often quite obvious.

One syntax trick you can use to make your rule set easier to troubleshoot is to
define al intermediate or temporary layers in OUTPUT LAYER rules using
layer number 0. Shapes on layer number O are not included in the output.
However, it is easy to edit the rule set later to temporarily set specific layersto a
layer number other than 0. When the layer number is non-zero, shapes on the
layer will be included in the output.

56

DRC User Manud

How the DRC Works: Layer Processing

In other words, layers defined in OUTPUT LAY ER rules with layer number O
are really scratch layers which will not be included in the output. The other
method used to define scratch layersis described next.

Scratch and Modify Layers

Any layers that the DRC will create or modify, that are not output layers, must
be defined in a SCRATCH LAYER rule. These layers are defined only by name
since they are never output to an ICED™ cell as numbered layers. As mentioned
in the previous paragraph, you may prefer to use OUTPUT LAYER O rules for
scratch layersinstead of using the SCRATCH LAYER rule.

A layer defined with the MODIFY LAYER rule is both an input layer and an
output layer. Modify layers are useful when you are using the DRC to create
new cells. You can list al layersin acell in MODIFY LAYER rules, then all
layers will be included in the output data using the same layer numbers.

However, it can be dangerous to use modify layers when you import the DRC
output into your original cells. When you do this, shapes on al layers defined
with MODIFY LAYER ruleswill be added to the original cells.

For example, you have a cell with two shapes, one on layer 1 and one on layer 2.
In the DRC rule set you define layers 1 and 2 with MODIFY LAYER rules.
Your rule set uses these two layers to create layer 3. When you import the DRC
results into your original cell to see layer 3, you are also adding copies of the
shapeson layer 1 and 2.

Variable Layer Numbers

Occasionally, you may want to specify layer numbers when you run the DRC
rather than in the rule set. One case of this is when you have a simple rule set
that performs a Boolean operation on two input layers. If you can specify the
layer numbers on the DRC command line, you do not have to edit the rule set,
then recompileit, to perform the same operation on other layers at a future time.

DRC User Manual 57

How the DRC Works: Layer Processing

The %n syntax
used for
variable layer
numbersis
designed to be
similar to the
syntax used for
parametersin

DOS batch files.

You can use variables in place of layer numbers in INPUT LAYER, OUTPUT
LAYER, or MODIFY LAYER rules. Simply use a percent sign (‘%" and a
counter in place of the layer number in these layer definition rules. Then specify
the layer numbers for each variable on the DRC command line using the
LAYERS option.

Preprocessing of Layers

Forcing the
DRC to handle
shapes
dangerously can
result in shapes
in subcellsto
not be merged.
See page 138.

Subject Description Page
INPUT LAYER Define input layers 217
OUTPUT LAYER Define output layers 284
MODIFY LAYER Define layers used as both input and output layers | 273
SCRATCH LAYER Define temporary layers used in the rule set 300
LAYERS command Define layer numbers used for input/output at run 346
line option timeinstead of in rule set

Figure 30: Referencesfor layer definition

Lines and text components in the input data are ignored by the DRC. Even

when they are present on a layer used as both an input layer and an output layer,
they will be stripped from the input data and will not be present in the output
data.

One of the first preprocessing steps the DRC performs on your layout datais to
convert al shapes, including wires, to polygons. All touching polygons on the
same layer in the same panel are then merged into single polygons. Thisis done
before any rules are processed.

58

DRC User Manud

How the DRC Works: Layer Processing

Only shapesin
the current
panel (and
touching shapes
on the same
layer in
neighboring
panels) are
merged. To
learn more
about panels,
See page 118.

The two boxes on the left in Figure 31 are converted into the polygon on the | eft
in Figure 32. The wire on the right in Figure 31 is converted to a polygon and
merged with the triangle to create the polygon you see on the right in Figure 32.

Figure 31: Layer before DRC Figure 32: Layer after DRC
preprocessing. preprocessing.

The topology of the original shapes is not used by the DRC. The program will
use the topology and dimensions of the merged shapes.

This also means that wire shapes copied to (or used to generate) an output layer
will be created as polygons in the output data.

IN_CELL Processing

There are three ways to force the DRC to handle shapes in certain cells
differently than other shapes on the same layer. You may want to do this
because the shapes in certain cells should be considered devices, even though
other shapes on the same layer are considered to be conductive material.

Inductors are a good example of this problem. If you have awinding shape on a
metal layer that you consider to be an inductor, you may want this metal to be on
a different DRC layer and test this layer with different rules. If you put this
shape in a separate cell it isrelatively easy to do this.

DRC User Manual 59

How the DRC Works: Layer Processing

There are three waysto filter alayer based on the cell in which it is contained:

INPUT LAYER ruleIN_CELL parameter This method will place
all shapes on a layer contained in a specific subcell on a
different layer during input processing.

IN_CELL rule This method allows you to filter any layer
contained in acell and itssubcells at any timein the rule set.

Layer Oprocessing Layer O represents the bounding box of a cell.
If you use the INPUT LAYER IN_CELL parameter to define
layer O, you will store a rectangle that covers al shapes in the
cell. You can then use Boolean processing to filter all shapes
within the rectangle. In this case, all shapes within the rectangle
are processed differently, regardliess of the cell that contains

them.
Subject Description Page
INPUT LAYER rule Define input layers 217
IN_CELL Classify shapesin certain cells 215
Example of Layer O Classify flattened shapes in al cells within a| 221
processing specific cell boundary.

Figure 33: Referencesfor IN_CELL processing

60 DRC User Manual

How the DRC Works: Layer Processing

Typesof DRC Layers

In the DRC database, all layers have two important properties:

Geometric basis: polygon layer vs. wire layer
Error status: error layer vs. non-error layer

All input layers are polygon layers. (Remember that DRC preprocessing will
convert all wire components into polygons.) All layersthat are used to generate
mask layers should be polygon layers.

Wire layers are generated by DRC verification rules to mark edges as errors.
Any layers generated by rules that create wires (as indicated in the table on the
next page) cannot be used on right side of the '=' in any succeeding rule. You
cannot perform Boolean or any other processing on wire shapes.

You can use the OUTPUT LAYER rule to define alayer that would normally be
a polygon layer as awire layer. You may want to do this because you consider
shapes on that layer to be errors and you want all of your error layers to have
similar properties.

When you use the WIRE keyword in the OUTPUT LAYER rule for alayer that
contains polygons, the shapes on the layer remain polygons during the DRC
processing. Only during output file creation are the shapes converted to wires
that outline the boundaries of the polygons.

Any output layer can be defined as an error layer. Only shapes on error layers
are added to the error count. Some rules (see table on the next page)
automatically classify their result-layers as error layers. Other layers that may be
the result of Boolean or other processing must be defined explicitly as error
layers in the OUTPUT LAYER rule if you want shapes on that layer to be
included in the error count.

DRC User Manual 61

How the DRC Works: Layer Processing

Rule Use Geometric basis | Error status
AND Boolean AND of two layers Polygon Non-error
ASPECT_RATIO Classify shapes by relative dimensions Polygon Non-error
Assgnment Rule/ NOT | Copy layer or inverse of layer Polygon Non-error
BLOAT Expand shapes Polygon Non-error
BOUNDS Classify shapes by size Polygon Non-error
BRIDGE Recognize air bridges Polygon Non-error
HOLE_AREA- Classify polygons with holes Polygon Non-error
_FRACTION
IN_CELL Classify shapesin certain cells Polygon Non-error
IS BOX Classify rectangles by size Polygon Non-error
IS CIRCLE Classify circular polygons Polygon Non-error
ISLANDS Find holes Polygon Non-error
MAX_ANGLE Find sharp points in notches Wire Error
MAX_SPACING Classify shapes by distance apart Polygon Non-error
MIN_ANGLE Find sharp pointsin protrusions Wire Error
MIN_AREA Find small shapes Polygon Error
MIN_NOTCH Find small notches Wire Error
MIN_SIDE Find shapes with at least one small side Wire Error
MIN_SPACING Find shapes too close together Wire Error
MIN_WIDTH Find shapes with small width Wire Error
OFF _GRID Find vertices not on resolution grid Polygon Error
OR Boolean OR of two layers Polygon Non-error
OVERLAPPING Find shapes with common area Polygon Non-error
SHRINK Shrink shapes uniformly Polygon Non-error
SNAP Relocate vertices on resolution grid Polygon Non-error
SNAP45 Relocate vertices on resolution grid Polygon Non-error
preserving slope of 45° angles
STAMP Find improperly connected wells Polygon Error
TOUCHING Find touching shapes on different layers Polygon Non-error
WARN_ACUTE Identify all acute angles on output layers | Wire Non-error
XOR Boolean exclusive OR Polygon Non-error

Figure 34: Properties of layersgenerated by DRC rules

62

DRC User Manud

How the DRC Works: Layer Processing

Layer Generation Rules

Example:

Example:

Layer generation rules create polygons on output or scratch layers based on the
contents of existing layers.

These rules are used to manipulate layers for several reasons:

Layers used to design the layout can be transformed automatically into
mask layers for export.

Layers may need to be combined into mask layersto test design rules.

Certain shapes on a layer may need to be filtered into subsets to test
design rules that depend on certain properties or to avoid false errors.

Some classes of design errors are found not by spacing or other
verification rules, but by simple Boolean processing (e.g. ERR1= VIA
AND NOT M1).

Theresult_layer of alayer generation rule will always be cleared of its previous
contents and replaced with the result of the operation. If the previous contents
have not been used yet in another rule, the rules compiler will warn you. The
result_layer can be the same layer as one of the layersto the right of the'=". The
following isavalid rule:

SUBSTRATE = SUBSTRATE AND NOT PWELL

Boolean Processing

Several Boolean operations cannot be combined into a single rule (other than the
use of the NOT keyword). Complex Boolean processing must be broken down
into separate rules.

POLY_IN= POLY_WIRES OR DEV_POLY
RESISTOR_POLY = POLY_IN AND RESISTOR_MASK
POLY = POLY_IN AND NOT RESISTOR_MASK

DRC User Manual 63

How the DRC Works: Layer Processing

Example:

You must add
the ERROR
keyword to the
OUTPUT
LAYER rule
when you want
to add shapes
generated by
theserulesto

the error count.

Parentheses are not allowed in Boolean expressions. "C = (NOT A) OR B" may
seem like the natural way to write arule, but it will generate syntax errors. In a
DRC rule, the NOT keyword always applies only to the layer it precedes.

C = NOT A AND NOT B

Thisrule will be interpreted by the DRC compiler as:

C = (NOT A) AND (NOT B)

Rule Use Page number
AND Boolean AND of two layers 183
Assignment Rule/ | Copy layer or inverse of layer 187

NOT

OR Boolean OR of two layers 283

XOR Boolean exclusive OR 313

Figure 35: Boolean layer generation rules

Classifying Shapes by Size or Shape

Severa rules classify shapes by size. The IS CIRCLE rule finds circular
polygons in arbitrary size ranges. The IS BOX rule is used to filter rectangles
by size.

The BOUNDS rule is very similar to IS BOX, but the size criteria apply to the
size of the bounding boxes of shapes. The bounding box of a shape is the
smallest rectangle square with the axes (i.e. a rectangle with horizontal and
vertical sides) that encloses the shape. The ASPECT_RATIO rule classifies
shapes by the ratio of the dimensions of their bounding boxes. Since the
BOUNDS and ASPECT_RATIO rules classify shapes by the size of their
bounding boxes, they are useful to classify non-rectangular shapes.

DRC User Manud

How the DRC Works: Layer Processing

However, when the shapes you need to classify by size are long irregular shapes,
like wires, none of the rules above will be of much use. Let us say that you need
to apply different minimum distance rules depending on the width of wires.
Wires that are 2 microns wide must be at least 2 microns apart; however wires
that are only 1.5 microns wide must be only 1.5 microns apart. The best way to
classify wires by width is to shrink the wires by half the width, then bloat them
again by the same amount. Wires narrower than the width will disappear during
the shrink. The bloat returns the other wiresto their origina size.

Example: M1 SHRINK = SHRINK (MZ1_IN, .999)
M1 2 WIDE= BLOAT (M1 _SHRINK, .999)
M1 UNDER 2= ML IN AND NOT M1 2 WIDE

ERR1=MIN_SPACING (M1 2 WIDE, M1.2 WIDE, 2
ERR2=MIN_SPACING (M1 2 WIDE, M1 _UNDER 2, 2)
ERR3=MIN_SPACING (M1 _UNDER_2, M1 UNDER 2, 15)

Note that the value used to separate the wires is slightly less than half of the size
criteria. If the SHRINK and BLOAT rules used a value of exactly 1.0, then
wires 2 microns wide would wind up on the M1_UNDER_2 layer. These rules
separate M1_IN shapes into those wider than 1.998 and those 1.998 wide or
narrower. Each of these subsets is then verified for different minimum spacing.
Note that the distance between shapes in either subset is also checked with the
rule that generates the ERR2 layer.

The SHRINK and BLOAT rules are fairly expensive in terms of processing time,
and they can lead to the distortion of polygons with varying width or skewed
sides. A single polygon with athin segment in the middle may wind up as two
polygons after a shrink and bloat. Shrinking then bloating a shape with a skewed
side (i.e. a side that is not horizontal or vertical) may result in the slope of the
skewed side changing because the vertices of such sides are often not on grid
after the shrink. The bloat operation then magnifies the problem. Look
carefully at the layers created before you rely on them for design rules checking.

If the M1 IN layer contains acute angles, you may want to add a pair of
BLOAT_ANGLE rules around the BLOAT rule to prevent the acute angles from
being cut by that rule. However, decreasing the bloat angle will increase the
reach of the rule and the DRC processing time. See the description of the
BLOAT_ANGLE rulefor details.

DRC User Manual 65

How the DRC Works: Layer Processing

Example:

Thetable on
page 62 lists the
geometric basis
and automatic
error status of
shapes created
by each rule.

The MIN_AREA rule is usually used as a verification rule to find shapes that
violate a design restriction on the minimum area of shapes. However, it can be
used as a filter to classify shapes by size. Let say that you need to apply
different verification rules to shapes with an area larger than a certain minimum
size. The following rules will filter shapes based on area without classifying
shapes with asmall area as errors.

INPUT LAYER 1A
OUTPUT ERROR LAYER 11 ERR1
OUTPUT LAYER OSMALL_A; OLARGE_A

SMALL_A= MIN_AREA (A, 10/BORDER=0)
LARGE_A= A AND NOT SMALL_A
ERR1= MIN_WIDTH (LARGE_A,3)

Since the SMALL_A layer is defined with layer number O, shapes created on
that layer will not automatically be counted as errors as they would normally be.

The MIN_AREA rule can be used as afilter this way because it generates shapes
with a polygon geometric basis. The DRC can use these shapes in other rulesin
the same manner as any other rule that generates polygons. The shapes created
by verification rules that generate wires cannot be used this way. Layers that
contain wire shapes cannot be used on the right side of the '="in any other rule.

One other rule that involves classifying shapes by size is the
HOLE_AREA_FRACTION rule that classifies shapes by the fraction of their
areathat is removed by holes.

66

DRC User Manud

How the DRC Works: Layer Processing

Rule Use Page
ASPECT_RATIO | Classify shapes by relative dimensions 184
BLOAT Expand shapes 189
BLOAT_ANGLE | Specify how acute angles are processed by the 311
BLOAT and SHRINK rules

BOUNDS Classify shapes by the size of their bounding boxes | 194
HOLE_AREA- Classify shapes by fraction removed by holes 211
_FRACTION

IS BOX Classify rectangles by size 222
IS CIRCLE Classify circular polygons 225
MIN_AREA | solate shapes with small area 243
SHRINK Shrink shapes 302

Figure 36: Rulesused to filter shapesby size

Classifying Shapes by Distance

Therelated
MIN_SPACING
rulefinds errors
rather than
classifying
shapes.

The MAX_SPACING rule finds shapes on a certain layer that are at least a
specific distance away from other shapes on the same layer or from shapes on a
different layer. You can tailor the rule to collect only shapes that are, or are not,
electrically connected from the other shapes. You can also treat shapes that are
near the corners of each shape differently from those that are near aside.

This rule can aso be written to collect only shapes that are within the indicated

distance from the other shapes.
Rule Use Page
MAX_SPACING | Classify shapes by distance to other shapes 235

DRC User Manud

67

How the DRC Works: Layer Processing

Overview of Other Layer Generation Rules

The BLOAT and SHRINK rules are also used to expand or reduce shapes on a
layer for reasons other than separating shapes on a layer by size (covered on
page 65.) These rules can be used to change a layer used to design the layout to
mask layer dimensions before design rules are applied. They can also be used in
sophisticated processing to automatically generate a mask layer from layout
layers. (Seethe example on page 71.) The BLOAT_ANGLE rule changes how
acute angles are handled for both rules.

The OVERLAPPING and TOUCHING rules classify shapes by whether or not
they touch shapes on a second layer. The OVERLAPPING rule will recognize
shapes that share a common area. The less restrictive TOUCHING rule will
identify shapes that share area or just a line segment along two sides. This can
be very useful in many situations. These rules are commonly used to identify
devices. They can also be used to verify that non-design shapes (often referred
to as dummy shapes) are located in the correct place. A TOUCHING rule is
often used in place of a Boolean rule to test that two layers do not overlap since
it will locate shapes that share an edge.

L NS
" Overlapping * "Overlapping * “Touchingonly - Not Overlapping -
. and Touching . .andTouching or Touching

Figure 37

The ISLANDS rule is used to find unconnected shapes on a layer that should be
composed solely of a single connected shape. This rule is more commonly used
to find holes in large shapes that span your layout. The
HOLE_AREA_FRACTION rule finds shapes that have at least a minimum area
removed by holes. The BRIDGE rule finds air bridges. (Thisrule is of interest
primarily to users of the Gallium Arsenide technology.)

68

DRC User Manud

How the DRC Works: Layer Processing

You must add
the ERROR
keyword to the
OUTPUT
LAYER rule
when you want
to add shapes
generated by
theserulesto

the error count.

Rule Use Page
BLOAT Expand shapes 189
BLOAT_ANGLE | Specify how acute angles are processed by the 311
BLOAT and SHRINK rules

BRIDGE Recognize air bridges 196
HOLE_AREA- Classify shapes by fraction removed by holes 211
_FRACTION

ISLANDS Find holes or unconnected shapes 230
OVERLAPPING Find shapes on different layers with common area | 288
SHRINK Shrink shapes 302
TOUCHING Find touching shapes on different layers 311

Figure 38: Other non-error layer generation rules

DRC User Manud

69

How the DRC Works: Layer Processing

Generating Output Layers

One of the last tasks performed at the end of a DRC run is to export shapes to a
command file. This command file can create shapes in the ICED™ layout editor.
All shapes on non-error output layers are created in same command file as error
shapes (unless the HIERARCHICAL command line option is used. See page
146.)

Unless the HIERARCHICAL command line option is used, al shapes will be
created without cell hierarchy in the current cell when the command file is
executed in the layout editor. If the current cell already has shapes on the same
layer numbers as those used as output layer numbers in the DRC rule set, you
can corrupt the contents of the current cell. There is no easy way to classify the
shapes just added to your cell from the original contents unless you have added
all shapesto new layer numbers.

If you are using the DRC to create layers for import to your existing cells, you
can use unigque layer numbers in the OUTPUT LAYER rule, then change the
layer number of these shapes later in the layout editor. The SWAP command in
the layout editor will change the layer number of selected shapes.

To learn how to import shapes on output layers into your design, read about the
DRC command file beginning on page 365. The following pages describe
important issues about how the DRC generates shapes on output layers. This
information is primarily of interest to people who will be using the DRC to
generate mask layers for import back into their design.

70

DRC User Manud

How the DRC Works: Layer Processing

Example of Generation of P-Select and Diffusion Mask Layers

MO DU DUDU T O U O U OO OO 0O OTD
MooooUToUodU oD DO oD OO DTD
R e e e e e

EZZZZ2Z2ZZ2
EZZZ22Z2
EZZZZ2Z2ZZ2
EZZZ22Z2
EZZZZZZZ
EZZZZZZ3
EZZZZZZ7

Figure39: N and P
shapesfor NP2DS
examples.

PSEL. DIFF.

Figure4l: DIFF and
PSEL layersgenerated
by NP2DS0 rules

Let us cover an example of generating mask layers
from design layers. In this example, the layout has
been created with the N and P layers for the bulk or
well layers for transistors. These layers must be
transformed into the DIFF (for diffusion) and PSEL
(for P-select) layers for mask processing. The DIFF
layer is the union of both the N and P layers, while the
PSEL layer is a bloated area around the P shape that
transforms the DIFF layer into a P-well. A PSEL
shape should never overlap an N shape, or the well
will wind up as a partial P-well rather than an N-well.

A simple attempt at the

rules to create the DIFF | input layer{ 2n:
and PWELL layers is 3p
shownin Figure 40. This |}

rue set will work | output layer{ 42 diff;
acceptably on most N 43 psel;

and P shapes, however, |}
when N and P shapes diff =nor p;

touch, there is a problem. | psel = bloat(p, 2.5);
The result of these rules

is shown in Figure 41.
Note that the PSEL layer
overlaps the N-well
shape. Thiswill result in
an incorrect mask set.

Figure 40: NP2DSO
rule set

DRC User Manud

71

How the DRC Works: Layer Processing

A dlightly better version of the rule set is shown in
Figure 42. This version generates a temporary layer
P1 that has a bloated N layer (temporary layer N1)
subtracted from it. The results are shown in Figure
43. Now the PSEL shape does not overlap the N
shape. However, these shapes share a horizontal
edge. If the mask sets are dlightly misaligned during
mask processing, these shapes will overlap.

hazardous mask set.
Figure43: DIFF and

PSEL layersgenerated
by NP2DS1 rules

input layer{ 2n;

3p;

}

output layer{ 42 diff;
43 psel;
102 n1;
103 p1;

}

diff =norp;

nl = bloat(n, 2.5);
pl = p and not n1;
psel = bloat(pl, 2.5);

Figure42: NP2DS1
rule set

o The DRC can perform more processing on the N and
. [EIPsEL RIDIFF P layers to minimize this problem, resulting in a less

72

DRC User Manud

How the DRC Works: Layer Processing

Look at therule set in Figure 44. Thisrule
set performs a series of bloats and sub-
tractions when building the PSEL layer.
Thisresultsin adiagonal edge on the PSEL
shape that minimizes mask misalignment
problems.

This rule set could still be improved by
adding rules that test for the overlap of the
N and PSEL layers. Also the
CUT_RESOLUTION rule should be added
to avoid potential mask problems. These
and other DRC output layer post-
processing issues are covered next.

DIFF

PSEL

Figure 45: DIFF and
PSEL layersgenerated
by NP2DS2 rules

input layer{ 2n;
3p;
}
output layer{ 42 diff;
43 psdl;
output layer{ 0 nl;
0 p1;
}these are reusable
layers
diff =norp;

nl = bloat(n, 2.5);
pl = p and not n1;
psel = bloat(pl, 2.5);

pl = bloat(p, 0.5);

nl = bloat(n, 0.5);

nl =nland not p1;
psel = psal and not n1;

pl = bloat(p, 1.0);

nl = bloat(n, 1.0);

nl =nland not p1;
psel = psel and not n1;

pl = bloat(p, 1.5);

nl = bloat(n, 1.5);

nl =nland not p1;
psel = psel and not n1;

pl = bloat(p, 2.0);

nl = bloat(n, 2.0);

nl =nland not p1;
psel = psel and not n1;

scratch

Figure44: NP2DS2 rule set

DRC User Manud

73

How the DRC Works: Layer Processing

All input layers
are checked for
bad polygons by
default. For this
reason, itisa
good ideato
define all mask
layers asinput
layers, even if
they are not
verified by any
rules.

Problem Shapes for Mask Generation

There are two special classes of polygons that are likely to cause problems for
mask processing software: bad polygons and acute angles. If your design
contains these types of shapes, they should be fixed before your final design.

Bad Polygons

Bad polygons can be present in your input data, they will never be generated by
the DRC. The DRC will by default locate all bad polygons on input layers
during preprocessing.

The simple definition of a bad polygon is a polygon with self-intersecting sides
that are not adjacent. Let us visualize drawing a "good" polygon on a piece of
paper. Asyour pencil draws the sides of the shape in a clockwise direction, the
inside area of the polygon should always be on the right. Y our pencil should
never cross an existing side. The following types of polygons are all "bad".

PN

Figure 46: " Bow
tie" bad polygon

"Bow tie" shapes. An example of this type of bad
polygon is shown in Figure 46. Note that as
you trace the diagonal sides, the inside area of
the polygon shifts from the right side of the
line to the left side. Mask processing software
will usualy fail to generate the shape you
would expect from this type of data. You
should draw this type of shape as two properly
drawn triangles that touch at a point.

Improperly drawn holess When you create a >——
polygon with ahole in ICED™, the sides of the N -
hole must be connected to the sides on the \>/\ YY
outside of the polygon. If the sides crossso | A\ - <
that the edges of the hole and the outside ~
edges are both drawn in a clockwise direction, Figure 47
the shape cannot be processed properly. If Improperly drawn

you visualize drawing this shape, you can see
that the inside area of the shape shifts from the
right of each edge to the left of the hole edges.

hole

74

DRC User Manud

How the DRC Works: Layer Processing

Self-intersecting shapes: Letters are a common case of
this type of bad polygon. When the interior area ‘
of the polygon intersects itself and creates a hole,)
most mask processing software will not create the [
shape you expect. Draw this type of shape
without intersecting sides.

Bad polygon shapes found as the input data is processed will
be reported in the log file, then copied to a specia error layer.
This special layer is layer number 99 by default. This layer X1~
number can be changed to a different number with the Inter secting
BAD_POLY rule. shape

Figure 48:

Bad polygon shapes are not added to the error count. When bad polygons are
present, the console messages and the log file will both report warnings, but the
error count will not be incremented.

The copied bad polygon shapes are created in the subcell error command files
rather than the main DRC command file. These files have a file name extension
of .ERR. One subcell error command file is created for each subcell containing
errors that can be found without flattening the data. One bad polygon in a
subcell used 100 times in the main cell will result in one error message, not 100
error messages. One shape will be created in the corresponding subcell error
command file. The shape is created in the coordinates of the subcell. This
enables you to locate and correct the error while editing the subcell.

If you use the BAD_POLY rule to set the bad polygon layer number to O, the
creation of shapes in the subcell error command files is suppressed. No shapes
will be created to mark the error. However, the log file will still contain warning
messages about bad polygons with the cell names and coordinates indicated.

By default, the DRC will locate bad polygons on al input layers defined in the
rule set. If you prefer to have the DRC ignore input layers that are not actually
used in other rules, add the NO_CHECK _INPUT ruleto your rule set.

DRC User Manual 75

How the DRC Works: Layer Processing

The
WARN_ACUTE
rule can be used
to change the
layer number of
the acute angle
error marks.

All bad polygon shapes remain in the DRC database during the run. They will
be used in layer generation and verification rules, however, a shape with an
improperly drawn hole will be handled as though the hole is not there.

Acute Angles

By default, the DRC marks on layer number 99 all acute angles on all output
layers. Thistest is performed at the end of the DRC run when shapes are created
in the output files. Shapes with acute angles that are not on output layers will
not be found. If the NO WARN_ACUTE ruleis present in the rule set, this test
will not be performed.

This test is intended primarily to find acute angles that have been created
inadvertently by the DRC on mask layers. There are two cases where shapes
with acute angles may be created from shapes that have no acute angles:

1) A horizontal or vertical panel boundary cuts a shape with skewed
sides.

2) A polygon with holes, or more than 199 vertices, has been cut into
multiple shapes to trandate it into valid ICED™ polygons.

Both of these types of problems can be fixed by hand in the ICED™ layout editor.

76

DRC User Manud

How the DRC Works: Layer Processing

An example of case 1 is shown in Figure 49.
The polygon has been cut into two polygons
by a vertica panel boundary. The new
polygon on the left has two acute angles.
These acute angles have been marked with angles
wires by the DRC. This type of problem is

solved by joining the two polygons again | =~~~ \
using the MERGE command in the ICED™
layout editor.

Acute

Panel boundary

Figure 49: Polygon cut by
panel boundary.

An example of case 2 isshownin
Figure 50. A polygon with holes
has been created through layer
processing in the DRC run. The
DRC must cut this shape into two
valid ICED™ shapes. The bottom
polygon has two acute angles
Figure 50: Polygon with holes cut by DRC marked with error wires by the
to bevalid ICED™ shapes. DRC.

This type of problem may require you to cut the polygons at other locations
(using the CUT command in the ICED™ layout editor) and join the polygons
(using the MERGE command) in a different combination to avoid the sharp
angles. Inthe case of Figure 50, two vertical cuts and two merges will allow you
to create polygons without acute angles.

Both acute protrusions and acute notches will be marked by the acute angle test.

The error wires are created on layer number 99 or the layer number specified in
the WARN_ACUTE rule. The wires are created in the main output command
file.

The acute angle errors are not added to the DRC error count. However,
error messages about the presence of acute angles found by the DRC are shown
in the console log and in the DRC log file near the error count.

DRC User Manual 77

How the DRC Works: Layer Processing

See other
examples of this
problem on
page 131.

Post-processing of Output Layers

The DRC must perform some post-processing of shapes on generated layers that
will cut shapes or distort their shape dlightly. This is an unavoidable result of
grid resolution issues and panel processing.

Some shapes cannot be represented in the ICED™ editor as simple polygons. For
example, the ICED™ editor will not allow shapes with holes or shapes with more
than 199 vertices. However, the DRC does not have these limitations. When the
DRC creates polygons like these, they are used by other rulesin their true shape.
It isonly at output that these shapes are modified to be valid ICED™ polygons.

Shapes created by the DRC that cross panel boundaries are broken at the panel
boundaries during the DRC run. If a shape crosses the vertical or horizontal
panel boundary at a skewed angle, there may be a tiny displacement of the vertex
coordinates where the shape is cut by the boundary to keep the vertices on grid.
Shapes that have been cut at the panel boundaries are not merged before output.
This can occasionally lead to the acute angles on output |ayers problem we have
just covered. These cuts can also lead to vertex resolution problems.

The resolution grid used by the DRC is much finer than that used by the ICED™
layout editor. Shapes on output layers may have their vertices shifted to lie on
the grid used by the layout editor.

78

DRC User Manud

How the DRC Works: Layer Processing

Resolution Grids

There are two different resolution grids involved
when using the DRC. A resolution grid is defined S
as valid points a certain integral number of units |- - - - . One

away in the x or y directions from an origin point. |- - - - unit
The coordinate data for every vertex must be |- - . . . ™
expressed in terms of points on the resolution |. . Origin/ :
grid. S

The resolution grid used by the DRC is much
finer than the resolution grid used by the ICED™
layout editor. The DRC resolution grid isusually Figure51: Resolution grid
16 times finer, but very large designs may require

a coarser grid. This alows the DRC to resolve

the results of intersections much more accurately.

Since the DRC uses a finer grid than the ICED™ layout editor, shapes created by
bloats, shrinks, or intersections of skewed sides in the DRC may have vertices
that are not on the ICED™ grid. When these shapes are created in the output data,
they must be snapped to the nearest point on the ICED™ grid.

For example, let us say that the ICED™ grid has a .0001 user unit resolution.
(Thisisatypical value.) If your design rules call for a bloat smaller than .0001,
say .00005, the DRC can perform this operation with valid results. However,
when you output this layer, the vertices must be snapped to the ICED™ grid.
Some sides will wind up shifted by .0001, other sides will be shifted back to
their original location before the bloat.

Another example of the different resolution grids is when a shape with a skewed
side (a side that is neither vertical nor horizontal) is cut in two by a panel
boundary. The exact location of the new vertices must be rounded to lie on the
DRC resolution grid. This can lead to a bend in the skewed side.

DRC User Manual 79

How the DRC Works: Layer Processing

- Shapein DRC - - - - - Shapecutintwo - - - - Shapesresolved to:
. . database L by pandl boundary =~ . IcED32™ grid '

e e

Figure 52: Shape with skewed side cut by a panel boundary then resolved to ICED™ grid

Look at Figure 52. Let us say that the small dots represent the DRC resolution
grid and that the crosses represent the ICED™ grid. When the shape on the left
with the skewed side is cut by a vertical panel boundary, the y-coordinates of the
new vertices must be rounded to lie on the DRC grid. This has led to a bend in
the skewed side. This bend will remain in the data during the DRC run. When
the shapes are output as ICED™ data, the vertices are resolved to lie on the ICED™
grid. In this case, resolving the data to the courser grid has removed the bend.
In some cases, resolving the data to the new grid will make the problem worse.

Now let us suppose that the bend has resulted in errors from verification rules.
When you look at the output data, you see no bend. The fact that the shapes that
are checked are not the same shapes in the output data can lead to some
confusing errors. Thisis aresult of the greater accuracy of the DRC data than
the layout data.

80

DRC User Manud

How the DRC Works: Layer Processing

Another example of this type of problem is a shape generated during the DRC
run that is very thin sliver. If this dliver is less than one ICED™ database unit
wide, the sliver will disappear in the output data. If the sliver violated minimum
width or minimum spacing rule checks, it can be difficult to determine why the
error isthere.

One way to avoid these mysterious errors is to resolve shapes on the problem
layers to the ICED™ grid before you test them with design rules. The SNAP and
SNAP45 rules can be used for this purpose.

The SNAP and SNAP45 rules can be used to snap vertex data to any desired
grid. This can result in the distortion of shapes. Portions of shapes that are
collapsed to zero width will disappear without warning. Sides that are not
horizontal or vertical will often have their slope changed somewhat. The
SNAPA45 rule differs from the SNAP rule in that sides at 45° angles will have
their slope preserved. This often requires the addition of vertices that add ledges
or cut off corners.

Shapes that are cut by the DRC to create valid ICED™ polygons, or that are cut at
panel boundaries, may have off-grid vertices. (See an example on page 77.)
Y ou can prevent this problem with the optional CUT_RESOLUTION rule.

One last rule that can help you find grid resolution problems is the OFF_GRID
rule. This rule will mark as errors all polygons with vertices that are not on a
specific grid.

Keep in mind that touching shapes are merged by the DRC before any of these
rules are executed. If touching shapes share off-grid edges that disappear when
the shapes are merged, the merged shape may have no off-grid edges. In this
case, the OFF_GRID, SNAP, and SNAP45 rules will not flag the merged shape
as having off-grid vertices.

DRC User Manual 81

How the DRC Works: Layer Processing

Recommended Procedure for Writing Rulesto Generate Mask Layers

Use the following checklist when generating mask layers:

Write asimple version of the rulesfirst to test the process.

Run a test case using a subset of your design to debug and revise the rule
set until you are generating the layers you require.

Add SNAP or SNAP45 rules to resolve shapes on new layers to the ICED™
grid before testing them with verification rules.

Add DRC design rule verification checks for the new mask layers to insure
that no violations are being generated.

Add the CUT_RESOLUTION rule to force cut lines to be on the ICED™
grid.

Insure that no NO_ WARN_ACUTE rule is in the rule set. Remove the
BAD_POLY=0rruleif itispresent in your rule set.

Run the rule set on your whole chip and carefully inspect the results for
unusual cases you may not have considered when writing the rule set.

Always use the SLOW option on the DRC program command line to
insure correct layer generation.

If you will be generating mask shapes from a nested design:

Read about hierarchical output to create the DRC output data in
nested cells that can be imported into each of your original cells.

Read about dangerous processing to generate more shapes in nested
cells. Be sure to carefully look at and resolve any DANGER
warningsin thelog file. (See page 136.)

82

DRC User Manud

How the DRC Works: Layer Processing

Subject Importance Page

Grid resolution I ssues important to placement of verticeson agrid 79
acceptable to mask processing software

Panel processing I ssues important to why shapes are cut at panel 118
boundaries

Hierarchical Method to follow if you want to generate output data 146

processing with the nested cell structure of the input data

Example of Detailed example of generating alayer hierarchically 418

hierarchical

processing

BAD_POLY rule Sets the layer number for shapes that mark bad 189
polygons on input layers

CUT_RESOLUTION | Define grid for shapes cut by the DRC 205

rule

NO_CHECK_INPUT | Avoid marking bad polygons on unused layers 276

OFF_GRID rule Classify as errors shapes that have vertices off of the 282
specified grid

SNAP rule Relocate vertices on resolution grid 304

SNAPA45 rule Relocate vertices on resolution grid preserving slope of | 306
45° angles

WARN_ACUTE rule | Determines output layer for acute angle markers 313

NO_WARN_ACUTE | Disables acute angle test 280

rule

DRC command file Details on how to import shapes on output layers into 365
layout editor.

Subcell command Command files that create shapes marking 375

files BAD_POLY errorsin subcells

Figure 53: Referencesfor output layer generation issues

DRC User Manudl 83

How the DRC Works: Spacing Verification

Spacing Verification

The MAX-
_SPACING
rules classifies
shapes by how
far away they
are from other
shapes rather
than marking
errors.

Spacing errors between shapes are checked with the MIN_SPACING rule.

The MIN_SPACING ruleis one of the DRC rules that checks and marks sides of
shapes rather than entire shapes. Violations of this rule create wire shapes that
mark the portions of sides that are too close to each other. These violations are
automatically added to the error count.

The DRC minimum spacing algorithm checks the distance between the vertices
of one shape to the sides of other shapes. If no vertex is too close to a side, no
error will be found.

When shapes do not overlap, minimum spacing violations are always found.
Unless the QUICK _SPACING option is used on the DRC command line, thereis
no way for two non-overlapping shapes to be within a minimum distance of each
other and not have a vertex be within the minimum distance. (We will cover the
QUICK _SPACING option alittle later on page 100.)

When shapes do overlap, it is common sense to assume that they violate a
minimum distance rule, since they touch. However, since the MIN_SPACING
rule uses vertex data, overlapping shapes may not violate the rule. Two sides
can cross each other with no vertex within the minimum distance.

DRC User Manud

How the DRC Works: Spacing Verification

There are two cases of this quirk of minimum spacing:

Enclosure: one shape is covered by another.

Crossing shapes: one shape crosses another.

Figure 54: One shape Figure55: Crossing shapes
enclosing another

Using Rules Other Than MIN_SPACING to Mark Spacing Problems

Example:

Overlaps and enclosed shapes

Unless a vertex of one shape is within the minimum distance of a side of the
other, shapes like those above will not be marked. Fortunately, when
overlapping shapes are always considered minimum space violations, there is an
easy way to find them. Use the AND rule. The AND rule will mark all cases
where shapes on two layers overlap with a non-zero common area.

OUTPUT ERROR LAYER 101 ABCROSS
ABCROSS=A AND B

The AND rule above will create shapes on layer ABCROSS wherever a shape on
layer A overlaps a shapes on layer B with non-zero area. These shapes will be
counted as errors since the ERROR keyword is used in the layer definition
statement for layer ABCROSS. |If the ERROR keyword was not used, shapes
on ABCROSS would not be counted aserrors.

DRC User Manual 85

How the DRC Works: Spacing Verification

Example:

Example:

If overlaps are not always errors, you may need to use other rules to find errors
when shapes can overlap.

Let us say that enclosure of shapes on one
layer by the other is acceptable. However,
shapes like the one in Figure 56 are not. A
MIN_SPACING rule will not mark this
relationship as an error unless a vertex of one
shape is too close to a side of the other.
However, the following Boolean rule will

place on layer ERR all shapes on layer A that Figure 56: Overlapping

are not enclosed by layer B. shapes that may not be
marked by MIN_SPACING
ERR =A AND NOT B rule.

Remember to define layer ERR as an error layer so that shapes on that layer are
counted as errors.

By default, coincident edges are considered violations by the MINSPACING
rule. However, you can inadvertently prevent -

them from being found by adding keywords to
therule. The Boolean rules above will not find
errors like coincident edges. When incomplete
enclosure with a coincident edge (as seen in
Figure 57) isaviolation, it is highly recommend
to add rules similar to the following to find
problems like this and the one shown in Figure
6. Figure57: Incomplete

enclosure.

NOTB = NOT B
ERR= A TOUCHING NOTB

86

DRC User Manud

How the DRC Works: Spacing Verification

Example:

An overview on
notchesis
covered on page
103.

Let us make this example a little more complicated by saying that layer A is
contact layer that is valid when covered by a shape on either layer C or layer B.
So the example above will mark many valid A layer contacts to layer C as errors.
To avoid marking layer C contacts as false errors, rewrite the rules as follows:

BC = B ORC
NOTBC = NOT BC
ERR = A TOUCHING NOTBC

Notchesin serpentine or fingered shapes

The MIN_NOTCH rule can be a very important addition
to a MIN_SPACING rule when you need to find spacing
errors between shapes on the same layer. Consider Figure
58. The long wire folds back on itself and two sides are
very close each other. This is a notch in a single shape
rather than a spacing error between shapes.

A MIN_SPACING rule will not mark this as an error. If F'?uﬁsgp%me
your design rules consider this an error, you should add a no
MIN_NOTCH rule to find such errors. error.

Remember that all touching shapes on a single layer are merged during DRC
preprocessing. So even if a spacing problem like the one in Figure 58 is caused
by two separate wires on the same layer, to the DRC it will be a single shape
with anotch rather than aMIN_SPACING error.

Problems similar to the one above are common in complex chips where many
pieces of wire are merged into single polygons before the DRC performs a
spacing check. If the DRC seems to have missed a spacing violation of this
nature, add an equivalent MIN_NOTCH rule and retest.

DRC User Manual 87

How the DRC Works: Spacing Verification

Simple Spacing Checks

Now that we have covered what the MIN_SPACING rule does not check, we
will go on to what the rule does check.

error_layer = MIN_SPACING (from_layer, to_layer, distance)

This is the simplest form of the syntax for the MIN_SPACING rule. When
written this way, al sides of shapes on the from_layer must be at least distance
away from sides of shapes on the to_layer. Sides that are less than distance
away will have error wires created for them on error_layer along the portion of
the sides that are in violation. Sides that are exactly distance away will not be
marked.

Example: ERR = MINSPACING (A, B, 2)
This rule will verify that all sides of shapes | - - . E
on layer A are at least 2 user unitsaway | -
from sides of shapes on layer B. All | . = _
portions of sides that are closer than 2 user | . S :
units will be marked with error wires on | . :
layer ERR. This layer will automatically be
classified as an error layer. All shapes on . : ;

. Figure59: Error wires created

layer ERR will be added to the error count. for shapes closer than 2 units.
Note that the underscore (*_") can be left out of the MIN_SPACING keyword.
Underscores are always optional in DRC rule keywords.
The from_layer can be the same as the to_layer in the MIN_SPACING rule. In
this case any two shapes on the same layer that are too close together will be
marked with errors.

Example: ERR = MINSPACING (A, A, 2)

88 DRC User Manual

How the DRC Works: Spacing Verification

Optional Keywordsto Reduce FalseErrors

See page 65 for
an example of
separating wires
by size before
applying
spacing checks
that depend on
wire width.

Adding /IN or
/OUT to a
MINSPACING
rule can prevent
coincident
edges from
being marked as
errors. Seethe
following
examples.

Example:

Design rules often allow shapes to be closer than the minimum distance in
specia circumstances. Perhaps the minimum distance rule applies only if the
shape on one layer is inside or outside the other layer. Perhaps only parallel
sides must be the minimum distance apart and crossing sides are not violations.

If you do not write the spacing rules to take these extra criteria into account, you
will see many false errors. Ignoring false errorsis a dangerous thing to do. Real
errors can be easily missed.

The DRC provides several keywords to narrow the search for violations. In
addition you can use Boolean rules or rules that classify shapes by size or
touching criteria to isolate certain shapes on a separate layer prior to applying
the MIN_SPACING rule.

Directional Spacing

The /IN and /OUT keywords are used
to change a simple spacing check intoa | . ,
directional spacing check. When these | o i _
keywords are used, the spacing criteria
changes so that only sides that are
found toward the inside or outside of
shapes on the indicated layer are
candidates for violations.

ERR=MIN_SPACING(A, B/IN, 2)

A [B

Figure 60: When B/IN isused, only
shapestoward inside of B shape
sidesare marked.

When the above rule is run on the
shapes in Figure 60, only the layer A
shape toward the inside of the B shape
is considered for errors. The layer A
shape on the outside of the B shape is
ignored.

DRC User Manual 89

How the DRC Works: Spacing Verification

Now look at Figure 61. The same rule has been run on
these shapes. You can see that the shapes do not have
to overlap for a spacing violation to be found. When
looking toward the inside of the layer B shape, the
indicated side is closer than 1 unit to the indicated side
of the A shape.

s
B

When the same rule
above is run on the
shapes in Figure 62, you
might think that both
shapes with coincident
edges would be marked
as errors. Both boxes on
layer A share an edge with the edge of the layer B |
shape. Therefore, the distance between these sides
and the B shape side is exactly the same. | =~ =~ =~ = =~ = =
However, only the top layer A shape is marked. | A - D B
This is because the B/IN specification means that
only shapes with area toward the inside of layer B Figure 62: When B/IN is
shapes are considered for violations. used, only shape with
areatoward inside of B
Coincident edges must be considered when writing shape is marked.
MIN_SPACING rules. If the lower shape in
Figure 62 does violate the rules, the /IN specification should not be used, or
another method (similar to the TOUCHING rule examples on page 86) should be
used to find it.

Figure6l: The
shapes do not need to
overlap for the/IN
keyword to find
errors.

For our next example, let us say that you need to verify that shapes on layer A
that are enclosed by layer B need a 10 user unit border of layer B on all sides.
However, layer A shapes that are outside of layer B shapes do not need to be this
far away. Shapeson layer A that cross alayer B boundary, so that at least some
non-zero areais outside of layer B should not be marked as errors.

The layout data we will use for this example is a slightly modified version of the
ENCL.CEL file included with the installation. The first rule set we use is the
ENCLOSUR.RUL filethat is aso included in the installation.

90

DRC User Manud

How the DRC Works: Spacing Verification

Example: TOO_CLOSE =MINSPACING (A/OUT, BI/IN, 10);

The A/OUT specification
means that only layer B
sides that are found while
looking out from layer A
can be marked as errors.
This is represented by the
dashed vectors in Figure
63. The B/IN specifica-
tion allows the DRC to
look only toward the in-
side of layer B sides.
This is represented by the
solid vectors. (We have
omitted the vertical 10 units
direction for the sake of —
simplicity.)

Shape number 1 will not Figure 63: Modified ENCL.CEL filewith arrows

be marked because the showing how the DRC will search for sidesin
DRC is looking for errors vijolation.

only toward the inside of

the layer B edge. Shape number 2 will not be marked because the DRC will
search for errors only looking outward from the outside edges of the shape. No
edges of the layer B shape are within 10 unitsin either direction.

Therefore, it looks like this MIN_SPACING rule will prevent the false errors we
needed it to. We will test it on the layout in a moment.

In general the direction vectors for two edges must point toward each other for
the DRC to find the error. We can see that the vectors point toward each other
for the right edge of shape 4. The DRC will mark an error for this edge.

But how about shape 3? The direction vectors go in opposite directions, but they
point away from each other, not toward each other. The DRC will not see
shape3asanerror.

DRC User Manual 91

How the DRC Works: Spacing Verification

From Figure 64 we can
see that shape 3 is not
marked by the MIN-
_SPACING rule. This
is an important side
effect of directional
spacing verification. If
you instruct the DRC to
look only inside or
outside of shapes for
errors, coincident
edges may not be
found.

If we remove the /OUT
specification from the A
layer, the DRC will
mark the coincident
edge of shape 3,

10 units
—

Figure 64: Modified ENCL.CEL with error marks
from MINSPACING (A/OUT, B/IN, 10) rule.

however, the right edge of shape 2 will now be marked as an error.

(Y ou may wonder why the crossing and perpendicular sides of shapes 2, 3, and 4
are not marked with error wires. Thisis due to the fact that the DRC treats these
types of sides differently when directional spacing checks are performed. We
will cover this later when we cover the orientation options.)

The best way to verify incomplete enclosure due to coincident edges isto add a
TOUCHING rule. In this case, we want to find shapes on A that are covered by
layer B, but touch area that isnot layer A or layer B.

92

DRC User Manud

How the DRC Works: Spacing Verification

Figure 65 shows the rules | OUTPUT ERROR LAYER 4 COINCIDENT;
we have added to the | OUTPUT LAYER 0 AANDB; 0 NOT_AB;
ENCLOSUR.RUL file to
find incomplete enclo- | NOT_AB =NOT A AND NOT B

sures due to coincident | AANDB = A AND B

edges. COINCIDENT = AANDB TOUCHING NOT_AB

The three layer generation Figure 65: Extrarulesto find coincident layer A

rules will find all shapes Shapes.
on layer A tha are
covered by layer B and touch, but do not cross, the boundary of alayer B shape.

If we used a TOUCHING rule that
tested the NOT_B layer (as used in
a previous example) rather than the
NOT_AB layer, then shape 2 would
be marked as an error as well.

Since we will find shapes like
shape 3 with a TOUCHING rule,
we must be sure to add the ERROR
keyword to the OUTPUT LAYER
rule that defines the result layer for | 10 units
the TOUCHING rule. Otherwise, | 1 - -
shapes on that layer will not be | o DB.

counted as errors. The AANDB .)
and NOT_AB layers are defined Figure 66: Modified ENCL.CEL with

error marksfrom MINSPACING rule
and TOUCHING rule.

AR AN
B S S A R Y]

with layer number 0. This means
that they are really scratch layers
and shapes on those layers will not
be included in the output command file.

Side-side angle exceptions— Beta test only!

New with beta version 113.65 of the DRC is the AWAY option of the
MIN_SPACING rule. This option is particularly useful if wires that leave a

DRC User Manual 93

How the DRC Works: Spacing Verification

shape at an angle should not be marked as errors, but parallel wires should be
marked if they are too close.

The AWAY option restricts errors to non-overlapping pairs of sides that are less
than a certain angle apart. The AWAY option should be added to only one layer
specification. We will call thislayer the away_layer in this discussion.

When both Side-side pairs that are within distance of each other will be not be marked as
shapes are on errors when both of the following conditions are met:
the same layer,
the AWAY 1) The side on the away_layer is within the specified number of sides
option does not away from the intersecting side on the other layer that is too close.
apply. Referto
the 2) The angle between the sidesis greater than the specified angle.
MIN_NOTCH
;g;ég;ma:ge Let us consider the example shown ——
103. in Figure 67. (This geometry is / Co g
stored in the AWAY.CEL file R
supplied with the beta version o
update.) Let us assume that we need N
to find sides of layer B that are JONNAT L
within 20 user units of sides of layer o S
A shapes. However, we consider 1 2 -
only paralel sides within this 7
distance as true errors. We want to
mark only sides 3 and 4.
Perpendicular side pairs and sides at ‘
a 45° angle are permitted and should % N
not be marked as errors. : .
Y A
The perpendicular sides 5 and 6 "N B
could be prevented from being S
marked as errors by adding the /~P
option to the rule. You could Figure67: AWAY.CEL
prevent marking the crossing sides
with the /~CROSS option. The layer B sides within the layer A shape can be
prevented from being considered as errors by adding the /OUT option to the
layer A specification in the MIN_SPACING rule.
9 DRC User Manual

How the DRC Works: Spacing Verification

Without the AWAY option, there is no way to prevent sides 1 and 2 from being
marked as errors. However, when we use the AWAY option in the
MIN_SPACING rule we can prevent the DRC from marking sides 1 and 2. Then
the DRC will mark only sides 3 and 4 as errors.

Beta Test Warning

The new algorithms required to implement the AWAY option required changes
to the MIN_SPACING algorithms. You should verify the results of all
MIN_SPACING rules tested with this beta version. This includes the results of
MIN_SPACING rules that do not use the AWAY option. Verify al
MIN_SPACING results produced by this beta version against the results of the
released version.

If the results of any MIN_SPACING rules are different between the versions,
please contact I1C Editors.

We do run a test suite comparing the new and old versions before we
post a beta version. But just because our cases worked, that doesn't
mean yourswill.

End Caps

One more optional parameter applies only to the layer it follows. The
/CAP=angle parameter is used to avoid marking sides that lie within the end cap
of a side on the indicated layer. The angle must be in the range 90:180. The
angle is measured from the edge.

DRC User Manual 95

How the DRC Works: Spacing Verification

Let us first consider the region
checked for various values of the
cap angle for a given single side.
You can see from Figure 68 that
when the cap angle is 180° the
entire region around the side is
checked. This is the default when
no /CAP keyword is used.

When the cap angle is set to 90°,
only sides on the other layer that are
within the shaded area shown will
be considered errors.

Area checked ™y

Area checked ~

180°

180°

13
N 1350

o
N> 000

/900

Figure 68: Region around a single side

jgoo

Figure 69: Region around a
rectangle that is checked when

that is checked when various cap angles
are set.

When you consider all sides of a given
shape, remember that each side has an end
cap. See Figure 69 for the region checked
around a rectangle when the cap angle is
set to 90°. Only sides of shapes on the
other layer that are in this region will be

/ICAP=90is used. marked as errors.

You can combine the /IN or /OUT

specifications with a cap angle |Areachecked ™= o

specification. /)jgoo
Example: ERR=MINSPACING(A, ...

... BIOUT /ICAP=90, 1)

When both the /OUT and /CAP=90

options are added to the layer B

speC|f_|cat|<_)n, the region checked will Figure 70: Region checked with

ook like Figure 70. /OUT and /CAP=90 options.
96 DRC User Manual

How the DRC Works: Spacing Verification

Orientation Options

These MIN_SPACING options can prevent side-side pairs from being
considered errors based on the orientation of the sides with each other. These
criteria are applied after the directional and end cap criteria are applied.

Each of the orientation
options is set in every
MIN_SPACING rule.
Only when the option is
preceded with a '~', will
side-side pairs in that
orientation be prevented
from being considered
errors. For simple
spacing checks, the de-
fault is to consider all of
these orientations as er-
rors. However, direc-
tional spacing checks
(any MINSPACING
rules that use /IN or
/OUT keywords) will by
default not mark as er-
rors crossing, t-intersec-
tion or perpendicular
side-side relationships.
If you consider one or
more of these relation-

shipsto be errorsin adirectional spacing rule, you must override the defaults.

T-intersection
Crossing R
Perpendicular
Overlap End-to-end

Figure 71: Various side-side orientation

relationships.

DRC User Manud

97

How the DRC Works: Spacing Verification

Example:

If you have
difficulty
determining
why asideis
marked, turn on
detailed
logging. See
page 50.

Many examples
of these types of
intersections are
provided in the
syntax
description of
the MIN-
_SPACING
rule. Seepage
252.

ERR=MINSPACING(A, B ,1.1 /~CROSS)

When this rule is run on the shapes shown in Figure 72,
violations between sides that cross will not be marked. Only
the parallel sides closer than 1.1 units will be marked. If the
/~CROSS option was not used the vertical sides of the cross-
hatched wire would be marked where they cross the other wire.

i
Figure 72:
One pair of sides may have more than one relationship. If one /~CROSS

of these relationships is indicated with a '~ in the
MIN_SPACING rule, that is enough for the pair to not be considered an error.

A side that is eliminated as an error from one pair due to the orientation options
may still bein error with a different side.

The exact definitions of the various orientations are:

Crossing intersections: Intersections where the sides share a single
point and at least one side continues on both sides of the point of
intersection. The sides cannot meet at 0° or 180°; i.e. the sides
cannot overlap or meet end-to-end.

T-inter sections: The sides must share a single point and that must be the
end point of one of the sides. The sides cannot overlap or meet
end-to-end.

Perpendicular relationships: The sides must be exactly 90° from each
other. The sides do not need to intersect.

Overlaps: The sides must share a non-zero length.

End-to-end intersections: The end points of the sides meet and the
sides are at 180° from each other.

98

DRC User Manud

How the DRC Works: Spacing Verification

Example:

Electrical Connection Criteria

If you define how electrical connections between layers are formed in your
layout, the DRC can tell which shapes are electrically connected. When you
add the /CONN option to a MINSPACING rule, only shapes that are electrically
connected will be considered as potential errors. When you add the /~CONN
option, only shapes that are not electrically connected will be considered
potential errors.

The default DRC behavior is to check spacing between both electrically
connected and unconnected shapes.

If electrical connections are a criteria in your spacing check, you need to define
electrical connections with CONNECT rules.

The QUICK_PASS command line parameter must not be used when you want
electrical connection criteria to be applied. If you do use the QUICK_PASS
algorithms, the electrical connection criteria are ignored without warning.

Error Wire Length Criteria

Some spacing rules allow two shapes to be closer than the minimum distance if
the length of the sides in violation is shorter than a minimum length. When short
spacing errors are false errors, you can use the /LENGTH option of the
MIN_SPACING rule to discard error wires that are shorter than a specified
length. The discarded error wires are not added to the error count.

Using this feature can result in
unpaired error wires.

ERR=MIN_SPACING ...
...(A, A, 2/LENGTH=4)

When this rule is run on the

shapes in Figure 73, the two
boxes on the top are in Figure73: Unpaired error wire.

violation with the long box

DRC User Manual 99

How the DRC Works: Spacing Verification

below. However, the error wires that indicate which sides arein violation for the
two top boxes are shorter than 4 units. They are discarded by the DRC. The
longer error wire on the long box is kept.

When it is difficult to determine why a single side is marked when you have used
length criteria, you can turn on detailed logging to list each pair of sidesin error.
Errors that are discarded due to length criteria are still listed in the messages in
the log file when detailed logging is enabled.

When you use error length criteria in any MINSPACING rule, the DRC will
automatically invoke the slower spacing check algorithms. If you override this
default by using the QUICK _SPACING command line option, you may prevent
errors from being found. We cover this subject next.

QUICK_SPACING Algorithm

The DRC can use one of two different algorithms for verifying MIN_SPACING
rules. The DRC will automatically choose the algorithm based on the contents
of your rule set and whether or not the entire design is being checked.

The faster algorithm will be chosen automatically if it can not cause errors to be
missed. Using this algorithm can reduce processing time on the order of 10%.

When the faster algorithm may cause errors to be missed, the DRC will
automatically use the slower agorithm. However, you can override this
behavior by adding the QUICK _SPACING keyword to the DRC command line.

100 DRC User Manual

How the DRC Works: Spacing Verification

The type of error that ©© * Areachecked
may be missed involves | @ ——M—— N
vertices of shapes that |

occur outside of the area
being checked. Look at
Figure 74. letussy | L~~~
that these two shapes |
violate a MINSPACING
rule. However, since the Figure 74: Shapeswith vertices outside area
vertices lie outside of the checked.

area checked, the quicker

spacing algorithm will missthe error.

There are two situations where the faster spacing algorithm may miss errors:

The design area verified is limited by the LEFT, RIGHT, TOP, or
BOTTOM keywords on the DRC command line.

The area checked is the current panel, including the border. The error
would be caught in the panels to the left and right. However, if the
/LENGTH option is used in the MIN_SPACING rule, the errors may be
missed due to being too short in the panels on the left and right.

If you will be performing several DRC runs on your design, you can add the
QUICK_SPACING option to some runs to save time. However, your final runs
should not use this option or errors like the one above may be missed.

DRC User Manual 101

How the DRC Works: Spacing Verification

Subject Importance Page

MIN_SPACING rule | DRC ruleto verify distance between different | 252
shapes

Example of Sample method to follow when you need to 65

separating wires by apply different MIN_SPACING rulesto

size irregular shapes on alayer based on size.

Electrical Overview of defining electrical connections | 110

Connections to restrict spacing errors

Advance tutorial Simple spacing example 381

examples Directional spacing examples 391
Using TOUCHING test for enclosure 397
Electrical criteriaexample 402

CONNECT rule Syntax of rule to define electrical 200
connections

QUICK_PASS Causes the DRC to ignore electrical 129 and

command lineoption | connection criteriainaMIN_SPACING rule | 337

QUICK_SPACING Can cause the DRC to missMIN_SPACING | 338

command lineoption | errorsin rare cases

Command file Hints on using layout editor commandsto 365

description make error wires easier to see

Detailed logging Add coordinates of specific pairs of sides 50

marked by MIN_SPACING rulesto log file

Figure 75: Referencesfor spacing verification

102

DRC User Manud

How the DRC Works: Other Verification Rules

Other Verification Rules

These rules automatically add al shapes
created to the error count in the same
manner as the MIN_SPACING rule.

Width and Notch Verification : o Width
- - -Notch -
The MIN_WIDTH and MIN_NOTCH rules |- - -width
are very similar rules to test minimum |- - - - -

distances within single shapes.
MIN_WIDTH verifies the distance between
all non-adjacent sides of a given shape
where the distance is measured through the
material. The MIN_NOTCH rule verifies
the distance between al non-adjacent sdes . - = .~ = = =
of a given shape where the distance is Figure 76: Example of width
measured through a gap in the material and notch measur ement

DRC Definition of Width

The exact DRC definition of the width of
polygons is surprisingly complex. It
helps to visualize tracing the sides of a
polygon like the one in Figure 77. Begin
at one vertex of polygon, trace clockwise
around each side indicating the sense of
direction of each edge. The DRC will
search for edges in violation of the width
restriction only to the right of each edge,
toward the interior of the polygon.

Figure 77: Edges of polygon with
directions marked.

DRC User Manual 103

How the DRC Works: Other Verification Rules

The
MIN_ANGLE
or
WARN_ACUTE
rules can be
used to find
protrusions like
the one on the
right.

Edge A has awidth violation to edge B when all of following conditions are met:

1) The edges are closer than the distance specified in the MIN_WIDTH
rule. (Sides exactly this distance apart are not marked.)

2) The edges do not share a vertex (i.e. adjacent sides cannot have a

width violation.)

3) Edge B is located toward the interior of the polygon from edge A.
Remember that the DRC will look only to the right of the edge in

guestion.

4) The angle between the sense-of-direction vectors for each edge must

be greater than 90°.

Let us cover some examples that demonstrate conditions 2 through 4. (Number 1

isfairly easy to understand.)

Condition number 2 can be illustrated
with angular protrusions. Look at the
polygon in Figure 78. The protrusion on
the left has a bisecting side, and the
protrusion on the right is formed from
adjacent sides. The protrusion on the |eft
will be marked by the MIN_WIDTH rule
if these sides are closer than the distance
specified. However, the protrusion on
the right will not be marked by the
MIN_WIDTH rule.

Figure 78: Polygon with angular
protrusions.

The reason for this condition is that if the program tested distance between
adjacent sides, every corner of every polygon could be marked as an error. This

would definitely be undesirable.

104

DRC User Manud

How the DRC Works: Other Verification Rules

Our next example demonstratessome | =~
of the ideas behind conditions3and | 1 S
4. Sidelin Figure 79 may see side 2 M
as a violation since it is located | - o
toward the interior of side 1.
However, it will not be marked due
to condition 4. These sides are at 0°
from each other.

Figure 79: Polygon with non-adjacent

Condition 4 will also prevent width Sidesat 0°.

violations from being
marked for cut-off
perpendicular corners.
Most users would agree
that the cut-off 90°
corner of the shape on
the left does not

represent a minimum ’ S |
width error. However, C S\ N\
it passes conditions 1,2, o o :9

and 3 of the width test.
It is condition number 4
that prevents it from
being awidth violation.

Figure 80: Two polygonswith cut-off corners.
Only theoneon theright will be marked asa
width violation since the angle between the sidesis

The shape on theright is greater than 90°.

a different story. This

type of cut-off corner does represent a width violation. If you have forgotten
how to measure the angle between vectors, remember that you relocate the
vectorsto align their bases before you measure the angle. When you do this, you
can see that the angle between these sides is greater than 90°.

DRC User Manual 105

How the DRC Works: Other Verification Rules

The
MAX_ANGLE
or
WARN_ACUTE
rules can be
used to find
angular notches
likethe one on
theright.

Find holes with
the ISLANDS
or
HOLE_AREA _
FRACTION
rules.

See page 130
for an example
of anotch that
will not be
found when the
QUICK_PASS
option is used
on the DRC
command line.

DRC De€finition of Notch

The DRC definition of a notch is identical to the definition of width, except for
condition 3. Now the DRC searches only to the left of each edge, toward the

exterior of the polygon.

Angular notches have the same restriction
as angular protrusions. If they are formed
from adjacent sides, they will not be
marked by the MIN_NOTCH
However, if there is a bisecting side like
the notch on the left of Figure 81, the
verified by

notch will be
MIN_NOTCH rule.

Figure 82: One
enclosed hole and one
open-ended hole with
notch.

rule.

the

Figure 81: Two notches. Only the

one on theleft will be found by
Our next MIN_NOTCH rule.
example deals
with holes. Look at Figure 82. The shape on the top
has an enclosed hole. The ICED™ layout editor cannot
represent a shape with a hole unless the polygon has
sides that connect the inside hole to the outside edges.
You may think that the DRC will consider this a hotch
with a distance of 0 and mark it as an error. However,
the internal representation in the DRC does not use
such construction lines to connect holes to the outer
boundary. The DRC layer preprocessing removes the
unnecessary sides of the top shape that connect the
inside edges with the outside edges. The DRC WI|| test
the top shape as an unseamed
shape with a hole so the
MIN_NOTCH rule will not
mark it as an error. The shape
in the bottom does have a notch
that will be verified by the
MIN_NOTCH rule.

Figure 83: Notch,
not MINSPACING
error.

106

DRC User Manud

How the DRC Works: Other Verification Rules

Angular Notches and Protrusions

The MIN_ANGLE and MAX_ANGLE rules are used to find acute angles on
shapes on specific layers. The MIN_ANGLE rule will find angular protrusions,
while MAX_ANGLE will find angular notches.

Both rules measure the angle in
the interior of the polygon.
The MIN_ANGLE rule will
mark all angles less than the
angle specified intherule. Usea
value less than 90° to find only
acute angular protrusions.

315°

The MAX_ANGLE rule will
mark all angles greater than the
specified angle. Find acute
angular notches by using a value
greater than 270° but less than

45°

\Acute angular

notch

360°.
Acuteangular—
protrusion
Figure 84: Acute angular protrusion and
Minimum Area and Side L ength notch.
MIN_AREA

Some design rules define a minimum area for shapes on a given layer in addition
to (or instead of) minimum width restrictions. This can be verified in the DRC
with the MIN_AREA rule.

DRC User Manual 107

How the DRC Works: Other Verification Rules

Thetable on
page 62 lists the
geometric basis
and automatic
error status of
shapes created
by each rule.

The MIN_AREA rule has a required
parameter to determine how false errors
due to panel boundaries will be
prevented. If severa touching shapes
travel across panel boundaries, only the
shapes in the current panel and neighbor
panels are merged. If a shape is marked
as an error by the MIN_AREA rule only
because pieces of it are not merged due to panel boundaries, this is a false error.
See the syntax of the MIN_AREA rule (page 243) and the discussion of panel
borders (page 124) for examples of how to avoid these false errors.

Figure 85: Touching shapesthat
form long wire.

While this rule is usually used as a verification rule where the shapes on the
result layer are output to mark errors and added to the error count, you can
instead use it as a filter to find small shapes without marking them as errors.
See the example on page 66.

The MIN_AREA rule can be used as a filter because it generates shapes with a
polygon geometric basis. The DRC can use these shapes in other rules in the
same manner as any other rule that generates polygons. The shapes created by
rules that generate wires cannot be used this way. Layers that contain wire
shapes cannot be used on the right side of the '="in any other rule.

Remember that the DRC contains other rules to classify shapes by size. The
BOUNDS and IS BOX rules both filter small shapes. If you want shapes
generated by these rules to be counted as errors you must define the result layers
with the ERROR keyword.

MIN_SIDE

The MIN_SIDE rule will mark al sides of polygons on the indicated layer that
are less than the indicated length.

The MIN_SIDE rule cannot be used as a filter for isolating shapes that are
verified by other rules. It generates wire shapes to mark sides. The result-layer
generated by the MIN_SIDE rule cannot be used by any other rule. Shapes on
the result-layer will automatically be added to the error count.

108

DRC User Manud

How the DRC Works: Other Verification Rules

Design Area Coverage by a Layer

Y ou may need to verify that alayer covers at least a certain minimum fraction of
your total design area. The DRC rule MIN_FILL performsthis function.

Subject I mportance Page

MAX_ANGLE rule Used to find acute angle notches 231

MIN_ANGLE rule Used to find acute angle protrusions 242

MIN_AREA rule Copiesto an error layer all shapeswith less 243
than the indicated area

MIN_FILL rule Verifiesthat alayer coversat least a 211

minimum fraction of the total design area.

MIN_NOTCH rule Marks sides too close to each other acrossa | 248

gap on a given polygon
MIN_SIDE rule Marks short sides as errors 251
MIN_WIDTH rule Marks sides to close to each other inasingle | 271
polygon

Figure 86: Referencesfor other verification rules.

DRC User Manual 109

How the DRC Works: Electrical Connections

Electrical Connections

The
QUICK_PASS
option on the
DRC command
linewill prevent
electrica
connections
from being
recognized.

If your design rules specify minimum spacing rules that depend on whether or
not two shapes are electrically connected, the DRC can determine this. You
must define how the electrical connections are formed before the MINSPACING
rules that use this information. Then the /CONN or /~CONN options in the
MIN_SPACING rule will use thisinformation to eliminate false errors of shapes
that are or are not electrically connected.

If electrical connections are not important to your spacing rules, you may want to
skip this entire section. However, the information on the STAMP rule may be
important if you want to verify that shapes like transistor wells are electrically
connected to exactly one node.

The CONNECT and STAMP Rules

See an example
of this process
in the Advanced
Tutorial on page
402.

Your rule set defines electrical connections using a combination of layer
processing rules, the CONNECT rule, and the STAMP rule. Layer processing
rules are used to create the conductive layers from the layers used in the layout
and to remove device area from the conductive layers. The CONNECT rule
defines which layers form electrical connections when they touch. The STAMP
rule defines layers that are poor conductors.

A collection of shapes that are electrically connected to each other is called a
net. The DRC recognizes which shapes are in the same net by assigning node
numbers. Initialy, each polygon in the DRC database is assigned a unique node
number. As new polygons are formed on new generated layers, they are
assigned new node numbers. When the CONNECT rules are processed, two
touching polygons on electricaly connected layers will both be assigned the
lower node number of the pair. Eventually, all polygonsin anet are assigned the
same node number.

The STAMP rule is used primarily to insure that poor conductor shapes are
connected to exactly one electrical net, rather than to define electrical
connections for the MIN_SPACING rule. The STAMP rule assigns node
numbers in a dlightly different way. The STAMP rule will assign a poor
conductor shape the same node number as the first touching conductive shape.

110

DRC User Manud

How the DRC Works: Electrical Connections

Example:

However, other conductive shapes that touch the poor conductor will not be
assigned the same node number. We will cover the use of the STAMP rule
later.

The simplest form of the CONNECT ruleis:
CONNECT layerl layer2

When a shape on layer1 touches a shape on layer2, both of them will be assigned
the same node number. Both shapes will be considered part of the same net.

When shapes on two layers are connected by a shape on athird layer (e.g. avia
or contact hole shape), you use this form of the CONNECT rule:

CONNECT layerl layer2 BY layer3

When this form of the CONNECT ruleis |00
used, shapes on all three layers must | 10 o
share a common area for them to be | -:--....- ..o
electrically connected. BEREE

CONNECT M1 M1IWIRE
CONNECT M1 M2 BY VIA

. T y) ZZ’ .Z Z’ 'ZZ
When the rules above are run on the | Ml\‘NlREMl‘ "..W.A' DMZ
Shapesshown in Figure87’ a|| Of the R il
shapes will be electrically connected. Figure 87: Electrically connected

shapes.

Layers that are used in CONNECT and

STAMP rules form groups. All layers that can be connected to each other are
collected into asingle group. When layers form more than one group, thereisno
way to electrically connect a shape on a layer in one group to a shape on a layer
in separate group. This may point out mistakes in the rule set.

The number of groups is reported in the log file created by the rules compiler. If
you have more than one group, you should look carefully at the log file where
the layers in each group are listed to be sure that you are not forgetting to
connect some layers. However, some temporary layers may form separate
groups.

DRC User Manual 111

How the DRC Works: Electrical Connections

Building Electrical Connections

Example:

You can use the
NLE program to
test your
eectrical
connection
rules. The node

It can be trickier than you might think to build electrical connections correctly.
It is very easy to short layers together unintentionally. When you write the rules
for electrical connections, you must consider how a chip is fabricated. Keep in
mind which layers prevent shorts, including which combinations of layers
represent devices that break shapes into separate nets.

GATE = DIFF AND POLY
SRC_DRN = DIFF AND NOT POLY
CONNECT M1 POLY BY CONT

CONNECT M1 SRC_DRN BY CONT

In this example of a |- -~ - -
MOSFET technology,
the DIFF (diffusion)
layer is separated into
the GATE layer and

R

outliner utility the SRC DRN (or

‘é"r:li'r:'gzlc'?r?é source-drain) layer.

nets. Refer to The GATE layer is the

the NLE/LVS device layer. The

manual formore SRC DRN layer rep- | @00 0000 00000 NS .

examples. resents the terminals
of the device. We do
not want to short the
terminals of the device
into one net.
Note that the DIEE |~ M1 - ICONT - [Z4pPoLY - RIDIFF -
layer is not used asa el
conductive layer in the Figure88: FET device.
CONNECT rules. In-
stead, the SRC_DRN layer is used as the conductive layer. If you used DIFF in
the CONNECT rules, the source and drain of each FET device would be shorted
together.

112 DRC User Manual

How the DRC Works: Electrical Connections

The NLE uses
these same
methods to
recognize
device aress.
Seethe
examplesin the
NLE/LVS
manual if you
will be using
the same
dummy shapes
for device
recognition
using the NLE.

Example:

There are four methods for removing material from conductive layers to avoid
shorting the terminals of devices:

1) Use the AND rule to remove the device area from the conductive layer.
Thisisthe method used in the example above.

2) Shapes on adummy layer are added to the design. This layer can then be
used to etch the conductive layer using the AND rule, or the TOUCHING
rule can be used to find shapes that touch the dummy layer and these are
removed from the conductive layer. This method is often used to remove
the area that represents aresistor from the conductive layer.

3) The IN_CELL rule (or the IN_CELL keyword of the INPUT LAYER
rule) changes all shapes on a conductive layer contained in certain cells to
adifferent layer. In this case, shapes in the main cell which travel over
the same area will remain on the conductive layer.

4) IN_CELL processing is used to save layer O (which represents the
bounding box of a cell) in certain cells to a scratch layer, which is then
used to remove area from the conductive layer. In this case, shapesin the
main cell which travel over the same area will also be removed from the
conductive layer.

RESISTOR = POLY AND RESMASK
POLY = POLY AND NOT RESMASK
CONNECT M1 POLY BY CONT

These rules represent an
example of method 2.
Look at Figure 89. A
shape has been added on
the dummy layer
RESMASK. This shape
is then used to remove the A e S A I I I D
area of the resistor from | - -[Zim1 -] CONT POLY [| RESMASK-
the POLY layer before it A O D
is used in the CONNECT
rule.

Figure 89: Resistor device.

DRC User Manual 113

How the DRC Works: Electrical Connections

See page 155
for an example
of what happens
when the layout
changes leaving
the shape on the
dummy layer in
the wrong place.

Example:

If you will not be performing verification rules on the RESISTOR layer, the size
of the RESMASK shapes is not important. In this case, al that is important is
that they cut each POLY shape into two nodes. However, if you have design
rules to verify for the RESISTOR shapes, then add the RESMASK shapes
carefully to accurately create the RESISTOR shapes.

Contact layers can aso require careful handling before using them in
CONNECT rules. The order in which the layers are laid down should be
considered as you build the electrical connections.

Refer to Figure 90 and Figure 91 as we discuss the following example. The layer
generation and connection rules for NPN transistors demonstrate how you must
be careful not to short layers. (We have left out the buried layer to simplify the
discussion.)

The P layer in a NPN transistor prevents the N_PLUS layer from contacting the
N layer. Also, the N_PLUS layer prevents contacts from connecting M1 to the P
layer. In this case, the contacts must be filtered to prevent several different
layers from being shorted together.

N_AND_N_PLUS= N AND N_PLUS
EMITTER = N_AND_N_PLUS AND P
COLLECTOR= N_AND_N_PLUS AND NOT P

BASE = P

CONT_TO_BASE = CONTACTS AND NOT EMITTER

CONNECT COLLECTOR N

CONNECT M1 COLLECTOR BY CONTACTS
CONNECT M1 EMITTER BY CONTACTS
CONNECT M1 BASE BY CONT_TO_BASE

If you created the COLLECTOR layer asfollows:
COLLECTOR=N AND N_PLUS

then the shapes that make the emitter will also wind up on the COLLECTOR
layer. Inthiscase, the N layer will short the collector and the emitter. Y ou must
be careful to separate the COLLECTOR layer from the EMITTER layer by using
the P layer.

114

DRC User Manud

How the DRC Works: Electrical Connections

You must classify the contacts that are over the P or BASE layer because the
emitter is also over the P layer. Contacts over the emitter do not connect to the P
layer, since the N_PLUS layer is in between. If the BASE layer is connected to
M1 by CONTACTS, the emitter contact will short to the base since the emitter is

on top of the BASE layer.

 contacTs

Figure 90: Simplified layout for a NPN device.

Collector Base Emitter isolation
layer

Ny

Figure 91: Simplified cross section of a NPN transistor.

DRC User Manud

115

How the DRC Works: Electrical Connections

Using the STAMP Ruleto Verify Wells

We can demonstrate the importance
of using the STAMP rule to verify
transistor well or bulk layer shapes

with Figure 92. Let us assume that | eio| mai | 7] [e
the GND wire on the right connects eopr 333

to the metal GND bus and from there

to a pad on the chip. However, the D WELL PDIFF

GND wire on the left does not

connect to the bus. You meant to D M1 . CONTACTS

connect these two wires, but a gap
exists by accident.

Figure 92: Open on GND node that

In this case, as long as you do not use connects only through WELL layer.

the CONNECT rule to define electrical connections to the WELL layer, the two
GND fragments will have different node numbers and you can find this error
with the STAMP rule.

Example: INPUT LAYER 1NDIFF; 2POLY; 3WELL; 4 PDIFF;
INPUT LAYER 10M1; 8CONTACTS;
SCRATCH LAYER GATE; SRC_DRN;
OUTPUT LAYER 101 MULTI_WELL; 102 UNCONN_WELL
GATE = NDIFF AND POLY
SRC DRN = NDIFF AND NOT POLY
CONNECT M1 PDIFF BY CONTACTS
CONNECT M1 SRC DRN BY CONTACTS
STAMPWELL BY PDIFF MULTI=MULTI_WELL NONE=UNCONN_WELL
If this set of rulesis run on the layout shown in Figure 92, the WELL shape will
be copied to MULTI_WELL since it will be stamped by two different nodes on
layer PDIFF. The two GND net fragments will not be shorted together and will
be recognized by the DRC as two separate nets. All WELL shapes that do not
have connections to PDIFF shapes will be copied to layer UNCONN_WELL.
Shapes on both UNCONN_WELL and MULTI_WELL are automatically added
to the error count.

116 DRC User Manual

How the DRC Works: Electrical Connections

Subject Importance Page
CONNECT rule Used to define most electrical connections 200
STAMPrule Used to define electrical connections for poor | 308

conductors and verify these connections

Advanced Tutorial | Example of set of CONNECT and STAMP 402
rulesfor MOSFET process

Figure 93: Referencesfor electrical connection definition.

DRC User Manual 117

How the DRC Works: Panel Processing

Panel Processing

Purpose

Y ou can now
specify panel
sizeon the DRC
command line.
See the new
PANEL options
in Running the
DRC.

The DRC is designed to verify large amounts of data. However, a whole chip
can result in a huge database. At best, alarge design can result in a huge scratch
file and very long run times. At worst, the data will not fit on a typical disk
drive. The DRC solvesthis problem by processing large designsin small panels.

Part of the problem is that verification rules must be executed on the design after
it has been flattened hierarchically. Since the DRC does not require extra design
constraints that prevent cells from overlapping each other, the only way to find
violations that result from abutting or overlapping cells is to flatten the data so
that these problems can be found.

The optimized algorithms require more data to be stored for each shape than a
single set of coordinate data. Once you flatten the data, a typical chip probably
cannot be stored as one flat unit.

The DRC can process small designs as a unit; however, larger designs may need
to be automatically divided into panels and processed one panel at atime. Panel
processing allows data that is not included in the current panel to be stored
hierarchically. Only one panel isflattened at atime.

Unless you specify a maximum panel size, the DRC will attempt to find a
suitable panel size based on the size and density of your design and the amount
of memory available. However, if the DRC runs out of memory with this panel
size, it will begin all processing again after dividing the design into panels half
the size of the entire design. This process may be repeated with smaller and
smaller panels. Thistype of thrashing may waste considerable time.

If the DRC crashes due to memory problems, or with an error message that
mentions pane size, read the following information carefully BEFORE
calling technical support.

118

DRC User Manud

How the DRC Works: Panel Processing

Effect of Panel Size on Memory and Running Time

See an example
of the process of
optimizing

panel size on
page 445.

The PANELX
and PANLEY
rules explicitly
set panel size.

Even if the DRC can process your design in a single panel, the memory
requirements may force the DRC to swap data to a scratch file on your hard
drive. Thisis called disk swapping and it will result in long run times.

If you have a small amount of memory on your computer (less then 16Meg), then
dividing your design into panels may alow the DRC to run to completion when
it has run out of memory trying to process the entire design as one panel. Even if
you have a large amount of memory on your computer, dividing the design into
panels may speed up the DRC run by over an order of magnitude.

For example, a chip that took over 8 hours to process as a single panel took only
and hour and a half to process when divided into "reasonable" panels. When you
have long run times, you should divide the design into smaller panels.

One indication that the DRC will run faster if you specify smaller panelsiswhen
the log file from your first run reports that the DRC is swapping data to disk.
The DRC reports at the end of the log file the size of the scratch file, the number
of times it was used, and the percentage of processing time spent on swapping.
If these numbers are large, trying a smaller panel size will probably result in a
shorter running time. (In the testcase mentioned above, the log stated that 81% of
the 8 hours was spent on disk swapping.)

If you will be running the DRC many times on your design, you should
experiment with different panel sizes to find an optimum panel size. This
can speed up the DRC processing time dramatically.

During development of the new panel size defaults, some testcases had the
fastest run time with the default panel size. However in one testcase, the default
panel size resulted in a run that took 4 times as long as a run with an optimized
panel size.

If your design is processed with panels that are just alittle too large based on the
amount of memory available, the DRC may run out of memory and try to recover
by reprocessing all data from the beginning with panels half the size. Hours of
processing time may be wasted. In this case the console messages ook similar
to the following:

DRC User Manual 119

How the DRC Works: Panel Processing

Panel 4, from x=570.167 to 1236.83, y=6570.58 to 7237.29 was too conpl ex
on rule 98, pass 3.

Fai l ure 14, 14 Checki ng spacing, too many vertices

Panel di mensi ons were 666.667 by 666. 708

Try subdi vi di ng panel .

New panel dinensions are 666.667 by 333.354

Can only allocate 3559 size 82 itens for processp--10, avail abl e=291887
Request ed 28180 size 82 itens=2310760 bytes

Panel 6, from x=570.167 to 1236.83, y=6570.58 to 6903.94 was too conpl ex
on rule 118, pass 3.

Fai |l ure 402, processp--10

Panel di mensi ons were 666.667 by 333. 354

Try subdi vi di ng panel .

New panel dinensions are 333.333 by 333.354

Can only allocate 3559 size 82 itens for processp--10, avail abl e=291887
Request ed 28180 size 82 itens=2310760 bytes

(many nore simlar nessages)

Panel 25, from x=580.583 to 585.791, y=6575.79 to 6581 was too conplex on
rule 118, pass 3.
Fai |l ure 402, processp--10
Panel di mensions were 5.20831 by 5.20869
Try subdi vi di ng panel.
Panel is too small to subdivide further.
Sonetinmes, data in large panels inherited from previ ous passes nakes
it inmpossible to subdivide panels in future passes. Try a snaller
initial panel size
Run abort ed.

CRASH*****CRASH*******CRASH*******CRASH*******CRASH**
CRAS'_'*****CRAS'_'*******CRAS'_'*******CRAS'_'*******CRAS'_'**
CRASH*****CRASH*******CRASH*******CRASH*******CRASH**

If the console messages look similar to the ones above, try specifying panel sizes
in the rule set about 10% to 25% of the first panel size reported. If this does not
work, try even smaller panels in the rule set to avoid problems in future runs
before you call technical support.

New Default Pandl Size Calculations

As of version 3.14, the DRC attempts to calculate optimal panel size based on
design size, density, and available memory. (Previous versions always defaulted
to processing the data as a single panel unless the PANELX and/or PANELY

120 DRC User Manual

How the DRC Works: Panel Processing

The
NO_PANELS
rule forces the
DRCtousea
single panel the
size of the
design.

rules were used.) This automates the panel size selection process, and most
designs may complete with acceptable run times with this default behavior.

If your rule set was created for previous versions of the DRC, and includes
PANELX and PANELY rules to explicitly set the panel size, you may see an
improvement in run time by trying the new default panel calculations. Try
removing the PANELX and PANELY rulesfor atest runif:

» Theamount of memory available to the program has changed since the panel
size was optimized. More memory may mean that larger panel sizes can
now be used and may speed up processing.

* The density or size of your design has increased since you optimized the
panel size. The larger database may be processed more efficiently with
smaller panels.

However, the calculated default is not usually optimal, and large designs will
amost certainly execute more quickly when an explicit maximum panel size is
specified in the rule set.

If you do not specify the panel size, and the DRC run takes more than a few
minutes, the DRC will add awarning to the console messages and log file similar
to the following:

* ko WARNLE NGF * * * * WARNI NG* * * * * WARNI NG* * * * * WARNI NG* * *

You used the default panel size. This will
provi de a panel size that does allow your job to run,
but is unlikely to be the size that yields the fastest
running tine.

In this case, look at the log file to see the panel size calculated by the DRC and
test panel sizes larger and smaller to find an optimal size. You can refer to the
section of the advanced tutorial that covers this process on page 445.

DRC User Manual 121

How the DRC Works: Panel Processing

TheNew PANEL_VERTICESRule

DRC memory is
divided between
main memory
and data storage
memory. See
details on page
161.

If the default panel sizes seem to not be optimal given your design and memory
constraints, one option is to “tweak” the automatic panel calculations with the
PANEL_VERTICES rule rather than resort to explicit panel sizes with the
PANELX and PANELY rules.

The PANEL_VERTICES rule controls the maximum number of vertices in a
panel, rather than the exact size of apanel. The value is specified as the number
of vertices per panel per Megabyte of main memory available to the DRC, or:

Vertices
Panels « Megabytes Main Memory

= PANEL_VERTICES

By default, PANEL_VERTICES is set to 5000. This provides an optimum
number of vertices in a panel for some designs. If you have 50 Megabytes of
main memory available to the DRC, this resultsin the following equation:

Max # Verticesin a Panel
50

= 5000

or
Max # Verticesin a Panel = 250,000

If the total number of vertices in your design was 25 million, then the design
would be divided equally into at least 100 panels. The DRC will test each panel
to insure that the number of vertices on relevant input layers never exceeds 5000,
even in dense areas of the design.

Since there is a trade off between extra processing required for panel processing
and time saved due the smaller amount of data stored in flattened form at any
given time, time may be saved by increasing or decreasing the default number of
panels.

e If arun with the default number of panels completes successfully, you can
see if a different number of panels leads to faster run times by specifying
different PANEL_VERTICES values. The DRC log file lists the amount of
time spent by each phase of the processing near the bottom of thefile. If the

122

DRC User Manud

How the DRC Works: Panel Processing

log file indicates that the DRC is spending significant time swapping data to
disk, try adding a PANEL_VERTICES rule in your rule set with a number
smaller than 5000. If the log file indicates that little or no time is spent
swapping data to disk, try increasing the panel size by with a
PANEL_VERTICES rule using avaue larger than 5000.

* On the other hand if the DRC crashes with a message that indicates a
memory or panel size problem, or if disk swaps are slowing your run,
try anumber smaller than 5000 in the PANEL_VERTICESrule.

Y ou can significantly decrease the amount of time the DRC takes to complete a
run by optimizing panel processing. Try various values for PANEL_VERTICES
until you come up with an optimal value for your computer and design.
Alternately, you can specify the panel size directly with the following rules.

The PANELX and PANELY Rules

You can
override the
panel size on
the DRC
command line.

The PANELX and PANELY rules are used to explicitly set the maximum panel
size. If the PANEL_VERTICES rule does not seem to provide you with a panel
size that is working, you can use these rulesto specify panel size.

The DRC attempts to divide the design into roughly equal panels. The
dimensions you specify with the PANELX and PANELY rules are really the
maximums rather than the exact dimensions used. If you specify PANELX =
100 and PANELY = 200 and your chip is 190 by 489 units, the chip will be
divided into six 95 by 163 unit panels.

The optimum panel size varies greatly depending on the size of your design, the
dimensions of your shapes, and on the type of rules you are processing.
However, a rough rule of thumb, if most of your shapes and rules involve
dimensions on the order of afew ICED™ units, is to use panels on the order of
300 by 300 units. (If you have less than 32 Megabytes of memory in your
computer, you may want to start with panels smaller than this.) Try various sizes
in succeeding runs to see which values give you the fastest run times.

DRC User Manual 123

How the DRC Works: Panel Processing

Panel Borders

Add the
SHOW-
_BORDER
option to the
DRC command
line to see how
the border is
calculated by
the DRC.

When you dice a design into panels for verification, shapes near the edge of a
panel must be considered. If you are verifying a MIN_SPACING rule and a
shape just inside the edge of one panel is too close to a shape in a neighboring
panel, will the error be found? If panels did not overlap, many rules would miss
errors when nearby shapes are not considered.

In order for shapes near or crossing a panel border to be processed correctly, the
DRC must include a border around all sides of each panel. Shapes in the border
area will be processed at least twice (at least four times near the corners of
panels). Very small panels or very large borders will result in some shapes being
processed many times. However, borders that are too small may allow errors to
go undetected.

The panel border is automatically calculated by the DRC based on the layer with
the maximum reach as determined by the rules. Reach is defined as the mini-
mum border distance that insures that no violations of shapes on a particular
layer will be missed or marked as false errors.

124

DRC User Manud

How the DRC Works: Panel Processing

Rules that involve
touching have areach
of 0 due to the way
the DRC processes
touching shapes. (We
cover this subject
next.) Rules that in-
volve dimensions and
rules that involve
changing the dimen-
sions of shapes (like
the BLOAT rule) re-
quire a reach to
insure that shapes are
processed correctly.

Each layer is initially
assigned a reach of 0.
Rules may increase
this reach. The reach
of a result_layer is
often greater than the
reach of the layers
used to create it. The
border is defined as
the maximum reach
of al layers plus a
tiny safety factor.

The ASPECT_RATIO
and MIN_AREA
rules cannot compute
reach, so you must
specify it explicitly in
therule.

Rule

Reach of result_layer

AND

max (Reach(layer1), Reach(layer2))

ASPECT_RATIO

Reach(layerl) + max_size parameter

Assignment Rule

Reach(layerl)

BLOAT

Reach(layerl) + offset_val
sin(bloat_angle/ 2)

BOUNDS Reach(layer1) + max(sizen dimension)
(if max (sizen dimension)>10, reach is
0 instead and second passis added
BRIDGE 0 (forces multiple passes)
CONNECT 0 (forces multiple passes)
IN_CELL Reach(layer1)
IS BOX Reach(layer1) + max(sizen dimension)
ISLANDS 0 (forces multiple passes)
MAX_ANGLE Reach(layer1)
MIN_ANGLE Reach(layer1)
MIN_AREA Reach(layerl) + maxsize
(or 0 with extra pass if maxsize=0)
MIN_NOTCH Reach(layerl) + min_width
MIN_SIDE Reach(layer1) + min_length
MIN_SPACING max (Reach(layerl), Reach(layer2)) +
distance
MIN_WIDTH Reach(layerl) + min_distance
OFF_GRID Reach(layerl) + grid_resolution
OR max (Reach(layer1), Reach(layer2))
OVERLAPPING | O (forces multiple passes)
SHRINK Reach(layerl) + offset_val
sin(bloat_angle/ 2)
SNAP Reach(layerl) + grid_resolution
SNAP45 Reach(layerl) + grid_resolution
STAMP 0 (forces multiple passes)
TOUCHING 0 (forces multiple passes)
XOR max (Reach(layer1), Reach(layer?2))

Figure 94: Reach calculation for each rule.

DRC User Manud

125

How the DRC Works: Panel Processing

Seethe
BLOAT-
_ANGLE rule
on page 311 for
more details on
bloating acute
angles.

If you do not
have acute
anglesin your
design, you
should always
usethe
maximum
BLOAT-
_ANGLE of 45°
(the default) to
avoid excessive
reaches.

The SHRINK and BLOAT
rules can increase reach
dramatically if you allow
bloats of acute angles in your
design.

For example, look at the small
polygon with the 30° angle in

Figure 95. When this
polygon is bloated by 2 units S
without constraints, the

bottom dimension expands Figure 95: Unconstrained bloat of 30° angle.
from 10 to more than 20.

The reach of abloated layer is defined as:
Reach(layerl) + offset val /sin (a/2)

Where a is the bloat_angle parameter defined with the BLOAT_ANGLE rule.
If the reach of layerl is 0, the offset_val is 2, and the bloat_angleis 30, the reach
of the bloated layer will be:

0+2/sin(30/2)=7.27

The reach increases dramatically as the bloat angle decreases. If the bloat angle
is set to 1, allowing unconstrained bloats of angles as small as 1°, the reach of
the bloated layer in the example above goes up to 229.

The BOUNDS and IS BOX rules add a reach to the result_layer equal to the
amount of the maximum dimension you are verifying. If we useaBOUNDS rule
with a maximum dimension of 10 units on a bloated layer with a reach of 7.27,
the reach of the result_layer created by the BOUNDS ruleis now 17.27.

If you use the layer created by the BOUNDS rule in other rules, the reach may
go up even more. A reach this large is required to be absolutely sure that no
polygons are improperly processed. However, this reach may be excessive for
the other layers. Many polygons will be processed multiple times due to the
large border.

126

DRC User Manud

How the DRC Works: Panel Processing

See page 442
for an example
of separating
long reach rules
from short reach
rules.

See page 164
for atrick to
reduce DRC
running time by
processing long
reach rules as
Boolean rules.

The layer with the largest reach sets the border for all layers in a single pass.
The border changes from pass to pass. Remember that a pass is defined as a
collection of operations that can be performed with one sweep through all shapes
in the database. Some passes require a large border due to the layers processed
in that pass. Other passes require no border.

If your rule set is verifying minimum spacing rules on the order of 3 microns,
thiswill result in a3 micron reach for at least one pass. If your panel sizeis 100
microns, the DRC will have to perform duplicate processing on 12% of your
design. This should not result in excessive run times.

However, if your rules require a reach of 25 microns (not unusual when testing
pad design rules), then duplicate processing is performed on 50% of your data.
This will include many rules that do not require such a large border. This will
probably lead to excessive run times and memory usage. The best solution to
this type of problem is to remove the long reach rules to a separate rule set that
you run less often. Y ou can increase the panel size for this smaller set of rulesto
further reduce duplicate processing.

The panel border used by the DRC is reported in the log file. Search for the
phrase “Panel Border”. You can use the SHOW_BORDER option on the DRC
command line to report the reach and border calculations performed by the DRC.
Y ou can sometimes rewrite rules to reduce the reach.

If you are a DRC expert, and your rule set creates a border that you know is
excessive; you can override the border calculated by the DRC with the BORDER
rule or the BORDER option on the DRC command line. However, if you don’t
know exactly what you are doing, you can easily prevent real errors from
being found by tampering with the border.

If you have a large border and the DRC needs to reduce the panel size to run to
completion, your run may be aborted with the message, “Panel is too small to
subdivide further — check aborted”. This means that the border is at least one
half the new panel size selected by the DRC. Y ou will need to reduce the border
by rewriting your rules or increase the memory available to the DRC so it can
complete with larger panels. You can modify the border explicitly with the
BORDER rule, but remember that you can corrupt the validity of the DRC tests
by doing this.

DRC User Manud

127

How the DRC Works: Panel Processing

Multiple Pass Processing

If a polygon crosses a panel plus border
boundary, the DRC will use the whole
polygon when processing each panel. A
shape in one panel that touches a shape on
the same layer in the border area will be
merged with the other shape into a single
polygon when that panel is processed.
Touching shapes that are beyond this area
will not be merged into single shapes for the
current panel.

To avoid missing errors due to touching
shapes outside panel borders, the DRC adds
extra processing. All shapes in the database
will be processed several times in multiple
passes through the data This extra
processing can be turned off though the use
of the QUICK_PASS option (which is
covered on the next page).

Look at Figure 96. Let us assume that we
will be verifying the three configurations
withaMIN_NOTCH rule. The notch in the
top configuration will be recognized since
the shape remains a single shape despite the
panel boundary. The DRC will see the
notch in the middle configuration because
the shapes will still be merged in either
panel.

.......

....... \Panel boundary
-------- including border

Figure 96: Panel processing will
prevent DRC from merging the

shapesin bottom configuration.

The configuration on the bottom will not be merged into a single shape. The
automatic calculation to add a border around the panel cannot solve this problem
because the shape that connects the two horizontal shapes may be a great
distance away. The notch will be missed unless the DRC uses a different
method to see that the horizontal shapes are redlly part of a single connected

shape.

128

DRC User Manud

How the DRC Works: Panel Processing

To avoid incorrectly processing touching shapes that cross panel boundaries, the
DRC will automatically add special cases of the CONNECT rule to the
processing. The CONNECT rule assigns unique polygon numbers to all shapes.
Touching shapes have their numbers reassigned so that both shapes have the
same polygon number. Once a CONNECT rule is processed, the DRC can
recognize that two shapes are really part of the same connected shape because
they have the same polygon number. In the example above, the DRC will see
that the two horizontal shapes in the bottom configuration form a notch because
the polygon numbers of both shapes will be the same.

These CONNECT rules add extra processing time. The rules that generate a
layer must be executed in one pass through the database, then the CONNECT
processing must take place in a separate pass. Finadly, the rules that verify the
shapes on that layer must be executed in a third pass. The extra time added to
the DRC run is due not only to processing the CONNECT rules, but also to the
storage of each panel of datafor the next pass.

Effects of the QUICK PASS Option

The number of
passes required
to execute the
rulesislisted
near the bottom
of therules
compiler log
file.

If the DRC can execute your rules in a single pass through the data it will do just
that. In this case, the DRC will not need to save the layout data from each panel
for other passes. When your rule set includes rules that require the DRC to
determine which shapes touch each other, the DRC must perform intermediate
passes through the data to insure that all errors are found. In this case, the layout
datain each panel must be saved for the next pass through the data.

When your rules require multiple passes, you must make a choice about how the
DRC will proceed. Either the SLOW or QUICK _PASS option must be added to
the command line. The SLOW option directs the DRC to process the layout data
in multiple passes. This insures that al errors will be found. The
QUICK_PASS option forces the DRC to ignore the problems caused by panel
boundaries and touching shapes. The DRC will execute in a single pass. This
may save a significant amount of processing time. However, some rules will not
handle shapes crossing panel boundaries properly leading to false errors and
even missed errors.

DRC User Manual 129

How the DRC Works: Panel Processing

When you use the QUICK_PASS option on
the DRC command line, you force the DRC
to use faster algorithms that ignore some
information relative to rules like minimum
notch and width rules. This option is
provided to allow for faster intermediate
runs on layouts that are checked several
times. One of the reasons for the speed
improvement is that touching shapes
outside the panel border will beignored. In
rare cases this can result in false errors or
missed errors for the MIN_NOTCH and
MIN_SPACING rules.

Let us consider the effect of the
QUICKPASS option on the three notch
configurations covered on page 128. As
sume that the DRC will be verifying a
MIN_NOTCH rule that all three configu-
rations violate.

Even when the QUICK_PASS option is
used, the DRC will recognize that the top
two configurations each represent a single
shape with a notch.

When the SLOW option is used instead of
QUICK _PASS, the CONNECT rules force
the DRC to recognize that the three shapes
on the bottom are connected and so it will
find the bottom notch.

I
------- Panel boundary
------- including border

Figure 97: Bottom configuration
will be processed incorrectly by
the QUICK _PASSalgorithm.

When the QUICK_PASS option is used, the violation of the bottom
configuration will not be found. The touching shape on the right will be ignored
while the DRC processes the panel on the left. This means that the DRC will see
the two other shapes as separate shapes on the same layer. The notch will not be
found. A false MIN_SPACING error may be generated.

130

DRC User Manud

How the DRC Works: Panel Processing

When rules will
beignored due
to the
QUICK_PASS
option, you must
reply to a
warning prompt
to proceed. To
avoid the
warning prompt,
usethe
ALLOW_QUICK
rule or command
line option.

Due to rare cases like the one above, you must be careful not to use the
QUICK_PASS option in final runson a design.

Some rules cannot be processed at all
QUICK_PASS option is used. The rules that indicate that
extra passes are required in the table on page 125 will not be
executed at all when the QUICK_PASS option is used.

Theserules arelisted herein Figure 98.

Since CONNECT rules are not processed, this also means
restrictions of

that the /CONN and /~CONN
MINSPACING rule areignored.

Effects of Panel Processing on Generated Layers

Shapes generated by the DRC
(including error shapes) must be cut at
the panel boundary to be stored for the
next pass. Otherwise two copies of
shapes that cross a panel boundary
would be generated. Let us say that
therule“C = A AND B” is executed
on the shapes in Figure 99. The shape
on layer C will be created in both
panels. To avoid creating two identical
shapes on layer C, the DRC cuts the

when the

BRIDGE

CONNECT

ISLANDS

MAX_SPACING

OVERLAPPING

the | STAMP

TOUCHING

Figure 98:
Rules not
executed when
QUICK _PASS
isused.

Figure 99: Shapeson layers A and B
and panel boundary.

shape at the panel boundary so that each panel contains the portion of C that lies

within the panel boundary.

DRC User Manud

131

How the DRC Works: Panel Processing

Cutting shapes a panel
boundaries can lead to
problems when the shapes
have skewed sides. Let us
say that the shapes in
Figure 100 are used to
generate layer C with the
same Boolean rule used
above. Now the panel
boundary intersects a side
of the layer C shape at an
angle.

The DRC must cut the
triangle on layer C and

create two shapes as
shown in Figure 101. |If
the dots represent the
DRC resolution grid, you can see
that the new vertices to create the
C shapes must be shifted to lie on
the grid. This results in a
distortion of the shape.

This type of problem is usually
resolved when the shapes are
output to ICED™. The DRC grid
is much finer than the ICED™ grid.
Snapping all coordinates to the
coarser ICED™ grid forces minor
distortions like this to be removed
except in rare cases. (Refer to the

Figure 100: Shapes on layers A and B and panel
boundary.

/

Figure 101: Layer C shapesstored
for next pass.

examplesin the discussion of resolution grids on page 79.)

132

DRC User Manud

How the DRC Works: Panel Processing

Subject Importance Page

PANEL_VERTICES Modify default panel size calculationsbased | 290

rule on memory available

PANELX and PANELY | Used to set panel size directly 293

rules

NO_PANELSrule Used to force DRC to use asingle panel the | 278
size of the design

PANEL_X and Used to override panel size setinrulesfile 358

PANEL_Y command

line options

BLOAT_ANGLE rule Affects border when BLOAT or SHRINK 311
rules are processed

BORDER rule Overrides calculated border 193

BORDER command line | Overrides calculated border on DRC 348

option command line without recompiling rules

SHOW_BORDER Reports border calculationsin DRC log file 348

command line option

QUICK_PASS Faster algorithm that can lead to incorrect 337

command line option results at panel borders

ALLOW_QUICK rule Avoid having to respond to a warning prompt | 182

and command line option | when QUICK_PASS may miss errors. Either | 339
rule or command line option may be used.
Both have the same effect.

Figure 102: Referencesfor panel processing.
DRC User Manual 133

How the DRC Works: Hierarchical Checking and Hierarchical Output

Hierarchical Checking and Hierarchical Output

To prevent
hierarchical
processing, you
will haveto add
command line
optionsto
flatten cellson
input. Thiswill
be covered a
little later.

By default, the DRC retains the some of the hierarchical structure of cell data
While the verification rules must be processed on flat data, most of the DRC
processing is performed on hierarchical data.

Unless you use a very ssimple rule set that executes in a single pass, the DRC
must store the results of one pass for the next pass. Storing this data
hierarchically reduces the storage requirements significantly.

When the DRC agorithms require flattening of cell data, only the current panel
isflattened. The remainder of the data remains hierarchically nested.

When you use the DRC to generate output layers, you can preserve the hier-
archy. All layers will be created in cells that mimic the original cell structure.
This can reduce the disk space required for the output files considerably.

Regardless of how you choose to store the output data, the DRC will by default
process the data of multi-pass runs hierarchically. This conserves disk space
required for the DRC scratch file and usualy reduces processing time.
Depending on how the design is nested, the processing time may be 10%-20%
faster or slower than processing the data flat.

Hierarchical Processing Algorithm

The hierarchical processing performed on each panel during layer generation is:

Begin in the lowest level cells (those cells with no subcells). Compute the
new layer in these cellsfirst.

Go up one level in the hierarchy and temporarily flatten the nested cells.
Compute the new layer and then subtract the new layer stored in the
subcells.

Continue up the chain of hierarchy to the main cell. At each level in the
hierarchy, the entire layer is generated from the flattened data and then the
datain subcellsis subtracted.

134

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

Look at Figure 103. Let us
say that a shape on a wire
layer is contained in the
nested cell indicated with
the dotted line. Two
shapes on the same layer
meet this cell on either side Figure 103: Wirelayer in nested cell and main
in the main cell. Now the ¢g].

DRC processes a shrink op-
eration on this layer.

The shrink is performed in |
the nested subcell first. oo b

Next the shrink is per-
formed in the man cell.
The entire wire is shrunk.
Then the layer in the
subcell is subtracted from |~ T
the wire. This leavesthe | = o
shapes shown in Figure105. | - LT L1
inthe main cell. o o

Figure 104: Shrunk layer in nested cell.

In the entire nested design,
the shrunk wire runs with- Figure 105: Shrunk layer in main cell.
out a break through the cell
as shown in Figure 106.

The hierarchical processing
algorithm can be expensive
in terms of processing time.
The layer generation op-
erations may be performed
several times on each Figure106: Shrunk layer in nested cell and
nested shape. The subtrac- main cell.

tion operations take proc-

essing time as well. However, in most designs this processing is more time

DRC User Manual 135

How the DRC Works: Hierarchical Checking and Hierarchical Output

efficient than flattening the entire design before processing. The time saved in
storing the design hierarchically is usually significant.

Danger ous Operations

Hierarchical processing has an important side effect. Since the DRC enforces no
design constraints on how cells may overlap, the contents of a higher level cell
may affect how a layer should be generated in a subcell. We refer to operations
that may have this side effect as dangerous operations.

A dangerous operation is defined as an operation that may result in the
contents of a subcell being generated in error dueto the contents of a higher
level cell. Dangerous operations include operations that remove material from a
layer and operations that depend on touching relationships to shapes that may be
in higher level cells.

For example, let us consider the simple
Boolean operation "C = A AND NOT B"
where a shape on layer A isin asubcell and an
overlapping shape on layer B is in the main
cell.

When the DRC is processing this operation, a
shape on layer C is generated in the subcell
that is a copy of the layer A shape. Since the
DRC cannot "see" the shape on layer B, it is
not considered.

CEA B

When the DRC then processes the main cell, it
"sees’ the shape on layer B, but it istoo late to Figure 107: Layer A in
change the contents of layer C in the subcell. subcell and layer B in main
Also, other instances of the subcell probably cell.

should not be altered.

136

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

The DRC will warn you at this point that the layer has been processed
incorrectly. However you may prefer that the DRC generate layer C correctly in
the first place. You can direct the DRC to generate the result of dangerous

operations "safely"”.

When a dangerous operation is processed safely, the result of the operation is not
generated until the DRC is sure that no incorrect results can be generated. This
means that the DRC will not generate the result until it is processing the

flattened main cell.

In the example above, if you direct the DRC to process the Boolean operation
safely, no shapes on layer C would be generated in the subcell at all. Instead, the

layer C shape would be
created correctly in the
main cell. No warnings
would be generated.
However, even shapes on
layer A in subcells that
are not overlapped by
shapes on layer B would
result in layer C shapesin
themain cell.

The list of dangerous
operations is provided in
Figure 108. The rules
that have special options
listed are dangerous only
when those options are
used in therule.

It is not obvious why
some of these rules can
result in mistakes due to
dangerous processing.

Let us cover afew examples.

Rule

Special options causing danger

AND

NOT keyword

ASPECT_RATIO

BLOAT

BOUNDS

IS BOX

ISLANDS

MIN_AREA

NOT

OR

NOT keyword

OVERLAPPING

NOT keyword or count restriction

RECTANGLES

SHRINK

STAMP

TOUCHING

NOT keyword or count restriction

XOR

Figure 108: List of dangerous DRC operations

DRC User Manud

137

How the DRC Works: Hierarchical Checking and Hierarchical Output

The BLOAT rule can result in distortions |- =~ = - - - 000
when it is handled dangerously. Thisis |. . . :
due to the fact that shapes in subcells
that touch shapes in other cells are not
merged into single shapes before an
operation that is handled dangerously.

Consider Figure 109. The crosshatched
area represents two shapes on a layer that |, | B
isthen bloated. When these shapesarein |- - | -~ - |~
the same cell (or when they are handled |. . . =~
safely) they will be merged intoasngle b - - - - - - - - - - - - - - - - -
shape by the DRC before the bloat. The Figure 109: Result of bloat when
DRC will then bloat the shape as shown in touching shapes are merged first.
Figure 109.

Now consider what the DRC will doifthe | - - - - - -
crosshatched shape on the right is | '

contained in a subcell and the DRC | - -

processes the operation dangerously. This | . . . ™ [#%/ N
snape will be bloated before the DRC is | = | = ¥« / ;
aware that a touching shape on the same | - - - | - 2
layer exists. The shapes will not be

merged before the bloat and the unusual | - - - | - // SRS
bloated shapes shown in Figure 110 will | . . . | . A
be the result. The DRC would issuea | = |~~~ "~ | =~~~
warning message about theerror. | e e

The MIN_AREA rule is the only Figure110: Result of bloat when
verification rule that is on the list. Thisis DRC processes shapes

due to the fact that the DRC will process dangerously.

this rule before flattening the design.

Touching shapes in other cells will not be merged before the areaistested. This
can result in false errors, but not missed errors.

Consider the shapes in Figure 109 again. If the two crosshatched shapes are in
different cells and a MIN_AREA rule is processed dangerously, the DRC may

138

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

mark either shape as an error even though the merged shape is large enough to
pass the test.

The OVERLAPPING and TOUCHING rules can also have incorrect results
when they are processed dangerously. However, the multi-pass algorithms used
for these rules will be able to process the simplest form of the rule correctly even
when they are processed dangerously. The simplest form is when a shape on one
layer is tested only for touching any number of shapes on another layer. But
when a count is added to the rule that restricts shapes on the result layer to those
that touch a specific number of shapes on the other layer, dangerous processing
can result in mistakes. If the DRC sees a shape in acell that touches the correct
number of other shapes within the cell, the DRC will copy the shape to the result
layer. However, if another shape in a higher level cell touches the original
shape, the original shape should not have been copied to the result layer.

The same problem arises when the NOT keyword is used in a TOUCHING or
OVERLAPPING rule. In this case, a shape is copied to the result layer when it
does not touch a shape on the other layer. In this case, a shape in a subcell may
not touch any shapes on the other layer in the subcell, so it is copied to the result
layer. But if a shape on the other layer in a higher level cell touches the original
shape, it should not have been copied to the result layer.

Processing any of these rules safely will prevent mistakes at the expense of
creating the result layer as one flat layer in the main cell.

There is one rule that is a specia case. You would think that the CONNECT
rule would have incorrect results when processed dangerously due to shapes in
higher level cells. However, the DRC always processes this rule safely. Since
shapes are not created by this rule, there is very little overhead to processing it
safely. However, in a manner similar to the processing of the TOUCHING and
OVERLAPPING rules, the DRC must process this rule in an extra pass.

One consequence of dangerous processing is that any layer generated from a
layer generated dangerously is also generated dangerously. Also, any layer
generated from a layer that is generated safely is a'so generated safely. When a
layer is generated safely, the shapes are already flattened in the main cell, so
there is no way to create shapes from it in the subcells.

DRC User Manual 139

How the DRC Works: Hierarchical Checking and Hierarchical Output

Example:

C=A AND NOT B
E=CANDD

If layer C is generated safely, so islayer E. Conversely, if layer C is generated
dangerously, any mistakes on that layer may be present in the E layer as well.

Oops Conditions

When a dangerous operation is handled dangeroudly, the DRC may generate the
contents of a nested cell incorrectly. We call this an "oops condition". The
DRC will realize that a shape or shapes have been generated incorrectly and
issue a warning message.

For example, let us say that the Boolean operation we discussed above, "C = A
AND NOT B", is processed dangerously. The DRC recognizes after the subcell
has been processed that a shape on layer B in a higher level cell should subtract
material from a shape on layer C in the subcell. At this point, the DRC will
issue a warning message similar to the one below and continue, but further
results may be incorrect.

If the DRC has recognized an oops condition, it will display a warning on your
screen during the run similar to:

*********DAN(ER***DA’\KER***DAI\KER********
*********DAN(ER***DA’\KER***DAI\KER********
*********DAN(ER***DA’\KER***DAI\KER********

This run may have incorrect answers----READ your
log file.

Thelog file will contain messages about specific cells similar to:
xox %k DANGER * * * DANGER* * * * DANGER* * * * DANGER* * * *

A logical error was nade processing layer (11]
in cell MAINCELL. One of MAINCELL's subcells
contains a section of (J11] that was renoved by a
| ogi cal operation in MAI NCELL. This neans any

140

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

Learn more
about subcell
error command
files on page
375.

further results in MAINCELL or a cell containing
MAI NCELL involving layer ([11] are likely to be
wWr ong.

The problem can be corrected by specifying that
layer (11] or the problem subcells (not
MAI NCELL) be ungrouped.

An outline of the offending area (in cell
MAI NCELL coordi nates) appears on |ayer 100 of
error file E:\MyD R MAI NCELL. ERR This outline
can be used to locate the subcells to ungroup.

The number in square brackets after the layer name, "[11]" in the example above,
refers to the ICED™ layer number. The error file is a subcell error command file
that should be executed while you are editing the indicated cell.

One method to fix the problem is to ungroup (or flatten) the subcell of the
indicated cell in the layout editor. However, there are other methods you can use
to fix the problem without modifying the layout. We go into these methods next.

Safe Processing Options

The ALL_SAFE rule will cause the DRC to process all layers safely. All shapes
generated by dangerous operations will be created in the flattened main cell.
Since the DRC cannot store this data hierarchically, there may be a significant
increase in processing time and storage requirements. Also, if you want to
generate hierarchical output, the ALL_SAFE rule will prevent the creation of
most shapes in the subcells, so the output data will not be truly hierarchical.

You can direct the DRC to process only certain cells or layers safely. The
SAFE_CELL rule will process only the named cells safely. Other cells will be
processed dangerously. If you have received only a few danger warnings from
the DRC that are caused by one or two cells, you can add this rule to your rule
set to ungroup (or flatten) these cellsin the DRC rather than in the layout data.

When you use the SAFE_CELL rule on a deeply nested cell, the dangerous
layers will be generated one level up in the cell hierarchy rather than in the main
cell.

DRC User Manual 141

How the DRC Works: Hierarchical Checking and Hierarchical Output

The SAFE_LAYER rule will process only the named layers safely. This can be
useful when you have only one or two layers you need to generate safely.

When the SAFE_LAYER rule (or the ALL_SAFE rule) is used on layers in a
deeply nested cell, the dangerous layers will be generated in the main cell rather
than one level up in the hierarchy.

Another use for the SAFE_LAYER rule is to process only one area of a nested
design safely. You can use INCELL processing (see page 59) to isolate a few
shapes in a cell on a new layer. Or, you can add a shape on a dummy (non-
design) layer to isolate the problem area, then use one or more AND rules to
move shapes on specific layers covered by the dummy layer to new layers. Then
process only these new layers safely.

Look at Figure 111. Let us assume that this
represents a large standard cell used many times
in the design. The selected shape is added in the
main cell to some copies of this standard cell to
make it operate in a different manner.

You need to remove the intersection of these
layers from layer A with an operation like "C =
A AND NOT B". Even though this is a
dangerous operation, it will not cause problems
for most of the intersections since they are all
formed from shapes in the same cell. The DRC
can remove the intersections accurately and
store the results in the subcell. However, the
selected shape in the main cell will cause an
oops condition.

If you use the ALL_SAFE rule or the Figurelll: Standard cell
SAFE_CELL rule, the entire layer will be with selected shape added to
created flat in the main cell. If you use the main cell.

SAFE_LAYER rule on the entire layer, the

result will be the same. However, if you add a box on layer MASK to the
subcell such that it surrounds just this intersection you can use the following

142

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

Example:

processing to accurately generate layer C with only the area near the dangerous
intersection in the main cell.

INPUT LAYER 1 A; 2 B; 110 MASK
OUTPUT LAYER 3C

OUTPUT LAYER 3 C_MAIN

OUTPUT LAYER 0 A_MASK; 0OA_NOT_MASK

ALL_DANGER

SAFE_LAYER C_MAIN

A_MASK = A AND MASK
A_NOT_MASK = A AND NOT MASK

C= A_NOT_MASK ANDNOTB
C_MAIN= A_MASK AND NOT B

The shape on layer MASK must be added to the subcell so that creation of
A_NOT_MASK layer will not have an oops condition even though it is
generated dangerously in the subcell.

Note that the C and C_MAIN layers are defined with the same layer number.
The layers will be kept separate during the DRC run, but when they are output,
shapes on both layers will be created on layer number 3.

Note that the ALL_DANGER rule is included in the above rule set. This rule
indicates that all dangerous operations should be handled dangerously by default.
The SAFE_LAYER rule overrides this default for only the C_MAIN layer.

The default for all dangerous operations must be provided by using one of
thefollowing rulesor the compiler will issue an error message:

ALL_SAFE
ALL_DANGER
DANGER_CELL
SAFE_CELL

DRC User Manual 143

How the DRC Works: Hierarchical Checking and Hierarchical Output

The ALL_SAFE and ALL_DANGER rules set the default for al cells. The
SAFE_CELL rule will process the named cells safely, but the default for all
other cells is to process them dangerously. The DANGER_CELL rule will
process the named cells dangerously, but all other cells will default to safe

processing.

Until you are familiar with the effects of dangerous operations, use the
ALL_SAFE rulein your rule set unless disk space and processing timeis critical,
or when safe processing disturbs the output cell hierarchy too much.

The DANGER _LAYER or SAFE _LAYER rules override the default behavior

set with the other rules.

Subject Importance Page

ALL_DANGER rule Default to dangerous processing for al cellsand | 180
layers

ALL_SAFErule Default to safe processing for all cellsand layers | 181

DANGER_CELL rule Default to safe processing for all cells except for | 207
cellslisted inrule

DANGER_LAYER rule | Overrides safe processing for only layers listed 209
inrule

SAFE_CELL rule Default to dangerous processing for al cells 297
except for cellslisted in rule

SAFE_LAYERTuUle Overrides dangerous processing for only layers | 299
listedinrule

Figure 112: Referencesfor safe/danger ous processing options.

Automatic Flattening of Cellson I nput

The DRC can flatten some cells during input preprocessing before any rules are
processed. This flattening is different than the temporary flattening of cells
during the run for safe processing or error verification.

144

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

This flattening is performed on all layers and has the same effect as ungrouping
the cellsin the original layout data. Flattening on input will result in loss of cell
hierarchy during the run and in hierarchical output data.

These flattening options are most useful for optimizing the data for speed and
space requirements. You can tailor how small cells and cells used infrequently
will be handled. Remember that data stored in its nested form will save some
storage requirements, but this hierarchical processing has overhead that takes
processing time. Hierarchical processing reduces run time most when the nested
cells are relatively large and used many times. Y ou may be able to realize some
speed requirements if you adjust how cells are flattened.

The default DRC behavior is to flatten cells that have five or fewer components.
Processing these small cells hierarchically saves very little storage space, so
keeping them in their nested form is likely to make DRC runs take longer. You
can override how cells with few shapes are flattened with the CFLATTEN
option on the DRC command line.

Keeping cells that are used only once in their nested form will result in no
storage savings. However they will still require processing overhead. This is
why the DRC defaults to flattening cells used only once. You can modify how
cells used infrequently are handled with the NFLATTEN command line option.

If you prefer to flatten all nested cells, use the FLATTEN command line option
rather than using either the CFLATTEN or NFLATTEN options.

If you want cell hierarchy preserved exactly as it is in the input data, use the
NO_FLATTEN command line option. This option is especialy useful when
you are generating hierarchical output. We cover more details on this subject
next.

DRC User Manual 145

How the DRC Works: Hierarchical Checking and Hierarchical Output

Subject Importance Page
CFLATTEN Controls how cells with few componentsare | 353
command lineoption | flattened on input.

NFLATTEN Controls how cells used few times are 353
command lineoption | flattened on input.

NO_FLATTEN Prevents the DRC from flattening any cells 353
command lineoption | oninput

FLATTEN command | Causesthe DRC to flatten design entirely 352
line option before processing begins

Figure 113: Referencesfor cell flattening options.

Hierarchical Output

Shapes
generated for
bad polygons
are dways
located in the
subcell error
command files
with .ERR
extensions.

While the DRC stores the design data in hierarchical fashion during the run, by
default it will export shapes on all output layersin flattened form. When you run
the DRC command filein the ICED™ layout editor, all shapes on these layers will
be created in the current cell in the coordinates of the main cell used to create the
original data. However, if you use the HHERARCHICAL option on the DRC
command line, data will be created in cells that match the hierarchical format of
the input data. This can save considerable disk space when you have many
output layers. When you plan to import DRC data into your design cells, this
allows you to maintain the design in its hierarchical format.

The HIERARCHICAL command line option is used mainly when you need to
import the results of complex layer processing back into your design. It haslittle
benefit when using the DRC to only check errors. Remember that the DRC
always executes verification rules on the flattened data, so rules that produce
error wires (as shown in the table on page 62) will always result in shapes in the
flattened main cell.

HIERARCHICAL =" suffix_string"

146

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

See acomplete

example of this

process on page
429.

This is the syntax of the HIERARCHICAL command line option. The
suffix_string is added to the end of each cell name created by the DRC command
file. Thisallows the shapes created by the DRC to be in separate cells from your
design cells.

These cells are created by executing the DRC command file in the ICED™ layout
editor. These cells can be added to your design cells with another command file
(the hierarchical cell command file) generated by the DRC. Once this command
file is executed in the ICED™ layout editor, each new cell is added to the
corresponding original design cell. Y ou should inspect the cells created by the
main command file before executing the hierarchical command file. Once you
execute the hierarchical command file, your original design cells will be
modified.

The hierarchical cell command file has a similar file name to the main command
file except that the file extension is .ADD instead of .CMD. To execute the
hierarchical command file, launch the ICED™ layout editor to edit a new
temporary cell. You cannot execute this command file while editing one of your
design cells since the command file contains EDIT commands to modify these
cells. An EDIT command will fail if it cannot open a cell due to the fact that the
cell isalready open in the current layout editor session.

Once you have launched the layout editor to edit some new temporary cell,
execute the hierarchical command file with the command:

@output_file_base name ADD

where output_file_base name is the third parameter on the DRC command line.
It iscritical to include the .ADD file extension when executing thisfile.

The new cells added by a hierarchical command file can be time consuming to
remove again once it has been executed and the cell files saved to disk. If you
have added cells from a previous DRC run and need to create a new set that is
dlightly different, be sure to not only delete each DRC generated cell from each
original design cell, but also delete the cell files generated by the previous run
before executing the new command file. If cell files exist with the same names
asthe namesin the"EDIT CELL" commands in the command file, the command
filewill modify these existing cell files rather than create new cells.

DRC User Manual 147

How the DRC Works: Hierarchical Checking and Hierarchical Output

If you specify the suffix_string as "", the main command file will add shapes to
your original cells rather than create new cells. In this case, your original cells
will be modified without warning. This can be very risky unless you know
exactly what you are doing. Be sure to back up your design carefully before
attempting to use the DRC output in this manner.

This process and the files involved are described in more detail beginning on
page 372. You should read this information thoroughly before attempting to
import hierarchical data.

When you do use the HIERARCHICAL command line option, you may aso
want to add the NO_FLATTEN command line option. This will preserve the
cell hierarchy entirely instead of flattening small cells and those used
infrequently.

Unless you use the ALL_DANGER rule, some shapes may be created higher up
in cell hierarchy than you would expect. You will receive a warning prompt to
this effect when ALL_DANGER is not used in conjunction with the
HIERARCICAL command line option. To avoid the warning prompt, use the
NO_HIER_WARNING rule.

148

DRC User Manud

How the DRC Works: Hierarchical Checking and Hierarchical Output

importing hierarchical
output

to learn the steps for importing hierarchical
data.

Subject Importance Page
HIERARCHICAL Directs the DRC to export data on output 354
command line option layersin hierarchical (nested cell) format
NO_FLATTEN Prevents the DRC from flattening some cells | 353
command line option during input processing
NO_HIER WARNING | Prevent warning prompt when safe 277
rule processing may prevent some shapes from
being created in appropriate subcells,
DRC command file Description of the main command file and 365
how to executeit in theicED™ layout editor
Hierarchical command | Description of command file to add new cells | 374
file to original design cells
Complete example of We strongly suggest you follow the tutorial 429

Figure 114: Referencesfor hierarchical output

Quirks of Hierarchical Processing

You may see some unusual characteristics in hierarchical data created by the

DRC.

Verification rules that generate error wires are always executed on the flattened
main cell. They are always processed safely. Shapes created from these rules
are always created at the main cell level.

Safe processing of dangerous operations will also create shapes in cells at a
higher level than you would expect. For example, let us say that you execute the
rule C = A TOUCHING B on a design with a polygon on A in a subcell and
polygon on B in a higher level cell. If these shapes touch, the shape on layer C
will be generated in the higher level cell, not the subcell.

DRC User Manud

149

How the DRC Works: Hierarchical Checking and Hierarchical Output

A rule like the SHRINK rule may produce shapes that cross cell boundaries.
The datais accurate, but it may not look the way you would expect. Wires may
be shrunk away from the edges of a subcell, but connecting wires in the higher

level cell will extend into the subcell areato make it up. Refer to the example on
page 135.

If you do not add the NO_FLATTEN option to the DRC command line, some
cells may be flattened in the output data.

The cells modified by the .ADD command file will have their environment
replaced by the environment of the cell in which you execute the file. Create a
temporary cell with the appropriate environment for executing the command file
that modifies your original cells. See an example on page 433.

150

DRC User Manud

How the DRC Works: Optimizing DRC Runs

Optimizing DRC Runs

Optimizationsin Rule Sets

See an example
of the compiler
removing a
redundant rule
by compiling
the Q:\ICED-
\EXAMPLES-
\EXAMPLE2-
.RUL file.

Optimizations Performed by the Rules Compiler

The DRC rules compiler will optimize the order of execution for layer-
processing rules to minimize the number of DRC passes required. Many layer-
processing rules can be executed concurrently in a single pass through the design
data. You do not need to worry about this issue as you write the rule set. You
can locate the verification rules for a set of layers directly after the related layer-
processing rules, then follow this with more layer-processing rules. Keep the
rule set as readable as possible. The compiler will re-order the rule set

automatically.

The compiler will also remove rules that are redundant or unused. Let us say

that you write several rules
to generate a layer that you
use in a specific rule. You
then remove the rule that
uses that layer. You do
not need to search
backward to remove the
rules which created the
layer. The compiler will
do this automatically to
optimize your rule set.

In the example in Figure
115, the rules that have
been commented out with
'I's make the TEMP], E,
and F layers redundant.

INPUT LAYER 1 A; 2B;3C;4 D;

OUTPUT LAYER 10 E; 11 F; 12 G;

OUTPUT LAYER 101 ERR1,; 102 ERRZ2; 103 ERRS;
OUTPUT LAYER 0 TEMPL; 0 TEMPZ;

E=A AND NOT B
F=A ANDNOTC

TEMP1 = BLOAT (F, 1.1)
TEMP2 = BLOAT (D, 1.1)

IERR1 = MINSPACING (TEMP1, TEMPL, 2)
IERR2 = MINSPACING (E, E, 3)
ERR3 = MINSPACING (TEMP2, TEMP2, .7)

Figure 115: Samplerule set with rules
commented out.

DRC User Manud

151

How the DRC Works: Optimizing DRC Runs

The DO option
can a'so be used

The DRC compiler will remove the rule that creates the TEMPL layer and will
warn you about this action in the log file and console messages. The rules that
create the E and F layers will remain since they are output layers. The DRC
assumes that you need those layers to be exported since they are defined with
valid layer numbers. However, the TEMPL layer isjust a scratch layer sinceit is
defined with layer number O.

Rule Subsets

The DRC itself can perform this kind of optimization at run time. If you
organize your rules into rule subsets with the RULE_SET rule, this feature can
make it painless to execute only a part of your rule set and have it execute as
quickly as possible without a lot of unnecessary processing. When you use this

feature, you do not need to
edit or recompile your
rules to execute only a
portion of them.

INPUT LAYER 1 A; 2B;3 C;4 D;
OUTPUT LAYER 10 E; 11 F,; 12 G;
OUTPUT LAYER 101 ERR1,; 102 ERR2; 103 ERRS;

) OUTPUT LAYER 0 TEMP1; 0 TEMP2;
When we reorganize the

rule set shown above to
place the commented out
rules in a defined rule
subset, then use the
"DO=(-SETL1)" option on
the DRC command line,
the DRC will not execute
the rules that create the
ERR1, ERR2 or TEMP1

E=A AND NOT B
F=A ANDNOTC

TEMP1 = BLOAT (F, 1.1)
TEMP2 = BLOAT (D, 1.1)

RULE_SET SET1SET2

SET1ON
ERR1 = MINSPACING (TEMP1, TEMPL, 2)

rules. You can execute

ERR2 = MINSPACING (E, E, 3)

toexecuteonly the DRC again at a later | SET1 OFF

Sp?C'f'sz'fby date without the DO

ﬁﬁr?]%;: € command line option and | SET20ON

indicated in the execute all rules without ERR3 = MINSPACING (TEM P2, TEMP2, 7)

log file. recompiling the rulesfile, | SET2 OFF
Figure 116: Sampleruleset using RULE_SET
organization.

152 DRC User Manual

How the DRC Works: Optimizing DRC Runs

Other Ways to Organize Complicated Rule Sets

Rule sets can be very long and complicated. They frequently need updating as
design rules change or as they are adapted for new designs or technologies. Itis
avery good idea to keep them as readable and organized as possible. Use lots of
comments in your rule set to alow others to follow what you have done. (You
will be grateful yourself for plenty of comments if you need to update a rule set
that you have not seen for ayear.)

The comment indicator isthe'!" character. Any text after that character, up to the
end of theline, isignored by the rules compiler.

Another way to keep rule sets concise and organized is to separate blocks of
rules into separate files then use INCL UDE rules to combine them. This allows
you to create rule set files that you may use in several different rule sets. For
example, you can place rules that process the layers and test the rules for
resistorsin a separate file. You can then include thisfile with asinglelinein the
main rules file. When a design contains no resistors, comment out the single
line.

One way to make rule sets far easier to update is to use hamed constants instead
of numbers in rules. The CONST rule alows you to associate a string like
"M1_SPACE" with a number. You can then use the string in rules in place of
typing the number. If you place al of your CONST declarations in one place
(perhaps in a separate file) they are easy to find and update when technology

rules change.
Subject Importance Page
CONST rule Define constants you can use by name in other rules | 203
INCLUDE rule Combine separate files into one rule set 216
RULE_SET rule Define subsets of rules that be executed without 295

executing remainder of rule set

DO cmd line option Select rule subsets to be executed 347
Rules compiler Complete description of rules compiler 319
description

Figure 117: Referencesfor optimizationsin rule sets.

DRC User Manual 153

How the DRC Works: Optimizing DRC Runs

Testing New Rules

Y ou can abort
the DRC once
thedertis
posted with the
<Esc> key.

When writing new rules, you should test them on small test-cases before using
them on awhole design. It is easy to make mistakes when writing new rules and
it is much better to find these mistakes with runs that take a minute than with
runs that take two hours. Carefully inspect the results of the first run on the
entire design to insure that al special cases are treated in the manner they should
be. It is common to encounter special cases that you did not think of when
writing the rules. The NP2DS rules shown on page 71 are a good example.

When you are testing new or modified rules, you may want to add a
MAX_COUNT rule to aert you when a certain number of errors are found. The
default behavior is to alert you after 1000 errors are found. This may be a high
number when testing new rules. Use a smaller number to shorten a wasted run
due to large numbers of false errors resulting from an error in the rule set.

If you want the DRC to stop automatically when the maximum error count is
reached, add the STOP_ON_MAX_COUNT ruleto your rule set.

If your new rules include dummy layer processing to isolate special cases (like
resistor recognition), you should add rules to test that the dummy shapes are
correctly placed. When people edit alayout, it isacommon practice to blank (or
hide) all but a few layers. Dummy layers that should be modified at the same
time may not be visible, so they are left unmodified. If the layout has changed so
that the dummy shapes are now in the wrong place, a layer may be processed
incorrectly causing false errors or missed errors.

154

DRC User Manud

How the DRC Works: Optimizing DRC Runs

Example:

Look at Figure 118.
This example was used
on page 113 to demon-
strate resistor recog- | -
nition. RESMASK is |

a dummy layer used to
filter the POLY layer |
into the RESISTOR | . .

layer and the POLY | M1 - JICONT [POLY [JRESMASK

layer used as a con- | - :
ductive layer, If the —
design shapes that Flgure_118: Shifted resistor device with dummy
represent the resistor shapein wrong place.

are shifted away from

the dummy shape as shown in Figure 118, node 1 and node 2 will be shorted
together and the resistor will be the wrong size. This could easily lead to missed
errors or false errors.

You can reduce the problems caused by dummy shapes in the wrong place by
adding rules that test for their proper placement. In the case above, you can add
the following rules:

OUTPUT ERROR LAYER 101 BAD_RESISTOR
BAD_RESISTOR = RESISTOR NOT TOUCHING 2POLY

If these extra rules add too much processing time to your DRC runs, you can
move them to a rule set you execute less often. Just be sure that you test the
dummy shapes in the final design to insure that errors are not being missed due
to dummy shapes in the wrong place.

Subject Importance Page

MAX_COUNT rule | Change the maximum number of errorsto befound | 233
before the DRC alertsthe user. The default is 1000.

STOP_ON_MAX- Stops the DRC when the MAX_COUNT number of | 310
_COUNT rule errors has been found.

Figure 119: Referencesfor testing new rules.

DRC User Manual 155

How the DRC Works: Optimizing DRC Runs

Removing FalseErrors

When the DRC indicates errors that are not true design errors, we call these false
errors. It is tempting to simply ignore these false errors and go on looking for
the real errors. However, this is a very dangerous practice. Real errors may go
unnoticed as you skip over the false errors.

You should make every effort to avoid marking these false errors in the first
place. When false errors are caused by special cases of shapes on a given layer,
rewrite the rules to isolate these special cases and treat them differently. Some
methods of removing false errors are:

1) modification of the verification rule
2) extralayer processing on the design layers
3) dummy shapes

Various rules have different methods for avoiding false errors. The MIN_AREA
and ASPECT_RATIO rules have options to modify the way shapes overlapping
a panel boundary are handled. The MIN_NOTCH, MIN_SPACING, and
MIN_WIDTH rules all allow you to discard errors less than a certain length.
The MIN_SPACING rule has many options to discard possible errors. If you are
seeing false errors for a specific rule, you should reread the syntax for the rule to
seeif thereis away to automatically avoid marking the false errors.

To demonstrate method number 2, let us assume that the minimum distance
required to separate metal wires changes depending on the width of the wire.
Wires that are 2 microns wide must be at least 2 microns apart; however wires
that are only 1.5 microns wide must be only 1.5 microns apart. When you begin
the design, you decide that all metal wires should be at least 2 microns apart to
simplify the rules and layout. As your design progresses, you decide that you
need to compress the wiresin only afew places. It istempting to leave the rules
unchanged and ignore the few false errors.

If you do this, and only one real error goes unnoticed, it might be a very
expensive mistake.

156

DRC User Manud

How the DRC Works: Optimizing DRC Runs

You can instead rewrite the rules to isolate the thin wires and test them
separately. The example of separating wires by width on page 65 pairs a
SHRINK rule with aBLOAT rule to isolate the thin wires. These wires are then
tested with adifferent MIN_SPACING rule.

Y ou can see that it may require careful thought to create rules that isolate shapes
that need to be checked differently to avoid false errors. However, the extra
rules are usually not that difficult to write.

If there is no way to isolate the false error shapes by layout properties, you can
add dummy shapes to isolate them. (Method 3.) This should be a last resort
because you will need to modify the layout to add the dummy shapes. Also, as
mentioned earlier, problems often arise when the layout is modified after the
dummy shapes are added.

One common source of false errors is metal letters in a corner of a chip. These
errors can easily be avoided by carefully adding a rectangle on a dummy layer
over the letters. Modify the rules to remove shapes covered by the rectangle
from the metal layer. Be sureto add a MIN_SPACING rule to test that the
dummy layer rectangle is the minimum distance away from real shapes on
the metal layer or real errorsmay not be found.

Diagnosing MysteriousErrors

There are a number of things you can try when the DRC marks errors that you
cannot find in the layout.

One common problem is when the DRC marks many errors that you know you
have fixed since the last DRC run. If you forgot to recreate the binary layout
data for the DRC with the DRC command in the layout editor after making your
changes, the DRC is verifying the old data. Be sure to always generate new
binary layout data file with DRC command in the layout editor after
changing the design.

DRC User Manual 157

How the DRC Works: Optimizing DRC Runs

Detailed
logging is
turnedonina
MIN_SPACING
rule by adding
/DET to the
rule.

If you cannot determine which rule generated an error, you can use the SHOW
command in the layout editor to report the tag number of the error shape. The
tag number refers to the rule number that generated the shape. These rule
numbers are reported in the rules compiler log file.

Sometimes dense areas can have many sides marked by MIN_SPACING rules
and it is difficult to determine which sides form a pair that is too close. You can
use detailed logging to list the pairs explicitly in the log file. Detailed logging is
also useful when you have one unpaired error wire left over when the other error
wireisdiscarded by a/LENGTH restriction.

Detailed logging can result in very large log files. It is best to use it only on
small subsets of your design. When using detailed logging, run the DRC on a
subcell or on small area of your design defined with one methods described next
on page 159.

Occasionally, the shapes checked by the DRC are different than the shapesin the
layout. If you use complicated processing (especially BLOATS and SHRINKYS)
to generate temporary layers for verification, tiny vertex approximations can
escalate to large enough distortions of shapes to cause fase errors. (See
examples on page 131.) When you cannot determine why a temporary layer has
errors marked, it is best to change the temporary layer to an output layer to see
exactly what the DRC verified.

One related problem that is harder to diagnose is when shapes in the DRC
database are marked with errors but grid resolution issues cause these shapes to
be distorted or to disappear when they are output. Remember that the DRC
resolution grid is much finer than the one used by the ICED™ layout editor. Tiny
dlivers of shapes may disappear when the data is resolved to the coarser grid
during export.

One way to resolve false errors caused by the different resolution grids is to
resolve shapes in the DRC database to the grid used by the layout editor before
they are verified. Thisisdone with the SNAP and SNAPA4S5 rules.

If you are having trouble with a specific rule, or set of rules, and want a faster
DRC run to re-execute only those rules, use the DO option on the DRC
command line to execute only specific rule numbers. The DRC will

158

DRC User Manud

How the DRC Works: Optimizing DRC Runs

automatically execute all layer-processing rules that are required to execute the

ruleslisted in the DO option.

Subject Importance Page
SNAP and SNAP45 Resolve layers to the ICED™ layout editor 304
rules grid before verification
Grid resolution issues | Overview of how vertices can shift on output | 79
DO command line Execute only certain rules from arule set 347
option
Limiting area Diagnosing problems is much easier when 159
checked checking only a small area around the
problem.
Tag numbers Number of DRC rule that generated a 372
specific shape as reported by SHOW
command in the layout editor
Detailed logging List coordinates of pairs of sidesin error in 50
DRC log file

Figure 120: Referencesfor diagnosing mysteriouserrors

Limiting Area Checked

If you want a faster DRC run on only a specific area of your design, you can
limit the design area checked. The two methods of limiting the design area are

listed below.

* UsethelIN keyword of the DRC command in the layout editor to restrict

the input data to a small rectangle of your top-level cell.
option of the DRC command exports only selected shapes.)

(The SEL

* Add appropriate the LEFT, RIGHT, TOP, and BOTTOM options on the

See page 350 to DRC.EXE command line. This method does not require you to change
learn more the DRC input file.

about the LEFT,

etc. options.

DRC User Manud

159

How the DRC Works: Optimizing DRC Runs

You should be aware that limiting the —
design area checked can lead to false .
errors being marked. Look at Figure
121. If the design area is limited to the
area in the dashed rectangle, severd
false errors may be marked.

777,
IR R —

%

Electrical connections outside of the
area boundary are ignored. Let us
assume that you check the spacing of
wires with a MIN_SPACING rule that
prevents connected pairs from being Figure 121: Design area checked is
marked as errors. The pair of wires on limited to dashed rectangle.

the bottom-right will be marked with a

false error since the shape that connects them is outside of the design area
checked.

|

b
%
%

The box on the bottom-left may be marked with a false MIN_AREA violation
since the shape will be cut at the boundary. This same box will aso be
misclassified by IS BOX rules. The section of the long wire that is cut by the
boundary may be marked with afalse MIN_WIDTH violation.

Choose the boundary carefully when you limit design area checked, or ignore all
errors close to the edge of the boundary. Watch for false errors caused by
missing electrical connections.

Subject Importance Page
DRC Layout editor The binary datafile created for the See the Layout
command DRC can be limited to a portion of Editor
the layout. Reference
Manual.
LEFT, RIGHT, TOP, | Limit area checked by the DRC 350
and BOTTOM
command line
options.

Figure 122: Referencesfor limiting area checked

160 DRC User Manual

How the DRC Works: Optimizing DRC Runs

Reducing Run Times

Optimizing
panel sizesis
completely
covered
beginning on
page 118.

We just covered how to perform a much faster run when you want to zero in on a
specific rule or design area, but how do you get faster run times for every DRC
run?

If none of the following methods give you the speed you require, think about
physical improvements. Adding more memory or a faster processor to your
computer will certainly improve DRC run times. Be sure that you are not
limiting the memory available to the DRC with a small humber in the USE or
HOG command line option. Also, be sure that the DRC is using the fastest disk
drive on your computer for the scratch file. The drive used for the scratch file
can be set with the SCRATCH_DIR option on the DRC command line.

The largest DRC speed improvements are achieved by optimizing the panel size
and border area. Since there is a trade off between extra processing required for
panel processing and time saved due the smaller amount of data stored in
flattened form at any given time, time may be saved by increasing panel size or
by decreasing it.

The DRC log file lists the amount of time spent by each phase of the processing
near the bottom of the file. If the log file indicates that the DRC is spending
significant time swapping data to disk, try reducing the panel size. If thelog file
indicates that little or no time is spent swapping data to disk, try increasing the
panel size.

Memory Management

If you are having problems with the DRC running to completion with the
memory available on your system, the first thing to try is smaller panels.

Other than panel size, the amount of memory available to the DRC is the largest
factor in execution speed. You want to not only maximize the total amount of
memory available to the program, but to optimize how that memory is divided.

DRC User Manual 161

How the DRC Works: Optimizing DRC Runs

The HOG or USE command line options limit the total amount of memory
available to the DRC. (Both options perform the same function. The only
difference is the units used to express the amount of memory.) If you are using
the DRC in a pure DOS environment, do not use either of these options. The
absence of both options allows the DRC to use all available physical memory. If
you are using a multitasking operating system (such as Microsoft Windows) then
use these options to reserve as much memory as possible for the DRC without
impacting the other programs running on your machine.

When the DRC does not have enough memory to allocate tables or load the
database, the crash messages can be somewhat mysterious. Insufficient memory
is the primary suspect whenever a run crashes immediately before the log file is
even created. When the system cannot provide the memory indicated by the
HOG or USE parameters, the program will also crash. If a log file does get
created before a crash, the amount of memory actually available to the program
islisted near the top of thefile.

The DRC takes the memory available to it and divides this memory into main
memory (used for computations, tables, etc.) and data storage (easily swapped
to/from virtual memory swap files). The default behavior is to divide the
memory equally, up to alimit of 128 Megabytes of main memory.

The optimum division of memory depends on your design and the rules in your
rule set. You will need to experiment with different divisions of memory to get
the fastest run time.

To specify the ratio of main memory to the total amount of memory, use the
MAIN_MEMORY =main/total_ratio command line option. To specify a fixed
amount of main memory instead, use the MAIN_USE=main_kilobytes or
MAIN_HOG=main_megabytes command line options.

One other option that can increase the memory available to the program for
medium size runs is the FILESIZE option. This option limits the size of the
scratch file. The DRC allocates a large virtual array page table in memory to
accommodate the largest swap file possible. If you are not using a large scratch
file (i.e. less than 2 Gigabytes) then you can conserve memory by reducing the
largest possible size of the swap file with the FILESIZE=scratch_megabytes
option on the DRC command line.

162

DRC User Manud

How the DRC Works: Optimizing DRC Runs

Y ou can see the
reach required
for each rule by
adding the
SHOW-
_BORDER
option to the
DRC command
line.

If you use FILESIZE to limit the maximum swap file, and your design requires
more space than this, the DRC will crash with a message explaining the problem.
In this case, increase the maximum size in the FILESIZE option, remove the
option altogether, or optimize panel size so that less memory is required.

Rewriting Rule Sets to | mprove Speed

Thelog file aso indicates the time spent processing each rule. Thisdatais listed
by operation number. To relate the operation number to a rule, look in the rules
compiler log file or add the LIST_RULES option to the DRC command line.

It can be frustrating to try to modify the rule set to make it faster. To process
some rules, the DRC needs to generate special tables of data for quick
algorithms. The first rule that needs this information will have the time it takes
to generate the tables added to its time statistics. Other rules may use this data
later without taking extra time. Therefore, if you decide to remove a rule from
your rule set because it is taking a long time to process, the time it takes to create
the tables may then be added to the processing time for another rule that
processes the same layer.

Duplicate processing must be performed for all shapes in the border of each
panel. Reducing this border by rewriting rules or separating long reach rules
into a separate rule set can lead to dramatic improvementsin run time.

Remember that reach is the minimum border distance around each panel required
by a rule to insure that all shapes will be processed correctly. The long reach
rules force the DRC to use alarge border around each panel. Thislarge border is
used by al rulesin the same pass. Many short reach rules will process shapesin
the border area unnecessarily.

One way to keep al rules in the same rule set, but process the long reach and
short reach rules in different DRC runs, is to use rule subsets. (See page 152.)
You may also be able to rewrite your rules and use clever processing to change
long reach rulesto short or zero reach rules.

DRC User Manual 163

How the DRC Works: Optimizing DRC Runs

When rules will
beignored due
to the
QUICK_PASS
option, you must
reply to a
warning prompt
to proceed. To
avoid the
warning prompt,
usethe

Assume that your technology requires that all transistors must be at least 100
microns away from a pad. If you test this with a MIN_SPACING rule, the
border must be at least 100 microns wide on al sides of each panel. Other rules
will be forced to use this border and process all shapes in the border of each
panel. A border this large may cause the DRC to fail entirely if the panels are
too small.

Let uslook at aclever way to process this very long reach rule. Create arule set
with a BLOAT rule to generate an output layer that contains all pad shapes
bloated by 100 microns. Import these shapes into your main cell on a new layer
BLOATPAD. Now when you export the entire design from the layout editor,
you can test the pad rule with a Boolean rule like "ERR = BLOATPAD AND
GATE". No large border isrequired to process thisrule.

The QUICK_SPACING and QUICK_PASS Options

These DRC command line options are intended to allow | griDGE

you to force the DRC to use faster algorithms at the cost CONNECT

of the possibility of missing errors or marking false

errors. These faster algorithms will be used by the DRC ISLANDS
automatically when they cannot result in false errors as | MAX_SPACING
determined by the contents of the rule set and the DRC | OVERLAPPING
command line options. These options are available on | sTamP

the DRC command line to force the DRC to use these [+ cHiNG
algorithms for fas_ter mte_rmedlate runs. Do not use 'CONN and /~CONN
t_h%e command line options on DRC runs of your options of

final design. MIN_SPACING

The QUICK_SPACING option can miss spacing errors
in rare cases like the one shown on page 101. The
QUICK _PASS option forces the DRC to execute in a
single pass. This means that the DRC cannot process
operations that require the DRC to recognize touching
shapes like the ones shown in Figure 123. The DRC will also ignore the
problems caused by panel boundaries and touching shapes. (See an example on

Figure 123: Rules
not executed when
QUICK _PASSIis
used.

ﬁ‘J"Ie' Srvzg%ﬂgé page 130.) These restrictions may lead to some false errors and missed errors.
line option.
164 DRC User Manual

How the DRC Works: Optimizing DRC Runs

The QUICK_SPACING option may save on the order of 10% of DRC
processing time. The QUICK_PASS option may save considerably more time.
We recommend that you do not use these options on your initial runs so that you
will not be misled by false errors or by the absence of errors that your rule set
would have found ordinarily. However, these options can be very useful when
you execute repeated runs of the DRC after minor modifications to the layoui.

The Progress Report Options

During long runs, the amount of time spent by the DRC in posting messages to
the console window to update the user on the progress of the run may take a
significant amount of time. In one seven hour run, reducing the frequency of
these console messages saved around 15 minutes of run time.

If you will not be checking the progress of the run frequently, you will lose
nothing by reducing the frequency of these messages. The easiest method is to
add the LONGCA SE option to the DRC command line.

Newer versions of the DRC automatically suppress most progress reports for
long runs based on the number of rules and the number of panels. If you want to
suppress most progress reports for even shorter runs add the
NO_FLASH PANELS=flash limit option to the command line, where flash
limit is set to a number less than 10,000. See the option description for more
details.

For medium runs, where the flash limit is not suppressing progress reports, you
can reduce the refresh rate for progress updates with the DISPLAY _OPERA-
TIONS=min_refresh_seconds option on the DRC command line. Setting
min_refresh _secondsto 60 will result in the display being updated no more often
than once aminute. The default is once every two seconds.

DRC User Manual 165

How the DRC Works: Optimizing DRC Runs

Subject Importance Page

Panel Processing Complete description of how panel processing | 118
speeds DRC execution

Separating long/short reach | Example of splitting single rulesfile into two 442

rules subsets to optimize panel border

Advanced tutorial Example of optimizing panel size 445

DRC logfile Description of how DRC listswheretimeis 362
spent during run

SCRATCH_DIR command | Specify disk drive for scratch file 341

line option

USE or HOG command Specify maximum total amount of memory 339

line options availableto DRC

MAIN_MEMORY, Specify division of memory between main 340

MAIN_USE, and memory and database memory

MAIN_HOG command

line options.

QUICK_PASS command Speed DRC by eliminating multiple passes 337

line option

QUICK_SPACING Speed DRC with quicker algorithm for 338

command line option MIN_SPACING rules

LONGCASE command Optimize display for progress reports for longer | 343

option line runs

NO_FLASH PANELS Changes definition of a“long run” so that 344

command option line progress reports are suppressed or not

DISPLAY_OPERATIONS | Changes refresh rate for progress reports 344

Figure 124: Referencesfor reducing run times

Usingthe DRC on Very Large Designs

Review panel
processing on
page 118.

When you have a large, dense design the panel size and border area become

critically important. Try various panel sizes as you execute new runs. The speed
improvements can be dramatic.

166

DRC User Manud

How the DRC Works: Optimizing DRC Runs

Review memory Maximize the amount of total amount of memory available to the DRC by

management on
page 161.

Review
progress reports
on page 165.

eliminating other programs that are appropriating memory. Set the HOG or USE
command line option value to the highest possible number. When the DRC does
not have enough memory to alocate tables or load a huge database, the crash
messages can be somewhat mysterious. Insufficient memory is the primary
suspect whenever a run crashes immediately. Once you have maximized the
HOG or USE parameter, optimize the divison of memory with the
MAIN_MEMORY, MAIN_HOG, or MAIN_USE command line options in
successive runs.

Large designs are very likely to result in large DRC scratch files. These scratch
files can be as large as severa Gigabytes. Be sure to add the SCRATCH_DIR
option to your DRC command line to specify additional directories or disk
drives. These additional directories will be used when the DRC runs out of
space on the first disk drive or reaches the 2 Gigabyte file size limit imposed by
the operating system. (If you used the FILESIZE option in previous versions of
the DRC you may want to remove it now. The FILESIZE option is useful now
only to save memory in medium size runs. The maximum size of the scratch file
now grows with the number of scraich directories defined with the
SCRATCH_DIR option.)

When the DRC run times are long, the LONGCASE option on the DRC
command line will result in more meaningful console messages displayed during
the run.

Subject Importance Page
LONGCASE Display more meaningful console messages 343
command lineoption | during DRC run

USE or HOG Specify maximum amount of memory 339
command line availableto DRC

options

SCRATCH_DIR Specify disk drive for scratch file 341

command line option

Panel Processing Complete description of how panel 118
processing speeds DRC execution

Figure 125: Referencesfor very large designs

DRC User Manual 167

How the DRC Works: Optimizing DRC Runs

Preliminary ChecksVs. Final Checks

When rules will
beignored due
to the
QUICK_PASS
option, you must
reply to a
warning prompt
to proceed. To
avoid the
warning prompt,
usethe
ALLOW_QUICK
rule or command
line option.

When you are in the preliminary stages of testing a large design, it is best to test
the subcells first. DRC runs on small cells will execute very quickly, often in
less than a minute. As errors in the smaller subcells are eliminated, proceed up
the hierarchy of your design.

This method will also allow you to find problems with your rule set early in the
process. It is much better to find these problems with runs that take a few
minutes than with runs that take 8 hours. By the time you are verifying the entire
design, your rule set should have all problems resolved.

As your rule set matures, you may separate it into different rule sets. You may
need to move long reach rules to a separate rule set. If you need to have dummy
layersin your design to avoid marking false errors or for device recognition, you
may want to place rules that test these dummy layers in a separate set.

You may want to add the QUICK_PASS and QUICK_SPACING options to the
DRC command line for intermediate runs. You will probably want to
experiment with different panel sizes in intermediate runs on the whole design.
If you have found an optimal panel size before you need to be making final
verification runs, it will allow the final runsto be executed in atimely fashion.

Checklist for Final Run

As you proceed through the design process, it is tempting to cut corners that
allow you to get faster DRC runs. You may remove rules that take too long to
process when they have not found any errorsin your design so far. Y ou may add
shapes on dummy layers to hide errors that you consider false errors. You will
likely add the QUICK_SPACING and QUICK_PASS options to the command
line. These types of methods to speed up repeated runs are not a bad idea,
however you must eliminate all of these methods on final DRC runs.

In the final days of getting a major design out the door, it is far too easy to forget
about the corners you cut weeks or months ago. As you make these
modifications to speed things up, create a checklist for yourself that will insure

168

DRC User Manud

How the DRC Works: Optimizing DRC Runs

that the final design is verified without these methods that may hide errors. You
may find to your sorrow that your cleverness in getting the DRC to run quickly
has resulted in an undetected error added to the layout at the last minute.

The following list should only be the start of your final checklist. Keep this
checklist in mind as you modify the rule set. Think hard about how changes may
allow weird and unlikely layout errors to go undetected. Be sure that any of
these unlikely errorswill be found in the final design.

v

4

Remove the BADPOLY =0 rule from your rule set if you have
used it.

Be sure that the NO_WARN_ACUTE or WARN_ACUTE=0
rules are not used in your final rule set.

Remove the QUICK_SPACING and QUICK_PASS options
from the DRC command line.

If you have used the DO option on the DRC command line,
remove it.

If your layout contains shapes on dummy (non-design) layers
that affect how the layout is interpreted by the DRC, remove
then, regenerate them, or verify them again in the final design.

If you have separated some rules into different rule sets (perhaps
to reduce the border size), be sure to run al rule sets on the final
design.

DRC User Manud

169

How the DRC Works: Optimizing DRC Runs

170 DRC User Manual

DRC Rules Syntax

DRC Rules Syntax

DRC User Manual 171

DRC Rules Syntax: General Syntax Restrictions

General Syntax Restrictions

Example:

Example:

The syntax restrictions for DRC rule statements vary greatly from rule to rule.
You must read the rule statement descriptions to determine the syntax of each
rule. However, there are some general syntax restrictions which all rules have in
common. We will cover these syntax issues here so we don't have to repeat them
too often.

The underscore character ' ', used in many keywords, is optional and can be
omitted. The underscore is included for readability only and is stripped from
keywords during preprocessing. However, this is done only to DRC keywords.
Layer names are not preprocessed by the DRC in this manner and should be
typed exactly the same way every timethey are used in arule set.

IS BOX
ISBOX

Both of these ways of typing the IS BOX keyword are equally valid.

You can use blank spaces or tabs freely between keywords and parameters in
DRC rules. All extrawhitespace characters are stripped by the rules compiler.

A=B ANDNOT C
A=B AND NOT C,

These two ways of writing the AND rule are exactly equivalent. The semicolon
at the end of the second rule is optional.

DRC rules are case-insensitive. This means that you can type the rule set in
upper case, lower case, or any combination of the two. All text is transformed
into upper case asit read by the rules compiler.

Most rules are usually typed on one line. However, when the rule is more easily
read when split over severa lines you can use the '&' continuation character.
The '&' must be the last non-comment non-blank character on the line, and there
must be at least one blank before the'&".

172

DRC User Manud

DRC Rules Syntax: General Syntax Restrictions

Example:

Example:

ERR2=MIN_SPACING (
A/OUT,
B/CAP=90,
1.1
/~CROSS)

The MIN_SPACING ruleis usually written on asingle line. However, when '&'s
are used as in the multiline example above, the DRC reads the rule as if it were
written on asingle line like the line bel ow:

ERR2 = MIN_SPACING (A/OUT, B/ICAP=90, 1.1 /~CROSS)

There are several rulesthat allow rules to span lines without the use of '&'s. This
specia syntax will be indicated in the rule descriptions. Most rules that may be
typed over several lines use curly brackets {}' to enclose the text on the extra
lines. When in doubt, it isvalid to usethe'&' in any rule.

You can add comments on lines of their own, or at the end of any line. The
comment indicator is the exclamation mark ". Any text encountered after the
exclamation mark, up to the end of the line, is ignored by the rules compiler.
This means that comments can be used after the '&' continuation character.

INPUT LAYER 1 INCELL *PF C DIFF & !Capacitor diffusion
INCELL *NH | DIFF & !Inductor diffusion
NOT DIFF IAll other diffusion

Manual Notation

The syntax of individual DRC rules is described in this manual using the
notation described in the ICED™ Reference Manual with one exception. Since
parentheses are used so frequently in DRC rules, we will not use them to
indicate a choice between keywords. Instead, where a choice between keywords
or parameters is allowed, we will indicate this with smaller text listing the
choices near the rule syntax heading.

DRC User Manual 173

DRC Rules Syntax: General Syntax Restrictions

The syntax headings use the following notation:

KEYWORD

parameter value

[KEYWORD]

Bold type in the syntax section will be used to indicate the
required rule name keyword.

Lower case italic type will be used to indicate where a value
should be entered in a rule statement. The value could be a
number or astring. The valid values for the parameter will be
indicated in the description.

CONST const_name= const_value

The above line is used to indicate the syntax for the CONST
rule on page 203. This rule is used to assign a value to a
named constant that can be used in other rules instead of
typing in the parameter value. When you type a CONST rule,
substitute a string for const_name and a number for
const_value as shown below.

CONST MY_VAL = 245

Square brackets indicate that the keyword or parameter is
optional. Do not type the bracketsin therule.

result_layer = [NOT] layerl AND [NOT] layer2

This is the syntax description for the AND rule. The NOT
keywords are optional. The parameters result_layer, layerl
and layer2 should all be replaced with layer names when the
rule istyped. If the second optional NOT keyword is used, as
in the following rule:

SRC _DRN =DIFF AND NOT POLY

the inverse of layer POLY will be used in the Boolean AND
operation rather than layer POLY itself.

174

DRC User Manud

DRC Rules Syntax: General Syntax Restrictions

Three dots at the end of aline of sample code, or in the syntax
section, indicate that the line is continued on the next line.
Three dots will also precede the continuation on the next line.
When you type the rule, type it all on one line without the dots
or use '&'sto allow the rule to span more than one line.

Three dotsin the middle of alinein a syntax description mean
that several additional parameters are allowed but are not
explicitly specified in the syntax description.

IS BOX (layerl, sizel[,size?2]...,sizen]])

This is part of the syntax description for the IS BOX rule.
You may specify up to ten sizen parameters, but it would be
rather verbose to list all ten parameters. The dots take the
place of the missing parameters.

DRC User Manud

175

DRC Rules Syntax: 2 ONLY

2 ONLY

DRC version control

2 ONLY [TOEND]

Example:

If you use the same rules set with both version 2.xx and version 3.xx of the DRC,
you can use this rule to identify rules that should be executed only by version
2.xx of the DRC.

2 ONLY
NOT_RECT_A = RECTANGLES (A, (0:100, 0:100))

3 ONLY
NOT_RECT_A =NOT IS BOX (A, (0:100, 0:100))

The RECTANGLES rule is an obsolete version of the IS BOX rule. The
IS BOX rule is supported by version 3.xx of the DRC, but not version 2.xx.
When the example above is compiled with the rules compiler for version 2.xx,
only the RECTANGLES rule is executed when the compiled rule set is used by
version 2.xx of the DRC. ThelS_BOX rulewill be ignored.

When the same rule set is compiled then executed by version 3.xx of the DRC,
only the IS BOX ruleis executed.

Note that the 2_ONLY rule applies only to the next single rulein the rule set.
To identify a block of rules, add the TOEND keyword to the 2 ONLY rule.

When you use the TOEND keyword, you must add an END2 rule at the end of
the block of rules.

176

DRC User Manud

DRC Rules Syntax: 2 ONLY

Example: 20NLY TOEND
NOT_RECT_A = RECTANGLES (A, (0:100, 0:100))
RECT A=A AND NOT NOT_RECT A
END2

3ONLY TOEND
RECT_A =1SBOX (A, (0:100, 0:100)) NOT=NOT_RECT_A
END3

When the above example is executed by version 2.xx of the DRC, the RECT_A
layer will be generated as a result of the RECTANGLES rule and the AND rule.
Version 3.xx of the DRC will ignore both of these rules and use the IS BOX rule
instead.

Note that the underscore is optional in the 2_ONLY, 3 ONLY and IS BOX
rules. The underscore is used for readability only. It is stripped from the
keywords by the rules compiler preprocessor.

DRC User Manual 177

DRC Rules Syntax: 286_ONLY

286_ONLY DRC version control

286 ONLY [TOEND]

If you use the same rules set with different versions of the DRC, you can use this
rule to identify rules that should be executed only by version 1.xx of the DRC.

The syntax is the same as the 2 ONLY rule. The TOEND keyword is used to
mark blocks of rules. When this keyword is not used, the 286_ONLY rule
applies only to the next single rule. Seethe 2_ONLY rule on page 176 for more
details and exampl es.

178

DRC User Manud

DRC Rules Syntax: 3_ ONLY

3_ON LY DRC version control

3 ONLY [TOEND]

If you use the same rules set with different versions of the DRC, you can use this
rule to identify rules that should be executed only by version 3.xx of the DRC.

The syntax is the same as the 2 ONLY rule. The TOEND keyword is used to
mark blocks of rules. When this keyword is not used, the 3 ONLY rule applies
only to the next single rule. See the 2_ONLY rule on page 176 for more details
and examples.

DRC User Manual 179

DRC Rules Syntax: ALL_DANGER

AL L_DANG ER Prevent cell flattening for dangerous operations
ALL_DANGER

You should When this rule is present anywhere in your rule set, the DRC will avoid
L‘*ia;amhi cal flattening any cells before performing dangerous operations. This may increase
Checking and or decrease DRC prog ng time. D'angerous operatio.ns may incorrectly process
Hierarchical some layers. You will be warned in the DRC log file when a layer has been
Outputonpage incorrectly processed.

134 tolearn

about dangerous
operations and
hierarchical
processing.

You may want to use this rule when you are using the DRC to generate
hierarchical output.

There are no optional parameters for thisrule.

This rule is incompatible with the ALL_SAFE, SAFE CELL, and
DANGER _CELL rules. The SAFE LAYER rule can be used in combination
with the ALL_DANGER rule to override dangerous processing for certain
layers.

180

DRC User Manud

DRC Rules Syntax: ALL_SAFE

AL L_SAFE Force cell flattening for dangerous operations
ALL_SAFE

Y& should When this rule is present anywhere in your rule set, the DRC will postpone
h

: _ processing all dangerous operations until it is processing the flattened main cell.
Hierarchical hi . d DRC e i M disk .
Checking and This may increase or ecrease C processing time. ore disk space is
Hierarchical consumed by the scratch file when this rule is used instead of ALL_DANGER,
Outputonpage but it will prevent the DRC from incorrectly processing some dangerous

about dangerous

operations and

hierarchical If disk space is not an issue, and you are not generating hierarchical output, we
processing. recommend that you use thisrulein each rule set.

When this rule is used, all shapes generated by dangerous operations will be
generated in the main cell.

The SAFE_CELL rule can be used instead to specify that only certain cells will
be flattened while all others will not flattened. See also the ALL_DANGER and
DANGER_CELL rules.

The DANGER_LAYER rule can override the ALL_SAFE specification for
certain layers.

DRC User Manual 181

DRC Rules Syntax: ALLOW_QUICK

AL LOW_QU|CK Avoid warning prompt for QUICK_PASS processing

ALLOW_QUICK

Read about the

QUICK_PASS

option on pages
164 and 337.

The QUICK_PASS option on the DRC.EXE command line results in a much
quicker execution at the cost of not processing some types of rules. This can
result in missing real errors.

When you add the QUICK_PASS option to the command line and the rule set
contains rules that cannot be processed by this faster method, by default you will
be warned with a prompt before the DRC continues execution. You must reply
to this prompt before the DRC can proceed.

However, if the ALLOW_QUICK ruleisadded to the rule set, the DRC assumes
that you know what you are doing and will not issue the warning prompt. This
can be especially useful in batch files where you want to avoid any user
interaction at run time.

The DRC command line option ALLOW_QUICK performs exactly the same
function asthisrulein arule set.

182

DRC User Manud

DRC Rules Syntax: AND

AND Boolean AND of two layers

result_layer = [NOT] layerl AND [NOT] layer2

This rule will create on result_layer the intersection of all shapes on layers
layer1 and layer2.

Example: C=A AND B

To add shapes

created by this

rule to the error

count, add the

ERROR 7

keyword to the

OUTPUT %

LAYER rule

that defines

result_layer.
Figure 126: Polygonson layers Figure127: C=A ANDB
A and B
The optional NOT keyword will perform the operation with the inverse of the
layer.

Example: C=A AND NOTB

See page 312 This rule will perform a Boolean AND of the

\f/(v)rr]:rgixﬂgple inverse of layer B with layer A. In other
NOT is not words, layer B is used to etch layer A.
sufficient to

verify

enclosure.

Figure128: C = A AND NOT
B

DRC User Manual 183

DRC Rules Syntax: ASPECT_RATIO

ASPECT_RAT'O Classify shapes by relative dimensions

result_layer = [NOT]® ASPECT_RATIO (layerl, max_size,
ratio_1[,ratio 2[...,ratio_nj]
)INOT = result_layer2]®

Thisrule is used to classify polygons on layer1 based on their aspect ratios. An

_ aspect ratio is the ratio of the dimensions of the bounding box. For example, if
A bounding box
is the smallest you have a bounding box 10 units wide (in the x-direction) and 5 units high (in
rectangle, the y-direction), it would have an aspect ratio of:
square with the
axes, which 10
encloses the 5 =

shape. See or2to 1.
Figure 137 on
page 194 for
examples.

2
1

The ratio_n parameters are specified in the same manner as the IS BOX and
BOUNDS rules. You can enter up to ten ratio_n parameters. You must enter at
least one. The syntax of each ratio_n parameter is:

(xmin [: xmax], ymin [: ymax])

To specify a simple ratio, supply a pair of real numbers separated by a comma.
The first number of the pair is the relative dimension in the x-direction while the
second is the relative dimension in the y-direction. The units of each dimension
are the user unitsin the ICED™ cell.

(2.1)
This is the correct syntax to specify the 2 to 1 ratio mentioned above. This

specification will find all shapes that have bounding boxes exactly twice as wide
in the x-direction as they are high in the y-direction.

® Only one optional NOT keyword is allowed in asinglerule.

184 DRC User Manual

DRC Rules Syntax: ASPECT_RATIO

See page 118
for athorough
explanation of
panels and
borders.

Example:

Example:

You use colons (') to specify ranges of valid ratios. We will cover this by
example further on.

The required max_size parameter is used specify the maximum size of a
bounding box guaranteed to be classified correctly. This relates to the problem
of panels and panel borders. The DRC verifies large designs one panel at atime.
Shapes which cross the edge of a panel must lie within a border around the panel
to be verified correctly with a rule. Usually the border is determined by
calculating the reach of each rule. The reach isthe minimum border required for
arule to guarantee it will process shapes which cross the border properly. Since
no maximum dimension is included in this rule (only the ratio of dimensions)
there is no way for the rules compiler to calculate the reach. Y ou must specify
the reach explicitly with max_size.

Specifying too large a value for max_size may slow processing. However, you
should be aware that shapes with a bounding box dimension larger than max_size
may be classified incorrectly when the DRC uses panel processing.

B =ASPECT_RATIO (A, 20,(10,1))

This rule will collect on layer B all shapes on layer A which have bounding
boxes with an aspect ratio of exactly 10to 1. (10 in the x-direction to 1 in the y-
direction.) Shapes with a bounding box dimension larger than 20 user units may
be incorrectly classified.

To expand the above rule to include shapes which have the same ratio, but which
are longer in the y-direction, you need to add aratio_2 parameter that specifies a
1to 10 aspect ratio.

B =ASPECT_RATIO (A, 20,(10,1),(1,10))

Note that parentheses are required around each separate ratio_n parameter.

You can specify up to 10 ratio_n parameters. Y ou may specify a range instead

of an exact ratio for each ratio_n. You specify a range of valid ratio valuesin
the form min:max.

DRC User Manual 185

DRC Rules Syntax: ASPECT_RATIO

Either NOT keyword is used to collect all shapes on layerl which do not meet
the aspect ratio criteria.

Example: B =ASPECT_RATIO (A, 20,(5:6,1),(7,2:2))NOT =C
Layer B will consist of al polygons on layer A whose bounding boxes have
aspect ratios between 5to 1 and 6to 1 or between 7to 1 and 7to 2. Layer C will
consist of all shapeson layer A that do not meet the criteria.
Y ou can spread the ASPECT_RATIO rule across several lines by breaking aline
after acomma. If thefinal NOT option is used, it must be on the same line as the
closing’)’. The'&' continuation character is not required in this case.
The following example isidentical to the example above.
Example: B = ASPECT_RATIO (A, 20,
(5:6,1),
(7,2:2)
)NOT =C
186 DRC User Manual

DRC Rules Syntax: Assignment Rule

The Assignment Rule Copy layer or inverse of layer

result_layer =[NOT] layerl

Example:

Example:

This version of
the assignment
ruleis exactly
the same as the
NOT rule
described on
page 281.

Thisruleisused to copy alayer or to create the inverse of alayer.

M1=M1 IN

Thisrule will copy al polygonson layer M1_IN to layer M1. This can be useful
if M1 IN isan input layer that cannot be modified. The new layer, M1, can be
modified as required.

The optional NOT keyword will create alayer which isthe inverse of layer1.

NWELL =NOT PWELL

Figure 129: Layer PWELL Figure130: Layer NWELL = NOT
PWELL

DRC User Manual 187

DRC Rules Syntax: Assignment Rule

The bounding
box isthe
smallest
rectangle,
square with the
axes, which
encloses the
design.

The rule above will create the inverse of the PWELL layer. The outer boundary
of the inverse layer is slightly larger than the bounding box of your design.
When the NWELL layer is used by other rules in the DRC, it will remain one
large polygon with holesinit. If the NWELL layer is an output layer, before the
DRC can output the layer as ICED™ components, the shape must be divided into
several polygons. Polygons with holes not connected to the outer boundary are
not valid components in ICED™. The somewhat arbitrary cut lines (where the
NWELL shape is cut to create valid polygon shapes) will have no effect on
processing in the DRC.

The CUT_RESOLUTION rule is used to define the grid for cut lines when a
shape with holesis cut into valid polygon shapes.

188

DRC User Manud

DRC Rules Syntax: BAD_POLY

BAD_POLY Assign layer number for bad polygons

BAD POLY [=] layer _number

See page 74 for
more details on
bad polygons.

Example:

Subcell error
command file
names are
always created
using a.ERR
file extension.

This rule allows you to change the layer number used to collect bad polygons.
These are polygons that are likely to cause problems for other programs that use
layout data, such as mask-processing software.

When no BAD_POLY ruleis present in your rule set, the default layer number
for bad polygon output is 99.

BADPOLY =0

This rule will suppress bad polygon output. This may save space and time for
preliminary checks on large input files. Warning messages for all bad polygons
will still be listed in the DRC log file.

The DRC will mark bad polygons found on all input layers unless you add the
NO_CHECK_INPUT ruleto your rule set. When the NO_CHECK _INPUT rule
is used, the DRC will ignore bad polygons found on layers that are defined but
not used in the rule set.

When the bad polygon layer number is non-zero, bad polygons will result in
shapes on that layer number in the subcell error command files. See page 375
for details on subcell error command files.

DRC User Manual 189

DRC Rules Syntax: BLOAT

BLOAT

Expand shapes

result_layer = BLOAT (layerl, offset_val)
To shrink Use the BLOAT rule to expand polygons
polygons see on layer1 and store them on result_layer.
the SHRINK . . i :
rule on page All sides of the polygons will be shifted RIS
302. outwards in a parale manner by | [/ :ozo.o,o,o,o,
offset_val. offset_val must be a positive :
real number in ICED™ user units. / ,
Example: A =BLOAT (B, 1.2)

See an example
of using apair
of SHRINK and
BLOAT rulesto
classify shapes
by size on page
64.

Note that the parentheses and comma are

required in the BLOAT rule.

:/_ T -
| _ Zx
N XY
7 7B
87 |
WA, Y 7

.....

Figure 132: Note that the notch in
layer B disappear s after bloating.

B

Figure 131: A =BLOAT (B, 1.2)

remove features of
Notches or holes

Bloating can
complex polygons.
can disappear.

If you are using BLOAT on polygons
with acute angles, you should refer to

|1 the BLOAT_ANGLE rule on the next

page for important information on the
side effects of bloating sharp angles.

190

DRC User Manud

DRC Rules Syntax: BLOAT_ANGLE

BLOAT_ANGLE Define angle for BLOAT rule

BLOAT_ANGLE =bloat_angle

Thisrule isimportant only if your layout contains polygons with sharp points or

If you do not notches. It controls how shapes with sharp angles are bloated or shrunk. Points
have acute with angles more acute than bloat_angle will be blunted before they are bloated.
?egl;';gfur The bloat_angle parameter must be areal number in the range 1:179. When the
should not use BLOAT_ANGLE ruleis not used,
the BLOAT- oLl ooouooooooo ot the DRC uses a default of 44.9°
The defailt of
gfien":'” To see why bloating sharp points
excessive run can be a problem, see Figure 133.
times. The inner triangle has a sharp
point with an acute angle of 30°.
If this bloat is not constrained, the
________________________ bottom dimension of the polygon

will more than double when it is
Figure 133: Unconstrained bloat of a30° bloated by an offset_val of 2.
angle.

To avoid this type of expansion for
relatively small bloats, the DRC defaults
to constraining bloats on any angle less
than 45°. The bloated shape is cut by a
line perpendicular to the line that bisects
the acute angle. The cut will be made at a
distance equal to the bloat offset_val along
the bisecting line. It is as though the point
a the acute angle is blunted by an
infinitesimal line segment before the bl oat.

Figure 134: Constrained bloat of
a 30° angle.

DRC User Manual 191

DRC Rules Syntax: BLOAT_ANGLE

Example:

Y ou can see the
bloat angle used
for each
BLOAT rulein
therules
compiler log.

If this is not how you want your acute angles bloated, you must use the
BLOAT_ANGLE rulein your rule set. Set bloat_angle to a small enough angle
to remove the constraint for critical polygons. However, you should be aware
that as the bloat angle gets smaller, the DRC run time gets longer. Thisis dueto
panel processing and borders which is a subject not covered here. To understand
how the bloat angle affects run times, see page 126.

The bloat angle affects the SHRINK rule as well, since a shrink is really
processed as a bloat of the inverse of alayer.

Figure 135: Unconstrained Figure 136: Constrained
SHRINK of polygon with SHRINK of same polygon.
acute angle notch.

You can usethe BLOAT_ANGLE rule more than oncein arule set.

B= BLOAT (A,2)
BLOAT_ANGLE =10
C= BLOAT(A,?2)
BLOAT_ANGLE =44.9
D= BLOAT(A,5.1)

In the example above, the default bloat angle of 44.9° will constrain the bloats
that create layers B and D. A bloat angle of 10° will constrain the bloats that
create layer C. However, since one of the layers uses such a small bloat angle,
the run time will be much longer than if al layers used the default.

192

DRC User Manud

DRC Rules Syntax: BORDER

BORDER Explicitly define panel overlap

BORDER [=] border_dimension

Itisvery Use thisrule to override the panel border calculations that the DRC performs and
'rg“a%‘)g:n”;to set the panel border directly. This rule should be used only when you need to set
Processingon the panel border to a smaller dimension than that calculated by the DRC. Make
page 118 before Surethat you know what you are doing before you use thisrule.
using thisrule.
It is dangerous to set the panel border to avalue smaller than the value cal culated
by the DRC. You can causereal errorsto be missed since the reach of some

layerswill now be greater than the border.

The BORDER option on the DRC command line (see page 348) overrides this
rule.

DRC User Manual 193

DRC Rules Syntax: BOUNDS

BOUNDS Classify shapes by the size of their bounding box

result_layer =[NOT]” BOUNDS(layerl, sizel[, size2[..., sizen]]

) [NOT=result_layer2]’

The ASPECT-
_RATIOrule
classifies shapes
by theratio of
bounding box
dimensions.

Thisruleisvery similarto | .
IS_BOX, except that the | :
size criteria applies to the |- 3
bounding box of any
shape rather than only to
the dimensions of rec-
tangles. The bounding Figure 137: Bounding boxes of non-rectangular
box of a shape is the shapes.

smallest rectangle, square

with the axes, which will enclose the shape. The bounding box of a rectangle
square with the axes has the same dimensions as the rectangl e itself.

The syntax of the sizen parameters, and the use of the optional NOT keywords, is
exactly the same as the IS BOX rule. See that rule (starting on page 222) for
more examples. You can enter up to ten sizen parameters. You must enter at
least one. The syntax of each sizen parameter is:

(xmin [: xmax], ymin [: ymax])

When you supply a simple pair of real numbers separated by a comma, the first
number of each pair is the dimension in the x-direction while the second is the
dimension in the y-direction. When the maximum values are not included, they
are assumed to be equal to the minimum. The units of each dimension are the
user unitsin the ICED™ cell.

" Only one optional NOT keyword is allowed in asinglerule.

194

DRC User Manud

DRC Rules Syntax: BOUNDS

Example:

Example:

Example:

Example:

B = BOUNDS (A, (10,5))

This rule will collect on layer B all shapes on layer A which have bounding
boxes 10 units wide in the x-direction and 5 units high in the y-direction.

The BOUNDS rule can be used to filter out large or small shapes on a layer
rather than collect shapes of an exact size. Use the ratio form of the sizen
parameters. Y ou must enter two sizen parameters with an upper bound on the x
and y larger than the largest dimension of a shape on layer 1.

B = NOT BOUNDS (A, (0:4,0:10000), (0:10000,0:4))

This example will create on layer B all shapes on layer A which have both
bounding box dimensions greater than 4 units. Any shapes with either bounding
box dimension less than or equal to 4 units will not be copied to layer B. This
example assumes that no shape on layer A will have a dimension larger than
10,000 units.

B = NOT BOUNDS (A, (0:4,0:4))

This example will create on layer B all shapes on layer A which have either
bounding box dimension greater than 4 units.

Y ou can spread the BOUNDS rule across several lines by breaking a line after a
comma. If the final NOT option is used, it must be on the same line as the
closing')’. The'&' continuation character is not required in this case.

SMALL_A = BOUNDS (A,
(0:4,0:10000),
(0:10000,0:4)

) NOT =LARGE_A

The example above will copy to the SMALL_A layer all shapes on layer A that
have either bounding box dimension less than or equal to 4 units. All shapes that
have both bounding box dimensions greater than 4 units will be copied to the
LARGE_A layer instead.

DRC User Manual 195

DRC Rules Syntax: BRIDGE

BRIDGE

Recognize air bridges

BRIDGE {

BRIDGE = bridge layer

POSTS = post_layer

LENGTH = min_length [: max_length |

WIDTH =min_width [: max_width]

NOT_BRIDGE = result_layer_2 can use both
[L/W =min_ratio [: max_ratio]]

[POINT_TOLERANCE = tolerance 1]

[POST_TOLERANCE = tolerance 2]

Shapes created
on the result
layers of this
rule are not
automatically
counted as
errors unless
you add the
ERROR
keyword to the
OUTPUT
LAYER rules
that define the
layers.

The BRIDGE rule is used to find air bridges. If you don't know what an air
bridgeis, it isunlikely that you will ever need thisrule. It isof interest primarily
to users of the Gallium Arsenide technology.

The BRIDGE, POSTS, LENGTH, and WIDTH keywords are required. At least
one of the IS BRIDGE or NOT_BRIDGE keywords must be used. Y ou can use
both. The other parameters are optional conditions that must be met for the
shapes on bridge_layer to be considered air bridges.

To beavalid air bridge, a polygon must meet the following three conditions:

1) The polygon on bridge_layer must be rectangular. The rectangle does
not need be square with the axes.

2) The polygon on bridge layer must share opposite end-sides with
polygons on post_layer, one at each end. Each end-side of the air
bridge must be coincident with a side of the post. The post may be
wider than the bridge, but the entire end-side of the bridge must touch
the post.

196

DRC User Manud

DRC Rules Syntax: BRIDGE

3) The bridge must fall within a certain range of lengths, widths, and
aspect ratios (length/width). The length is the distance between end-
sides shared with a post. The width is the distance between the other
two sides.

When the IS BRIDGE keyword is used, the result_layer will contain all shapes
on bridge_layer that meet the air bridge criteria. When NOT_BRIDGE is used,
result_layer_2 will contain all shapes on bridge _layer that are not air bridges.

When entering the LENGTH and WIDTH parameters, you can enter either a
singlesize or arange. To enter arange, use acolon (') to separate the maximum
value from the minimum value.

Example: INPUT LAYER 5 METAL; 6 POST
OUTPUT LAYER 38 BRIDGE_OUT
SCRATCH LAYER BRIDGE_IN

BRIDGE_IN = METAL AND NOT POST
BRIDGE {

BRIDGE = BRIDGE_IN

POSTS = POST

WIDTH =2

LENGTH =5:20

IS BRIDGE = BRIDGE_OUT

}

This set of rules will recognize bridges
from 5 to 20 units long where layer
METAL is crossed by shapes on layer
POST. Since the BRIDGE rule requires
bridge shapes to share sides with the post
shapes, we have added the AND rule to
etch the METAL layer with the POST
layer. The layer BRIDGE_OUT will
contain rectangles for bridges 1 and 2 as Figure138: 3 Air bridges.
shown in Figure 138.

DRC User Manual 197

DRC Rules Syntax: BRIDGE

Example:

Candidate 3 in Figure 138 is a specia case since it is not square with the axes.
You cannot predict the exact length or width of air bridges that are not square
with the axes due to vertex approximations. Unless all air bridges are horizonta
or vertical, enter a range of lengths and widths. To modify the above rule to
recognize candidate 3 asavalid air bridge, change the WIDTH parameter to:

WIDTH =1.99: 2.01

Use the L/W=min_ratio [: max_ratio] option to add an additional length to width
ratio constraint. You can enter asingle ratio by using only min_ratio, or specify
arange by using max_ratio as well. Either ratio can be entered in fraction form
(e.g. "5/3") or asasingle number in decimal form (e.g. "1.6667").

L/W =5/1:6/1

Add this parameter to the BRIDGE rule to restrict valid bridges to those with
aspect ratios between 5to 1 and 6 to 1. Adding this parameter to the BRIDGE
example above will result in only bridge 1 (see Figure 138) on the
BRIDGE_OUT layer.

The POINT_TOLERANCE = tolerance_1 option defines the spacing tolerance
for the corners of the air bridge. This accounts for small round-off errorsin air
bridge corners where the air bridge is not square with the axes. Each corner of
the bridge must be within tolerance 1 units in both the X and Y directions of
where it would be if the bridge were exactly arectangle.

Use the POST_TOLERANCE = tolerance 2 option to alow a small overlap or
misalignment between the post sides and the bridge layer sides. The point at one
end of abridge_layer side must be within tolerance_2 unitsin both the X and Y
directions of the equivalent point on the post edge. However, if the bridge shape
does not touch the post shape, the bridge shape will not be considered a bridge.
The touching criterion (i.e. the bridge shape must touch 2 shapes on the post
layer) must be met before the BRIDGE rule will examine the other criteria to
determine if the shapeisabridge.

198

DRC User Manud

DRC Rules Syntax: BRIDGE

You can get a
report in the DRC
log file on the
default tolerance
used for both
specifications by
adding
SHOW_SCALES
to the DRC
command line. It
islisted as
"Smooth-
_tolerance"

Both of these tolerances default to small non-zero numbers (usually .001 user
units, but they may increase dightly for very large designs). The default
tolerances are usually sufficient to recognize air bridges when the geometry
varies slightly due to resolution grid rounding of the coordinates.

Y ou can enter more than one parameter on aline if you separate the parameters
with commas.

DRC User Manual 199

DRC Rules Syntax: CONNECT

CONNECT

Electrically connect layers

CONNECT

layerl layer2 [BY layer3]

Seethe STAMP
ruleto form
eectrical
connections to
layersthat are
poor
conductors.

See Electrical
Connections on
page 110 for
more important
information and
examples of
eectrical
connections.

Example:

CONNECT
rules are not
processed when
the
QUICK_PASS
optionis
included on the
DRC command
line.

The CONNECT rule will form electrical connections between touching shapes
on the given layers. All shapesthat are electrically connected will be considered
the same node and will be assigned the same node number.

In the DRC, the electrical connections defined by this rule are only used by the
MIN_SPACING rule when the /CONN or /~CONN options are used.

The touching criterion for the CONNECT ruleis
the same as that used for the TOUCHING rule.
Two shapes are considered touching if they share
afinite areaor if their edges share afinite length.
Shapes that touch only at a point are not
considered electrically connected.

When the BY keyword is not used, shapes on
layerl which touch shapes on layer_ 2 are
considered to be electrically connected.
CONNECT M1 M2

When this CONNECT rule is used, any shape on
M1 which overlaps or shares a finite portion of
an edge with a shape on M2 will be considered
electrically connected to the shape on M2. If this
rule was executed on the shapes in Figure 139,

the shape on M2 and the top two wires on M1
would all be electrically connected and stamped

Y

] m2

Figure 139: Thetop two
M1 wireswill be
electrically connected to
theM2wire.

with the same node number. The bottom wire on M1, which touches M2 only at

apoint, would be a separate node.

200

DRC User Manud

DRC Rules Syntax: CONNECT

Example:

See an example
that includes
CONNECT
rules on page
402.

The BY keyword is used to simulate
connections between layers that are formed by
vias or other contact layers. When the BY
keyword is used, the touching criterion
changes. For a shape on layerl to be
electrically connected to a shape on layer2, the
shape on layerl, the shape on layer2, and a
shape on layer3 must all share acommon area.

Mere touching or overlapping of these layersis
not enough to connect the shapes.

CONNECT M1M2BY VIA

When the above rule is used to connect the M1
and M2 layers shown in Figure 140, only the
M1 wire with the label "THREE" will be
connected to the vertical M2 wire. Wire
"ONE" overlaps the M2 wire, and both touch
the via shape, but the via shape does not
overlap the common area where the metal
layers overlap. Wire "TWQ" fails to connect
for the same reason even though the via

Fima
M2 B va

Figure 140: Only M1 wire
THREE isconnected to the
vertical M2 wire.

overlaps both wires. Wire "FOUR" does not overlap the M2 wire at al, so it
does not connect to it even though the via shape overlaps both.

You combine layer generation rules with CONNECT rules to simulate the
fabrication process and electrical connectivity. You may need to process
conductive layers carefully before adding the CONNECT rules.

Y ou cannot modify alayer after it is used in a CONNECT rule. This restriction
is enforced by the rules compiler. If alayer could be modified after being used
in a CONNECT rule, there would be no way to guarantee that the electrical
connections made by the CONNECT rule would be valid by the time the

MIN_SPACING checks are run.

DRC User Manud

201

DRC Rules Syntax: CONNECT

The fact that polygons cross panel boundaries requires the DRC to add
CONNECT rules to your rule set to connect shapes that cross panel boundaries.
These rules are added automatically by the rules compiler. In the rule compiler
log, they are indicated by the keyword "Generated" instead of the source line
number. (See page 128 for more information.)

202

DRC User Manud

DRC Rules Syntax: CONST

CONST

Define constant value

CONST const_name = const_value

CONST {

or

constl name= constl value

constn_name = constn_value

Example:

Y ou can use a CONST rule to define a certain number as a constant that you can
refer to by name in other rules rather than typing the number itself. The
const_value must be areal number. You may not use exponential notation (e.g.
1.478E-9) when typing const_value. You may not use layer names or other
strings for const_value.

CONST M1 EXPANSION_VALUE = .246
M1=BLOAT (M1_IN,M1 EXPANSION_VALUE)

The CONST rule above defines the string "M1_EXPANSION_VALUE" as a
constant with the value .246. When this constant is used in the BLOAT rule, the
rules compiler will substitute ".246" for the string
"M1 _EXPANSION_VALUE".

You can have many CONST rules in your rule set. This allows you to define
technology dependent parameters together in one place where they are easy to
find and edit. When the CONST ruleis not used, it will be difficult to update an
old rule set with new values since they will be scattered through the rule set.

DRC User Manual 203

DRC Rules Syntax: CONST

Example:

Example:

If you have multiple constants to define, you can use the multiple line syntax to
define al of them with a single CONST rule. Place each constant definition on
it'sown line, or separate definitions on the same line with semicolons. Surround

the lines with curly brackets.

CONST {
M1 EXPAND =
M2_EXPAND =
MIN M1 W =
MIN_M2 W =
}
CONST {
M1 EXPAND =
MIN M1 W =
}

.246
.246
19
2.1

246, M2_EXPAND =
19, MIN_M2 W=

Both of these constant definitions are equivalent.

.246
2.1

204

DRC User Manud

DRC Rules Syntax: CUT_RESOLUTION

CUT_RESOLUTlON Place cut lines on specific grid

CUT_RESOLUTION = grid_resolution

See page 79 for
more
information on
how output
shapes are
affected by the
different
resolution grids
inICED™ and
the DRC.

Example:

At the end of the DRC run, when the DRC creates the shapes on output layers
for reading into an ICED™ cell, some shapes may need to be cut at arbitrary
locations. (See exampleson page 77.) Thisoccursin the following cases:
ashapeis cut by a panel boundary,
a shape contains a hole,
a shape has more than 199 vertices,
or

a shape has been generated from the inverse of alayer.
Thisrule allows you to force the cut linesto lie on agrid of your own choosing.

If you are not generating output layers for use as mask layers, but using the DRC
to only check for errors, this rule is not important. If you are generating layers
that will be used as design data, add this rule to your rule set with a
grid_resolution at least as large as the resolution grid of your ICED™ cells.
Express grid_resolution asarea number of user units.

CUT_RESOLUTION=.1

When this rule is present in your rule set, shapes that are cut for the reasons
above will be cut on a.1 user unit grid.

The default resolution for the cuts mentioned above, when the
CUT_RESOLUTION ruleis not used, is zero. This means that the shapes that
are cut may have vertices that will be rounded by some post processing software.

DRC User Manual 205

DRC Rules Syntax: CUT_RESOLUTION

This rule does not affect the vertices of shapes during the execution of the DRC
rule set, or the vertices of shapes created by bloats, shrinks, or intersections of
slanting lines. Use the SNAP or SNAP45 rules to control the resolution grid for
the results of these operations.

206 DRC User Manual

DRC Rules Syntax: DANGER_CELL

DANGER_CELL Prevent cell flattening for dangerous operations

DANGER_CELL cel_name[cell_name 2[...cell_name n]]

Y ou should
read the
information
beginning on
page 134 to
learn about
dangerous
operations.

Example:

Example:

This rule specifies certain cells that the DRC should not flatten when performing
dangerous operations. When this rule is used, all cells not listed as danger cells
will be flattened by the DRC for dangerous operations.

Thisruleisused primarily when you are generating design layers for hierarchical
output data.

DANGER_CELL SUBCELL

This rule will prevent the DRC from flattening the cell SUBCELL for dangerous
operations. All other cellswill be flattened for dangerous operations.

You can supply more than one DANGER_CELL rule. You can also specify
more than one cell in the DANGER_CELL rule. Simply list all required cell
names without commas on the same line. If you prefer, you can use curly braces
to allow more than one line of cell specificationsin asinglerule.

DANGER_CELL XCELL YCELL
DANGER_CELL ZCELL

DANGER_CELL XCELL YCELL ZCELL
DANGER_CELL {

XCELL YCELL
ZCELL

}

All three of these danger cell specifications are equivalent.

DRC User Manual 207

DRC Rules Syntax: DANGER_CELL

See an example
of wildcard

syntax on page
297.

The cell_name parameters can contain wildcard characters (*'). When an
asterisk is present, the DRC will handle as a danger cell any cell with a hame
that matches the given string with one or more characters replacing the asterisk.

This rule is incompatible with the rules ALL_DANGER, ALL_SAFE, and
SAFE CELL. When DANGER CELL is used in combination with
SAFE LAYER or DANGER LAYER rules, the SAFE LAYER or
DANGER_LAYER rulestake precedence.

208

DRC User Manud

DRC Rules Syntax: DANGER_LAYER

DANGER_LAYER Override cell flattening for certain layers

DANGER_LAYER layerl [layer2 [...layern]]

Y ou should
read
Hierarchical
Checking and
Hierarchical
Output on page
134 tolearn
about dangerous
operations and
hierarchical
processing.

Example:

Use thisrule to specify layers that should be created hierarchically (i.e. nested in
subcells) rather than as flattened layers in the main level cell. This rule
overrides the default specification for all cells defined by the ALL_SAFE,
SAFE_CELL, or DANGER_CELL rules.

Specify the names of layers that should be generated dangerously. You cannot
specify input layers in this rule. Only the layer(s) specified in this rule will be
processed dangerously. Other layers in cells that contain the indicated layers
will not be affected.

You may want to use this rule rather than ALL_DANGER or DANGER_CELL
when you have only a small area of a large cell you need to be handled
dangerously. You can add a small shape on a dummy layer that isolates the
problem shapes on a new layer that you specify in a DANGER_LAYER rule.
See an example on page 142.

You can supply more than one DANGER_LAYER rule. You can also specify
more than one layer in the DANGER _LAYER rule. Simply list all required
layer names on the same line. If you prefer, you can use curly braces to alow
more than one line of layer specificationsin asinglerule.

DANGER_LAYER A B
DANGER_LAYER C

DANGER_LAYER A B C

DANGER_LAYER {
A B
C

All three of these danger layer specifications are equivalent.

DRC User Manual 209

DRC Rules Syntax: DETAIL

DETAIL

Turn detailed logging on or off

DETAIL ON and DETAIL OFF

The/DET or
/~DET options
inthe

Use these rules to specify whether or not the DRC should add detailed error
messages to the log file for each error found by the MIN_NOTCH,
MIN_WIDTH, and MIN_SPACING rules. (These are the only rules that

m]'fv?gﬁ';' produce detailed error messages in the log file.)) These error messages can use
and up considerable disk space for large designs.
MIN_SPACING
[ﬁﬁ)‘;‘éﬁ}gde The detailed logging mode is off by default until you turn it on in a specific rule
mode set with or by using DETAIL ON.
thisrule.
The detailed logging of error messages can be turned on and off severa times
during arule set. We suggest that you turn logging on only for small designs, or
only for small subsets of rules when you cannot determine the exact errors from
the error wiresin ICED™.
Example: DETAIL ON
RESULT1=MINSPACING (A, A, 20)
DETAIL OFF
RESULT2=MINSPACING (A, B, 5)
RESULT3=MINSPACING (A, C, 2/DET)
Seepage50for \When this set of rules executes, error messages with coordinate data will be
anexampleof yrinted in the log file for each violation of the rules that create layers RESULT1
detailed error
messages. and RESULTS3.
(If you have a /[LENGTH=length option in a MIN_SPACING rule, and detailed
logging is enabled, the log file will contain details on error wires that have been
discarded due to the length restriction.)
210 DRC User Manual

DRC Rules Syntax: HOLE_AREA_FRACTION

HOLE_AREA_FRACT|ON Classify polygons with holes

result_layer = [NOT]? HOLE_AREA_FRACTION (...
layer1, min_fraction, max_fraction ...
[[BORDER=max_size] ...
) [NOT = result_layer_2]®

Tosimplyfind Use this rule to classify polygons on layer1 by the fraction of their outline area
dlholesina hat js removed by enclosed holes. (The outline area is the total area of the
layer, see the
ISLANDSrule Polygon including the area covered by holes.) Specify the minimum and
maximum fraction of the outline area that can be covered by holes as positive

real numbers between 0.0 and 1.0.

Remember that the DRC merges touching polygons as a preprocessing step, so
ICED™ polygons that merge to form a shape with an enclosed hole are treated in
exactly the same way as polygons drawn with an enclosed hole.

Example: RESULT =HOLE_AREA_FRACTION (A, 0.25,1)

This rule will copy to the RESULT layer all
polygons on layer A that contain holes that re-
move at least ¥ or 25% of the total outline
area.

If the rule above was executed on the shapesin . Jn L
Figure 141, the two shapes on the left will be — -
copied to RESULT (including the shape '
formed by two polygons that merge to form a
single polygon with a hole that is exactly ¥4 of
the merged outline area). The shape without a
hole is not copied, and neither is the shape
with the hole that covers less than ¥4 of the
total outline area.

Figure 141: Two shapeson
theleft are copied to
RESULT.

8 Only one optional NOT keyword is allowed in asinglerule.

DRC User Manual 211

DRC Rules Syntax: HOLE_AREA_FRACTION

Example:

Example:

A_MED_HOLES=HOLE_AREA_FRACTION (A, 0.25, 0.49999)
A_BIG_HOLES=HOLE_AREA_FRACTION (A, 05, 1)

These two rules will classify polygons on layer A and create 2 new layers.
A_MED_HOLES will contain copies of shapes on the A layer that have holes
that cover at least ¥4, but less than Y%, of the total outline area. A_BIG_HOLES
will contain copies of shapes on the A layer that have holes that cover at least %2
of the total outline area.

Using a minimum fraction of O will add shapes without holes to the shapes on
the result_layer. To find al shapes with holes on a given layer, use a rule
similar to the following with a very small but non-zero min_fraction.

A_H=HOLE_AREA_FRACTION (A, 0.00001, 1)

Using the NOT Keywords

Example:

Example:

Use either NOT keyword to copy al shapes on layer1 that do not meet the hole
fraction criteriato a result layer. Only one NOT keyword is allowed in a single
rule.

A_H=HOLE_AREA_FRACTION (A, 0.00001, 1) NOT =A_NO_H

Adding "NOT = A_NO_H" to the previous example results in all shapes with no
holes being copied to the A_NO_H layer.

If you need to collect only shapes that do not meet the hole criteria, use the first
NOT beforethe HOLE_AREA_FRACTION keyword as in the example below.

A_NO_BIG_HOLES=NOT HOLE_AREA_FRACTION (A, 0.5,1)

This example copies to the A_NO_BIG_HOLES layer al shapes on layer A that
do not have holes that cover at least %2 of the total outline area.

212

DRC User Manud

DRC Rules Syntax: HOLE_AREA_FRACTION

The/BORDER Keyword

Read the
information
beginning on
page 118 to
learn more
about panels
and borders.

Example:

The optional /BORDER keyword is used to specify the longest dimension of any
polygon on layerl. Shapes longer than this maximum dimension can be
misclassified at panel boundaries. The /BORDER keyword is used to determine
the how all of the shapes in the design are processed in panels by the DRC. So
do not use an arbitrarily large number since this will slow processing
considerably. Too small a number may result in misclassified polygons. The
default is /BORDER=0 which will prevent any polygons from being
misclassified at the cost of executing the DRC in multiple passes through the
data.

Whether or not /BORDER=0 is faster than /BORDER=big_number depends on
your data and the other rules in your rule set. If other rules require a large
border, try /BORDER=big_number. If you use CONNECT rules (required for
electrical connection tests) or TOUCHING rules in your rule set, then the DRC
must already process the data in multiple passes, and the default of /BORDER=0
will probably be faster.

RESULT = HOLE_AREA_FRACTION (A, 0.25, 1/BORDER=50)

This rule above will add a minimum border of 50 user units to the DRC panel
processing. Shapes that have at least one side longer than 50 user units may be
misclassified due to being sliced by a panel boundary during processing.
However, this rule may execute more quickly than the default if the rest of the
rule set can be executed in asingle pass.

Counting ShapesasErrors

Refer to the
OUTPUT
LAYER ruleto
learn more
about error
layers.

The result_layer is not automatically considered an error layer, so shapes found
by this rule will not automatically be counted as errors. Y ou can process shapes
on result_layer in the same manner as any output or scratch layer. However, if
you define result_layer as an error layer (as shown on the next page), then
shapes on the layer are counted as errors and will be reflected in the error count.

DRC User Manual 213

DRC Rules Syntax: HOLE_AREA_FRACTION

Example: OUTPUT ERROR LAYER 41 A_WITH_BIG_HOLES
A_WITH_BIG_HOLES=HOLE_AREA_FRACTION (A, 0.25, 1)

214 DRC User Manual

DRC Rules Syntax: IN_CELL

|N_CELL Classify shapes in certain cells

result_layer =

layerl IN_CELL cell_name

The INCELL
keyword of the
INPUT LAYER
rule will not
include shapes
in subcells of
the specified
cells.

Example:

Example:

This rule will classify shapes on a layer by whether or not they are contained in
specific cells. It works in a similar manner to the IN_CELL parameter of the
INPUT LAYER rule, however this rule processes the data differently in two

ways:
layer1 can be any layer in the DRC database, not just an input layer
and
layerl shapes in subcells of the specified cells will be included on
result_layer.

A_IN_MYCELL =A INCELL MYCELL

The rule above will copy to the A_IN_MYCELL layer all shapes on layer A in
cell MYCELL and it'ssubcells. Layer A in the database remains unchanged.

There are no optional NOT keywords in this rule. You can process the
result_layer with an AND NOT ruleif desired.

A_IN_CAP=A INCELL *PF
OTHER_A =A AND NOT A_IN_CAP

This pair of rules classifies shapes on layer A by whether or not they are
contained in cells that end with the string "PF" or subcells of those cells.

For more examples of cell_name specifications, including using wildcards, see
page 219.

DRC User Manual 215

DRC Rules Syntax: INCLUDE

INCLUDE Allow rules file nesting

INCLUDE [dir_path\]file_name

Example:

Example:

This rule allows you to nest rules files. An INCLUDE rule in one rules file will
result in another rules file being inserted at that point. The file_name parameter
is used to specify the name of the file. The file extension (if any) must be
included in file_name.

INCLUDE MOSCONST.RUL

This rule will cause the text in the file MOSCONST.RUL to be added to the
current rules file at the point where the INCLUDE rule is found. Since no
dir_path parameter is used, the file MOSCONST.RUL must exist in the current
directory.

Y ou may optionally supply adirectory path with the file name. Y ou should fully
qualify the directory. You can place quotes around the file name if the DRC
rules preprocessor may have any problems parsing the file name. This will be
the case if the file name contains blanks as in the example below.

INCLUDE "C:\ICED\MOS 123.RUL"

Y ou cannot use the INCLUDE rule in the middle of another rule. You may nest
rulesfiles up to 10 deep with the INCLUDE rule.

216

DRC User Manud

DRC Rules Syntax: INPUT LAYER

INPUT LAYER Define input layers

INPUT LAYER iced layer number_1 ...

..[+iced_layer number 2[... +iced layer number 5]] ...
..[INOT]® INCELL cell_name]™ ...

.. drc_layer_name...

..[NOT drc_not_incell_layer_name]®

See an overview
of layer
definition rules
on page 55.

Y ou can specify
alayer number
at run time with
the LAYERS
option on the
DRC command
line. See page
346.

All layers in the input data that will be used in your DRC rule set must be
definedinan INPUT LAYER rule. The only required parameters for the INPUT
LAYER rule are iced layer_number_1 and drc_layer_name. The
iced layer_number parameters correspond to the layer numbers in the ICED™
cell. (The layer names used in the ICED™ cell are ignored by the DRC.) A
specific iced_layer_number can be referred to only once in your set of INPUT
LAYER rules.

The shapes on DRC layers created with the INPUT LAYER rule cannot be
modified by other rules. If you need to modify an input layer, you can use the
assignment rule (page 187) to copy the layer to a scratch or output layer. Use a
MODIFY LAYER ruleinstead of INPUT LAY ER to define alayer used as both
an input layer and an output layer.

The drc_layer_name is the label used to specify the layer in other DRC rules.
The name does not need to be identical to the layer name in the ICED™ cell. A
specific drc_layer_name can appear only once in your set of INPUT LAYER
rules.

° Only one optional NOT keyword is allowed in asinglerule.
9Morethan 1 INCELL cell_namedrc_layer _name pair isallowed. See page 220.

DRC User Manual 217

DRC Rules Syntax: INPUT LAYER

Example: INPUT LAYER 2 M1
When thisruleis used, all components on layer 2 in the ICED™ main cell, and all
subcells, will be copied to layer M1 in the DRC database. Use the name M1 to
refer to this layer in succeeding DRC rules.
If you want to combine shapes on several ICED™ layers into one DRC layer,
specify several iced layer_number parameters separated with plus signs (‘+).
Y ou can combine up to five ICED™ layersinto one DRC layer.

Example: INPUT LAYER 2+12+22 M1
Thisrule will combine the ICED™ layers 2, 12, and 22 into the DRC layer M 1.
When you need to define many input layers, you can list several input layersin
one INPUT LAYER rule. Separate the layers with semicolons (';").

Example: INPUT LAYER 1A; 2B; 3C
When an input layer definition is split over more than one line, you can surround
the layer definition with curly braces{}. If you type one layer definition on each
line, semicolons are not required.

Example: INPUT LAYER {

1A

All input layers 2B

are checked for 3C

bad polygons by

default. For this }

reason, itisa

good ideato Note that the '&' continuation character is not required to split this example

definedl mask across several lines.

layers asinput

layers, even if

they are not

verified by any

rules.

218 DRC User Manual

DRC Rules Syntax: INPUT LAYER

Restricting Input Layers by Subcell

Example:

TheIN_CELL
rule, which also
classifies shapes
by cell, will
include shapes
in subcells of
the specified
cdls.

Example:

Example:

The INCELL options, [[NOT] INCELL cel name] and [NOT
drc_not_incell_layer_name], are used to classify components on an input layer
by whether or not they are stored in specific subcells.

INPUT LAYER 2 INCELL INDUCTOR_CELL INDUCTOR M1

This rule will copy all components on layer 2 contained in instances of cell
INDUCTOR_CELL (but not its subcells) to DRC layer INDUCTOR_M1.

The cell_name in the INCELL parameter can contain wildcard characters (*').
A vertical bar, ' can be used as well to indicate a list of valid cell names. More
than one ' delimiter can be used. Do not use any blanks when entering the
cell_name parameter.

INPUT LAYER 2 INCELL IND*|*NH IND_M1

This input layer specification will copy to layer IND_M1 all components on
layer 2 contained in cells which begin with the string "IND", or which end in the
string "NH".

Y ou can refer to the main cell (the highest-level cell) of your input data with the
special name "@MAIN". This allows you to use the same rule set for different
designs that use different names for the main cell.

INPUT LAYER 1 [INCELL @MAIN LAY1 MAIN

In this example, shapes on layer 1 that are contained in the main cell, but not its
subcells, will be copied to DRC layer LAY1_MAIN. The actual name of the
main cell isirrelevant.

The NOT keywords are used to indicate that the layer contains only shapes on
layer iced_layer_number which are not contained in the specified cells. Only
one NOT keyword is allowed.

You would use the first optional NOT keyword to restrict the new layer to
shapes that are not contained in the cell(s) indicated after the INCELL keyword.

DRC User Manual 219

DRC Rules Syntax: INPUT LAYER

Example:

Example:

Example:

Example:

INPUT LAYER 3 NOT INCELL *PF* DIFF

This rule will create the DIFF layer with al shapes on layer number 3 that are
not contained in cells that contain the string " PF".

You would use the second optional NOT keyword when you need to classify
shapes on the indicated layer number into different DRC layers: one DRC layer
for shapes in the cell(s), and another DRC layer for those shapes which are not
in the cell(s). When the second optional NOT keyword is used, drc_layer_name
is restricted to shapes which are contained in the cells indicated after the
INCELL keyword, and layer drc_not_incell_layer_name will contain shapes
which are not in the indicated cells.

INPUT LAYER 2 INCELL INDUCTOR_CELL IND_M1
INPUT LAYER 2 NOT INCELL INDUCTOR_CELL M1 'Error

These 2 statements together would cause a compiler error since each
iced_layer_number can occur in only one INPUT LAYER rule. You can
achieve the desired result with the following single statement:

INPUT LAYER 2 INCELL INDUCTOR_CELL IND_M1 NOT M1

When you need to classify a single layer number into severa different DRC
layers, you can use more than one INCELL specification in a single rule. You
can specify up to 50 INCELL cell_name drc_layer_name pairs in a single
INPUT LAYER rule.

INPUT LAYER 1 INCELL CAP12PF CAP12 DIFF &
INCELL CAP104PF CAP104 DIFF &
INCELL CAP1200PF CAP1200 DIFF &
NOT DIFF

The example above separates layer number 1 in the input data into 4 different
DRC layers. Shapes on layer 1 in cells with the name CAP12PF will go into
DRC layer CAP12_DIFF, etc. Shapes on layer 1 that are not contained in cells
with the names CAP12PF, CAP104PF, or CAP1200PF will be placed in DRC
layer DIFF.

220

DRC User Manud

DRC Rules Syntax: INPUT LAYER

See page 172 to
get more details
onusing '&'to
split arule over
severa lines.

Note that the ‘&' continuation character is required to split this example above
over severd lines.

Restricting Input Layers by Subcell Boundaries

Example:

Layer O in an ICED™ cell is used to store subcell bounding boxes. Ordinary
shapes are never stored on that layer. In an INPUT LAYER statement, layer O
can be used to store a rectangle that covers a subcell. This may be useful in
some types of layer processing.

INPUT LAYER 0 INCELL INDUCTOR_CELL IND_MASK
INPUT LAYER 2 MZ_IN

M1= M1 IN AND NOT IND_MASK

IND M1= M1 IN AND IND_MASK

When this set of statements is used to classify layer M1 instead of the example
on page 220, you must be careful with an important side effect. In this example,
the processing on M1 is performed after the cell is flattened hierarchically.
Shapes on M1 in subcells of INDUCTOR_CELL (or in the main cell, or any
other cell) which happen to be located within the bounding box of
INDUCTOR_CELL will also be classified as IND_M1. This can be desirable or
not, depending on how your design is organized.

DRC User Manual 221

DRC Rules Syntax: IS BOX

IS BOX

Classify rectangles by size

result_layer = [NOT]*' IS BOX (layerl, sizel|[, size2]..., sizen]]

) [NOT=result_layer2]*

Seethe
BOUNDS rule
for asimilar
rule for non-
rectangular
shapes.

Thisruleis used to classify polygons on layer1 based on whether or not they are
rectangles in arange of sizes. To be recognized by this rule, rectangles must be
square with the axes (i.e. the sides must be vertical and horizontal).

(Remember that all shapes on the same layer are merged by the DRC.
Rectangles that touch another shape on the same layer will be merged during
preprocessing. When a rectangle is merged with touching shapes, the resulting
shape may no longer be rectangular.)

The result_layer generated by this rule is not automatically an error layer.
Shapes placed on result_layer will not be counted as errors unless you define the
layer using the ERROR keyword in the OUTPUT LAYER rule.

The syntax of each sizen parameter is:

(xmin [: xmax], ymin [: ymax])

To alow the dimensions of the rectangles to be in a range, specify both the
minimum dimension and the maximum dimension separated by a colon (). To
specify an exact dimension, type only the minimum value. When the maximum
valueis not included, it is assumed to be equal to the minimum. Each dimension
must be a positive real number. The units of each dimension are the user unitsin
theICED™ cell.

Y ou can enter up to ten sizen parameters. Y ou must enter at least one.

1 Only one optional NOT keyword is allowed in asingle rule.

222

DRC User Manud

DRC Rules Syntax: IS BOX

Example:

Example:

Example:

Example:

Example:

B=1S BOX (A, (10,5))

This rule will collect on layer B all rectangles on layer A which are 10 units
wide in the x-direction and 5 units high in the y-direction. The commas and
parentheses are required.

Note that orientation is important. To collect non-square rectangles which may
be in either orientation you must specify two sizes. The DRC recognizes
dimensions in the x and y directions separately due to the fact that in some
technologies (e.g. the Gallium Arsenide technology) the orientation is important.

B=1S BOX (A, (105),(510))

This rule will collect on layer B all rectangles on layer A which are 10 units
wide by 5 units high in either orientation.

B=ISBOX (A, (10:12,5:7))

Here, layer B will consist of all rectangles on layer A which are from 10 to 12
units wide in the x-direction and from 5 to 7 units high in the y-direction.

(Note that the underscore in the IS BOX keyword is optional. The underscore
character issimply ignored when it is present. Thisistrue of all keywords.)

B=1S BOX (A, (10:12,6.4))

This rule will collect on layer B all rectangles on layer A which are from 10 to
12 units wide in the x-direction and exactly 6.4 units high in the y-direction.

The optional NOT keywords are used to restrict the output layer to all shapes
that do not meet the size criteria. Only one optional NOT keyword is alowed.

C=NOT IS BOX (A, (10,2), (11, 3))

This above rule will collect on layer C all shapes on layer A which are not
rectangles 10 units wide and 2 high or 11 units wide and 3 high.

DRC User Manual 223

DRC Rules Syntax: IS BOX

When typing this rule, you may start a new line between sizes. Y ou cannot split
a single sizen parameter between lines. (The final optional NOT keyword must
be on the same line as the closing parentheses.)

Example: B=1S BOX (A,
(10,2),(2,10),
(51), (1,5) NOT=C
The rule above will collect on layer B all shapes on layer A which are rectangles
10 units wide and 2 high or 5 units wide and 1 high in either orientation. Layer
C will consist of al other shapes on layer A, including all non-rectangular
shapes.
224 DRC User Manual

DRC Rules Syntax: IS _CIRCLE

|S_C|RCLE Classify polygons with circular shape

result_layer =[NOT]*? IS CIRCLE (layerl, ...

R=min_radius: max_radiug[,] ...
N=min_sides[: max_sides][,] ...
EPS=tolerance],] ...
... [POLY_INSIDE] [POLY_OUTSIDE][] ...
...) [NOT =result_layer_2]*

Learn more
about the
resolution grid
on page 79.

Example:

This rule is used to classify polygons on layerl based on whether or not they
approximate circles that meet certain criteria.

(Remember that all shapes on the same layer are merged by the DRC. Circular
polygons that touch another shape on the same layer will be merged during
preprocessing. When a circular shape is merged with touching shapes, the
resulting shape may no longer be circular.)

The specifications for minimum radius, maximum radius, minimum number of
sides, and the EPS tolerance are all required.

The EPS tolerance is a spacing tolerance that allows the vertices of a polygon to
be dightly displaced from where they would be in a perfect circle. This
tolerance is required to find circular polygons since their vertex coordinates
aways vary from ideal coordinates due to the resolution grid.

B=IS CIRCLE(A,R=1:5N=8, EPS=0.01)
Thisrule will collect on layer B all polygons on layer A that approximate circles

with radii in the range 1.0 to 5.0 user units. The polygons must have at least 8
sides. This EPS valueistypical for polygonsin this size range.

12 Only one optional NOT keyword is allowed in asingle rule.

DRC User Manual 225

DRC Rules Syntax: IS CIRCLE

Specifying Radii

Example:

It is a good idea to broaden the size range dlightly to improve your chances at
finding al polygons that are close to your size criteria. The true radius of a
circular polygon islikely to vary slightly from the equivalent ideal circle.

B=1S CIRCLE (A,R=4.99:5.01, N =8,EPS=0.01)
This rule will find all polygons that approximate circles with a radius of 5 user

units. Restricting the size criteriato a single number (e.g. R = 5.0 : 5.0) is likely
to prevent the DRC from finding any polygons.

Specifying the Number of Sides

Example:

Example:

If you want to refine the search to find only polygons that are more circular than
octagons, increase the minimum number of sidesindicated after the 'N' keyword.

B=1S CIRCLE (A,R=4.99:5.01, N =16, EPS=0.01)

This rule will find all polygons that approximate circles with a radius of 5 user
units and have at least 16 sides.

The minimum and optional maximum number of sides must be expressed as
positive integers. When the maximum number of sides is not provided, it
defaults to a very large number (over 2 billion).

B=1S CIRCLE (A,R=4.99:5.01,N =3:5 EPS=0.01)
C=I1S CIRCLE (A,R=4.99:5.01, N=6,EPS=0.01)

This pair of rules will find circular polygons with a radius of 5 user units on the
A layer. Layer B will include only polygons with from 3 to 5 sides (i.e.
equilateral triangles, sguares, and pentagons). Layer C will include only
polygons that have at |east 6 sides.

226

DRC User Manud

DRC Rules Syntax: IS _CIRCLE

The Optional POLY_INSIDE and POLY_OUTSIDE Keywords

Example:

These mutually exclusive keywords determine which mode is used to determine
how the idea circle relates to the approximating polygon. The
POLY_OUTSIDE keyword is used by default when the POLY _INSIDE keyword
is not used. When the POLY_OUTSIDE mode is used, the polygon is
understood to be drawn
outsde of the idea | — —
circle. This is the : : :

method used by the
ICED™ layout editor
when it creates a
circular polygon.

The POLY_INSIDE o : .
keyword will change | . = POLY_OUTSIDE POLY_INSIDE
the radii criteria to
search for circular Figure142
polygons where the

polygon is smaller than the ideal circle.

B=1S CIRCLE (A,R=3.99:5.01,N =16, EPS=0.01, POLY_INSIDE)

The rule above will search for circular polygons adjusting the radius criteria so
that polygons drawn inside ideal circles of radii from 4 to 5 will be copied to the
B layer. The polygons must have at least 16 sides.

Using the NOT Keywords

The optional NOT keywords are used to collect al polygons on layer1 that do
not meet the circle criteria. Only one NOT keyword isallowed in asinglerule.

DRC User Manual 227

DRC Rules Syntax: IS CIRCLE

Example:

Example:

Example:

B=1S CIRCLE (A,R=4.99:5.01, N=8,EPS=0.01) NOT =C

This rule will copy to layer B all shapes on layer A that meet the circle criteria.
All other shapes on layer A (including all non-circular shapes) will be copied to
layer C.

If you need to collect only shapes that do not meet the circle criteria, use the first
NOT beforethe IS_CIRCLE keyword as in the example below.

C=NOT IS CIRCLE (A,R=499:5.01,N =8, EPS=0.01)

To improve readability, you can split this rule across several lines. Begin a new
line after any of the commas. The only restriction is that if the second NOT is
used on the last line by itself, the closing parentheses must be included in that
last line.

B=IS CIRCLE (A,
R=4.99:501
N=8
EPS=0.01
)NOT=C

Note that the commas are optional and can be omitted (except for the first
comma after the layer name).

Counting ShapesasErrors

Refer to the
OUTPUT
LAYER ruleto
learn more
about error
layers.

The result_layer is not automatically considered an error layer, so shapes found
by this rule will not automatically be counted as errors. Y ou can process shapes
on result_layer in the same manner as any output or scratch layer.

If you define result_layer as an error layer (as shown in the next example), then
shapes on the layer are counted as errors and will be reflected in the error count.

228

DRC User Manud

DRC Rules Syntax: IS _CIRCLE

Example: OUTPUT ERROR LAYER 53 CIRCLE_ERR
CIRCLE_ERR =1S CIRCLE (A,R=.1:999, N =6, EPS=0.01)

A rule similar the one above will find al circular components. All of the shapes
copied to the CIRCLE_ERR layer will be counted as errors since the
result_layer is defined as an error layer.

DRC User Manual 229

DRC Rules Syntax: ISLANDS

|SLANDS Find Holes

result_layer =

ISLANDS (layerl)

Also seethe
HOLE_AREA _
FRACTION
ruleto find
polygons with
holes.

Example:

Thisrule is used to find holes or unconnected polygons on a specific layer. All
shapes on layer1 that are not connected to the upper left polygon on layer1 will
be copied to result_layer. By connected, we do not mean electrical connections
through use of the CONNECT rule. For this rule, connected means shapes on
one layer which touch other shapes on the same layer.

The result_layer is not automatically an error layer. Shapes generated on the
result_layer will not count as errors unless you add the ERROR keyword to the
OUTPUT LAYER rulethat defines the layer.

To find holes in a layer, you use this rule to find islands in the inverse of the
layer.

NOT_A =NOT A
B =ISLANDS (NOT_A)

This pair of rules will result in polygons on layer B created for all holes in layer
A. Note that the parentheses are required in the ISLANDS rule.

230

DRC User Manud

DRC Rules Syntax: MAX_ANGLE

MAX ANGLE

Find sharp points in notches

error_layer = MAX_ANGLE (layerl, angle)

Seethe
MIN_ANGLE
ruleto find
acute angle
protrusions.

Example:

This rule is used to find acute angle notches
in polygons. The angle measured is the
interior angle.

Look at Figure 143. The angle of the notch is
36.9°. The interior angle of the polygon is
323.1°.

ERR1=-MAXANGLE (A, 315)

BB
o~

Figure 144: Error wires
marking notch.

Figure 143: Polygon with
acute angle notch.

The rule above will find all polygons with
interior angles greater than 315°. This means
notches with angles less than:

360° — 315° = 45°

If thisrule is executed on the polygon shown
in Figure 143, the angle will be marked with
error wires on layer B, since it is less than
45°. The error wires will look similar to
Figure 144.

DRC User Manud

231

DRC Rules Syntax: MAX_ANGLE

All acute angles
on output layers
are marked with

You usualy want the angle parameter to be at
least 270°. If angleis less than 270°, then all 90°
bends like the one shown in Figure 145 will be
marked as errors. To find only acute angle
notches, use values for angle in the following
range:

360° > angle > 270°
Thiswill find notches with angles less than:

0° < notch_angle < 90°

Figure 145: Polygon with
270°interior angle.

To be found by this rule, notches must be formed from two connected sides that

meet at an angle. If the notch is blunted by
another line segment, this rule will not find it.
Refer to Figure 146. Since the angular notch is
blunted by the vertical segment, neither angle is
greater than 315°. See the MIN_NOTCH rule to
find notches like these.

If you want to find acute angle protrusions on a
specific layer, see the MIN_ANGLE rule. If you
want to find all acute angles (protrusions and
notches) on all output layers, see the information

270°

233.1

,V;?,rerr“ggsb‘;” inthe WARN_ACUTE rule description.
default.
All shapes created on error_layer by thisrule are
counted as errors. They will automatically be
included in the DRC error count.
Figure 146: Notch that will
not be marked by the
MAX_ANGLE(A,315)
rule.
232 DRC User Manual

DRC Rules Syntax: MAX_COUNT

MAX_COUNT Change maximum number of errors found before warning

MAX_COUNT = error_count

Add the
STOP_ON_-
MAX_COUNT
ruleto therule
set if you prefer
to have the
DRC halt when
the error count
reaches the
maximum.

Example:

The DRC will warn you by posting a message on the screen when a maximum
error count is reached. When you do not include the MAX_COUNT rule in your
rule set, the default maximum error count is 1000. Use this rule to change this
maximum error count.

To understand why the DRC warns you when a maximum error count is reached,
imagine a chip with 10,000 copies of acell. If asmall change to this cell causes
a single error, there will be at least 10,000 error marks created for what you
would consider asingle error. Other error marks will be easily overlooked. The
error would be caught just as well if you halted the DRC with the <Esc> key
after finding the first 1000 errors, and the run time and output files would be
much smaller. It is much more efficient to find and fix the single error in a
shorter run, and then other errors will be easily seen in your next run.

MAX_COUNT = 3000

This rule will cause the DRC to post a warning message similar to the following
as soon asiit has found 3000 errors.

******WARNING*********WARNING*********WARNING*******
****Error COUI’]'[- nnnn***
Y ou may stop thisrun by pressing <Esc>. There will be adelay. Pressing
<Ctrl><C> or <CtrI><Alt> will lose data already generated.

You can ignore the message and allow the DRC to run to completion. The
message will be updated from time to time with the current raw error count.

If you want to stop the run, you should press the <Esc> key. The current pass
will be completed, the log file will be generated, and any scratch file(s) will be
deleted before the DRC comes to a halt. This may take a few minutes. If you

DRC User Manud

233

DRC Rules Syntax: MAX_COUNT

press <Ctr|><C>, the DRC will halt immediately, but files will not be closed
properly and the scratch file(s) will need to be deleted manually.

A MAX_COUNT larger than the default will allow you to find many more errors
than the default without re-executing the DRC.

However, do not set error_count to a large number like 3000 for an early DRC
run using anew rule set. If many errors are caused by mistakes in your rule set,
it will take you much longer to realize this, when a shorter run would have been
adequate to debug your rule set.

The DRC keeps track of araw error count as it encounters errors during the run.
In many cases, several errors get added to the raw error count are combined
during later processing into a single error. Therefore, if an error count warning
is generated by the DRC, but you allow the DRC to keep running, you may see
that the final error count is lower than the raw running total posted in the

warning message.

234

DRC User Manud

DRC Rules Syntax: MAX_SPACING

MAX_SPAC| NG Classify shapes by distance

result_layer = [NOT]* MAX_SPACING (from layer [/IN] [/OUT] [/CAP=anglel], ...

. to_layer [/IN] [/OUT] [/CAP=angle?], ...
... distance ...
... [[[~]CROSS] ...
... [/[~]PERP] ...
o AT
... [l[<F]OVER] ...
... [/[F]END] ...
... [/[7]INTER] ...

.. [/[-]CONN] ...
.)[NOT =result_layer_2]*

Example:

The shapes
found by this
rule are not
considered
errors. If you
want to mark
them as errors,
see the example
at the end of
this description.

Thisrule will classify shapes on the from_layer by whether or not they are more
than distance away from sides of shapes on the to_layer. Set distance to a
positive real number of user units.

RESULT = MAX_SPACING (A, B, 2)

This rule will copy to layer RESULT all shapes on layer A that have all vertices
more than 2 user units away from sides of shapes on layer B.

One quirk of this rule is that overlapping shapes can be classified as being
mor e than distance away even though they share a common area. A shape
on the from_layer can be copied to the result_layer aslong as all vertices of the
shape are further than distance away from sides of shapes on the to_layer.

13 Only one optional NOT keyword is allowed in asingle rule.

DRC User Manual 235

DRC Rules Syntax: MAX_SPACING

Example:

Example:

Look a the 3 small rectangles in
Figure 147 that all represent shapes on
layer A. If the rule above is executed L
on these shapes, both shapes 1 and 2 D .

will be copied to RESULT.

Shape 1 will be copied to RESULT
since al of its vertices are more than 2
user units away from the B shape.

—

All of the vertices of shape2 arealso | [] A . B
more than 2 units away from a side of
the shape on layer B. So shape 2 is Figure 147: Both layer A shapes 1
also copied to RESULT, even though and 2 are morethan 2 units away
itiscovered by the shapeonlayer B. from the sides of the layer B shape.

Since shape 3 has vertices that are exactly 2 user units away, it is not copied to
layer RESULT.

If overlapping shapes are special cases, use Boolean rules to modify the shapes
on the from_layer, the to_layer, or the result_layer. For example, if you want to
remove overlapping shapes like shape 2 in the example above, use rules similar
to the following:

A_NOT_B=A ANDNOT B
RESULT = MAX_SPACING (A_NOT_B, B, 2)

When this pair of rulesis used on the shapes in Figure 147, only shape 1 will be
copied to the RESULT layer.

If you need to find shapes on a single layer that are more than distance apart, the
to_layer can be the same asthe from_layer asin the following rule:

RESULT = MAXSPACING (A, A, 1.5)
All layer A shapes that are more than 1.5 user units away from other all other

layer A shapes are copied to RESULT. Note that the underscore (') is optional
in the MAX_SPACING keyword (and al DRC keywords).

236

DRC User Manud

DRC Rules Syntax: MAX_SPACING

Using the NOT Keywords

Use either NOT keyword to copy all shapes on the from layer that do not meet
the spacing criteria to a result layer. Only one NOT keyword is alowed in a
singlerule.

Example: RESULT = MAX_SPACING (A, A, 1.5) NOT=RESULT2

Adding "NOT = RESULT2" to the previous example will copy al layer A
shapes that are 1.5 user units or less away from another layer A shape to the
RESULT2 layer.

If you need to collect only shapes that do not meet the spacing criteria, use the
first NOT before the MAX_SPACING keyword as in the example below:

Example: RESULT2=NOT MAX_SPACING (A, A, 15)

Using this MAX_SPACING rule with a NOT keyword is very similar to using
the equivalent MIN_SPACING rule below:

ERR =MIN_SPACING (A, A, 1.5

The three differences are:

* The result_layer shapes are not counted as errors by the MAX -
SPACING rule.

* The entire shape on the from_layer is copied to the result layer by the
MAX_SPACING rule so you can manipulate it just like any other shape.
MIN_SPACING produces error wires that cannot be used for other
processing.

e Shapesthat are exactly distance apart are treated differently.
= MIN_SPACING finds shapesthat arelessthan digance.
= MAX_SPACING finds shapestha are more than distance.
= NOT MAX_SPACING finds shapesthet arelessthan or equa to distance.

DRC User Manual 237

DRC Rules Syntax: MAX_SPACING

Directional Spacing Checks, End Caps, and Orientation Options

Seethe
MIN_SPACING
rule and Spacing
Verification
beginning on
page 84 to learn
more about how
the DRC
performs spacing
verification.

The/IN, /OUT, and /CAP options for the input layers and the orientation options
/ICROSS, /PERP, /T, IOVER, /END, and /INTER are very rarely used. They
usually increase the number of shapes that are copied to the result_layer. For
example, when the /IN or /OUT options are added to the from_layer or to_layer
ina MAX_SPACING rule, this allows shapes that are closer than distance to be
added to the result_layer by restricting the spacing criteria to those shapes found
by looking toward the inside or toward the outside of shapes on indicated layer.

These options are included for completeness since they are included in the
MIN_SPACING rule. The algorithms for the MAX_SPACING rule are based
on those used for the MIN_SPACING rule. Basicaly, shapes that have no sides
that violate the equivalent MIN_SPACING rule are copied to result_layer. For
example, if we restrict the equivalent MIN_SPACING rule with /IN or /OUT,
less shapes fail the MIN_SPACING test. So more shapes pass the equivalent
MAX_SPACING rule.

There is one important thing to keep in mind if you are using these
MIN_SPACING options in a MAX_SPACING rule. Shapes on the from layer
that are exactly distance away from a shape on the to_layer at their closest point
are not copied to the result_layer even though they would not violate the
equivalent MIN_SPACING rule.

Read the relevant section in the MIN_SPACING rule if you need to understand
these options. Unless you are writing a ssmple MAX_SPACING rule, you
should be familiar how the equivalent MIN_SPACING rule operates.

One final word on this subject for those who understand MIN_SPACING well
enough to be dangerous: none of these options will prevent overlapping polygons
from being copied to result_layer. Use the Boolean method shown on page 236
to prevent overlapping shapes from being copied to the result_layer.

238

DRC User Manud

DRC Rules Syntax: MAX_SPACING

Electrical Connections

When therules
compiler or
DRClistsa
MAX_SPACING
rule with the
default connec-
tion restriction
"/+~CONN", this
means both con-
nected and un-
connected pairs
of shapeswill be
checked.

Example:

Add the /CONN option to the MAX_SPACING rule if you want to copy to the
result_layer all shapes on the from_layer that are more than distance away from
shapes on the to_layer to which they are electrically connected. The /~CONN
option will copy shapes that are more than distance away from shapes that are
not electrically connected. The default is to check both connected and

unconnected pairs of shapes.

For MAX_SPACING rules to accurately recognize what shapes are electrically
connected, you must define how electrical connections are made. You use
CONNECT and STAMP rules to define electrical connectivity. See page 110

for a complete explanation.

CONNECT A B
RESULT = MAXSPACING (A, A, 2.0/CONN)

The CONNECT rule above indicates that touching
shapes on layers A and B are electrically connected.
Since the MAX_SPACING rule includes the /CONN
option, any given shape on layer A will be copied to
RESULT if it is more than 2 user units away from all
other shapes on layer A to which it is electrically
connected.

Look at Figure 148. All squares represent shapes on
layer A. Shapes 1, 2, 3, and 4 are all electrically

connected by the vertical rectangle on layer B. Shapes i

1 and 2 are not copied to RESULT since they are
electrically connected and closer than 2 units. Shape
3 is aso not copied to RESULT since it is exactly 2
units away from an electrically connected layer A

N . .

shape. All other shapes will be copied to RESULT | 5 9
since they are more than 2 user units away from other '
electrically connected layer A shapes.
Figure 148
DRC User Manual 239

DRC Rules Syntax: MAX_SPACING

For the next example, suppose that you need to find all layer A shapes that are
within 2 user units of another shape on layer A that is on a different electrical
net. Use the /~CONN option and collect only shapes that fail to meet the
MAX_SPACING criteria.

Example: RESULT2=NOT MAXSPACING (A, A, 2.0/~CONN)

Now shapes on layer A that are 2 unitsor closerto | ~ -~~~ . =~]
shapes that are not electrically connected arecopied | = = = NN 6 . |
to RESULT2. Shapes 1 and 2 are copied because | 1 RNy =~
they are too close to shapes 6 and 7 respectively. |
Note that shapes that are exactly 2 units away from | SR\ .
shapes that are not electrically connected are copied | 2 i NN\
to RESULT2. When the NOT keyword isused, | =~ F =]
shapes that are exactly distance away or closer are | 3 .
collected on the result layer. I : IR

See page 129 NOTE: The restrictions imposed by the /CONN or o ---------

ifr?;OTr?];?ion on /~CONN options will be ignored when you specify |,
the the QUICK_PASS option on the DRC command |
QUICKPASS line. You should use the SLOW command line | =~~~ "8 |
option. option to enablethe/CONN or /~CONN options. | =~ .
N N
......... 9
Figure 149:
_ MAXSPACING (A, A,
Counting ShapesasErrors 2.0/~CONN)
Refer to the The result_layer is not automatically considered an error layer, so shapes found
SXJE:TMMO by this rule will not automatically be counted as errors. Y ou can process shapes
learn more on result_layer in the same manner as any output or scratch layer. If you define
about error result_layer as an error layer (as shown below), then shapes on the layer are
layers. counted as errors and will be reflected in the error count.

240 DRC User Manual

DRC Rules Syntax: MAX_SPACING

Example: OUTPUT ERROR LAYER 91 A_TOO_FAR_AWAY
A_TOO_FAR_AWAY = MAXSPACING (A, A, 1.5)

All layer A shapes that are more than 1.5 user units away from other all other
layer A shapes are copied to layer A_TOO_FAR_AWAY. Since this is defined
asan error layer, al shapes on the layer are added to the error count.

DRC User Manual 241

DRC Rules Syntax: MIN_ANGLE

MIN_ANGLE

Find sharp points

error_layer = MIN_ANGLE (layerl, angle)

Example:

Seethe
WARN_ACUTE
ruleto learn how
the DRC will
find acute angles
on all output
layers.

Seethe
MAX_ANGLE
ruleto find
acute angle
notches on

polygons.

This rule is used to find acute angles in
polygons. The angle measured is the interior
angle.

ERR1=MIN_ANGLE (A, 45)

This rule will find all polygons with angles
less than 45°.

If this rule is executed on the polygon shown
in Figure 150, the angle will be marked with
error wires on layer B, since it is less than
45°. The error wires will look similar to
Figure 151.

You usualy want to restrict angle to be in
the following range:

0°<angle<90°

Figure 150: Polygon with acute
angle.

Figure 151: Error wires
marking acute angle.

If you specify angle to be greater than 90°, all right angle corners of all polygons

on layer1 will be marked.

242

DRC User Manud

DRC Rules Syntax: MIN_AREA

MIN_AREA

Find small shapes

error_layer = MIN_AREA (layerl, area, /BORDER=[+] max_size)

See page 118 to
learn more
about panels
and borders.

The SHOW
command in the
ICED™ layout
editor will
report the area
of selected
shapes.

See page 66 for
an example of
using thisrule
to filter small
shapes without
counting them
as errors.

This rule will copy to the error_layer (and count as errors) all polygons on
layer1 with an arealess than area.

The required /BORDER keyword is used to modify the panel border. It is used
to avoid false errors for shapes that fail to pass the test because they are formed
by touching shapes that travel across panel boundaries.

There are three ways you can specify the border:
/BORDER=max_size setsthe panel border to a minimum of max_size.

/BORDER=+max_size"*adds max_size to the border value required by
other rules.

/BORDER=0 forces the DRC to use multiple passes which

prevents false error messages entirely.

In no case will any of these choices prevent real violations from being found.
However, a small border can fail to prevent false errors, and a large one can
result in longer run times for the entire DRC run.

Generally, the/BORDER=0 option is the most efficient. If your rule set contains
other verification rules for layerl, and the rules compiler has generated a
"CONNECT layer1" rule (look in the rule compiler log file), then this option
will not result in alonger run time. The DRC will aready execute in multiple
passes.

1 This special syntax to modify the border is unique to the MIN_AREA rule.

DRC User Manud

243

DRC Rules Syntax: MIN_AREA

Add the
SHOW-
_BORDER
option to the
DRC command
line to see how
the panel border
iscaculated in
thelog file.

Example:

Example:

However, if you have a rule set that contains no other rules that force the
compiler to generate the CONNECT rule above, using the /BORDER=max_size
option may be faster than the /BORDER=0 option.

We suggest using a small value for max_size unless you are seeing too many
false errors. If many false errors are a problem, a good value for max_sizeis:

area
minimum_width

where area is the minimum area set in the rule, and minimum width is the
minimum dimension allowed for layer1 in your technol ogy.

Look at the shapes in Figure 152. The | - ' <— panel boundary
upper shape has an area of 8. If the [j :
touching shapes at the bottom are
merged, they have a combined area of
exactly 10. The merged shapes should
pass the minimum area check.

Figure 152: Shapeson layer A.

PANELX =5 o / %
B=MIN_AREA (A, 10/BORDER=1) -

When these rules are run on the shapes]
in Figure 152, the indicated panel Figure 153: All shapes marked with
boundary may prevent al 4 shapes on €rrorsonlayer B.

the bottom from being considered as the

same shape. In this case the DRC will mark false errors for these shapes as
shown in Figure 153. (The shapes on layer B are cut at the panel border. The
log filewill include all 6 shapes on layer B in the count of errors.)

PANELX =5 ‘ ‘ ‘ :
i _ v
B=MIN_AREA (A, 10/BORDER=20))

When we increase the border to 20, only ‘ ‘)
the upper shape will be copied to layer
B. All of the lower shapes are now
considered one shape with an area of
exactly 10, so they pass this minimum arearule.

Figure 154: Only upper shapeis
mar ked when larger border isused.

244

DRC User Manud

DRC Rules Syntax: MIN_FILL

Ml N_F| LL Verify layer coverage of design area

error_layer = MIN_FILL { layerl, min_fraction, ...
..[MARGIN=mdistance] ...

...[LEFT_MARGIN=Idistance],] ...
... RIGHT_MARGIN=rdistance[,] ...
... TOP_MARGIN=tdistance[,] ...
..BOTTOM_MARGIN=bdistance]...

}

The MIN_FILL rule checks that a minimum fraction of the total design area is
covered by shapes on layerl. The total area of all shapes on layerl within the
design areais calculated and divided by that design area. If the resulting number
isless than min_fraction, then the DRC will post an error message in the log file
and create a text component on error_layer. The error_layer text component is
created at the lower left corner of the design. A larger warning message text
component is created at the top of the design on error_layer to aert you to the
specific warning text in the lower left corner.

To passthisrule, the following equation must be true:

Total area of shapeson layerl

> min fraction
Total areaof design

The bounding box of the design sets the default total area of the design. The
bounding box isthe smallest rectangle, square with the axes, which encloses
all shapes on all layers in the design. (This includes layers not used in your
rule set.)

DRC User Manual 245

DRC Rules Syntax: MIN_FILL

Example:

ERR=MIN_FILL {C .5}

The rule above will verify that shapes on the C layer cover at least %2 of the area
of the entire design. The bounding box of all shapes on all layers determines the
boundary of the entire design. If layer C covers at least half of this area, no
errors are generated. If the total area of al shapes on layer C isless than half of
the design area, then a text message stating this, along with exact
recommendations to fix this problem, is created in a text component in the output
command file at the lower left corner of the design on layer ERR. This will be
counted as an error in the error count.

If you want to define the total design area as an area dlightly larger than the
bounding box of the entire design, you can use either one of the following
options:

« MARGIN=mdistance

o All four of the boundary options:
LEFT_MARGIN=Idistance,
RIGHT MARGIN=rdistance,
TOP_MARGIN=tdistance,
BOTTOM_MARGIN=bdistance,

If you want to add the same | - - —————————g——————————— !
margin distance to all sides of the
bounding box of the design to
specify the total design area, add
the MARGIN=mdistance option to
the rule. mdistance will be
subtracted from the left and
bottom boundary coordinates and
added to the right and top
coordinates. Specify mdistance as
a positive real number of user
units.

Layout ¢ g I
Bounding Box 2
(@]

(0]

b
!

Boundary

Figure 155: Using M ARGIN=mdistance

246

DRC User Manud

DRC Rules Syntax: MIN_FILL

Example:

Example:

ERR=MIN_FILL {C .25 MARGIN=50}

The rule above will check that shapes on layer C cover at least ¥ of the design
area. The design area in this case is considered to be 100 user units wider and
100 user unitstaller than the bounding box of the design data.

If you wat to add different | ————-—-————-———--——-3--—-----——- 1
margin distances to all sides of | | tdistarice=30
the bounding box of the design to :
specify the total design area, add | |

all four of the :
LEFT_MARGIN=Idistance, :
RIGHT_MARGIN;rdlstance, — Bounding Box 3 ™
TOP_MARGIN=tdistance, and ﬁ) I
BOTTOM_MARGIN=bdistance \ S |
options to the rule. Specify all ——— 3 ———-!
xdistance parameters as positive K bdistance=0

reaAl numbers of user units. Design Area

Using an xdistance of O for any Boundary

of the margin parameters is
acceptable.

Layout <2

OSﬂOUfB!pI

Figure 156: Using 4 mar gin parameters

ERR=MIN_FILL {C .25
LEFT_MARGIN= 50
RIGHT_MARGIN= 30

TOP_MARGIN= 30
BOTTOM_MARGIN=0
}

The rule above will check that shapes on layer C cover at least ¥ of the design
area. Thedesign areain this caseis considered to start 50 user units to the left of
the left design boundary, 30 user units to the right of the right design boundary,
30 user units above the top design boundary, and right at the bottom design
boundary.

DRC User Manual 247

DRC Rules Syntax: MIN_NOTCH

MIN_NOTCH

Find small notches

error_layer =MIN_NOTCH (layerl, min_width, [ILENGTH=length] [/[~]DET])

See page 106
for more
information on
how the DRC
defines a notch.

Example:

When this rule is used, notches
less than min_width in shapes
on layerl will be marked with
error wires on layer
error_layer.

B=MIN_NOTCH (A, 2)

This rule will find all notches
less than 2 units wide and mark
them with error wires on layer
B. When thisruleisrun on the
shape in Figure 157, the top
two notches will be marked
with error wires. The bottom

notch, which is exactly 2 units wide, will not be marked

asan error.

Width v

Figure 157: Shape
on layer A with 3
notches.

To be recognized as a notch, opposite
sides of the notch must not meet.
Angular notches like the one shown in

Figure 159 will not be found by this '
rule. You can use the MAX_ANGLE e
rule to find notches like these. However,
the sides of the notch do not need to be
horizontal or vertical. The portion of the

Figure 158:
Notcheslessthan 2
unitswide marked
with error wires.

Figure 159: notch shown in Figure 160 that is '9ure160:
Angular notch narrower than 2 units will be marked as Efror will be

will not befound. g error.

found.

248

DRC User Manud

DRC Rules Syntax: MIN_NOTCH

See an example
that
demonstrates
thisideain
NOTCHSP.RUL
and
WIRECEL.CEL.

Example:

See page 50 to
learn more
about detailed
error messagein
thelog file.

The MIN_NOTCH rule can be a very important addition
to a MIN_SPACING rule when you need to find spacing
errors between shapes on the same layer. Consider
Figure 161. The long wire folds back on itself and two
sides are very close each other. Thisisanotchinasingle
shape rather than a spacing error between shapes.

A MIN_SPACING rule will not mark this as an error. If
your design rules consider this an error, you should add a
MIN_NOTCH ruleto find such errors.

Figure 161: Notch,
not
MIN_SPACING

error.
Remember that all touching shapes on a single layer are

merged during DRC preprocessing. So even if a spacing problem like the one in
Figure 161 is caused by two separate wires on the same layer, to the DRC it will
be a single shape with a notch rather than a MIN_SPACING error.

The optional /LENGTH=Ilength parameter is used to restrict the errors found to
those at least aslong as length. Notches less than this length will not be marked
with error wires on layer1.

C=MIN_NOTCH (A, 2/LENGTH=3)

When the /LENGTH keyword is added to the rule above,
notches less than 3 units long will not be considered
errors.

The optional /DET keyword is used to add a detailed
error message to the log file for each notch that fails the
test. The coordinates of pairs of sides that fail the test
will be listed. For large designs, these messages may
make the log file unreasonably long.

Figure 162: The
notch shorter than
3 unitsisnot
marked.

Notches that have been discarded due to a /LENGTH
restriction will be listed in these detailed messages.

DRC User Manud

249

DRC Rules Syntax: MIN_NOTCH

Add the /~DET option to the rule when detailed error messages have been
enabled, but you want to disable them for only thisrule.

250 DRC User Manual

DRC Rules Syntax: MIN_SIDE

MlN_S|DE Find shapes with at least one small side

error_layer = MIN_SIDE (layerl, min_length)

Thisrule will create error wires on al polygon sides less than min_length. Only
the polygons on layerl will be tested. The error wires are created on
error_layer.

Example: B=MIN_SIDE (A, 2)
All sides of polygons on layer A that are less than 2 units long will be marked

with error wires on layer B. When this rule is run on the polygon in Figure 163,
error wires will be created on layer B as shown in Figure 164.

FAAAAA

oy

Figure 163: Polygon on Figure 164: Error wires
layer A. on layer B for all sidesless
than 2 unitslong.

DRC User Manual 251

DRC Rules Syntax: MIN_SPACING

MIN_SPACING

Find spacing errors

error_layer = MIN_SPACING (...
.. from layer [/IN] [/OUT] [/AWAY =a_anglel[/SIDES BACK=n1]]" [/CAP=c_anglel], ...

.. to_layer [/IN] [/OUT] [/AWAY=a_angle2[/SIDES BACK=n2]]** [/CAP=c_angle?], ...
... distance ...
... [[[~7]CROSY] ...
[/[~] PERP] Crossing Enclosure Notch
AT
... [[[<]JOVER] ... SRRl 7
.. [/[-]END]
... [[[-]INTER] ... R I A ‘
... [[[<]CONNT] ...
... [[LENGTH=length] ... Figure 165: Configurationslike these
.. [/[-]DET]) arenot automatically considered
MINSPACING errors.
Seethetableon This rule will find sides of shapes on the from_layer that are too close to sides

page 26 for alist
of cell and rule
filesincluded in
the installation
that demonstrate
the
MIN_SPACING
rule.

of shapeson theto layer. Set the minimum valid distance for the spacing check
as apositive real number of user units.

Thisis easily the most complicated DRC rule and it is easy to write too simple a
rule that will not find all of the errorsyou think it will. You must read " Spacing
Verification" beginning on page 84 to learn how to write MIN_SPACING rules
that catch all possible errors.

One common problem that is often overlooked by writers of DRC rule sets is
that overlapping shapes are not automatically considered errors. Errors will
be found only when a vertex of a shape on one layer is closer than distance to a
side of a shape on the other layer. If overlaps are always errors, use the AND or
TOUCHING rulesto find them.

> The AWAY option isavailable in betatest versions only. See page 256.

252

DRC User Manud

DRC Rules Syntax: MIN_SPACING

Example:

To classify
shapes by
distance rather

than find errors,

seethe MAX-
_SPACING
rule.

One other class of potential errors that the MIN_SPACING rule will not mark
are spacing violations between parts of a single shape, or between two shapes on
asingle layer that have been merged during preprocessing. Y ou will need to add
a MIN_NOTCH rule to find these types of problems. See the information on
page 87 and the example covered in the files NOTCHSP.RUL and

WIRECEL.CEL.

ERR = MINSPACING (A, A, 2)

In this rule, the from_layer is the same
as the to_layer. When this rule is
executed on the shapes in Figure 166,
error wires are created on layer ERR
wherever aside of a shape on layer A is
less than two units away from a side of
another shape on the same layer. Note
that no error is indicated for the bottom
shape since it is exactly two units
distant.

The error wires wrap around the corners
of the upper two shapes. When the
error extends around connected sides,
the DRC will create one continuous
error wire.

ﬁ

. [1A - 7 ERR

Figure 166: Error wires created for
layer A shapescloser than 2 units.

Note that the underscore (') is optional in the MIN_SPACING keyword.

Directional Spacing Checks

The /IN and /OUT specifications are mutually exclusive for each layer. If you
follow a layer name with the /IN keyword, the DRC will look only toward the
inside of a shape when looking for spacing violations of the other layer. If you
instead add the /OUT keyword after the layer name, the DRC will look only
toward the outside of the shape for spacing violations.

DRC User Manud

253

DRC Rules Syntax: MIN_SPACING

When you use neither keyword, shapes on both sides of each edge of the polygon
will be verified for spacing violations. We refer to this type of rule as a ssimple
spacing check.

When you do use /IN or /OUT after one or both layer names, the rule is a
directional spacing check.

Example: ERR=MINSPACING(A, B/IN, 1)

When this MIN_SPACING rule is
run the shapes shown in Figure
167, error wires are created as
shown. The DRC will look only
toward the inside of the shape on | g
layer B from each side when
searching for sides of shapes on
layer A that may be too close.
Shapes 1 and 2 will not be found. |. . S _
For shape 3, only the side that is 7
towarda{;]einsideyof the side of the |- A = B ZERR
shape on B isindicated as an error.
Each error wire for the layer A
sidesis paired with an error wire on
the sides of the B shape.

STy

3
o
0x

Figure 167: Error wirescreated from
B/IN directional spacing check.

Note that shapes 3 and 4 have perpendicular sides that are also in violation, but
are not marked. The default behavior for checking perpendicular or crossing
sides changes when you add the /IN or /OUT keywords. We cover this subject
later when we cover the orientation keywords.

Shape 5 is a special case. The horizontal sides of shape 5 are too close to the B
shape, however, no vertex of the B shape is too close to these sides. Also, no
vertex of shape 5 is too close to the B shape. If you consider shape 5 to be an
error, you must find it with a different method. (See the examples on page 85.)

254 DRC User Manual

DRC Rules Syntax: MIN_SPACING

Example: ERR=MINSPACING(A, B/OUT, 1)
When we replace the /IN keyword in |1
the previous example with the /OUT .
keyword, only sides of shapes on A
that are found looking towards the 7
outside of layer B shapes will be
found. Note that the violation of ‘
shape 2 is found even though the :
space between the sidesis exactly 0. i
Togettheexact The violation of shape 2 is unusual 7
coordinatesfor - for another reason. alOSi nce the error A B ERR
each sideof a
pair of sidesin ~ WIres for each side of the violation
violation,add ~ overlap, the DRC will merge them Figure 168: Error wires created from
the/DET option and create only one error wire rather B/OUT directional spacing check.
totherule. See than apair.
page 269.
You must be careful when writing a
directional spacing check if you want to find
shapes with coincident sides. Coincident or
exseeamsz‘l’g?')f overlapping sides are a specid case for
how to test directional spacing. Ordinarily, the
coincident MIN_SPACING rule is concerned only about
edgesbeginning side-side relationships, but when directional
on page 85. criteria are applied, the area of the polygons is
also important. Adding the /OUT keyword to a
layer specification means that area on the other
layer must be present outside a shape for possible
errors to be considered.
Example: ERR=MINSPACING(A/OUT, B/IN, 2) : A. : D B .

When testing for possible violations on the lower Figure 169: When A/OUT
shape on layer A in Figure 169, the overlapping e e

. . , specification is used, lower
edge is not marked. When looking to the outside shapeis not marked with
of edge 3 on the lower shape, the DRC sees no

. errors.
material on layer B.

DRC User Manual 255

DRC Rules Syntax: MIN_SPACING

AWAY Option to test side-side angle — Beta test only!

New with beta version 113.65 of the DRC is the AWAY option of the
MIN_SPACING rule. The AWAY option restricts errors to non-overlapping
pairs of sidesthat are less than a certain angle apart.

The AWAY option should be added to only one layer specification. We will call
this layer the away _layer in this discussion.

Side-side pairs that are within distance of each other will be not be marked as
errors when both of the following conditions are met:

1) The side on the away_layer is within the specified number of sides
away from the intersecting side on the other layer that is too close.

2) The angle between the sidesis greater than the specified angle.

Let us consider the example shown
in Figure 170. (This geometry is
stored in the AWAY.CEL file
supplied with the beta version
update.) Let us assume that we need
to find sides of layer B that are
within 20 user units of sides of layer
A shapes. However, we consider
only paralel sides within this
distance as true errors. We want to
mark only sides 3 and 4
Perpendicular side pairs and sides at
a 45° angle are permitted and should
not be marked as errors.

The perpendicular sides 5 and 6
could be prevented from being
marked as errors by adding the /~P
option to the rule. You could
prevent marking the crossing sides

¥

i

e
PR
R

Figure 170

- AWAY.CEL

256

DRC User Manud

DRC Rules Syntax: MIN_SPACING

with the /~CROSS option. The layer B sides within the layer A shape can be
prevented from being considered as errors by adding the /OUT option to the
layer A specification in the MIN_SPACING rule.

Without the AWAY option, there is no way to prevent sides 1 and 2 from being
marked as errors. However, when we write the MIN_SPACING rule as follows
(as shown in the AWAY .RUL file distributed with the beta version update) the
DRC will mark only sides 3 and 4.

ERR= MIN_SPACING(A, BIAWAY=44.9, 20);
Since the SIDES BACK option is not included in this example, the default of

SIDES BACK=1 will beused. This meansthat only sides of layer B shapes that
share a vertex with a side that intersects a layer A side will have the AWAY test

applied to them.

Even when you want to exclude sides
with angles that are exactly 45°, you
should specify the AWAY angle 450 :
slightly less than that number. Floating

point calculations that determine the

angle in the layout may result in a
number dlightly less than the exact
angle.

Sides that pass the SIDES BACK test |
will have their angle to the side on the
other layer tested. Side-side pairs will
not be marked as errors if the angle
between the side is greater than 44.9°.

Figure 171: Angle between layer B
side2 and layer A side.

DRC User Manual 257

DRC Rules Syntax: MIN_SPACING

AWAY Automatic Extra Options

Whenever you use the AWAY option, the /OUT option is added to the other
layer specification. This means that only sides of the away_layer that are found
looking out from the other layer will be considered as potential errors. You
cannot add the /IN option to the other layer specification when the AWAY
option is used.

The /~PI~CROSS/~T options ae aso added automatically to any
MIN_SPACING rule with an AWAY option. This means that perpendicular
sides and intersecting sides are excluded as errors by default when the AWAY
option isused. You can override these defaults by adding /P, /CROSS, and/or /T
optionsto the MIN_SPACING rule.

Beta Test Warning

The new algorithms required to implement the AWAY option required changes
to the MIN_SPACING algorithms. You should verify the results of all
MIN_SPACING rules tested with this beta version. This includes the results of
MIN_SPACING rules that do not use the AWAY option. Verify al
MIN_SPACING results produced by this beta version against the results of the
released version.

If the results of any MIN_SPACING rules are different between the versions,
please contact I1C Editors.

We do run atest suite comparing the new and old versions before we post a beta
version. But just because our cases worked, that doesn't mean yours will.

258

DRC User Manud

DRC Rules Syntax: MIN_SPACING

End Caps

Refer to page 95
for amore
complete
explanation of
end caps.

Example:

The /CAP=angle parameters are used to
exclude from the spacing check al or part of
the end cap of each edge. The angle
parameter(s) must be between 90° and 180°.
When you do not add the /CAP keyword to a
layer, the entire end cap will be checked.

ERR=MINSPACING (A/CAP=90, B, 2.5)

When thisrule is run on the shapesin Figure
172, the end caps of the shape on layer A
will not be checked. Even though the shape
on layer B is closer than 2.5 units, itisnot in

the region checked. No violations will be Figyre 172: The end caps of the

marked. shape on layer A will not be
checked.

A Lle

Orientation Options

See page 97 for
more details on
the orientation
options.

The following optional keywords are used to prevent side-side pairs in certain
orientations from being considered errors. Only pairs of sides that are error
candidates after the directiona criteria (/IN, /OUT, and /CAP) are applied are
considered. Then, the orientation criteria are applied to error candidates. Only
pairs of sidesthat are in the special orientation are affected by the restrictions.

When you add atilda ('~') in front of the option, the DRC will not consider a pair
of sidesto be in error when they have the indicated relationship. Options with a
'~ override conflicting options.

Each of these orientation options is set for every MIN_SPACING rule. When
you do not specify the setting in the rule, the default is used. The primary
purpose of specifying orientation options is to prevent false errors from being
marked. However, you may need to override the defaults in some
MINSPACING rules to prevent the DRC default behavior from preventing real
errors from being found.

DRC User Manual 259

DRC Rules Syntax: MIN_SPACING

Crossing | Perpendicular | T-intersection | Overlapping | End-to-end
Simple spacing /ICROSS | /PERP Same as /OVER /END
Directional spacing | /~<CROSS | /~PERP crossing option 1k JEND

Figure 173: Default orientation options.

The orientation options in effect for each MIN_SPACING rule are always listed
in the rules compiler log. If you add the LIST_RULES option to the DRC
command line (see page 350), this information will also be listed in the DRC log
file.

When typing aMINSPACING rule, you can use the first letter of any orientation
option keyword instead of typing the entire keyword.

Remember that
theverticesof ~ /CROSS and /~CROSS
crossing sides
?;::(;)i;gr?:g The /CROSS keyword is used to consider as errors spacing violations that
fortheDRCto iNnvolve crossing sides. This is the default behavior when the rule is a simple
find the spacing check. The /~CROSS keyword prevents violations between crossing
violation. sides from being considered errors. /~CROSS is the default when the rule is a
directional spacing check.
Let us say that you need to find al parallel
wires that are too close together, but
crossing wires are acceptable.
Example: ERR=MINSPACING(A, B ,1.1/~CROSS)
When this ruleis run on the shapes shown in
Figure 174, violations between sides that
cross will not be marked. Only the parallel
sides that are closer than 1.1 units will be Figure 174: Only violations
marked with error wires on layer ERR. between sidesthat do not
intersect are marked when
/~CROSS isin effect.
260 DRC User Manual

DRC Rules Syntax: MIN_SPACING

Example:

Example:

ERR = MINSPACING (A, B/IN, 1.5)

The /IN keyword after the layer B
specification makes this rule a directional
spacing check. The default for directional
spacing checks is /~CROSS. Note that
side B3 in Figure 175 crosses side A1 and
violates the 1.5 spacing check. However,
since the default is /~CROSS, side B3 is
not marked as an error.

Side A2 is marked even though it is a
crossing side. Thissideis marked because
it violates the spacing rule with side B2,
not the crossing side B1. Crossing sides
will still be marked if they are too close to
other sides.

When you have a side marked as an error,
and the side is surrounded by other error
marks, it can be difficult to determine why
it violates the spacing rule. To list the
specific pairs of sides that violate a
spacing rule, add the /DET option
(covered later) to the spacing rule.

ERR = MINSPACING (A, B/IN,1.5/C)

In this example, the /CROSS option
(abbreviated to /C) has been added to the
MINSPACING rule above. Now, side B3
will be marked as an error since crossing
sides are now considered errors.

B3/ A

Ba OB

B2

Figure 175: Crossing side B3 is
not considered an error when the
default /~CROSS option isused
in the directional spacing check.

Ea UB

B2

Figure 176: Crossing side B3 is
marked as an error when the/C

option isadded to therule.

DRC User Manud

261

DRC Rules Syntax: MIN_SPACING

You can always look at the rules compiler log file to how each of the orientation
optionsis set for a particular rule. For example, the following is an excerpt from
acompiler log file for the MINSPACING rule above.

ERR[3] = MIN_SPACING(A[1], B[2]/In, 1.5
/+~CONN/~P/OVER/CROSS/ T/END/~DET)

/T and /~T

Use the /T keyword when you want sides that form a T-intersection to be
considered errors. The T-intersection does not need to be perpendicular. The
DRC defines a T-intersection as an intersection where a single vertex of asideis
on the other side, and the sides do not overlap. Use /~T when you want to
prevent sides that touch with a T-intersection from being indicated as errors.

The T-intersection options are most useful when combined with other orientation
options. See the example on page 267.

The default used by the DRC for T-intersections
is /T if the /CROSS option is in effect. If
/~CROSS is in effect, then the default option is
/[~T. When you override the default, the
specification with the '~' overrides a conflicting
option. Combining /~CROSS with /T means Fjgyre 177; T-inter sections
that crossing T-intersections will not Dbe \ithout crossing sides.
considered errors. Only side-side pairs where

the end points meet but the sides do not overlap or meet end-to-end will be
marked.

s

/PERP and /~PERP

These options control perpendicular orientations. When you use the /PERP
option, spacing violations of sides that are perpendicular will be considered
errors. This is the default for simple spacing checks. When you use /~PERP,
these violations are not considered errors. /~PERP is the default for directional
spacing checks.

262

DRC User Manud

DRC Rules Syntax: MIN_SPACING

Example:

Adding /OVER
toarulehasno
effect since this
isawaysthe
default
behavior.

ERR = MINSPACING (A, B/IN, 1/PERP)

In this example, we have
overridden the default /~PERP |q
option used for directional spacing
checks. The shapes are the same
as those used for the example on
page 254. Note that the
perpendicular sides of shape 4 are | 3
now marked as well. However,
the perpendicular sides of shape 3
are not marked, since they also
cross the sides of the B shape.

AR R AR

Remember that the default for A 1B 7 ERR
directional spacing checks is | ' ' .
/~CROSS.

Figure 178: Error wires created from

Side-side pairs that have more B/IN 1/P directional spacing check.

than one orientation relation-
ship will be marked aserrorsonly if none of those relationships ar e disabled
with a'~" in front of the option.

Note that unlike the other orientation options, the perpendicular option also
regul ates spacing violations of sides that do not touch.

/OVER and /~OVER

The /OVER option is used to consider spacing violations of overlapping sides as
errors. Thisisthe default for all MIN_SPACING rules. Use the /~OVER option
to prevent overlapping sides from being considered errors.

For the next example, look at Figure 179. Let us say that shapes on layer A that
are covered by layer B must be at least 1 unit away from an edge of a shape on
layer B. However, layer A shapes that are coincident with an inside edge of a
shape on B arevalid. Shapes that have a gap larger than O but lessthan 1, arein
error. Shapes on layer A are not allowed cross edges of shapes on layer B. We
want to find errors like shapes 2, 4 and 5.

DRC User Manual 263

DRC Rules Syntax: MIN_SPACING

Example: ERR=MINSPACING(A, B/IN, 1)
When the DRC executes the above rule on the shapes in Figure 179, the error
wires shown in Figure 180 are generated. Shape 3 is marked with an error since
it violates the 1 unit spacing rule. When you want to exclude sides that overlap
as errors, you must add the /~OVER option to the rule.
Example: ERR=MINSPACING(A, B/IN, 1/~OVER))
See severdl When the /~OVER option is added to the rule, the DRC marks only shapes 2 and
examples of 4 as shown in Figure 181.
how to test
coincident
edgesbeginning Note that no crossing or perpendicular sides are marked by either rule. Thisis
on page 85. because the default for directional spacing checksis/~CROSS~PERP.
Shape 5 is not marked by either rule. This is because no vertices of shape 5 are
within 1 unit of aside of the B shape. Adding /CROSS or /PERP to the rule will
not solve this problem. This shape should be found with a different method.
(See page 85.)
1
2
3
JBA . OB. A :D:B
B A OB
Figure 179: Only Figure 180: Shapes Figure 181: Only
shapesland 3are 2,3,and 4 are shapes2and 4 are
valid. marked with mar ked when
errors. /~OVER isadded.
264 DRC User Manual

DRC Rules Syntax: MIN_SPACING

/END and /~END

The /END option alows end-to-end sides to be
considered errors. The sides must share a vertex and
meet at 180°. /END is aways the default. Add/~END
to the rule if you do not consider sides that meet end- Figure 182 End-to-
to-end as errors. Most combinations of shapes that €nd intersection.
have sides with an end-to-end relationship also have

side-side pairs that have other relationships. Thisiswhy /~END is usually used
in combination with other options. See the example on page 267.

/INTER and /~INTER

These options control intersections. They are used as a quicker way to set the
/CROSS and /OVER options. The /INTER (or /l) option is shorthand for the
option combination /CROSS/OVER. The option /~INTER (or /~I) will set the
/~CROSS and /~OVER options.

DRC User Manual 265

DRC Rules Syntax: MIN_SPACING

Combining Orientation Options

Let us cover a few examples of combining orientation restrictions in a
MIN_SPACING rule.

Example: ERR=MINSPACING(A, B/IN, 1/C/P)

When we add both the /C and /P
keywords to this MIN_SPACING rule,
the horizontal sides of shape 3 in the
example used previously are marked. | 3
We need to add both keywords to this |- -
directional spacing check to find
perpendicular sides that cross. Thisis
because the default for directiona - ' -
spacing checks is /~CROSS/~PERP. A [B #ERR
Both defaults must be overridden.

Al
y

S
Rt

N
H

RN S Ty

Figure 183: Error wires created

Example: ERR=MINSPACING(A, B,1/~0) {rom /C/P directional spacing check.

When this rule is run on the shapes in
Figure 184, portions of sides where the
only relationship between them is an
overlap are not considered errors.
However, portions that have a T-
intersection relationship are still marked
as errors.

For example, side 1 on the B shape and q
side 2 on the A shape are marked as A B

errors since /T is the default for simple
spacing checks. Figure 184: Errorsfound when
/~O used.

266 DRC User Manual

DRC Rules Syntax: MIN_SPACING

Example:

Example:

ERR=MINSPACING(A, B, 1/~0/~T)

When we add the /~T option to the same
rule, this class of errors will no longer be
marked. See Figure 185. However, note : NN
that some errors are still marked. These _ .
errors are indicated where sides on each

layer meet end-to-end. If you want to A B
avoid marking sides with this
relationship as errors, add the /~E option
(shorthand for /~END).

Figure 185: Errorsfound when
/~O/~T used.

ERR=MINSPACING(A, B, 1/~O/~T/~E)

When we add the /~E option to the rule used above, no errors are marked when
therule is executed on the shapesin Figure 184.

Electrical Connections

When therules
compiler or
DRClistsa
MIN_SPACING
rule with the
default connec-
tion restriction
"/+~CONN", this
means both con-
nected and un-
connected pairs
of shapeswill be
checked.

Example:

Add the /CONN option to the MIN_SPACING rule if you want to restrict the
spacing violations to those between electrically connected shapes. The
/~CONN option will consider as errors only spacing violations between shapes
that are not electricaly connected. The default is always to check both
connected and unconnected pairs of shapes.

For MIN_SPACING rules to accurately recognize what shapes are electrically
connected, you must define how electrical connections are made. You use
CONNECT and STAMP rules to define electrical connectivity. See page 110
for a complete explanation.

CONNECTABBYC
ERR=MINSPACING(A, B, 2/~CONN)

The CONNECT rule above indicates that shapes on layers A and B are
electrically connected by shapes on layer C. Since the /~CONN option is used,

DRC User Manual 267

DRC Rules Syntax: MIN_SPACING

only spacing violations between shapes on A and B that are not electrically
connected will be considered errors.

Example: ERR=MINSPACING(A, B, 2/CONN)
Seeanexample \When the /CONN option is instead, it changes the rule so that only spacing
gfe?;?r?cr;? up violations between shapes that are on the same electrical net will be marked.

connections for

this option on NOTE: The restrictions imposed by the /CONN or /~CONN options will be

page 402. ignored when you specify the QUICK_PASS option on the DRC command line.
You should use the SLOW command line option to enable the /CONN or
/~CONN options. See page 129 for more details.

Other Options

JLENGTH=length

Add this option to the MIN_SPACING rule when you want to restrict the error
wireson layer error_layer to those at least length units long.

The /LENGTH option can result in unpaired error wires. It may be difficult to
determine which shape caused a spacing error when you can see only one
unpaired error wire.

268 DRC User Manual

DRC Rules Syntax: MIN_SPACING

Example:

See page 50 for
more
information on
detailed

logging.

Example:

ERR = MINSPACING (A, B/IN,1 /LENGTH=3)

When the /LENGTH=3 option is
added to the MIN_SPACING rule
used in the example on page 254,
error wires less than three units
long will not be created on layer
ERR. When the rule is run on the
same shapes as those in Figure 167,
only the error wire shown in Figure
186 will be created. The other
error wire of the pair (the one on
the A shape) is missing.

s

|
N

A [OB #AERR
You will not bewarned if spacing
errors have been ignored dueto a
/LENGTH restriction. Figure 186: Error wires created from

B/IN directional spacing check.
Using this option can prevent the

DRC from automatically using the faster quick_spacing algorithm. This may
result in longer run times. If you force this algorithm to be used by specifying
the QUICK_SPACING option on the DRC command line, you may prevent the
DRC from finding real errors. The log file will include a warning about this.
See page 100.

/DET and ~DET

Add the /DET option to your MIN_SPACING rule to create detailed error
messages in the log file for each pair of sidesin violation. Detailed logging can
result in very large log files.

ERR = MINSPACING(A, B/IN, 1.5 /DET)

When we add the /DET option to the rule in the example on page 261, the DRC
log file will contain the following text that clearly indicates each pair of sidesin
error. Thismakesit clear that side A2 in Figure 175 isin violation with side B2,
not the crossing side B1.

DRC User Manual 269

DRC Rules Syntax: MIN_SPACING

3. RESULT1[50] = MN SPACCNG A[1], B[2]/In, 1.5
| +~CONN/ ~P/ OVER/ ~CROSS/ ~T/ END/ DET)

1: 1 (178,10)-(178,7) <-> 1 (179, 8)-(179, 5)

2: 1 (175,7)-(178,7) <-> 1 (176, 8)- (179, 8)

Figure 187: Example of detailed logging for a MINSPACING rule.

Add the /~DET option to aruleif detailed logging is enabled in your rule set, but
you want to disableit for only that rule.

If you have a /LENGTH=length option in your MIN_SPACING rule, and
detailed logging is enabled, the log file will contain details on error wires that
have been discarded due to the length restriction.

270

DRC User Manud

DRC Rules Syntax: MIN_WIDTH

MIN WIDTH Find shapes with small width

error_layer =MIN_WIDTH (layerl, min_distance, [/LENGTH=length] [/[~]DET])

See page 103
for more
information on
how the DRC
defines width.

Example:

Example:

This rule will mark as errors any

sides of a polygon that are less A
than min_distance away from
another side of the same '

polygon. Sidesthat touch are not
considered errors. Only shapes
on layerl are tested. The error
wires will be created on layer
error_layer.

Figure 188: Shapes Figure 189: Sides
on layer A. that arecloser than

2 unitsare marked
with error wireson

layer B.
B=MIN_WIDTH (A, 2)

This rule will find sides of shapes on layer A that are closer than 2 units from
other sides of the same shapes and mark them with error wires on layer B. When
this rule is run on the shapes in Figure 188, each pair of sides in violation of the
rule is marked with error wires on layer B as shown in Figure 189.

The optiona /LENGTH=length parameter is used to
restrict the errors found to those at least as long as length.
Violations less than this length will not be flagged as
errors.

C=MIN_WIDTH (A, 2/LENGTH=3) Figure 190: The

) width violation
When the /[LENGTH keyword is added to the rule above, shorter than 3

violations less than 3 units long will not be considered | hitsisnot
errors. marked.

DRC User Manual 271

DRC Rules Syntax: MIN_WIDTH

See page 50 to
learn more
about detailed
error messagein
thelog file.

This rule will not locate notches. The min_distance is measured only across the
interior of polygons. See the MIN_NOTCH rule to locate notches.

The optional /DET keyword is used to add a detailed error message to the log
file for each pair of sides that fails the test. For large designs, these messages
may make the log file unreasonably long.

Add the /~DET option to the rule when detailed error messages have been
enabled, but you want to disable them for only thisrule.

272

DRC User Manud

DRC Rules Syntax: MODIFY LAYER

MODIFY LAYER Define layer used as both an input and output layer

MODIFY LAYER iced_layer number drc_layer name

Seeanoverview Use this rule to define layers that can be used as both input and output layers.

of layer
definition rules
on page 55.

Example:

Modify layers are useful when you are using the DRC to modify layersin a cell.
Use INPUT LAYER and OUTPUT LAYER definitions instead when you are
using the DRC to check for errors.

Use caution with layers defined with this rule. If you use the DRC generated
command file to read shapes on modify layersinto your original cell(s), you will
alter existing layers. Read this entire description before using the rule.

The iced layer_number parameter indicates the number of the layer in the
ICED™ cell(s). The drc_layer_name parameter defines the name of the layer
used in the rest of the DRC rule set.

MODIFY LAYER 1A
Thisrule isroughly eguivalent to the following pair of rules.

INPUT LAYER 1A
OUTPUT LAYER 1RESULT

In either case, the shapes on layer 1 in the input data will be used as layer A in
the DRC run, and shapes will be created on layer 1 in the command file the DRC
generates at the end of the run. (This command file can be used for input into
the ICED™ layout editor.)

The primary difference between the two definitions is that when MODIFY
LAYER isused, you refer to layer 1 throughout the rule set as layer A, while the
pair of INPUT LAYER and OUTPUT LAYER rules allow you to refer to layer 1
by two different names during the rule set.

DRC User Manual 273

DRC Rules Syntax: MODIFY LAYER

Example:

If you import the output shapes into your original cells, layer 1 may be corrupted
because you now have both the old shapes on layerl and the new ones created by
the DRC run. You must be very careful to either remove the old shapes on
layer 1 before adding the new shapes to your cell, or to use the output data
to create new cells.

Since this is a hazardous operation, the DRC rules compiler will warn you when
you have used the sameiced_layer_number in both and INPUT LAYER rule and
an OUTPUT layer rule. However, when you use MODIFY LAYER, the DRC
rules compiler will assume that you know what you are doing and will not issue
awarning.

Let us say that you have library of cells and you need to shrink the size of all
metal wires in these cells. You want to create new copies of al cells in the
library with this change made. You can perform this function easily with the
DRC.

ALL_SAFE
MODIFY LAYER 1M1; 2M2 3POLY; 4DIFF;
MODIFY LAYER 5CONT; 6VIA; 7WELL;

M1=SHRINK(M1,.2)
M2 = SHRINK (M2, .2)

The command file created when you run this set of rules on a cell will include
the data on all seven layers listed in the MODIFY LAYER rules, even though
five of those layers are unchanged by the rule set. Y ou can create a new, empty
cell with the iIceD™ layout editor and run the command file to create the shapes
for the new cell.

There are afew things you should be aware of when you use a process like this.
All wires will be converted to polygons in the output data. All text and line
components will beignored.

274

DRC User Manud

DRC Rules Syntax: MODIFY LAYER

Refer to page
134 for details
on the
relationship
between
hierarchical
output and
dangerous
processing
options.

If you add all original cellsto amain cell and create the data for the DRC from
this main cell, you can use the HIERARCHICAL command line option to
process al cells with one DRC run. In this case, you will want to change
ALL_SAFE intheruleset aboveto ALL_DANGER.

The syntax for defining multiple layers is the same as that used for the INPUT
LAYER rule. Seepage 221 for examples.

DRC User Manual 275

DRC Rules Syntax: NO_CHECK_INPUT

NO_CH ECK_'NPUT Prevent some bad polygons from being marked

NO_CHECK_INPUT

See page 74 to
learn more
about bad

polygons.

Example:

By default, the DRC will search for bad polygons on all layers defined with
INPUT LAYER or MODIFY LAYER rules. This is true even when some of
those layers are not used in any processing rules. If you prefer to have the DRC
ignore bad polygons on layers that are not actually used in the rule set, add this
rule anywhere in your rule set.

NOCHECKINPUT

Note that the underscores are optional when typing this rule. Thisis true of all
rules.

When this rule is not present in your rule set, bad polygons on input layers or
modify layers that are not used by any rules in your rule set will be still be
copied to an error layer and reported in the log file.

Even when you do add this rule to your rule set, bad polygons on input layers or
modify layers that are used by other rules will be copied to an error layer and
reported in the log file.

276

DRC User Manud

DRC Rules Syntax: NO_HIER_WARNING

NO_H|ER_WARN|NG Prevent warning during hierarchical output

NO_HIER_WARNING

See page 146 to
See an overview
on hierarchical
output.

See page 354
for detailson
the
HIERARCHI-
CAL command
line option

Thisruleisuseful only when you are creating hierarchical output through the use
of the HIERARCHICAL command line option.

Whenever you are creating hierarchical output, and the ALL_DANGER rule is
not used, safe processing may force some of the shapes to be created higher up
in the hierarchy than you would expect. In this case, the DRC creates the
following warning in the log file and posts it to the console. You must reply to
the warning prompt for the run to proceed.

****x*WARNI NG*** You specified hierarchical output.
Because the rules file does not allow at |east
some operations to be done dangerously, sone output

may not be hierarchical. This can be avoided wth
ALL DANGER in the rules file. If this results in
wrong answers, there will be a nessage on your |og
file.

You can avoid this warning nessage by placing
NO H ER WARNING in your rules file or on the commuand
l'ine.

To avoid the warning prompt, you can add the NO_HIER_WARNING rule to
therule set. When thisisthe case, no warning message will be created.

DRC User Manual 277

DRC Rules Syntax: NO_PANELS

NO_PANELS Execute DRC on entire design at once

NO_PANELS

Tounderstand |f your layouts are small and simple you may want to execute the DRC on the
how panelsare entire design at once instead of dividing it into panels with the default DRC

uxd.You panel sattings or the PANELX and PANELY rules. Add the NO_PANELS rule
Panel to specify a single panel that coversthe entire design area.

Processing on

page 118. Do not use this option on larger designs, e.g. entire chips.

278 DRC User Manual

DRC Rules Syntax: NO_RUL

NO_RUL Prevent warning when source rules file is missing

NO_RUL

Thisruleinthe
rule set has the
same effect as
adding the
NO_RUL
option to the
DRC command
line.

The DRC rules compiler stores the location and time/date stamp of the source
rules file in the compiled rules file. When you run the DRC, one of the first
tasks performed by the program is to check the time/date stamp stored in the
compiled rules file against the source rules file. The DRC will post a warning
and wait for you to respond if the source rulesfile is different from the one used
to create the compiled file, or if the source rules file can't be found. Thisisto
avoid a wasted run when you modify the source rules file, but forget to compile
it before running the DRC.

If you prefer to avoid the warning prompt when the source rules file will not be
available, add this rule to your rule set. This can be especially useful when you
intend to distribute a compiled rule set to others. Since the source rules set will
be missing when those users use your compiled rules, they will receive the
warning prompt unless you add this rule to the rule set. (The warning prompt
can also be suppressed with the NO_RUL option on the DRC command line.)

This rule will not prevent the DRC from issuing the warning prompt when the
source rules file is found by the DRC and it has a different time/date stamp than
the compiled rulesfile.

DRC User Manual 279

DRC Rules Syntax: NO_WARN_ACUTE

NO_WARN_ACUTE Prevent marking acute angles

NO_WARN_ACUTE

Usethe
WARN_ACUTE
rule to change the
specia layer
number. Itis
layer 99 by
default.

Acute angles can cause problems to mask-processing software. So the DRC will
by default alert you to all acute angles on output layers. All acute angles on
output layers will be marked with wire shapes on a special output layer and
reported in the log file. (Thisis a departure from earlier versions of the DRC.)

Acute angles on output layers receive this special handling due to the fact that
the DRC can create shapes with acute angles in special cases. If you use the
DRC to generate mask layers, you should fix these shapes by hand in the layout
editor before sending the data to your foundry.

However, if acute angles are not a problem for your design, or if you are
generating output layers that will not be used as mask layers, you can add this
rule to your rule set to prevent both the reporting of these acute angles and the
generation of the wire shapes on the special layer to mark all acute angles.

Alternately, if you want to only suppress the generation of the wire shapes, while
till reporting the acute angles in the log file, use the WARN_ACUTE=0 rule
instead of thisrule.

280

DRC User Manud

DRC Rules Syntax: NOT

NOT

Copy inverse of layer

result_layer = NOT layerl

Example:

The bounding
box isthe
smallest
rectangle,
square with the
axes, which
encloses the
design.

This rule is used to create the inverse of a layer. It is simply a form of the
assignment rule (already covered on page 187) with the optional NOT included.

NWELL =NOT PWELL

Figure 191: Layer PWELL Figure 192: Layer NWELL = NOT
PWELL

The rule above will create the inverse of the PWELL layer. The outer boundary
of the inverse layer is dightly larger than the bounding box of your design.
When the NWELL layer is used by other rules in the DRC, it will remain one
large polygon with holesinit. If the NWELL layer is an output layer, before the
DRC can output the layer as ICED™ components the shape must be divided into
several polygons. Polygons with holes not connected to the outer boundary are
not valid components in ICED™. The somewhat arbitrary cut lines (where the
NWELL shape is cut to create valid polygon shapes) will have no effect on
processing in the DRC.

The CUT_RESOLUTION rule is used to define the grid for cut lines when a
shape with holesis cut into valid polygon shapes.

DRC User Manual 281

DRC Rules Syntax: OFF_GRID

OFF GRID

Find vertices that are not on resolution grid

error_layer = OFF_GRID (layerl, grid_resolution)

Refer to page 79
for an overview
of grid
resolution
issues.

Example:

Example:

Resolve off-grid
problems with
the SNAP and
SNAP45 rules.

Use this rule to find polygons on layer1l containing vertices that are not on the
indicated grid. Polygons with at least one vertex with a coordinate that cannot
be expressed as a multiple of grid_resolution will be copied to error_layer and
counted as errorsin the log file.

Thegrid_resolution is expressed as a positive real number of user units.
B=OFF_GRID (A, 1)

This rule will copy to layer B polygons on layer A that have at least one vertex
with a non-integer coordinate.

C=OFF GRID (A, .1)

Polygons on layer A with a vertex not on a grid with .1 spacing will be copied to
layer C and included in the error count.

Note On Touching Shapes

Remember that the DRC merges al touching shapes before verifying the
geometry. |If two shapes on layerl share an edge on an off-grid coordinate, but
the merged shape has no edges with off-grid coordinates, the shapes will not be
marked as errors. See the overview on page 79 for details.

Preventing Off-Grid Coordinates

See the CUT_RESOLUTION rule to prevent off grid coordinates from being
created by the DRC on generated layers at panel boundaries.

282

DRC User Manud

DRC Rules Syntax: OR

OR Boolean OR of two layers

result_layer = [NOT] layerl OR [NOT] layer2

Thisrule will create the union of all shapeson layerslayerl and layer?2.

Example: C=AORB

Figure 193: Polygonson layers Figure194: C=A ORB
Aand B

The optional NOT keywords will perform the operation with the inverse of the
layer instead of the original layer.

DRC User Manual 283

DRC Rules Syntax: OUTPUT LAYER

OUTPUT LAYER

Define layer for output

OUTPUT [ERROR] [WIRE] [POLYGON] LAYER iced layer number drc layer name

Refer to page 55
to learn more
about how
layers are used
by the DRC.

Refer to page
70if you using
output layersto
generate mask
layers.

To see how to
import these
layersinto the
ICED™ layout
editor, see page
365.

Example:

Y ou can specify
layer numbers at
run time with
the LAYERS
option on the
DRC command
line. See page
346.

Output layers will be included in the command file generated by the DRC. This
file can be used to create shapes in ICED™ cells. Only layers defined with
OUTPUT LAYER rules (or MODIFY LAYER rules) can be imported into the
ICED™ layout editor. Be sure that all layers used to locate errors are defined
with thisrule. Use SCRATCH LAYER rules to define all other layers the DRC
will create or modify.

The only required parameters for the OUTPUT LAYER rule are the
iced layer_number and the drc_layer name. The iced_layer_number will be
the number of the layer created in the ICED™ cell when you execute the
command file created by the DRC.

The drc_layer_name is the name of the layer used in the other DRC rules. The
name will not be used in the ICED™ cell. Only the layer number is preserved as
you import the shapes into ICED™. The data is created after all rules are
executed at the conclusion of the DRC run.

OUTPUT LAYER 101 GATE

This example defines the layer GATE. Since GATE is an output layer, at the
end of the DRC run all shapes on that layer will be included in a command file
which can be used to create the shapes in an ICED™ layout editor session. The
layer number in the IcED™ cell will be 101. (The layer in the ICED™ cell will
not automatically have the name GATE. Whatever name was assigned in the
cell to thislayer number, if any, will remain the name of the layer.)

You can use the same iced_layer_number for both an input layer and an output
layer, but you will receive a warning from the compiler. To avoid the warning,
use MODIFY LAYER instead. (See page 273.)

284

DRC User Manud

DRC Rules Syntax: OUTPUT LAYER

Example:

Toassigna
nameto alayer
inthe ICED™
layout editor,
usethe LAYER
command.

Example:

You can output more than one drc_layer_name to one iced_layer _number. In
this case, shapes from several DRC layers will al be created on one ICED™

layer.

OUTPUT LAYER 10 POLY
OUTPUT LAYER 10 RESISTOR_POLY

This pair of rules defines two output layers with the same iced layer _number.
All shapes on both DRC layers POLY and RESISTOR_POLY at the conclusion
of the DRC run will result in shapes on layer 10 in the command file. The layers
are processed separately during the DRC run.

Y ou can use semicolons and curly braces to allow more than one layer definition
inone OUTPUT LAYER rule. The syntax isthe same as that used in the INPUT
LAYER rule. Seepage 221 for more details.

OUTPUT LAYER {
11 DIFF I diffusion layer
12 DEV I device layer

Defining an Error Layer

Set the width of
al error wires
with the
WIRE_WIDTH
rule.

The optional ERROR keyword will cause the layer to be treated as an error
layer. If shapes on the indicated layer exist at the end of the DRC run, they will
be included in the error count. The number of shapes on each error layer is
reported in the "Error Layer Outputs” section of the log file.

Any rule that uses the term error_layer on the left side of the '=' in the syntax
statement automatically classifies the layer as an error layer. Refer to page 62
to see which rules automatically classify their result layers as error layers. You
do not need to add the ERROR keyword to the OUTPUT LAYER rule for the
layers created by any of these rules.

DRC User Manual 285

DRC Rules Syntax: OUTPUT LAYER

Example:

All polygons on
output layers
will be tested
for acute angles.
Seethe
information in
the WARN-
_ACUTE rule.

However, if you generate a layer you consider an error layer, but it is created by
a rule that does not classify the result layer as an error layer (e.g. any of the
Boolean rules: AND, OR, etc.), you should add the ERROR keyword to the
OUTPUT LAYER rule so that shapes on this layer are counted as errors by the
DRC.

OUTPUT ERROR LAYER 11 RESULT
RESULT =A AND B

This pair of ruleswill cause the DRC to create on layer RESULT the intersection
of layers A and B. Since the ERROR keyword is present in the OUTPUT
LAYER rule, al shapes on this layer will be included in the error count. If the
ERROR keyword is not included, shapes on layer RESULT would not be
counted as errors.

The WIRE and POLYGON Keywords

The MASK
keyword isan
obsolete, but
still supported,
synonym for the
POLYGON
keyword.
Similarly,
OUTLINEisa
synonym for
WIRE.

The WIRE and POLYGON keywords are mutually exclusve. The WIRE
keyword will force the creation of wires instead of polygons. The wires will
form the outline of polygons on the layer. The conversion takes place only
when the shapes are output at the end of the DRC run.

The WIRE option will not transform polygons that were originally wires on an
input layer back into ordinary wires on an output layer. Once the input pre-
preprocessing has transformed wires in the input data into polygons, there is no
way to transform them back into ordinary wire components for output data.

The POLY GON keyword indicates that the layer should contain only polygons.
If you attempt to use a layer defined with a OUTPUT POLYGON LAYER rule
on the left of the '="in any rule which creates error wires, you will get an error
message from the rules compiler. Since rules that do not create error wires
create polygons by default, this keyword is redundant unless you want the
compiler to warn you if you are creating error wires on a layer that you consider
to be amask layer.

286

DRC User Manud

DRC Rules Syntax: OUTPUT LAYER

Defining Temporary Scratch Layerswith Layer O

See an example
that useslayer O
processing on
page 152.

Shapes with
holes will be cut
into multiple
shapes on
output. See
page 281 for an
example. The
resolution grid
for the cut lines
is set by the
CUT_RES
OLUTION rule.

The iced_layer_number O is treated differently than other output layers.
Commands that create shapes on layer O will not be included in the output
command file. Instead, the layer istreated as a scratch layer. This feature makes
it much easier to debug rule sets.

Let us say that you have an intermediate layer you need to look at occasionally to
diagnose problems with your rule set. This layer is really a scratch layer and is
not usually output. However you do want to include it in the output file
occasionally. You should define this layer as an output layer with layer number
0. When you do want to see this layer in the output, ssimply edit the layer
number to a number other than O and the layer will be included in the output.
This is much easier than editing the rules file to move the layer back and forth
froman OUTPUT LAYER statement to a SCRATCH LAY ER statement.

You can have severa output layers assigned to layer number O (or any other
layer number) and they will still be handled as separate layers during DRC
processing.

DRC User Manud

287

DRC Rules Syntax: OVERLAPPING

OVERLAPPING Find shapes with common area

result_layer = layer1 [NOT]*® OVERLAPPING [n1[:n2]] layer2 [NOT=result_|layer2]®

Example:

This rule is used to classify polygons on layerl based on whether or not they
overlap polygons on layer2. Polygons touching only at a point, or sharing only
an edge, are not considered to be overlapping. All shapes that overlap also
touch. (Seethe TOUCHING rule on page 311.)

C=A OVERLAPPING B

In this example, layer C will contain all polygons on A which overlap at least
one polygon on layer B

o NS

* Overlapping * "Overlapping - * Touchingonly - Not Overlapping -
. and Touching . .andTouching or Touching
Figure 195

Only one optional NOT keyword can be used in the OVERLAPPING rule. (The
NOT keywords and the nl and n2 parameters work in exactly the same manner
as they do in the TOUCHING rule. See page 311 for more details and more
examples.)

16 Only one optional NOT keyword is allowed in asingle rule.

288

DRC User Manud

DRC Rules Syntax: OVERLAPPING

Example: C=A OVERLAPPING 2 B NOT=D

This example will collect on layer C all layer A shapes that overlap exactly 2
layer B shapes. All other shapes on layer A will be copied to layer D.

DRC User Manual 289

DRC Rules Syntax: PANEL_VERTICES

PANEL VERTICES

Control number of vertices per panel

PANEL _VERTICES [=] panel_spec

To understand
how panels are
used, you
should read
Panel
Processing on
page 118.

DRC memory is
divided between
main memory
and data storage
memory. See
details on page
161.

The default
pandl sizeis
provided in
your log file.

The DRC divides large layout databases into panels. This alows the DRC to
process entire chips with the memory available on personal computers. The
DRC attempts to calculate optimal panel size based on design size, density, and
available memory. (Previous versions always defaulted to processing the data as
a single panel unless the PANELX and/or PANELY rules were used.) Most
designs may complete with acceptable run times with this default behavior.

If the default panel sizes do not seem to be optimal given your design and
memory constraints, one option is to “tweak” the automatic panel calculations
with the PANEL_VERTICESrule.

The PANEL_VERTICES rule controls panel size by restricting the number of
vertices in a single panel, rather than by specifying exact dimension as in the
PANELX and PANELY rules. This makes PANEL VERTICES more flexible
than the PANEL X and PANELY rulesfor use in different designs and systems.

panel_spec is specified as the maximum number of relevant input layer vertices
per panel per Megabyte of main memory available to the DRC, or:

Max # Verticesin a Panel
Megabytes Main_Memory

= panel_spec

By default, panel_spec is set to 5000. This provides a roughly optimum number
of verticesin apanel for most designs.

290

DRC User Manud

DRC Rules Syntax: PANEL_VERTICES

The PANELX
and PANELY
rulesinstead set
an explicit
maximum panel
size.

If you have 50 Megabytes of main memory available to the DRC, the default
value for panel_spec resultsin the following equation:

Vertices
Panels « 50 = 5000
or
Vertices/Panel = 250,000

If the total number of vertices in your design was 25 million, then the design
would be divided into approximately 100 equal size panels.

Since there is a trade off between extra processing required for panel processing
and time saved due the smaller amount of data stored in flattened form at any
given time, time may be saved by increasing the default panel size or by
decreasing it.

e If arun with the default number of panels completes successfully, you can
see if a different number of panels leads to faster run times by specifying
different PANEL_VERTICES values. The DRC log file lists the amount of
time spent by each phase of the processing near the bottom of thefile. If the
log file indicates that the DRC is spending significant time swapping data to
disk, try adding a PANEL_VERTICES rule in your rule set with a number
smaller than 5000. If the log file indicates that little or no time is spent
swapping data to disk, try increasing the panel size by with a
PANEL_VERTICES rule using avalue larger than 5000.

* On the other hand if the DRC crashes with a message that indicates a
memory or panel size problem, or if disk swaps are sowing your run,
try anumber smaller than 5000 in the PANEL _VERTICESrule.

You can significantly decrease the amount of time the DRC takes to complete a
run by optimizing panel processing. Try various values for PANEL_VERTICES
until you come up with an optimal value for your computer and design. Set
panel_spec to a positive real number.

DRC User Manual 291

DRC Rules Syntax: PANEL_VERTICES

Example:

PANEL_VERTICES = 3000

You can try this value for PANEL_VERTICES if the DRC was unable to
complete with the default and you have a very limited amount of memory on
your system. If you are running a Multitasking operating system such as
Microsoft Windows and you have only 32 Megabytes on your system, the DRC
may have as little as 10 Megabytes of main memory available. In this case:

Vertices
#Panels+ 10 = 3000
or
Vertices/Panel = 30,000

292

DRC User Manud

DRC Rules Syntax: PANEL X and PANELY

PANELX and PANELY

Define maximum panel size

PANELX [=] panel_x dimension

and

PANELY [=] panel_y dimension

To understand
how panels are
used, you
should read
Panel
Processing on
page 118.

Seethe
NO_PANELS
rule to specify a
single panel that
coversthe entire
design area.

As of version 3.14, the DRC attempts to calculate optimal panel size based on
design size, density, and available memory. (Previous versions always defaulted
to processing the data as a single panel unless the PANELX and/or PANELY
rules were used.) This automates the panel size selection process, and some
designs will complete with acceptable run times with this default behavior.

The default panel sizeisreported in the log file. This default panel size may not
be optimal for your design. You may want to optimize panel size to get faster
run times by using the PANELX and PANELY rules. These rules explicitly set
the maximum panel size the DRC will use. You may see improved run times
with either asmaller or larger panel size than the default.

(The PANEL_VERTICES rule sets panel size according to the number of
vertices and memory available rather then an explicit size. This rule is more
versatile when your rule set deals with various design sizes or densities.)

The DRC reports the amount of time spent disk swapping near the end of the log
file. If the DRC is spending a majority of the processing time in disk swapping,
you should try reducing run time by using the PANELX and PANELY rules to
force the DRC to process your design in smaller portions.

Both panel dimensions should be positive real numbers in user units. Since the
DRC will divide your design into roughly equal panels, the actual size of your
panels will probably be somewhat smaller than the values you set with these
rules.

DRC User Manud

293

DRC Rules Syntax: PANEL X and PANELY

Example: PANEL X =300
PANELY =300

Let us say that your design is 720 user units in the x-direction and 580 user units
in the y-direction. When the above rules are used to set the panel size, the design
will be divided into six 240 by 290 panels.

294 DRC User Manual

DRC Rules Syntax: RULE_SET

RULE_SET Define sets of rules to control execution

RULE_SET set name 1[, set name 2]..., set_ name 10]]

Refer to the DO
command line
parameter on
page 347.

Example:

Use this rule to define sets of rules that can be run selectively when the DRC is
run. Y ou specify which rule subsets are run using the DO parameter on the DRC
command line at run time.

INPUT LAYER 1M1; 2M2; 3DIFF; 4POLY
OUTPUT LAYER {

11 M1 _ERROR

12M2_ERROR

13SMALL_GATE

14 SMALL_GATE_SIDE

}
SCRATCH LAYER GATE

RULE_SET DEVICE_RULES WIRE_SPACING_RULES
GATE = DIFF AND POLY

DEVICE_RULESON | Start of rule set
SMALL_GATE =MIN_AREA (GATE, 4 /BORDER=4)
SMALL_GATE_SIDE = MIN_SIDE (GATE, 1.5)

DEVICE_RULES OFF | End of rule set

WIRE_SPACING_RULESON | Start of rule set
M1 _ERROR = MIN_SPACING (M1, M1, 2)
M2_ERROR = MIN_SPACING (M2, M2, 2.5)
WIRE_SPACING_RULES OFF | End of rule set

DRC User Manual 295

DRC Rules Syntax: RULE_SET

The DO
command line
option can also

The set of rules above defines two rule subsetss DEVICE RULES and
WIRE_SPACING_RULES. You can direct the DRC to execute only the
WIRE_SPACING_RULES subset by adding the following option to the DRC

specify rules by
number even command line option:
when you have
not defined any DO=(WIRE_SPACING_RULEYS)
rule sets.
In this case, the rules that create the SMALL_GATE and SMALL_GATE_SIDE
See page 151 layers will not be executed. Since the GATE layer is no longer used in the
for moredetails remaining rules, the DRC will automatically skip executing the AND rule which
on how the :
DRC optimizes generates t.
arule set.
Since the DRC will determine which layer processing rules are required to
execute therulesin arule set, it is best to include only the final result rules (e.g.
verification rules or output layer generation rules) in a rule set. All layer
processing rules can be created earlier in the rules file, outside of any named rule
set. Then create the final rules in named rule sets to be able to selectively
execute them. Only the required layer processing rules for the selected rule sets
will be executed and the rest will be ignored.
You can turn a rule set on and off more than once in arules file. You can also
define more than one rule subset in a single file, up to 10 rule subsets. The rule
subsets may overlap, in other words a specific rule may be in more than 1 subset.
Example: RULE_SET DEVICE_RULES FET_RULES
GATE = DIFF AND POLY
RES POLY = POLY AND RES MASK
DEVICE_RULESON I Start of rule set
FET_RULESON I Start of rule set
SMALL_GATE =MIN_AREA (GATE, 4 /BORDER=4)
SMALL_GATE_SIDE = MIN_SIDE (GATE, 1.5)
FET _RULESOFF I End of rule set
RES ERROR =MIN_WIDTH(RES POLY,1.5)
DEVICE_RULESOFF ' End of rule set
The rules that create the SMALL_GATE and SMALL_GATE SIDE layers are
contained in both rule sets.
296 DRC User Manual

DRC Rules Syntax: SAFE_CELL

SAFE_CELL Flatten only certain cells for dangerous operations

SAFE_CELL cedl_name[cell_name 2[...cell_name n]]

Y ou should
refer to page
136tolearn
about dangerous
operations.

Example:

Example:

This rule specifies certain cells that the DRC should flatten before performing
dangerous operations. When thisruleis used, all cells not identified as safe cells
will be handled in a dangerous manner (i.e. they will not be flattened).

SAFE_CELL SUBCELL

This rule will force the DRC to flatten the cell SUBCELL for dangerous
operations. All other cellswill not be flattened for dangerous operations.

You can supply more than one SAFE_CELL rule. You can also specify more
than one cell in the SAFE_CELL rule. Simply list al required cell names on the
same line. If you prefer, you can use curly braces to alow more than one line of
cell specifications in a single rule. The syntax for this is the same as that used
for the DANGER_CELL rule. See page 207 for examples.

The cell_name parameters can contain wildcard characters (*'). When an
asterisk is present, the DRC will handle as a safe cell any cell with a name that
matches the given string with one or more characters replacing the asterisk. A
vertical bar, '|' can be used as well to indicate a list of valid cell names. More
than one'|' delimiter can be used.

SAFE_CELL AND*[*INV[*12K*

When thisrule is used, all cells that begin with the string "AND" and those that
end in the string "INV" will be handled safely. So will al cells that contain the
string "12K" anywhere in the cell name. All other cells will be handled
dangerously.

DRC User Manual 297

DRC Rules Syntax: SAFE_CELL

This rule is incompatible with the rules ALL_DANGER, ALL_SAFE, and
DANGER_CELL. When SAFE CELL is used in combination with
SAFE LAYER or DANGER LAYER rules, the SAFE LAYER or
DANGER_LAYER rules take precedence. See page 142 for an example.

298 DRC User Manual

DRC Rules Syntax: SAFE_LAYER

SAFE_LAYER Force cell flattening for critical layers

SAFE_LAYER layerl [layer2 [...layern]]

Y ou should
refer to page
136tolearn
about dangerous
operations and
hierarchical
processing.

Use this rule to specify layers that should be handled safely by the DRC for
dangerous operations regardless of the default specification for all cells defined
by the ALL_DANGER, DANGER_CELL, or SAFE_CELL rules.

Specify the names of layers that should be generated safely. You cannot specify
input layersin thisrule. Only the layer(s) specified in this rule will be processed
safely. Other layersin cellsthat contain the indicated layers will not be affected.

Y ou may want to usethis rule rather than ALL_SAFE or SAFE_CEL L when you
have only a small area of a large cell you need to be handled safely. You can
add a small shape on a dummy layer that isolates the problem shapes on a new
layer that you specify inaSAFE_LAYER rule. See the example on page 142.

Y ou can supply more than one SAFE_LAYER rule. You can also specify more
than one layer in a single SAFE_LAYER rule. Simply list al required layer
names on the same line. If you prefer, you can use curly braces to allow more
than one line of layer specifications in a single rule. The syntax is the same as
that used in the DANGER_LAYER rule. See page 209 for examples.

DRC User Manual 299

DRC Rules Syntax: SCRATCH LAYER

SCRATCH LAYER Define temporary layer

SCRATCH LAYER drc_layer_name

Examples:

All layers used in the rules file must be defined before they are used in a rule.
This rule is used to define intermediate layers that are neither input layers or
output layers. If alayer used in the rules set is not defined with the INPUT
LAYER, MODIFY LAYER, or OUTPUT LAYER rules, you must define it as a
scratch layer using thisrule.

The use of semicolons and curly braces to allow more than one layer definition
in one statement is the same as their usein the INPUT LAYER rule.

SCRATCH LAYER SRC_DRN; GATE; POLY_WIRE;

SCRATCH LAYER {
SRC_DRN;
GATE;
POLY_WIRE;

}

SCRATCH LAYER {
SRC_DRN
GATE
POLY _WIRE

}

All three of these examples are exactly equivalent. The semicolons are not
required when one layer is defined on each line.

300

DRC User Manud

DRC Rules Syntax: SCRATCH LAYER

Example:

See an example
that useslayer O
processing on
page 152.

If you use a layer defined with the SCRATCH LAYER rule as the error_layer
for any of the rules that automatically generate polygon shapes on an error layer,
the shapes created will not count as errors and will not be included in the output.
(This includes the MIN_AREA, OFF_GRID, and STAMP rules. See the entire
list on page 62. If you do not use the layer in other succeeding rules, you will
receive awarning from the rules compiler.)

For, example, let us say that shapes on layer A with a small area are not always
errors. Y ou want to classify shapes on layer A by areausing a MIN_AREA rule,
but you do not want to count all shapes created by the rule as errors. Since the
SMALL_A layer is defined as a scratch layer rather than as an output layer,
shapes on SMALL_A are not counted as errors. However, shapes on
SMALL_A NO B will be counted as errors since SMALL_A NO B is an
output error layer.

INPUT LAYER 1A; 2B,
SCRATCH LAYER SMALL_A;
OUTPUT ERROR LAYER 90 SMALL_A_NO_B

SMALL_A =MIN_AREA (A, 6/BORDER = 6)
SMIALL_A_NO_B=SMALL_A AND NOT B

You can use this method of suppressing errors for a rule that usually creates
error shapes only for rules that create polygons, not error wires.

Another way to specify scratch layersisto use an OUTPUT LAYER rule with a
layer number of 0. No shapes on layer O will be included in the output. This
method is often more convenient than using SCRATCH LAY ER rules since you
can easily change any layer from a scratch layer to an output layer by editing the
layer number to a non-zero number. This requires less editing than changing a
layer definition from a SCRATCH LAYER statement to an OUTPUT LAYER
statement. See page 287. You may often need to look at scratch layers when
debugging arule set.

DRC User Manual 301

DRC Rules Syntax: SHRINK

SHRINK

Shrink shapes uniformly

result_layer = SHRINK (layerl, offset val)

Example:

Seethe BLOAT
rule.

Use the SHRINK rule to store on result_layer
polygons on layer1l which have been shrunk
by offset_val. All sides of the polygons will
be shifted inwards in a paralel manner by
offset_val. offset_val must be a positive real
number of user units.

B =SHRINK (A, 1.2)

Note that the parentheses and comma are
required in the SHRINK rule.

Polygons can change shape significantly
when being shrunk. Thin sections that
become a width of zero or less will simply
disappear. Small polygons with either
dimension less than twice offset val will
disappear entirely.

The DRC processes a SHRINK operation as
a BLOAT of the inverse of a layer. When
you shrink a shape with an acute angle notch,
you are really bloating a shape with an acute
angle. The bloat of an acute angle can result
in significant distortion of your shape. This
is why the default behavior of the DRC
blunts angles less than 45° before shrinking
or bloating.

Figure 196: B = SHRINK (A,
1.2)

o

KRR, OOt
RIS S5
K X500 K

45 NE

Figure 197: A single polygon
on layer A becomestwo
polygons on layer B after
shrinking.

302

DRC User Manud

DRC Rules Syntax: SHRINK

Example:

See amore
complete
example of this
process on page
65.

If you are using SHRINK on polygons with angular notches, you should refer to
the BLOAT_ANGLE rule on page 191 for important information on the effects
that acute angles can have on thisrule.

One common use of the SHRINK rule is to combine it with a BLOAT rule to
remove all small polygons on a given layer. This can be used to classify
irregular shapes, like wires, by size.

M1 _SHRINK = SHRINK (M1_IN, 2.5)
M1 OVER 5= BLOAT (M1 SHRINK, 2.5)
M1 OTHER= M1 IN AND NOT M1 OVER 5

This set of rules will create shapes on M1_OVER 5 for al shapes on M1_IN
that are wider than 5 units. All other shapes on M1_IN will be copied to layer
M1 _OTHER. This operation can have unfortunate side effects. Polygons of
varying width can be distorted. Also, the shrink operation can distort the slope
of sides that are not at 90° or 45° because the vertices of such sides after the
shrink are often not on grid. The bloat operation then magnifies the problem.
Look carefully at the layers created before you rely on them for design rules
checking.

If the M1_IN layer contains acute angles, you should add par of
BLOAT_ANGLE rules around the BLOAT rule to prevent the acute angles from
being cut by that rule. See page 191.

The shrink and bloat operations can also be relatively expensive in terms of
processing time due to panel processing. If the layer you need to classify by size
contains only rectangles or simple polygons, we suggest that you look at the
BOUNDS o or IS BOX rulesinstead.

When the DRC is processing the result layer dangerously, the shrink rule may
process shapes somewhat differently than you would expect. See page 135 for
an example.

DRC User Manual 303

DRC Rules Syntax: SNAP

SNAP

Relocate vertices on resolution grid

result_layer = SNAP (layerl, grid_resolution)

Refer to page 79
for more details
on vertex
resolution.

Example:

To preserve the

Thisrule is used to reposition the vertices of all polygons on layer1 so that they
lie on the grid defined by grid_resolution. Vertices that are already on this grid
are copied to result_layer unchanged. Off-grid vertices that this rule modifies
Shapes collapsed to zero width or height are

will not be counted as errors.
eliminated without warning.

Define grid_resolution as a positive real number of units of the ICED™ cell.

B =SNAP (A, 1)

This rule will copy all
polygons from layer A to layer
B and relocate al vertices so
that all coordinates lie on an
integer grid. When thisruleis
executed on the shape on layer
A in Figure 198, the shape
shown on layer B is created.
Note that the dope of the
shape on layer A has not
been preserved. Shapes with
sides at skewed angles will

S!gpe of 45 often be distorted when their
SIS, You e ysertices are relocated on grid . .
use the SNAP45 ']
rule. D A B
Figure 198: Polygon on A with off-grid
vertices and polygon on B snapped to grid.
304 DRC User Manual

DRC Rules Syntax: SNAP

Example:

Also seethe
SNAP45 and
OFF_GRID
rules.

If layerl is not defined as an input layer, result_layer can be the same layer as
layerl. Thiswill replace layerl with polygons with on-grid vertices.

A =SNAP (A, .05)

In this example, layer A will be replaced with polygons with all vertices snapped
to agrid with a.05 user unit resolution.

Note On Touching Shapes

Remember that the DRC merges all touching shapes before verifying whether or
not coordinates need to be snapped to grid. If two shapes on layer1l share an
edge on an off-grid coordinate, but the merged shape has no edges with off-grid
coordinates, the shapes will not have their coordinates snapped to grid. See the
overview of grid resolution issues on page 79 for details.

Preventing Off-Grid Coordinates

See the CUT_RESOLUTION rule to prevent off grid coordinates from being
created by the DRC on generated layers at panel boundaries.

DRC User Manual 305

DRC Rules Syntax: SNAP45

SNAPA45 Relocate vertices on resolution grid preserving slope of 45° angles

result_layer = SNAP45 (layerl, grid _resolution)

Refertopage 79 This rule is used to reposition the vertices of
for moredetails g1 nolygons on layerl so that they lie on the /

on vertex

resolution. grid defined by grid resolution. Specify
grid _resolution as a positive real number of
user units of the ICED™ cell. Thisrule differs A
from the SNAP rule in that the Slope of sides |- < Off-grid -
at a45° angle will be preserved. QOCCRRCCERN vertex B

When a side with an off-grid vertex is at 45°, C
the lower vertex will be shifted in a manner | R '
that preserves the 45° dlope. This may
introduce a new vertex that adds a ledge or
cuts off acorner.

Figure 199: Inter section

Example: C=A AND B causes off-grid vertex.

D = SNAP(C, 1)
D45 = SNAP45(C, 1)

& D45
mC

Figure 200: SNAP rule causes Figure 201: SNAP45rule

sideto change slope. preserves 45° slope by adding
ledge.

306 DRC User Manual

DRC Rules Syntax: SNAP45

Also seethe
SNAP and
OFF_GRID
rules.

When the above set of rules is run on the shapes in Figure 199, the intersection
causes the shape on layer C to have an off-grid vertex. When the SNAP rule is
used to force the vertex onto an integer grid, the slope of one skewed side is no
longer 45°. When the SNAPA45 rule is used instead, a new vertex is added which
maintains the 45° slope by adding a small ledge to the polygon.

Vertices that are already on the new grid are copied to result_layer unchanged.
Off-grid vertices that this rule modifies will not be counted as errors. Shapes
collapsed to zero width or height are eliminated without warning.

There are some extreme cases where the SNAP45 rule is unable to snap a vertex
to the required grid and preserve the 45° slope. When this happens, the DRC
will snap the vertex to a point on a grid_resolution/2 grid and issue a warning
message in the log file.

Note On Touching Shapes

Remember that the DRC merges all touching shapes before verifying whether or
not coordinates need to be snapped to grid. If two shapes on layer1l share an
edge on an off-grid coordinate, but the merged shape has no edges with off-grid
coordinates, the shapes will not have their coordinates snapped to grid. See the
overview of grid resolution issues on page 79 for details.

Preventing Off-Grid Coordinates

See the CUT_RESOLUTION rule to prevent off grid coordinates from being
created by the DRC on generated layers at panel boundaries.

DRC User Manual 307

DRC Rules Syntax: STAMP

STAMP

Electrically connect poor conductors

STAMP layerl BY stamping layer MULTI =error_layerl [NONE =error_layer2]

The DRC uses
the electrical
connections
defined by this
rule and the
CONNECT rule
to determineif
shapes are
electricaly
connected when
executing some
MIN_SPACING
rules.

The Advanced
Tutoria covers
the use of the
STAMP rule.
See page 411.

The STAMP rule is used to form electrical connections to layers that are poor
conductors. Shapes on layerl that touch a shape on stamping layer will be
assigned the node number of the shape on stamping_layer. However, even when
the shape on layerl touches other nodes on the stamping_layer, the DRC will
not assign the node number of the layer 1 shape to shapes on the stamping_layer.

In other words, layerl is treated as a non-conductive material which can be
"stamped" with a node number, but it cannot "stamp" any conductive layers.
Electrical connections on the stamping_layer do not pass through layer 1.

Opens that were not found because poor conductors were used as ordinary
conductive layers by circuit recognition programs have caused chipsto fail. This
class of error is easily overlooked, but easy to verify with the DRC. In addition,
you can verify that every well in your design is connected before beginning the
circuit recognition process.

The STAMP rule can be used to verify that every shape on layerl is electrically
connected to exactly one node. Any shapes on layer1, which touch more than
one node on the stamping_layer will be copied to error_layerl. All shapes on
layerl that do not connect to any nodes on stamping_layer can be copied to
error_layer2 by using the optional NONE keyword. Shapes on both layers are
added to the error count automatically.

308

DRC User Manud

DRC Rules Syntax: STAMP

Example:

See page 116
for amore
detailed
explanation of
this example.

Y ou must use
CONNECT
rulesto form
electrical nets
from good
conductors to
verify a poor
conductor layer
with thisrule.

OUTPUT ERROR LAYER 112 OVER_STAMPED_WELL
STAMP WELL BY PDIFF MULTI=OVER_STAMPED_WELL

We can demonstrate the importance of

verifying well connections with Figure [=omr[lms E_T@W
202. Let us assume that the GND wire et —

on the right connects to the metal GND
bus and from there to a pad on the chip. D WELL PDIFF
However, the GND wire on the left does

not connect to the bus. You meant to M1 . CONTACTS
connect these two wires, but a gap exists
by accident. Figure 202: Open on GND node

that connects only through WELL
When the STAMP rule above is layer.
executed on the shapes in Figure 202,
the WELL shape will be copied to the OVER_STAMPED_WELL since it will
be stamped by two different nodes on layer PDIFF.

DRC User Manual 309

DRC Rules Syntax: STOP_ ON_MAX_COUNT

STOP_ON_MAX_COUNT Halt DRC on maximum number of errors

STOP_ON_MAX_COUNT

Usethe
MAX_COUNT
rule to change
the maximum
error count.

By default, the DRC will warn you by posting a message on the screen when a
maximum error count is reached. The default maximum error count is 1000. If
you prefer that the DRC halt execution rather than just post a warning message,
add the STOP_ON_MAX_COUNT ruleto therule set.

Before the DRC completes, it will close files properly alowing you to use the
log and command files to troubleshoot the errors aready found. The log file will
contain awarning similar to the following near the end before the error summary
information.:

**WARNI NG* * * * * WARNI NG* * * * * WARNI NG* * * * * WARNI NG
**Error count=1000 any further errors not reported. **

To understand why the DRC warns you when a maximum error count is reached,
imagine a chip with 10,000 copies of acell. If asmall change to this cell causes
a single error, there will be at least 10,000 error marks created for what you
would consider asingle error. Other error marks will be easily overlooked. The
error would be caught just as well if the DRC stopped after the first 1000 errors,
and the run time and output files would be much smaller. It is much more
efficient to find and fix the single error in a shorter run, and then other errors
will be easily seen in your next run.

310

DRC User Manud

DRC Rules Syntax: TOUCHING

TOUCHING Find touching shapes on different layers

result_layer = layerl [NOT]* TOUCHING [n1[:n2]] layer2 [NOT = result_layer2]*’

Seedso the This rule is used to classify polygons on layerl based on whether or not they
SJ\I/GER'-APP'NG touch polygons on layer2 along afinite line or area. Polygons touching only at a
' point, as shown in Figure 203, are not considered to be touching.
Forshapeson | oo
result_layer to
be considered
errors, add the
ERROR L
keyword to the P
OUTPUT - Overlaooi - Overlaooi - Touchi lv - Not Overlaooing -
LAYER rule - Overlapping * "Overlapping =~ Touchingonly * Not Overlapping -
that definesit. ~andTouching . .adTouching or Touching
Figure 203: Differences between the OVERL APPING and
TOUCHING rules.
Example: C=A TOUCHING B
In this example, layer C will contain all polygons on A which touch at least one
polygon on layer B
Only one optional NOT keyword can be used in the TOUCHING rule.
Example: D=A NOT TOUCHING B

In this case, layer D will contain all polygons on layer A which do not touch any
polygons on layer B.

7 Only one optional NOT keyword is allowed in asingle rule.

DRC User Manual 311

DRC Rules Syntax: TOUCHING

Example:

Example:

Example:

Example:

Example:

C=A TOUCHING B NOT =D

Layer C will contain all polygons on layer A that touch at least one polygon on
layer B. Layer D will contain all remaining shapes on layer A, i.e. all shapes not
touching layer B.

This rule can be very useful to find shapes that are not completely covered by
another layer. For example, if all shapes on layer A should be completely
covered by shapes on layer B you may be tempted to write a ssmple Boolean rule
to test for violations as in the following rule.

ERR =A AND NOT B

However, the rule above will not mark problems
like the one shown in Figure 204. If shapes on
layer A must be completely enclosed by layer
B, use a touching rule smilar the following
example to find violations.

Figure 204: Incomplete

NOT_B =NOT B encdosure.

ERR = A TOUCHING NOT B

The optional nl and n2 parameters can be used to specify how many polygons on
layer2 the polygons on layerl must touch. Use nl alone to specify an exact
number. Use both nl and n2 to specify arange.

C=A TOUCHING 2 B

In this case, layer C will contain all polygons on layer A that touch exactly two
polygons on layer B.

C=A TOUCHING 24 B

When you use thisrule, layer C will contain all polygons on layer A which touch
exactly two, three, or four polygons on layer B.

312

DRC User Manud

DRC Rules Syntax: WARN_ACUTE

WARN_ACUTE Assign layer number for acute angle warning marks

WARN_ACUTE = layer_number

Seethe
MIN_ANGLE
and
MAX_ANGLE
rulesto find
acute angleson
aspecific layer.

If you want to
suppress the
identification of
acute angles
entirely, use the
NO_WARN-
_ACUTE rule
instead of this
rule.

Example:

The DRC can create shapes with acute angles when sides at an angle cross a
panel boundary, or when shapes with holes or more than 199 vertices are output.
Acute angles are frequently a problem for mask processing software. Whenever
you create mask layers with the DRC, you should identify possible problems
with specific shapes that should be fixed in the layout editor. See page 76.

Since this is so important, the DRC now automatically identifies acute angles
(angles sharper than 90° on all polygon output layers, marks the angles with
error wires on a specia output layer (layer number 99 by default), and lists them
in the log file. Both acute angle protrusions and acute angle notches will be
marked.

A warning will be added to the log file for each acute angle, however they will
not be added to the main error count. The summary in the console messages and
log file near the main error count will mention the acute angles.

If you want to change the layer number used to mark acute angles, add this rule
to your rule set. The acute angles will be marked with wire shapes on
layer _number in the main DRC command file.

WARN_ACUTE=101

When this rule is present anywhere in your rule set, at the end of the DRC run
sides of shapes on all output layers that meet at an acute angle will be marked
with wires on layer number 101 rather than the default layer number 99.
Warnings will be printed in the log file for each acute angle similar to:

An acute angle was formed on output at (55, 15)

DRC User Manual 313

DRC Rules Syntax: WARN_ACUTE

Example:

See examples of
fixing acute
angles on pages
77 and 423.

If you want to suppress the creation of the wire shapes, but still want to count the
acute angles and print the log file warnings, use this rule with a layer number of
0.

WARN_ACUTE=0

Whenever you use layer number O as an output layer in a DRC rule, no output
shapes are actualy created in the command file. The use of layer O in this
WARN_ACUTE rule means that awarning will still be printed in the log file for
each acute angle, but no wires will be created to mark each angle in the
command file.

If you want to suppress the identification of acute angles entirely, use the
NO WARN_ACUTE ruleinstead of thisrule.

A non-zero layer_number defined with this rule is automatically added to the list
of output layers. Y ou do not need to define it with an OUTPUT LAYER rule.

314

DRC User Manud

DRC Rules Syntax: WIRE_WIDTH

W|RE_W|DTH Set error wire width for all error layers

WIRE_WIDTH = error_wire_width

Use thisrule to set the width used for al error wires created on all error layers.

The When this rule is not used, or if you
\(;V[[iFf)IrE]_()VrYItﬁ(;rH use the rule WIRE_WIDTH=0, when
DpRc command the DRC cc_)mmand file createg the
line will error wires in the cell, they will be
override any created using the default width of each
value set with error layer. These default widths are
this option. See . :

set in the ICED™ cell using the layout

page 355. .
editor’'sLAY ER command.

N

Ry |

K
[

If you do not customize the width of
error layers in the cel before
executing the DRC command file, then
the error wires can be difficult to see
because they are often as wide as the
shapes whose edges they are supposed
to mark.

Figure 205: Confusing error wires of
width=2.

When you use this rule to set a non-
zero width, all error wires are created
with the specified width. Specify a
width of around 10% to 20% of the
average width of shapesin your layout.
Thiswill clearly mark edges of shapes.

Figure 206: More distinct error
Example: WIRE_WIDTH=.2 wires of width=0.2.

Adding thisruleto the rule set will create al error wires with awidth of .2.

DRC User Manual 315

DRC Rules Syntax: XOR

XOR Boolean exclusive OR

result_layer =[NOT] layerl XOR [NOT] layer2

XOR stands for "exclusive or". Use the XOR rule to create the union of the two
layers and then subtract their intersection.

Example: C=A XOR B

Figure 207: Polygonson layers Figure208: C =A XOR B
Aand B

The optional NOT keywords work in exactly the same manner as they do in the
AND rule.

316 DRC User Manual

Running the DRC

Running the DRC

DRC User Manual 317

Running the DRC

See page 12 for
agraphica
representation
of these steps.

A few hintson
using the DRC
command in the
layout editor are
provided on

page 16.

Running the DRC involves several steps.

Write the DRC rules that define layer manipulation and design
rule verification in any ASCII text editor.

Compile the rule set with the DRC rules compiler, D3RUL-
NT.EXE™.

Create the binary layout data file for the DRC from your ICED™
cell by using the DRC command in the ICED™ layout editor.

Execute DRC3-NT.EXE™ using the compiled rules file and the
binary layout datafile.

Look at the results in the ICED™ layout editor by importing the
shapes in the command file created by DRC3-NT.EXE.

The DRC command for the ICED™ layout editor is completely described in the
layout editor reference manual. To export your entire design, you can simply
type "DRC" on the command line. The binary layout data file will be created as
"cell_name.POK".

We have already covered how to write the rule set. Next, we will describe how
to run the rules compiler and finally how to run the DRC program. Tips on how
to execute the command file to import the results are covered last.

18 The executablefile for released versions for Windowsis D3RUL-NT.EXE.
The executable file for Beta Windows versionsis named D3RU-NTX.EXE.

¥ The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versionsis DRC3-NTX.EXE.

318

DRC User Manud

Running the DRC: Rules Compilation

DRC Rules Compilation

Rules Compiler Command Line Syntax

[prog_path\|D3RUL-NT? [rule path\]rule file name ...

... [BB_FILE=output_file_spec] ...

... [HOG=mem _megabytes] ...

... [USE=mem kilobytes] ...

... [PAUSE=(ALWAYS|CRASH |NEVER)] ...

.. [SCRATCH_DIR=scratch_pathl[; ... scratch _path5]]

Typethe
compiler
command line
in the console
window opened
by the ICED
icon on your
desktop.

The rule file_ name parameter is the only required parameter on the rules
compiler command line. It isthe name of the ASCII file containing your rule set.
A file extension of ".RUL" will be added to the file name if you do not supply
thefile extension in rule_file_name.

The DRC ingtallation defaults to placing all executable files in the same
directory as the ICED.EXE file. This directory is added to the PATH
environment variable in the console window opened by the ICED icon on your
desktop. When you use this console window to execute the DRC programs, you
do not need to supply prog_path on the command line.

2 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versionsis named D3RU-NTX.EXE.

DRC User Manual 319

Running the DRC: Rules Compilation

Example:

To seealist of
the current DOS
environment
variables, use
the DOS
command SET.

CD RULEDIR
D3RUL-NT MYRULES

The CD DOS command changes the current directory. The next command line
will execute D3RUL-NT.EXE on the file MYRULES.RUL. Since no rule_path
is supplied, this rules file must exist in the current directory, RULESDIR. The
executable file D3RUL-NT.EXE must be in a directory defined in the DOS
environment variable PATH. This search path isinitialized correctly for you by
the ICED icon.

By default, the compiler will create the compiled rule file with the same name as
the input rule set except that the file extension will be ".BB". By default, this
file will be created in the same directory as the input rule file. In the example
above, the compiled rules file will have the name MYRULES.BB. It will be
created in the current directory.

Output Redirection

Example:

You can use the BB_FILE=output_file_spec option to specify a different name
and/or directory location for the compiled rules file. If you specify a new
directory location, the directory must already exist.

If output_file_spec ends in a ‘\’, then the rules compiler assumes that you are
specifying only a directory location. The rules file will use the default name as
described above, but it will be stored in the directory specified.

D3RUL-NT MYRULESRUL BB_FILE=\XDIR\

The compiler command line above will compile the file MYRULES.RUL in the
current directory and store MYRULES.BB in the XDIR directory at the root of
the current drive. The MYRULES.RLO file (the compiler log file) will remain
in the same directory as the source rulesfile MYRULES.RUL.

320

DRC User Manud

Running the DRC: Rules Compilation

Example:

Example:

Example:

D3RUL-NT MYRULESRUL BB_FILE=SUBDIR\

The compiler command line above will creste MYRULES.BB in the SUBDIR
subdirectory of the current directory.

D3RUL-NT MYRULESRUL BB_FILE=E:\XDIR\NEWNAME

The compiler command line above will store the compiled rules in the file
NEWNAME.BB in the E\XDIR directory.

D3RUL-NT MYRULES.RUL BB_FILE= NEWNAME

The compiler command line above will store the compiled rules in the file
NEWNAME.BB in the current directory.

Memory Options

You can create
aDOS batch
file containing
therules
compiler
command line
so that you do
not need to type
it each time.
See page 359.

The optional [USE=mem_kilobytes] or [HOG=mem_megabytes | parameter is
used to restrict the amount of memory the rules compiler will use. Use only one
or the other since they are mutually exclusive. When neither keyword is used in
the command line, the rules compiler will use 10 Megabytes (approximately
10,000 Kilobytes) of memory. The rules compiler does not usually require a
larger amount of memory, so you can usually avoid the use of either keyword.
(Either keyword can be used on the DRC program command line, where they are
more useful.)

If you notice along delay when you execute the rules compiler, the problem may
be that the rules compiler is initializing much more memory than it needs. Try
using USE=2000 to prevent the compiler from initializing too much memory on
your system.

DRC User Manual 321

Running the DRC: Rules Compilation

Example:

If your
operating
systemis pre-
parsing the
command line
and replacing
the'="with a
blank, use '#
instead. See
page 333.

D3RUL-NT SUBDIR\MYRULES.RUL USE=2000

This compiler command line will limit the program to approximately 2
Megabytes of memory. If you have a short rule set, this will be plenty of
memory. This rule file specification means that the compiler will use the
MYRULES.RUL filein the SUBDIR subdirectory of the current directory. The
compiled rules file, MYRULES.BB, will be created in this directory as well as
the compiler log file, MYRULES.RLO.

Batch Console Window Control

The console
window will not
close
automatically
when you type
the command
linein an open
console
window.

The following option is useful only when executing the compiler from a batch
file. When you execute the compiler from a batch file without opening a console
window explicitly, the compiler executes in a temporary console window. In
this case, the console window may close automatically without giving the user
time to see the final messages posted as the compiler terminates. Once the
console window is closed, the console messages are gone forever. If the DRC
crashes, it is very important to review these console messages to avoid repeating
awasted run.

Some users create a batch file with the DOS PAUSE command after the
compiler command line to ensure that the console messages remain on the screen
until they can be viewed. With this version of the DRC, the extra PAUSE
command can be omitted. If you prefer to hold the window open until the
<Return> key is pressed, simply add a PAUSE option to the compiler command
line.

322

DRC User Manud

Running the DRC: Rules Compilation

PAUSE=ALWAYS This will always pause after termination until the
<Return> key is pressed.

PAUSE=CRASH Thisoption pauses the compiler after termination only
when the program crashes. If the program terminates
normally, no PAUSE is executed and no keystroke is
required to close the console window.

PAUSE=NEVER (Thisisthe default if no PAUSE option is used on the
command line)) The window closes without an extra
keystroke. If the console window will not close
automatically when the DRC terminates, this is the
best option.

Scratch Directories

If the SCRATCH_DIR keyword is not used, a single scraich file,
$D3RVIRT.000, will be created in the current directory. If the compiler
completes successfully, thisfile will be deleted.

There are two cases where it is important to use the SCRATCH_DIR option to
set the scratch directory explicitly.

If you running the DRC rules compiler on a network, several users can
use the program at the same time. If they share a scratch directory, they
will corrupt each other's scratch files. When on a network, each user
should have his\her own scratch directory.

If the current drive or partition has limited space, you should specify at
least one scratch directory on adrive with plenty of free space.

The scratch file for the rules compiler is usually very small, so the second reason
above is rarely a concern. However, the scratch file for the DRC program can
grow very large. The SCRATCH_DIR command line option is covered in more
detail in the discussion of the DRC command line options. See page 341.

DRC User Manual 323

Running the DRC: Rules Compilation

Example:

D3RUL-NT D:\ICED\VERIF.RUL SCR=E:\DRCTMP

This command line will compile the rules in the file D:\ICED\VERIF.RUL.
Note that the SCRATCH_DIR keyword can be abbreviated to SCR. The
DRCTMP directory on the E: drive will be used to store the temporary scratch
file. This directory must already exist or the rules compiler will fail with an

€rror message.

Terminating the Rules Compiler

There are two ways to force the rules compiler to terminate before it completes
normally.

<Esc> Pressing this key will halt the rules compiler after it
completes the current operation. The compiler will then
close all open files and delete the scratch file(s). This may
take a few moments, so you should be patient and wait for
the compiler to complete these tasks.

<CtrI><C> Pressing both of these keys ssimultaneously will bring the
rules compiler to an immediate halt. Files will not be closed
properly and the scratch file(s) will not be del eted.

If you use <Ctr|><C> to terminate the compiler, or if the compiler crashes, you
should delete the scratch file(s) yourself. The scratch file is created with the
name $D3RVIRT.000. You may also want to run the DOS utility SCANDISK
(or equivalent programs available from other vendors) to find lost chains on the
disk which may be left behind because files were not closed properly.

324

DRC User Manud

Running the DRC: Rules Compilation

Rules Compiler Output Files

To suppress the
warning prompt
when the source
rulesfileis not
present, add the
NO_RUL
keyword to the
DRC command
line. See page
349.

The
rule_file_name.
TAGfile
generated by the
rules compiler
isintended for
use by the
interactive DRC
features of
ICED™.

By default, the rules compiler will create the compiled rules file with the name
rule file_name.BB. If afile with the name rule_file_name.BB already exists, it
will be overwritten. Thisfile will be created by default in the same directory as
the source rules file. (The BB_FILE option can be used to change the name
and/or location of the compiled rules file)) This compiled rules file will be used
by the DRC program.

You should leave the source rules file in its original location after you have
compiled it. The location and time/date stamp of the source rulesfileis stored in
the compiled rules file. The DRC will search for the source rules file to insure
that the current source rules file has the same time/date stamp as the one used to
create the compiled rules file. This prevents a wasted DRC run when you edit
the rules file but then forget to compile it. If the DRC cannot locate the source
rulesfile, it will issue awarning prompt and you must reply to proceed.

The rules compiler will create a log file with the name rule file_name.RLO.
Thisfilewill always be created in the same directory asthe sourcerulesfile. If a
file with the name rule file name.RLO already exists, it will be renamed to
rule file name.RL1.

The rules compiler log file begins with a block of comments that include the
version number of the compiler. An echo of the source rules file comes next.
Any warnings or errors listed in the console messages about the rule set will be
listed here as well.

If the compiler finds a syntax error as it parses the source rules file, it will stop
reading the file and print an error message after the line with the error. The
parameter or keyword with the problem will be indicated with carats ("< >").
Only one error will be found per compilation.

Warnings may be scattered through the log. All warnings will be prefixed with
the string "**WARNING". Some of the warnings you may see are listed below.

DRC User Manud

325

Running the DRC: Rules Compilation

M essage

Cause

Scratch layer xxx,
set on line n, is
never used. Action
will be deleted: ...

This warning occurs when you have included a rule that creates shapes
on a scratch layer, but no succeeding rule uses that layer. The
processing to create the scraich layer is unnecessary, so the rules
compiler deletes the rule entirely. This situation may occur when you
modify a rule set by removing a rule that used the scratch layer. The
DRC will then optimize your rule set by removing the rules that create
the layer. In this case you can choose to ignore the warnings, or go back
and comment out the indicated rule(s).

However, if you wanted to look at the shapes on that scratch layer, you
should change the line that defined the layer to an OUTPUT LAYER
rule instead of a SCRATCH LAYER rule.

Layer number n is
also an input layer.

When this message is issued, you have used the same layer number as
both an input layer and an output layer. If you add shapes on the output
layer to your design cell you will be modifying a design layer.

You can define the layer with a MODIFY LAYER rule to avoid the
warning.

Figure 209: Two of the DRC rules compiler warnings

If the source rules file contains no syntax errors, the log file will continue with a
summary of the layers used in the file. The DRC layer name, ICED™ layer
number, the rules file line number that defined the layer, and the layer type
(INPUT, OUTPUT, or SCRATCH) will be listed for each layer.

Unused input Layers that are defined, but are not used in the rule set, will not be listed in this
layers aresiill list of layers. They are removed automatically from the rule set by the compiler.

checked for bad
polygons unless

the Next, the rules log will list all constants created by the CONST rule. (See page

NO_CHECK- 203))
_INPUT ruleis
used.

326

DRC User Manud

Running the DRC: Rules Compilation

The
LIST_RULES
option on the
DRC command
linewill add a
listing of rules
to the DRC log
file.

One example of
arule generated

by the compiler,

isaCONNECT
rule added to
insure that
shapes that
cross panel
boundaries will
be handled
correctly.

The log will then list the rules exactly as they will be executed by the DRC. The
operation number (or action number) for each rule is listed first. The rules are
grouped together in passes. Each pass requires each shape in the DRC database
to be interrogated by the DRC. The more passes, the longer the DRC run.

The order in which rules are executed may not be the order in which the rules are
written. The rules compiler may change the order to minimize the number of
DRC passes. No change made by the compiler should affect how the layers are
processed.

Each DRC layer name which is an input or output layer will be followed by the
ICED™ layer number enclosed in sgquare brackets ("[]*). The line number in the
source rules file is indicated on the line after the rule enclosed in parentheses
"()™). If the compiler has generated the rule, the word " Generated" will be used
instead of the line number. Some additional information may be provided with
the rule, such asthe bloat anglein effect for BLOAT or SHRINK rules.

If you have defined electrical connections through the use of CONNECT rules,
some details on these electrical connections are listed next. The number of
groups formed from the electrical connections, and the layers in each group, will
be listed. If your log indicates more than one group, you may have omitted a
CONNECT rule from your rule set. See page 110 for more details.

Layers in the rule set that are not electrically connected to any other layer are
listed under the heading "Unconnected layers'. This list may contain
intermediate layers, or layers that are never used. However, you may want to
browse this list to insure that none of the layers that you assume are electrically
connected are included in the list.

The final line in the log file from a successful compilation will always be the
word "Done".

DRC User Manud

327

Running the DRC: Rules Compilation

328 DRC User Manual

Running the DRC: Command Line Syntax

Running the DRC

DRC Command Line Syntax

[prog_path\]DRCS NT21[ruIe_path\]ruIe file_name ...

.. [layout_path\]layout_file name... File Parameters

... [output _path\]output_flIe_base_name... Page 334

.. [SECOND_CEL L=layout_file name2] ...

.. [@opt_filg] ... — Input Redirection
Page 334

.. [QUICK_PASS] ...

... [ALLOW_QUICK] ... Algorithm

.. [SLOW] ... Options

.. [QUICK_SPACING] ... Page 337

... [USE=mem kilobytes] ...)

... [HOG=mem_megabytes] ...

... INO_VIRTUAL_MEMORY] ...

... [MAIN_MEMORY =main/total_ratio] ... Memory Options

... [MAIN_USE=main_kilobyteg] ... Page 339

... [MAIN_HOG=main_megabytes] ...

... [SCRATCH_DIR=scratch_pathl [; .. scratch_path5]] ..

.. [FILESIZE=scratch_megabytes] ... J

... [SHORTRUN]

.. [LONGCASE] ... Screen Display

.. [DISPLAY_OPERATIONS=min refresh_seconds] ... Options

. [NO_FLASH_PANEL S=flash limit] ... Page 343

.. [PAUSE=(ALWAYS | CRASH | NEVER)] ...

(continued on next page)

% DRC3-NT.EXE is the name used for released Windows versions of the program. Other
versions use different names. See page 331.

DRC User Manual 329

Running the DRC: Command Line Syntax

... [LAYERS=(layer_numberl [...,layer_numbern])] ...
... [DO=(rule_specl|...,rule_specn])] ...
... [SHOW_BORDER] ...

... [BORDER=border_dimension] ...

.. [NO_RUL] ...

... [LIST_RULES] ...

.. [SHOW_SCALES) ...

... [LEFT=left_x_coordinate] ...

... [RIGHT =right_x_coordinate] ...

... [TOP=top_y_coordinate] ...

.. [BOTTOM=bottom y coordinate] ...

... [FLATTEN] ...

... [NO_FLATTEN] ...

... [CFLATTEN=component_count] ...
... INFLATTEN=use _count] ...

.. [HIERARCHICAL="suffix_string"] ...

... [WIRE_WIDTH=error_wire width] ...
... [START_CMD="st_cmdstring"] ...

... [END_CMD="end_cmdstring"] ...

... [OBSOLETE] ...

.. [MACROS=NONE] ...

... [PANEL_X=panel_x_dimension] ...
... [PANEL_Y=panel_y dimension] ...
... [PANEL_A= panel_areq] ...

.. [PANEL_X_BY_Y=pand ratio] ...

|

Rules Fileand
Log File Options
Page 346

Design Area
Options
Page 351

Céll Hierarchy
Options
Page 352

Command File
Options
Page 356

Panel Size
Options
Page 358

The command
line used to
execute the
programis
reported in the
DRClog file.

The DRC command line is typed at the DOS prompt, or in a batch file, outside of

the ICED™ layout editor.

The first two input files, rule file name and

layout_file name, must already be prepared before you execute the program. All
three required file parameters and each optional parameter are described in detail

on the following pages.

330

DRC User Manud

Running the DRC: Command Line Syntax

If the directory where DRC3-NT.EXE is installed is included in the DOS
environment variable PATH, or if this directory is the current directory, the
prog_path parameter is not required. (The console window opened by the ICED
icon on your desktop adds the main installation directory to PATH
automatically.)

Name of the Program

Typethe DRC
command line
in the console
window opened
by the ICED
icon on your
desktop, or use
abatch file.

The name of the program is different for different versions of the DRC. The
different versions have different file names, so you can keep more than one
version on your machine without risking overwriting what you are currently
using.

DRC3-NT.EXE is the name of the released Windows executable file. In this
manual, al examples use this version name in the command line. (DRC3-
NT.EXE is shortened to DRC3-NT in the example command lines since the
operating system will translate the name of the executable file to DRC3-
NT.EXE.)

If you use the DOS version of the program, or a beta version, replace the string
“DRC3-NT” in the example command lines with the appropriate entry from the
“Command Line String” column in the table below.

Version Executablefile Command Line String
DOS released versions DRC3.EXE. DRC3

Windows released versions | DRC3-NT.EXE. DRC3-NT

Windows beta versions DRC3-NTX.EXE. DRC3-NTX

Beta test versions of the DRC are frequently available on the IC Editors, Inc.
web site. (www.iceditors.com). You can download a beta test version to your
Q:\ICED directory to test new features without risking overwriting the version
you are currently using in production. New features are tested in beta versions
before they are reflected in the released versions. Remember that while a beta
version may have more features, we call it betatesting for areason.

DRC User Manual 331

Running the DRC: Command Line Syntax

Y ou must use the equivalent version of the rules compiler to recompile the rules
file before using a new version of the DRC.

Terminating the DRC

Read more
about the
scratch fileson
page 341.

There are two ways to force the DRC to terminate before it completes normally.
(These are the same methods used with the DRC rules compiler.)

<Esc> Pressing this key will halt the DRC after it completes the
current operation. The DRC will then close all open files
and delete the scratch file(s). This may take a few moments,
so you should be patient and wait for the DRC to complete
these tasks.

<CtrI><C> Pressing both of these keys ssimultaneously will bring the
DRC to an immediate halt. Files will not be closed properly
and the scratch file(s) will not be deleted.

If you use <Ctr|><C> to terminate the DRC, or if the DRC crashes, you should
delete the scratch file(s) yourself. The scratch file(s) are created with the name
$D3VIRT.000. You may aso want to run the DOS utility SCANDISK (or
equivalent programs available from other vendors) to find lost chains on the disk
left behind because files were not closed properly.

Simultaneous DRC Runs

When using the DRC on networks or multitasking operating systems, do not
launch multiple runs of the DRC program from the same directory. Scratch files
or other temporary files in the current directory may collide. Simultaneous runs
of the DRC should have no problems as long as they are started from different
directories and use different scratch directories. (See the SCRATCH_DIR
option on page 341.)

332

DRC User Manud

Running the DRC: Command Line Syntax

Command Line Options

The parameters on the DRC command line are read from left to right. If two
conflicting parameters are encountered, the one on the right will be used without
warning. Use blanks or commas to separate command line parameters. The
underscores, ' ', used in several of the optional keywords are included for

readability only. Y ou can type the keywords with or without the underscores.

The keywords can be abbreviated as long as you provide enough characters to
make the keyword unambiguous. To abbreviate a keyword, drop characters from
the end. Do not skip letters in the middle of the keyword. For example,
DISPLAY_OPERATIONS can be abbreviated as DISP, but DISP_OP will cause
asyntax error.

Using '# in Place of '=" in Command Line Options

Example:

There are times when DRC command line options are parsed by the operating
system in away that replaces al '=' with ablank space. Thiswill result in syntax
errors by the time the DRC gets the command line. If you see syntax errors
caused by this type of "pre-parsing”, use the '# character instead of '=' when
typing the command line options. The '# is never replaced by any operating
system command line parser, and the DRC will trandate it to an '=" when it
parses the command line.

DRC3-NT MYRULESMYPOK DRCOUT USE#2000

DRC User Manual 333

Running the DRC: Command Line Syntax

File Parameters

Environment
variables are set
at the console
prompt or in a
batch file (e.g.
AUTOEXEC-
.BAT) with the
DOS command
SET.

See an example

The rule_file_name, layout_file_name, and output_file_base name parameters
are the only required parameters on the DRC command line. (In some cases the
QUICK_PASS or SLOW option isrequired. More on thislater.)

The [rule_path\]rule file_name parameter supplies the name of the compiled
rules file. This file must already have been created by the DRC rules compiler
described beginning on page 319. If no file extension is supplied in
rule file_name, afile extension of .BB will be added to the file name before the
DRC searchesfor thefile.

If you specify rule_path\ with the name of the rulesfile, the DRC will search for
the rules file only in that directory. When rule_path\ is not specified, the
following directory paths will be searched in the order shown:

1) the current directory,
2) the directoriesin the environment variable DRC_PATH.

The [layout_path\]layout_file name parameter must be the name of the binary
layout file created by the DRC command in the ICED™ layout editor. A file
extension of .POK will be added to the file name when you do not supply it on
the command line. When you do not specify layout_path, the layout file must be
in the current directory. The DRC will not search for layout files in directories
set with the DRC_PATH environment variable.

When you change the layout, ALWAYS recreate the layout
data file with the DRC command in the layout editor
BEFORE executing the DRC program. If you forget to

of creating a . .

layout datafile recreate the file, the DRC will use the old layout data

on page 16. without war ning!
The [output_path\]output_file_base name parameter supplies the base file name
for most output files. The file extensions of the output files will vary. The
extensions and file contents are described beginning on page 361.

334 DRC User Manual

Running the DRC: Command Line Syntax

Example:

Example:

The
HIERARCHICAL
command line
option is
incompatible
with this option.

DRC3-NT MYRULES XCHIP XCHIPOUT

This command line will run the DRC with the input files MYRULES.BB and
XCHIP.POK. The output command file and the log file will begin with the
string "X CHIPOUT" in the current directory.

[SECOND_CELL=layout file hame2]

When you use this optional parameter, the DRC can compare two layouts. The
layer numbers in layout_file_name2 will be shifted by 1000 so that the rule set
can distinguish between layersin the first layout file and the second.

DRC3-NT CMPM1 XCHIP COMP SECONDCELL=BACKUP\XCHIP

For this example, let us assume that you have backed up the layout for the
previous version of your design in the BACKUP subdirectory of the current
directory. Now you want to compare the M1 layer in the two versions. The
layer M1 in your design is layer number 1. The rule set for this comparison,
CMPM1.RUL, would be similar to the one below.

ALL_SAFE
INPUT LAYER 1M1; 1001M1 OLD;
OUTPUT LAYER 50NOT_THE_SAME

NOT_THE_SAME=M1XORM1 OLD
When this rule set is compiled and used by the DRC with the command line

given above, it will compare layer 1 in the two layouts and create all differences
in the two layouts on layer 50 in the command file COMP.CMD.

DRC User Manud 335

Running the DRC: Command Line Syntax

Input Redirection

Another way to
avoid repetitive
typing of the
DRC command
lineistousea
batch file to
execute the
program. See
page 359.

Example:

[@opt_fil€]

The DRC has many optional parameters and the command line can get very
lengthy. Since DOS commands are limited to 128 characters, you may not be
able to add all of the options you need on the command line. To solve this
problem, or just to save you from repetitive typing every time you run the DRC,
you can use the @opt_file parameter to refer to a file which contains command
line options, rather than typing all options at the DOS prompt.

DRC3-NT MYRULES XCHIP XCHIPOUT @DRCOPT.TXT SLOW

IDRC options for xchip
LEFT=348.8
RIGHT=1098.3
TOP=736.0

This DRC command line will cause the
DRC to read the command line parameters
in the file DRCOPT.TXT and execute
them as though they were typed at the -
command line. Note that you can add BOTTOM=-390.0
other command line options after the QUICK_PASS
@opt_file parameter. Options typed last Figure 210:

on the command line override options in DPRCOPT.TXT
the optionsfile.

The options file can be created with any ASCII text editor. Any end-of-line
character is interpreted as a blank space. So you can type each command line
option on it'sown line rather than typing all options on asingleline.

Comments in the options file are acceptable and will be ignored by the DRC. A
comment is created as an exclamation mark (') followed by text. All text from
the exclamation mark to the end of the line isignored.

You can use another @opt_file command line option in an option file. Option
files may be nested up to ten levels deep.

336

DRC User Manud

Running the DRC: Command Line Syntax

Algorithm Options

The number of
passes for the
rulesetis
shown in the
rules compiler
log file. See
page 327.

The
QUICK_PASS
option my result
in awarning
prompt. To
avoid the
prompt, seethe
ALLOW_QUICK
option covered
on the next page.

[QUICK_PASS] or [SLOW]

The QUICK _PASS and SLOW keywords are not truly optional. Unlesstherule
set executes in a single pass, one of these options must be chosen. They are
mutually exclusive options.

If you use the HHERARCHICAL keyword in the command line (used to force the
DRC to produce hierarchical output), the SLOW option is automatically
invoked. If the rule set is multi-pass, and the HIERARCHICAL keyword is not
used, you must specify one of these keywords on the command line. Y ou will
receive an immediate warning from the DRC if the algorithm choice has not
been made.

The QUICK_PASS option will execute your rule set much more quickly at the
expense of ignoring some of the more time-consuming operations. This option
isintended to allow you to get DRC results faster on repeat runs when you have
made minimal changes to the layout since verifying the design with the SLOW
option on the DRC command line.

The QUICK_PASS agorithm will execute your rule set differently in the
following ways:

Electrical connection rules and the /CONN or /~CONN options in
MIN_SPACING rules are ignored. The CONNECT and STAMP rules
in the rule set are not executed.

All BRIDGE, ISLANDS, MAX_SPACING, TOUCHING, and OVER-
LAPPING rules are skipped. Rules using layers generated by these rules
are also skipped.

Shapes crossing panel borders are processed differently and may be mis-
interpreted in rare cases. (See page 129 for a more complete
explanation.)

DRC User Manud

337

Running the DRC: Command Line Syntax

Seedsothe
ALLOW_QUICK
rule on page 182.

See page 100
for more details
on the effects of
this option.

[ALLOW_QUICK]

When the QUICK_PASS option is used, some rules may be skipped. When
rules will be skipped, by default the user is warned before execution with a
warning prompt. The user will need to respond by typing a <Y > to proceed.

If you want to avoid the warning prompt and the user interaction at run time, add
ALLOW_QUICK to the command line or add the ALLOW_QUICK rule to the
rule set. Either method results in the suppression of the warning prompt.

[QUICK_SPACING]

The DRC has two agorithms for executing MIN_SPACING rules. This option
is provided to force the DRC to use the quicker algorithm. The DRC will
automatically use this algorithm if you are verifying the entire cell and your rule
set does not contain MIN_SPACING rules using the /[LENGTH keyword to force
the DRC to discard errors shorter than a minimum length.

If you have used the design area options (LEFT=left_x_coordinate, etc.) on the
DRC program command line, or if your rule set contains MIN_SPACING rules
that use the /LENGTH option, adding the QUICK_SPACING keyword to the
command line may cause errors to be missed. Do not use the
QUICK_SPACING keyword on the final tests of your design.

338

DRC User Manud

Running the DRC: Command Line Syntax

Memory Options

The default
memory
management
refined with
these optionsis
incompatible
with QEMM.
Seethe

NO_VIRTUAL-

_MEMORY
option if you
use QEMM.

Example:

If the DRC is
failing to run to
completion with
the memory
available, try
smaller panels.
See page 118.

[USE=mem_kilobytes] or [HOG=mem_megabytes]

Y ou can use one of these parameters to define the maximum amount of memory
the DRC is allowed to use. They are intended primarily for use on multitasking
operating systems like Microsoft Windows. If you are running the DRC on a
computer without a multitasking operating system, it is best to use the default
memory parameters by not adding either option to the command line.

When these parameters are not used, the DRC will allocate all available physical
memory.

The USE and HOG options perform exactly the same function. The only
difference is that the USE option specifies the amount of memory in Kilobytes,
while HOG specifies the number in Megabytes. Use whichever option is more
convenient.

If you see a long delay before the first DRC pass is executed, even for small
designs, the DRC may be initializing much more memory than it needs. You can
use a command line similar to the following to limit the amount of memory the
DRC will initialize.

DRC3-NT MYRULES XCHIP XCHIPOUT USE=20000
DRC3-NT MYRULES XCHIP XCHIPOUT HOG=20

Either equivalent DRC command line will limit the DRC to around 20,000
Kilobytes (or about 20 Megabytes) of memory. This should be sufficient for
small chips. If you have plenty of memory on your machine, and the other
system demands are light, higher numbers for mem_kilobytes will allow the DRC
to run faster.

You can set USE or HOG to a number higher than the amount of physica
memory on your system. However, this means that the DRC will use your
system's swap file for main memory and this may slow the DRC considerably.

DRC User Manud

339

Running the DRC: Command Line Syntax

Example:

[NO_VIRTUAL MEMORY]

This command line option reverts the program to the older memory management
method used in previous versions of the DRC.

The only situation we know of that requires this option is if you are using the
QEMM memory manager in the Windows operating system. If you discover
another situation that requires this option, please contact 1C Editors.

[MAIN_MEMORY = main/total_ratio]
[MAIN_USE= main_kilobytes]|
[MAIN_HOG= main_megabytes]

The DRC divides the total memory available to it into two portions: main
memory (used for computations) and data storage (easier to swap to disk). By
default, the DRC will divide the memory equally up to alimit of 128 Megabytes
of main memory. (In other words, if you have 256 Megabytes or less available,
half will be used for main memory, half will be used for data. If you have more
than 256 Megabytes available, 128 Megabytes will be used for main memory,
and the remainder will be used for data.)

If you want to change the division between main memory and data memory, you
can use one of the three options below: (If you provide conflicting options, the
least amount of main memory indicated will be allocated.)

MAIN_MEMORY Specify ratio of main memory to total memory.
MAIN_USE Specify main memory in Kilobytes
MAIN_HOG Specify main memory in Megabytes

DRC3-NT MYRULESMYPOK DRCOUT HOG=10 MAIN_MEM=.6

The HOG option limits the total amount of memory the DRC can use to 10
Megabytes. The DRC will alocate 6 Megabytes for main memory since the
MAIN_MEMORY option (abbreviated to MAIN_MEM) is set to .6 rather than
the default of .5.

340

DRC User Manud

Running the DRC: Command Line Syntax

Example:

Example:

Set the
maximum size
of all scratch
files added
together with
the FILESIZE
command line
option (covered
next).

See the next
page to use this
option to get
around the 2
Gigabytefile
size operating
system limit for
the scratch file.

The command line below will limit main memory to 6 Megabytes no matter what
amount of memory is available on the system.

DRC3-NT MYRULESMYPOK DRCOUT MAIN_HOG=6
The MAIN_USE option performs exactly the same function as the MAIN_HOG
option except that you express the amount of memory in Kilobytes. The next

example is amost identical to the previous example (give or take a few
kilobytes).

DRC3-NT MYRULESMYPOK DRCOUT MAIN_USE=6000

[SCRATCH_DIR=scratch_pathl[; ... scratch_path5]]

This parameter specifies the directory (or directories) for the DRC scratch file
(or files). It is critical that a scratch directory is not shared between
simultaneous executions of the DRC. This could be a problem if two or
mor e user s ar e executing the DRC over a network.

If you do not use the SCRATCH_DIR command line option, the DRC will create
a single scratch file with the name $D3VIRT.000 in the current directory. This
file can grow very large (more than 1 Gigabyte for large chips), so make sure
that there is plenty of free space on the current drive.

You may want to use this option if you have limited space on the current drive
and you want to make use of the space on other drives for scratch files. If you
specify multiple directory paths, the DRC will create scratch filesin all specified
directories at the start of the run. Then if the DRC runs out of disk space while
using the scratch file in the first directory, it will use the additional scratch files.

You can specify up to five directories. Each scratch path directory should
already exist. The maximum number of charactersin al directory pathsis 2047.
The additional scratch file directories should usually be on other disk drives or
partitions.

DRC User Manud

341

Running the DRC: Command Line Syntax

Example:

Refer to page
166 for other
information
related to
executing the
DRC on very
large designs.

When you want to alow the DRC to use space on more than one drive, specify
directories on different drives.

DRC3-NT MYRULES XCHIP XCHIP SCR=E:\DRCTEMP;D:\DRCTEMP

This command line will result in scratch files created on the E: and D: drivesin
directories with the name DRCTEMP. Note that the SCRATCH_DIR keyword
can be abbreviated to SCR. The directory paths are separated with semicolons.
If the DRC completes successfully, al temporary scratch files will be deleted
automatically at the end of the run.

Operating systems limit the maximum size of a single file to 2 Gigabytes, even
on FAT32 partitions. If you have a single partition with more than 2 Gigabytes
available and you expect to require a scratch file larger than 2 Gigabytes, you
can get around the file size limit by specifying more than one directory on a
single drive or partition. When the DRC has used 2 Gigabytes of scratch space
in the first directory, it will begin using a second swap file in the next directory.

[FILESIZE=scratch_megabytes]

This optional parameter is used only when conserving memory is very important.
It allows you to override the maximum size of all scratch files combined. The
default is 2048 Megabytes multiplied by the number of directories in the
SCRATCH_DIR option (covered above). If the default scratch directory is used,
or if you have specified a single directory with the SCRATCH_DIR option, the
default limit is approximately 2 Gigabytes.

Setting scratch_megabytes to a value smaller than 2048 will conserve memory.
Thisis dueto the fact that the DRC creates a virtual array page table in memory.
The larger the maximum size of the scratch files, the larger this table must be.

There is no point to setting scratch_megabytes to a value larger than 2048. If
you want to increase the scratch file size, modify the SCRATCH_DIR option
(covered above) to use multiple directories and the default value of
scratch_megabytes will increase automatically.

342

DRC User Manud

Running the DRC: Command Line Syntax

See page 118 to
learn how to
optimize the
panel size.

If you use too small a value for scratch_megabytes, the DRC will crash with a
message explaining the problem. However if you crash due a small scratch file
during a preliminary DRC run on your design, you may want to try smaller
panels before using alarger value for scratch_megabytes. Thiswill conserve run
time aswell as memory.

Screen Display Options

See an example
of an options
file on page
336.

None of these options affect how the DRC processes data or creates the output
files. These options affect only the messages posted to the display to update the
user on the progress of the DRC run.

[SHORTRUN] and [LONGCASE]

These optional keywords are used to choose the format of the console messages
displayed while the DRC is executing. The SHORTRUN option optimizes the
on-screen messages for short runs. It isintended for small designs that complete
inafew minutes. Thisisthe default behavior.

If your DRC run will take longer than a few minutes, you should add the
LONGCASE keyword to the DRC command line. This optimizes the display
when you will occasionally check on the progress of the run, rather than sit and
wait for the DRC to finish.

Since SHORTRUN is the default, use that keyword on the command line only
when you want to override the LONGCASE keyword (e.g. when the
LONGCASE keyword isin an optionsfile.)

DRC User Manud 343

Running the DRC: Command Line Syntax

Example:

Example:

[DISPLAY OPERATIONS=min_refresh_seconds]

This option and the following NO_FLASH PANELS option are rarely used
optionsto control the frequency of progress reports during the run.

By default, progress reports posted to the display during long runs are
suppressed if it has been less than 2 seconds since the last progress report, even
if the DRC has moved onto a new operation. Since the posting of these progress
reports can take a significant amount of time for along DRC run, you may want
to increase this suppression interval for long runs. This option is especially
useful if you do not intend to check the progress very often.

DISPLAY_OP=60

Adding the option above to the DRC command line will suppress progress
reports so that the display is updated no more often than once a minute.

If you prefer to have no suppression of the progress reports (the default behavior
of previous versions of the DRC), add the following option to the DRC
command line;

DISPLAY_OP=0

This use of DISPLAY_OPERATIONS will force the DRC to operate as in
previous versions. The progress display is more or less continuously updated.
This option will also cause the NO_FLASH_PANELS limit (covered next) to be
ignored.

[NO_FLASH_PANEL S=flash_limit]

The DRC roughly estimates at the beginning of a run whether or not the run is
likely to take along time. The estimate is based on the number of panels and
the number of rules. If this estimate is smaller than a default flash limit, then
progress reports will flash on the screen more or less continuously. These
updates to the display can increase the run time on the order of 15 minutes for a
7 hour DRC run.

DRC User Manud

Running the DRC: Command Line Syntax

See 118 to learn
more about
panels.

Example:

The console
window will not
close
automatically
when you type
the command
linein an open
console
window.

(The actual progress update rate is controlled by the DISPLAY_OPERATIONS
option described above. The default is to suppress updates to be no more often
than every 2 seconds.)

The run time indicator estimate is calculated with the following equation:

Number_of _panels = number_of rules in_rule_set

If the result of the calculation is less than the flash limit, then progress reports
will be suppressed only by the interva limit defined with the
DISPLAY_OPERATIONS option. If this estimate is larger than the flash limit,
then most progress reports are suppressed entirely and the interval defined by the
DISPLAY_ OPERATIONS option is ignored entirely. The default flash limit is
100,000 or DOS versions, 10,000 for Windows versions.

You can set the flash limit directly by using the NO_FLASH_PANELS option
on the DRC command line. If you prefer to suppress progress reports for even
relatively short runs, decrease the flash limit to a smaller number. If you do not
want any progress reports suppressed, then use the following command line
option instead of aNO_FLASH_PANELS option:

DISPLAY_OPERATIONS=0

[PAUSE=(ALWAYS| CRASH | NEVER)]

The following option is useful only when executing the DRC from a batch file.
When you execute the DRC, without opening a console window explicitly, the
program executes in a temporary console window. In this case, the console
window may close automatically without giving the user time to see the fina
messages posted as the program terminates. Once the console window is closed,
the console messages are gone forever. If the DRC crashes, it is very important
to review these consol e messages to avoid repeating awasted run.

Some users create a batch file with the DOS PAUSE command after the DRC
command line to ensure that the console messages remain on the screen until

DRC User Manual 345

Running the DRC: Command Line Syntax

they can be viewed. With this version of the DRC, the extra PAUSE command
can be omitted. If you prefer to hold the window open until the <Return> key is
pressed, smply add a PAUSE option to the DRC command line.

PAUSE=ALWAYS This will aways pause the DRC after
termination until the <Return> key is pressed.

PAUSE=CRASH This option pauses the DRC after termination
only when the program crashes. If the program
terminates normally, no PAUSE is executed and
no keystroke is required to close the program
console.

PAUSE=NEVER (This is the default if no PAUSE option is
included on the DRC command line.) The DRC
closes without an extra keystroke. If the console
window will not close automatically when the
DRC terminates, thisis the best option.

Rules File Options

The following DRC command line options affect how the DRC rules file is
processed and reported in the DRC log.

[LAYERS=(layer_numberl [,layer number2[...,layer numbern]])]

You can write your rules file with variables for the ICED™ layer numbers rather
than specifying the layer numbers explicitly. If your rules file uses this feature,
you must supply the layer numbers at run time using this command line option.
The layer number supplied for layer_numberl will replace the %1 parameter
wherever it is used in the rule set. layer_number2 will replace %2, and so on.
This alows you to create "canned" rule sets that you can run on any required
layers at alater date.

346

DRC User Manud

Running the DRC: Command Line Syntax

Example:

A more
complete
explanation of
rule setsis
provided on
page 152.

Example:

DRC3-NT BLOAT10 XCHIP XCHIPOUT LAYERS=(3,10)
Note that the parentheses are required.
If therulesfile BLOAT10.RUL contains the following rules:
INPUT LAYER %1IN
OUTPUT LAYER %2 O0UT
OUT =BLOAT (IN, .10)

and the DRC command line is that shown above, the DRC will execute the rules
as though they had been written as:

INPUT LAYER 3IN;
OUTPUT LAYER 100UT
OUT =BLOAT (IN,.10)

[DO=(rule_specl [,rule _spec2|...,rule_specn]])]

The DO keyword allows you to execute only specific rules from the rule set.
Y ou do not need the edit your rule set to execute only subsets of rules.

Each rule_specn parameter can be either the name of a rule set defined with the
RULE_SET rule or arule number. If you wish to execute al rules except for the
specified rule number or set, place adash in front of the specification.

DRC3-NT MYRULES XCHIP XCHIP SLOW DO=(FET_RULEYS)
When this DRC command line is used with the RULE_SET example shown on
page 296, the DRC will execute only the rulesin the rule set FET_RULES, and

any rules which generate the layers used in those rules.

Y ou can combine rule set names and rule numbers after the DO keyword.

DRC User Manual 347

Running the DRC: Command Line Syntax

Example:

Therule
numbers are
listed in the
rules compiler
log file.

Example:

DRC3-NT MYRULES XCHIP XCHIP SLOW DO=(FET_RULES, 8)

This command line will execute the rules in the FET_RULES rule set, rule
number 8, and all rules required to generate the layers specified in those rules.

When rule set names are specified, you must surround rule specification with
parentheses. When specifying only rule numbers the parentheses are optional.

DRC3-NT MYRULES XCHIP XCHIP SLOW DO=-8,-10

This command line will execute all rules except for rule numbers 8 and 10. The
layer generation rules required for only those rules will be skipped as well.

[SHOW_BORDER]

This command line option will add panel border calculations for each pass to the
DRC log file. This can help you understand how your rule set affects the layer
reach and panel border used by the DRC. If the panel border is large compared
to the panel size, your DRC run may be very slow.

To learn about panels and borders, read "Panel Processing” beginning on page
118.

[BORDER=Dborder_dimension]

The BORDER keyword is used to override the panel border.

WARNING: This option is intended solely for DRC experts. Border overrides
can lead to incorrect DRC results.

Y ou must thoroughly understand panels and borders before using this keyword.
See page 124 for a complete explanation. Setting too small a border can
prevent the DRC from finding errors in your layout. Setting too large a
border can slow the DRC considerably.

348

DRC User Manud

Running the DRC: Command Line Syntax

Example:

Adding
NO_RUL to
your rule set has
the same effect
as adding this
option to the
command line.

Example:

DRC3-NT MYRULES XCHIP XCHIP SLOW BORDER=10

This command line will override the default border calculated by the DRC or the
border specified by any BORDER rule in your rule set. A panel border of 10
user unitswill be used by all passes. If this border issmaller than that calculated
by the DRC, errors may not be found.

[NO_RUL]

The location of the source rules file and its time/date stamp are stored in the
compiled rules file. If the time/date stamp of the source rules file is different
than the information stored in the compiled rules file, the DRC will warn you,
then ask you with a prompt if you want to proceed. Thisisto avoid awasted run
when you edit the rules file, then forget to compile it, before re-executing the
DRC.

If the source rules file is not found in its original location, you will also receive
an error message and aprompt. Thisis due to the fact that the DRC cannot tell if
the source rules file is the same one that was used to create the compiled rules
file.

If you want to suppress this warning message when the source rules file cannot
be found, and avoid the prompt asking you if you want to proceed, add the
NO_RUL keyword to your DRC command line.

This keyword will not prevent an error message and prompt when the source
rules file is present but has a different time/date stamp than that stored in the
compiled rulesfile.

DRC3-NT MYRULES XCHIP XCHIPOUT SLOW NORUL

Note that the underscore is optional in the NO_RUL keyword. Thisistrue of all
keywords in the DRC command line.

DRC User Manual 349

Running the DRC: Command Line Syntax

Example:

[LIST_RULES]

Add this keyword to your DRC command line to add to the DRC log file a report
of which rules were executed during each pass of the DRC. Using this keyword
will also add to the DRC log most of the other information related to the rules
filethat isreported in the rules compiler log.

DRC3-NT MYRULES XCHIP XCHIPOUT QUICKPASS LIST

Note that the LIST _RULES keyword can be abbreviated to "LIST".

[SHOW_SCALES]

The DRC calculates a default smoothing tolerance used by the BRIDGE rule.
This tolerance allows the rule to recognize air bridge structures that are slightly
less than perfect due to resolution grid rounding of the vertices. This default
tolerance is usually .001 user units, but it can change if the design is very large.
To see the actual default tolerance, add the SHOW_SCALES keyword to the
DRC command line and search for "Smooth_tolerance” in thelog file.

Design Area Options

Another method
to limit the
design areaisto
add the IN
keyword to the
DRC command
in the layout
editor.

The following keywords are used to alow you to verify only a portion of the
layout data. You do not need to use al four options at the same time. Any
combination of the following four options can be specified. If one of the options
is not present, the default is to use the boundary of the design as the boundary of
the area to check.

If your rule set specifies electrical connections for use by the MIN_SPACING
/CONN or /~CONN keywords, these options may result in incorrect results since
electrical connections may be made outside of the area used.

350

DRC User Manud

Running the DRC: Command Line Syntax

See page 100
for an example
of the type of
spacing errors
the DRC may
miss when
QUICK-
_SPACING s
used in
combination
with the design
areaoptions.

See page 159 to
learn how these
options can lead
to false errors
being marked.

When these options are used, the DRC will automatically use the slower
algorithm for spacing checks since vertices of shapes that violate a spacing check
may be outside of the area checked. To override this slower algorithm, and risk
missing spacing errors, you can also add the QUICK_SPACING option to the
command line.

[LEFT=left_x_coordinate]

Add this option the command line to set the leftmost boundary of the area to be
processed by the DRC. All shapes to the left of left_x _coordinate will be
ignored.

[RIGHT=right_x_coordinate]

Add this option the command line to set the rightmost boundary of the area to be
processed by the DRC. All shapes to the right of right_x_coordinate will be
ignored.

[TOP=top_y_coordinate]

This option sets the top boundary of the area to be processed by the DRC. All
shapes above top_y_coordinate will be ignored.

[BOTTOM =bottom_y_coordinate]

Use this option to set the bottom boundary of the area to be processed by the
DRC.

DRC User Manud

351

Running the DRC: Command Line Syntax

Example:

DRC3-NT MYRULES XCHIP XCHIP SLOW LEFT=410 RIGHT=1000 ...
... TOP=2000 BOTTOM=0

This command line will force the DRC to use only the area of the layout file
within a box with corner coordinates (410,0) and (1000,2000). The order of the
boundary options is not important.

Cell Hierarchy Options

Y ou should
refer to page
134 tolearn
more about how
hierarchical
designs are
processed by
the DRC.

Example:

See page 136
for more details
on how the
DRC handles
dangerous
operations.

These options control how cells are flattened (i.e. ungrouped) hierarchically.
The FLATTEN, NO_FLATTEN, CFLATTEN, and NFLATTEN options all
control how cells are flattened before the DRC begins processing the data.
When you use none of these parameters, the default DRC behavior is to flatten
cellsthat are used only once, and those that have five or fewer components. This
behavior tends to speed the DRC run by minimizing the repeat processing on
small cells.

The HIERARCHICAL option affects only the cell hierarchy of the data created
on output layers. When you do not add the HIERARCHICAL option to the
command line, the output datawill be created flat with no subcell structure.

[FLATTEN]

This option will force the DRC to ungroup al cellsinto one flat main cell before
any layer processing is performed.

DRC3-NT MYRULES XCHIP XCHIPOUT SLOW FLATTEN

This DRC command line will cause all cells in the XCHIP.POK file to be
flattened hierarchically before the DRC processes the data. If the rule set calls
for dangerous processing of cells or layers, this will be ignored since no cell
hierarchy remains.

352

DRC User Manud

Running the DRC: Command Line Syntax

Example:

Example:

[NO_FLATTEN]

This option on the command line will prevent the DRC from flattening any cells.
By default, all cells that have few shapes, and cells that are used only once, are
ungrouped automatically. This command line option will prevent this
ungrouping. The cell hierarchy of the entire design will be preserved.

[CFL ATTEN=component_count]

Unless this option (or the NO_FLATTEN option) is used on the command line,
the DRC will automatically ungroup al cells that have five or fewer shapes.
When this option is used, the DRC will flatten cells that have component_count
or fewer shapes.

DRC3-NT MYRULES XCHIP XCHIPOUT SLOW CFLATTEN=1
When the option CFLATTEN=1 is used, al cells that have only a single

component will be ungrouped by the DRC before layer processing begins.
Other cellswill remain hierarchically nested.

[INFLATTEN=use count]

Unless this option (or the NO_FLATTEN option) is used on the command line,
the DRC will automatically ungroup all cells that occur only once. When this
option is used, the DRC will ungroup all occurrences of cells that are used
use_count or fewer times.

DRC3-NT MYRULES XCHIP XCHIPOUT SLOW NFLATTEN=0
When the option NFLATTEN=0 is used, no cells will be ungrouped because

they are used infrequently. Cells used only once will remain hierarchically
nested.

DRC User Manual 353

Running the DRC: Command Line Syntax

Example:

See page 372 to
learn how to
import
hierarchical
output data into
the layout
editor.

Safe handling of
dangerous
operations may
put some shapes
in ahigher level
cell than you
would expect.
See page 141.

Example:

The SLOW
option is auto-
matically
invoked when
HIERARCHI-
CAL isused.
Do not add the
QUICK_PASS
option to the
command line.

DRC3-NT MYRULES XCHIP XCHIPOUT SLOW NFLATTEN=4

This command line will cause the DRC to ungroup all cells that are used 4 or
fewer times.

[HIERARCHICAL =" suffix_string"]

When this option is used on the command line, the DRC will create the shapes
on output layers (except for error wires) in hierarchically nested cells. The cell
structure will be modeled on the cell structure of the input data. However, cells
that have been flattened with the options above will remain flattened in the
output data. If you want the cell structure of the generated data to match your
input data exactly, use the NO_FLATTEN command line option and the
ALL_DANGER rulein addition to this option.

Output from rules that produce error wires (e.g. MIN_SPACING, see the list on
page 62.) will be created in a flattened main cell. Only polygon output shapes
are nested in subcells.

The required suffix_string parameter will be added to the end of every cell name
created in the output data. This prevents the newly created cells from modifying
your original cells when you import the data with the output_file base-
_hame.CMD command file. You should add quotes around the suffix_string if it
contains characters likely to confuse the DRC command line parser.

DRC3-NT MYRULES XCHIP XCHIPOUT HIERARCHICAL=_OUT

This command line will cause the DRC to create shapes on output layers in
nested cells. Each nested cell in the DRC database will have a cell created for it
with the suffix "_OUT" added to the cell name. For example, if a nested cell in
the input data has the name "SUBCELL", a cell will be created in the output
command file with the name "SUBCELL_OUT". This cell will contain all
shapes on output layersin the cell SUBCELL at the end of the DRC run.

354

DRC User Manud

Running the DRC: Command Line Syntax

Example:

Toavoid a
warning prompt
when safe
processing may
create shapes
higher up in the
hierarchy than
you would
expect, use the
NO_HIER-

_WARING rule.

You must execute the command file output_file_base name.CMD to create the
new cells. You should look at the layout carefully to make sure that it is what
you expected.

Once you have determined that the layout generated by the DRC is exactly what
you wanted, you can add the generated cellsto your original data. The command
file output_file_base name. ADD can be executed to add each newly created cell
to your original cells. You must execute this command file while editing a
temporary cell. You cannot execute it from one of the design cells it will
attempt to edit. (See page 374 for an explanation of the complete process.)

DRC3-NT MYRULES XCHIP XCHIPOUT HIERARCHICAL=""

This DRC command line is valid, but it can be hazardous. Since the
suffix_string is ™", the commands in XCHIPOUT.CMD will modify the original
cells. No .ADD fileisgenerated. If the results were not what you expected, you
must exit the layout editor with the JOURNAL command to avoid saving the
changes.

When the HIERARCHICAL option is not used, the output data will be created
flat (i.e. no cell hierarchy) regardless of the cell structure of the input data.

Command File Options

To learn more
about the
command file
created by the
DRC see page
365.

Seethe
WIRE_WIDTH
rule on page
315.

The following command line options affect the output_file_base name.CMD
command file created by the DRC to create shapes in the ICED™ |ayout editor.

[WIRE_WIDTH=error_wire width]

The WIRE_WIDTH rule sets the width used to create all error wires. If you
need to override a value set with this rule, you can add this option to the
command line. Alternately, if you do not have a WIRE_WIDTH rule in your
rule set, then you can override the default behavior of creating error wires using

DRC User Manud

355

Running the DRC: Command Line Syntax

Example:

the default width of each error layer. All error wires created by the command
filewill be created using the width specified with this option.

When you set error_wire width to 0, this removes the effect of any
WIRE_WIDTH rule in the rule set and the DRC command file will create error
wires using the default width of each error layer.

[START_CMD ="st_cmdstring"]
and

[END_CMD ="end_cmdstring"]

If you add the STARTCMD = "st_cmdstring" option to your DRC command
line, the DRC will add st_cmdstring as the first line of the command file.

The ENDCMD = "end_cmdstring” option will cause the DRC to add
end_cmdstring as the last line in the command file.

Both string parameters should be valid ICED™ layout editor command strings.
You should surround the string parameters with quotes since blanks or ‘@'
characters (used for the @file_name ICED™ command) would be misunderstood
by the DRC command line parser.

DRC3-NT XRULES XCHIP XOUT START="EDIT CELL DRCOUT" ..
... END="EXIT;ADD CELL DRCOUT AT 0,0"

This DRC command line will create a command file with the name
XOUT.CMD. The DRC will add the following line to the top of the file:

EDIT CELL DRCOUT
When the EDIT CELL command is executed, the ICED™ editor will create a new

cell with the name DRCOUT. All subsequent commands in the command file
will create shapesin this new cell.

356

DRC User Manud

Running the DRC: Command Line Syntax

See another
example of the
START and

END optionson
page 370.

The command file will have the following two ICED™ commands added on the
last line:

EXIT;ADD CELL DRCOUT AT 0,0

When these two commands are executed, the ICED™ editor will exit from the cell
it has just created, then add that cell to the current cell at the coordinates 0,0.

The total effect of adding these three commands to the command file is that all
shapes created by the DRC command file will be created in a subcell of the
current cell, rather than as components in the current cell. Thisis desirable since
the command file will not then alter your original cells. Once you are finished
looking at the DRC data, you easily can delete all of it by deleting the single cell
DRCOUT. (If the DRCOUT.CEL file is saved to disk, you should delete it
before arepeat DRC run. Otherwise, the next DRCOUT.CMD file will edit the
existing DRCOUT.CEL leaving al of the errors found by the previous run in the
cell.)

[OBSOLETE]
and

[MACROS=NONE]

These options are used to prevent the addition of macros and other specia
commands to the command file. These commands can cause problems to
obsolete versions of ICED™. If you are importing command files successfully,
you do not need them.

DRC User Manual 357

Running the DRC: Command Line Syntax

Panel Size Options

See the next
option to refine
panel shape
when areais
specified.

Use these options to override the panel size set in the rulesfile.

[PANEL X=panel_x_dimension]
and
[PANEL _Y=panel_y dimension]

Use these options to specify the panel size by x and y dimensions. These options
have the same effect as PANELX and PANELY rulesin therulesfile.

[PANEL _A=panel_area]

Y ou can use this option to specify maximum panel size by area rather than by x

and y dimensions. Panel areais specified in one of three ways:
PANEL_A=panel_area in_square_user_units
PANEL_KA=panel_area_in_kilo_sguare_user_units
PANEL_MA=panel_area_in_mega_sguare_user_units

[PANEL_X_BY_Y=pane ratio]
and
[PANEL_Y_BY_X=pane _ratio]

If you use the previous option to specify panel area, you can optionally specify
the ratio of the x and y dimensions with either of these options.

358

DRC User Manud

Running the DRC: Command Line Syntax

Batch Files

Another way to
save DRC
command line
optionsin afile
istouse
command line
indirection. See
page 336.

Example:

Example:

The recommended way to launch the DRC is to use a batch file. You use any
text editor to create the command line with al of the desired command line
options, and store it in afile with a.BAT extension. Y ou then execute the batch
file to execute the DRC command line. If you use many command line options
this can save you a lot of typing and perhaps prevent wasted runs when you
forget to add a critical command line parameter.

The DOS SET command can be added to the batch file to set the DRC_PATH
environment variable. This variable determines where the DRC will look for
your rulesfileif it cannot find the rulesfile in the current directory.

Y ou can use placeholders on the DRC command line to alow you to type some
parameters on the batch file command line. DOS batch file placeholders must be
a '%' followed by a number. For example, the lines below represent a simple
batch file to launch the DRC program. Let us assume that the name of thisfileis
DRCBAT.BAT

SET DRC_PATH=E:\ICED\DRCRULES
DRC3-NT %1 %2 DRCOUT SLOW PAUSE=ALWAY S %3 %4 USE=8000

The first two placeholders in the command line mean that you must specify the
name of the rules file and the layout data file on the command line when you
execute the batch file. The additional placeholders allow you to add other
parameters on the batch command line that will be added to the DRC command
line after the PAUSE option.

DRCBAT MYRUL MYPOK QUICKPASS

When you type this command line at the DOS prompt, the DRC will execute
with the following command line:

DRC3-NT MYRUL MYPOK DRCOUT SLOW PAUSE=ALWAYS...
... QUICKPASS USE=8000

The QUICKPASS option will override the SLOW option.

DRC User Manual 359

Running the DRC: Command Line Syntax

If your
operating
systemis pre-
parsing the
command line
and replacing
the'="with a
blank, use '#
instead. See
page 333.

The PAUSE option in the example above is used primarily when you execute
this batch file without opening a console window explicitly. If you execute the
batch file with a method like a desktop shortcut, a temporary console window is
opened to display the console messages. However, once the DRC completes, the
temporary console window will close immediately unless the PAUSE option is
added to the command line. The PAUSE option will prevent the window opened
for the console from closing until you have a chance to view the console
messages. Just press <Enter> to close the console window.

Another DOS command you may want to add to your batch file isa CD (or
CHDIR) command to change the current directory before the DRC begins. Any
DOS commands you desire can be added to the batch file.

360

DRC User Manud

Running the DRC: Output Files

DRC Output Files

The DRC can generate several output files. The file name extensions vary from
file to file, but the base part of the file name for most of the files will be the
string provided in the output_file_base name parameter (the third parameter) on
the DRC command line.

If you do not provide an output_path with the output_file_base name parameter,
all fileswill be created in the current directory.

If a previous DRC run has created output files in the same directory, most of
those files will be renamed with a '1' replacing the final character in the file
extension before the new files overwrite them. This provides a backup of the
results of your last DRC run with no effort on your part.

File extension

Contentsand use of file

DRC logfile

DLO
(previous run backup .DL 1)

General information about DRC run
All error and warning messages
Statistics on run time

DRC command
file

.CMD
(previous run backup .CM1)

Command file used to create shapes on
output and error layersin the ICED™
layout editor

Hierarchical cdl
command file

ADD
(previous run backup .AD1)

Command file used to add hierarchica
output to original cells

Subcell error
command files

.ERR (file names are based
on cell names, if possible)

(previous run backups .ER1)

One command fileis created for each
input cell that contains errors found in
the subcell (including bad polygons and
dangerous processing warnings).

Figure 211: DRC output files.

DRC User Manud

361

Running the DRC: Output Files

The DRC log file will record the file names used for each of thesefiles.

Two or more temporary files are created by the DRC. A file with the name
DRC3CMD.$$$ is created in the current directory, then erased as the DRC
begins. One or more scratch files with the name $D3VIRT.000 are created
depending on the use of the SCRATCH_DIR command line option. These files
will be deleted automatically by the DRC at the end of a successful run.

Due to the creation of these temporary files, it is unwise to launch multiple runs
of the DRC simultaneously from the same directory. This could be a problem on
networks or multitasking operating systems. Simultaneous runs of the DRC
should have no problems as long as they are started from different directories.

DRC LogFile

Thisfile is where the DRC will store all error and warning messages. All of the
information printed on your screen as the DRC is executing (except for the
progress indicators) will be recorded in this file at the same time. In addition,
many detailed error messages and counts of shapes created on all output and
error layers will be reported.

This file will not contain the coordinates of all errors found in the layout. The
layout error datais represented in the DRC command file (covered on page 365).
Y ou can enable detailed logging for afew of the verification rules. Thiswill add
a detailed message about each error found (including coordinates). See page 50
for a complete description of detailed logging.

If you use the following DRC command:
DRC3-NT MYRULE MYCELL DRCOUT
The name of the DRC log file will be DRCOUT.DLO.
The log file begins with a header that includes the version number of the

program. The command line used to execute the program is then reported. This
information is followed by the names of the input and output files.

362

DRC User Manud

Running the DRC: Output Files

Bad polygons
are defined on

page 74.

See page 118 to
learn more
about panels.

To include a complete listing of the rules file at this point in the DRC log, add
the LIST_RULES keyword on the DRC command line. The information added
will include a complete list of input, output, and scratch layers and the rules
executed in each pass.

The amount of memory available to the DRC program is listed next along with
the date and time of the run.

If the SHOW_SCALES option is included in the DRC command line (see page
350), then the log file at this point lists several scale factors used by the program.

If bad polygons (shapes which may cause problems for mask processing
software) are included in your layout, they will be mentioned next in the log.
Each cell that contains bad polygons will have a command file created for it that
has the bad polygons copied to an error layer. These files are described in more
detail on page 374. (The total number of bad polygons is aso listed in the
summary information along with the final error count near the end of the log
file) The listing and copying of bad polygons on input layers that are not used
in your rule set can be turned off by the NO_CHECK _INPUT rule. See page
276.

Some details on how the layout was ungrouped (i.e. flattened) are printed next.
If your layout contains cells that are not ungrouped because they are used in an
INCELL rule, or because of cell flattening options or defaults (see pages 144 and
352) thiswill be reported.

The cut resolution in effect is listed next. This is set by the
CUT_RESOLUTION rule. (See page 79 for a description of the various
resolution grids.)

The design area coordinates are listed here, as well as the panel size used by the
DRC.

The number of operations and passes required by the rules is listed next. (See
page 128 for an explanation of passes.) The DRC algorithm chosen is listed
here, either "Slow method" or "Quick pass’ will be listed. (See page 129 for
details.)

DRC User Manual 363

Running the DRC: Output Files

See page 313
for details on
acute angle
warnings.

The string "Flat output” or details on the hierarchical output options will be
reported. (See page 146.)

Next, the log lists the spacing method used. This method is determined
automatically by the rule set. However, the QUICK_SPACING DRC command
line option can overrule the slower spacing method at the risk of missing errors
in certain rare cases. (See page 100.) When the QUICK_SPACING option has
overridden the slower method, the log file will print a "**** WARNING"
message about this.

The panel border used for each passis reported next. Add the SHOW_BORDER
keyword to the DRC command line to see how the panel borders were
calculated.

The cells checked and their coordinates will all be listed. (Cells flattened by the
pre-processor are listed above.)

If the NO_WARN_ACUTE ruleis not present in your rule set (see page 280), al
acute angles on polygon output layers will be listed here.

At this point in the log file, the DRC will add the following line at the
conclusion of a successful run:

Done.

If bad polygons were reported earlier in the log file, the total number will be
summarized at this point. A summary of acute anglesis listed next.

If no shapes were created by the DRC on error layers (i.e. no errors were found
by verification rules), the DRC will post the following message:

***No errorsfound.

If errors were found, the total number of error shapes generated by the DRC is
provided and looks similar to:

***Error count=76

364

DRC User Manud

Running the DRC: Output Files

The DRC will often create a pair of error shapes for a single violation.
Overlapping error shapes on the same layer may be merged. For these reasons,
the number of error shapes generated is not the same as the number of rule
violations found.

The log file will continue with a summary of shapes created on all output and
error layers.

The log ends with statistics on the scratch file and processing times. If alarge
scratch file was required, you may be able to decrease your run time significantly
by reducing the panel size. One indicator for DRC efficiency is the percentage
of time the DRC spent on "Disc swaps'. If more than 50% of the run time is
spent swapping information into and out of the scratch file, you should read the
information beginning on page 118 to learn how to optimize panel size.

The time spent processing each rule is presented here as well. The times are
listed by operation number. To relate the operation number to the rule, look in
the rules compiler log file or add the LIST_RULES option to the DRC command
line.

DRC Command File

Read
"Generating
Output Layers"
on page 70 for
important
information on
using the DRC
to create new
mask layers for
import into your
design.

This file will contain ICED™ layout editor commands that create shapes to
indicate the errors the DRC has found and/or to import the results of layer
processing. The DRC will create this file with the name
output_file_base name.CMD (where output_file_ base name is the third
parameter on the DRC command line).

If you use the following DRC command line:
DRC3-NT MYRULE MYCELL DRCOUT

then the name of the DRC command file will be DRCOUT.CMD.

DRC User Manual 365

Running the DRC: Output Files

The LOCAL
and GLOBAL
commands in
the DRC
generated
command file
create macros
(similar to
variables).
Lean morein
the ICED
Command File
Programmer's
Reference
Manual.

The SHOW
command in the
layout editor
can be used to
report the tag
number of a
selected shape.

Usinga
WIRE_WIDTH
rule makes
changing the
layersin the cell
unnecessary.
However, you
should still set
the default wire
type with the
USE command.

Every shape on layers defined with the OUTPUT LAYER rule will have an
ADD command in the file. These shapes are created from the layer data at the
end of the DRC run.

The ADD commands in this command file (and all command files generated by
the DRC) are written in ASCII. You can browse this file to see the coordinates
of each error shapeif you desire.

The command file will have commentsin it to aid you in determining which rule
of your rule file generated the shape. The comment before a block of ADD
commands will contain the string "TAG=rule_number". The rule_number
parameter is equal to the number of the rule that created the shapes. The rule
numbers are listed near the bottom of the rule compiler log.

Before Executing the Command File

You may want to set the layer properties of the layers to which you will be
adding shapes before executing the command file. You set the name, color, fill
pattern, and default width for each layer number with LAY ER commands in the
layout editor. You set the default wire type for all layers with the USE
command. It is particularly important to set the default width and wire type of
error wire layers before executing the command file. It istricky to change these
properties after the shapes are created.

Always set the default wiretype of error wirestotype 0. Type 2 wires can be
very confusing since the wire will extend past the error.

Set the default width of error wire layers to be small compared to the minimum
width of the design layer they will be marking. Thiswill allow the error wires to
distinctly mark only the edges of shapes that arein error. If the default width of
an error wire layer is large compared to the width of the shapes, the error wires
will overlap and be difficult to see.

(If you prefer to avoid customizing the wire widths of all error layers in the cell
before you import the shapes in the command file, add a WIRE_WIDTH rule to
the rule set. When thisruleis used, al error wires will be created with the same
specified width.)

366

DRC User Manud

Running the DRC: Output Files

To seethe
current
properties of a
layer in the
layout editor,
type the
LAYER
command with
the layer
number asthe

only parameter.

USE WIRETYPE=0
LAYER 50 NAME=M1_ERROR WIDTH=.2 COLOR=RED

Executing these two commands in the ICED™ layout editor befor e executing the
DRC command file will set the default properties of the error wires about to be
created on layer 50. The default width of .2 user unitsisagood dimension if the
M1 layer in your design has a minimum width of 1 user unit or more.

SRS
*\\\\\\\\

Figure 212: Confusing error wires Figure 213: More distinct error
of type=2 and width=2. wires of type=0 and width=0.2.

DRC User Manual 367

Running the DRC: Output Files

Y ou can add the
@ERRWIRE.CMD
command to the
DRC command
file with the
START_CMD
option on the DRC
command line.
(See page 355 and
the examples
below.)

Unless you have
used the
HIERARCHICAL
keyword on the
DRC command
line, there will be
no cell structure
in the generated
DRC shapes.

See page 372
learn about
important
differencesin the
command file
when the
HIERARCHICAL
keyword is used
onthe DRC
command line.

You can create a command file to set the properties of error layers. Simply
create an ASCII file with the USE and LAY ER commands you desire. If you
create this file with the name ERRWIRE.CMD in the current directory, you
execute it in your cell with the layout editor command:

@ERRWIRE.CMD

Executing the Command Filein the Layout Editor

The same @file_name command syntax as that used above is used to execute the
DRC command file. To add the shapes in the file DRCOUT.CMD to the cell
you are currently editing, type the layout editor command:

@DRCOUT.CMD
However, executing thisfilein your design cell will modify your design cell.

If your rules output only layer numbers that are not used in your design, it is
relatively easy to delete the DRC generated shapes. You can delete al shapes
on agiven layer number n with the layout editor commands:

UNSELECT ALL
SELECT LAYER n ALL
DELETE SEL

Y ou can create a command file with a name similar to DELDRC.CMD with all
of the commands necessary to remove al of your DRC layers. Simply execute
this command file when you are done looking at the DRC shapes, before you
save the cdll files. (You may want to add the command X SELECT=0FF to the
top of this command file. See the layout editor reference manual.)

368

DRC User Manud

Running the DRC: Output Files

The VIEW OFF
and LOG
SCREEN OFF
commandsin
the DRC
generated
command file
are present to
speed up
execution.
Learn morein
the layout editor
reference
manual.

| solating the DRC Shapes from the Original Layout Data

If you prefer to isolate the shapes generated by the DRC from your design cells,
there are methods that allow you to view the DRC generated shapes without
affecting your original design cells.

One simple way is to create a new cell with the ICED™ layout editor, then
execute the @DRCOUT.CMD command in this new cell. You can then add the
new cell to your top-level cell, or add both the new cell and your top-level design
cell to a different new cell. Usualy, the best method is to add your top-level
design cell to the new cell containing the DRC generated shapes. Thiswill allow
you to turn the display of your design shapes on and off as you view the DRC
shapes.

Launch the ICED™ layout editor to create a new cell with a name like
NEWCELL

Add the DRC shapes with the ICED™ command:
@DRCOUT

(The file extension of .CMD is added automatically to the command file name
by the @file_name command when no file extension is provided.)

Y ou can then add your design cell to the new cell with a command similar to the
following ICED™ command:

ADD CELL MYCELL AT 0,0

DRC User Manud

369

Running the DRC: Output Files

See aanother
example of
using START
and END on
page 356.

You can use the START_CMD and END_CMD options on the DRC command
line to make this type of processing automatic. These options add layout editor
commands to the DRC command file.

IDRCSTART.CMD

Initializes defaultsfor error wirelayers

USE WIRETYPE=0

LAYER 50 NAME=M1_ERROR WIDTH=.2 COLOR=RED PAT=7
LAYER 51 NAME=M2_ERROR WIDTH=2 COLOR=BLUE PAT=12
LAYER 52 NAME=P1 ERROR WIDTH=.1 COLOR=GREEN PAT=14

Figure 214: Command file DRCSTART.CMD

IDRCEND.CMD
IAdd top-level design cell to temporary cell with DRC output
ADD CELL MYCELL AT 0,0

Figure 215: Command file DRCEND.CMD

You can create the two command files shown above with any ASCII text editor.
Then execute these command files automatically whenever you execute the DRC
generated command file when you add the following options to your DRC
command line;

START="@DRCSTART" END="@DRCEND"

The command @DRCSTART will be added to the DRC command file so that
the commands in DRCSTART.CMD are executed before the ADD commands
generated by the DRC program. The commands in DRCEND.CMD will be
executed after the last ADD command generated by the DRC. You can modify
the DRCSTART.CMD and DRCEND.CMD files as you develop your own
methods for viewing the DRC output.

370

DRC User Manud

Running the DRC: Output Files

Making the DRC Shapes More Visible

Sometimes the shapes the DRC creates are difficult to see since they are copies
of shapes in your design cell which are right on top the original shapes. There
are several ways to make the shapes easier to see.

One way is to temporarily turn off the display of your design cell with the
command:

BLANK CELL LAYERS 0:255
Y ou can turn display of your design cell back on with the command:

UNBLANK ALL
You can use color to highlight shapes on the DRC layers with the ICED™
LAYER command. A good color to use for the DRC layersisthe HI color. This
color will always have priority on your screen so that shapes drawn with that
color are not hidden behind other colors. To assign the color HI to a layer
generated by the DRC command file, use the command:

LAYER n COLOR=HI
where n is replaced with the layer number in the DRC command file.
Y ou can then make this color strobe on and off with the command:

BLINK

Another way to locate shapes on one of the DRC layers is to select only the
shapes on that layer with the commands:

UNSELECT ALL
SELECT LAYER n ALL

Y ou can then resize the view screen to see al selected shapes with the command:

VIEW SELECT

DRC User Manual 371

Running the DRC: Output Files

Rule numbers
arereported in
therules
compiler log
file.

Determining Which Rule Generated a Shape

If you see an error shape on your screen, and you don't know which DRC rule
generated the error, you can use the SHOW command in the layout editor to
report the TAG number. Select the shape, then type:

SHOW *

The SHOW command will report the TAG number of the selected shape.
Remember that the TAG number is the number of the rule that generated the
shape.

Fixing the Errors

Once you have located a DRC generated shape which points out an error in your
design cell, you can edit the cell which contains the origina design shape,
without exiting the editor, by using any of the ICED™ edit commands. EDIT,
PEDIT, or TEDIT.

The easiest edit command to use is usually the PEDIT NEAR command. After
typing this command, place your cursor on an edge of the design shape you need
to modify to correct the problem, then click the left mouse button. Y ou are now
editing the cell that contains the design shape, even if it is nested severa levels
down. The shapes in other cells will remain on the screen but you will not be
able to edit them. If you prefer that shapes in other cells are not displayed while
you edit the cell with the problem, use the TEDIT NEAR command instead of
PEDIT NEAR.

Hierarchical Output

Unless you have used the HIERARCHICAL keyword on the DRC command
line, the DRC command file will create all shapes in whatever cell you execute it
from. Therewill be no cell structure in the generated data.

372

DRC User Manud

Running the DRC: Output Files

Example:

Refer to page
146 for an
important
overview of
how
hierarchical
output is
handled by the
DRC.

When you do use HIERARCHICAL=suffix_string on the command line, the
DRC command file will create all shapesin cells which match the cell structure
of your original data. The cell nameswill all have the suffix_string added to the
end of the original cell names.

DRC3-NT MYRULES XCHIP XCHIPOUT HIERARCHICAL=_OUT

When this DRC command line is used, the command file XCHIPOUT.CMD will
generate output layer shapes (except for error wires) in separate cells by using
the layout editor's EDIT command. If a cell with the name SUBCELL is
included in the origina data, a cell with the name SUBCELL_OUT will be
created in XCHIPOUT.CMD with commands similar to those shown below:

EDIT CELL SUBCELL_OUT

ADD BOX LAYER=20 AT (0,0.6) (1.8,5.9)
ADD BOX LAYER=20 AT (4.2,0) (6.9,5.6)
ADD BOX LAYER=20 AT (9.8,0.5) (12.4,5.6)
EXIT

When these lines from the command file are executed in the layout editor, a new
cell with the name SUBCELL_OUT is created.

Shapes on error wire layers will be created in the highest-level cell, the cell with
the name based on the name of your top-level cell. If the name of your top-level
cell is MAIN, the error wires will all be created in a new cell with the name
MAIN_OUT. Errors that are indicated with polygons rather than wires will be
created in the cell corresponding to the cell with the error. (See the chart on
page 62 to see which rules create wires.)

Executing the XCHIPOUT.CMD file will create the new cells, however, it
will not add them to your original cells. In fact, after you have executed the
command file, you will see no new data in the layout editor. The cells have been
created, but none of them are added to the cell you are currently editing in the
layout editor. To look at one of the new cells, you will have to edit it with the
EDIT command in the layout editor, or EXIT and then re-launch the editor to
edit the new cell.

If you use the null string "" as the suffix_string in the HIERARCHICAL
specification, the DRC command file will edit the original cells. In this case,

DRC User Manual 373

Running the DRC: Output Files

executing the XCHIPOUT.CMD file will modify your design cells. Thiscan be
very dangerous if you do not know exactly what you are doing! Make sure
you have your design backed up before attempting to use this feature. Y ou will
be modifying your design cells before verifying that the DRC has generated
exactly the data you intended.

When the suffix_string is ", you will have to execute the command file while
editing atemporary cell. An EDIT command in the command file will fail if you
attempt to execute it while already editing the cell.

To add the new cells to your original design cells, you execute another file
created by the DRC, the hierarchical cell command file with the name
output_file_base name. ADD. We will now describe how to use thisfile.

Hierarchical Cel Command File

Read an
overview of
hierarchical
output on page
146.

We strongly
recommend that
you read
examplein the
Advanced
Tutorial on page
433 before
attempting this
inared design.

Example:

This file is used to add cells created by the HIERARCHICAL=suffix_string
command line option. It is created only when you have used the
HIERARCHICAL option. It is a command file of ICED™ layout editor
commands to add each cell created by the DRC to your original cells.

The name of this file will be output_file_base name. ADD. You must execute it
in the ICED™ layout editor while editing a new temporary cell. Thisis due to the
fact that the command file uses the EDIT command to open each of your design
cells. The command file will fail if it attempts to EDIT a cell that is already
open in the layout editor.

Your original cellswill be modified by this operation. Be sure that the data
in the new cellsiswhat you expect befor e executing the .ADD file.

DRC3-NT MYRULES XCHIP DRCOUT HIERARCHICAL="NEW"
If you have used this DRC command line, and your design contains a cell with

the name "SUBCELL", the DRC command file DRCOUT.CMD will create a
cell with the name SUBCELLNEW. Once you execute the .CMD file, the cdll is

374

DRC User Manud

Running the DRC: Output Files

Usethe
TEMPLATE
command in the
layout editor to
export
environment
settings from a
design cell.
However, if
your startup
command fileis
set up correctly,
al new céellsare
created with an
appropriate
environment
automatically.

created, however this new cell has not yet been added to your design. You
should look at the contents of this new cell (and any other new cells) before
executing the DRCOUT.ADD file. The .ADD file will contain layout editor
commands that add the cell SUBCELLNEW to cell SUBCELL.

Y ou must open atemporary cell with the ICED™ layout editor to execute thisfile.
The temporary cell should contain appropriate environment settings since the
environment settings (e.g. layer colors and patterns) in effect will replace the
environment settings in all cells modified by the command file. In the editor,
type the following string:

@DRCOUT.ADD
Always execute the .CMD file befor e executing the .ADD file.

The cells created by the .CMD command file and then added by the hierarchical
command file can be time consuming to remove again once the command files
are executed and the cell files saved to disk. If you realize that the added cells
are incorrect, terminate the ICED™ layout editor with the JOURNAL command
to avoid saving cell files.

If you have added cells from a previous DRC run and need to create a new set
that is dlightly different, be sure to not only delete each DRC generated cell from
each original design cell, but aso delete the previous run's cell files before
executing the new command file. Otherwise, the new command file will add
new shapes to the previous cell files rather than creating new cell files.

Subcdll Error Command Files

Thelog file will
tell you if
shapes have
been created in
these files.

There are severa types of errors that the DRC can mark at the subcell level.
These types of errors are found by the DRC while the cells remain hierarchically
nested. Since the errors should be fixed in the subcells, the DRC places the error
shapes in command files that you should execute within the subcells.

DRC User Manud

375

Running the DRC: Output Files

The layer
number for bad
polygons can be
overridden with
the
BAD_POLY
rule.

See page 365 to
learn other ways
touse DRC
generated
command files.

The following types of errors will produce shapes in these subcell error
command files:

Bad polygons (See page 74.)

Dangerous processing errors (See page 140.)

When these types of errors are found, you can use these files to add copies of
these problem shapes to your cells on a new layer in a manner similar to the
other DRC command file described on page 365.

One command file is created for each cell that contains these types of errors.
The name of the command file will be cell_name.ERR.

The coordinates used in the ADD commands contained in the subcell error
command files will be in the coordinate system of cell cell_name, not in the
coordinates of the top-level cell. Run each command file while you are
editing cell cell_name, not the top-level cell.

For example, you run the DRC on your highest level cell, MAINCELL. The cell
NANDCELL is used 100 timesin MAINCELL. NANDCELL contains a single
self-intersecting polygon. Y ou get only a single warning message about the bad
polygon, not 100 messages. The DRC will create a command file with the name
NANDCELL.ERR. Thiscommand file will contain asingle ADD command that
creates a copy of the bad polygon on the error layer 99.

To see exactly which shape is causing the error message, you can edit the cell
NANDCELL with the IcCED™ layout editor, then run the command file with the
ICED™ command:

@NANDCELL.ERR

This will add the shape on layer 99 to the cell.
problem shape with the commands:

Now you can see the exact

SELECT LAYER 99 ALL
VIEW SELECT

376

DRC User Manud

Running the DRC: Output Files

This will add select marks to the shape(s) just created and resize the view
window so that all shapeson layer 99 are displayed. Once you see the shape that
is causing the problem, del ete the shape(s) on layer 99 and fix the original shape.

DRC User Manual 377

Running the DRC: Output Files

378 DRC User Manual

Advanced Tutorial

Advanced Tutorial

DRC User Manual 379

Advanced Tutorial

This tutorial covers most of the typical activities involved in using the DRC to
verify common technology design rules. We will cover the steps to compile the
rules and create the layout file for the DRC rather briefly. To see atutoria that
covers these steps more completely, see the Quick Tutorial beginning on page

12.

The layout files for this tutorial should be included with the instalation. The

rules fileswill be created from scratch.

Subject Page
Generating temporary layers for verification 383
Simple spacing check 383
Importing DRC results 387
Directional spacing checks 391
Errors from touching shapes 397
Electrical connections 402
Masking an input layer 403
Well connection verification 411
Export of mask layers 418
Finding/Fixing acute angles 423
Finding/Fixing bad polygons 426
Hierarchical Output 429
Dangerous operations 430
Speeding DRC runs with rule subsets 440
Pad size verification using MIN_WIDTH rule 441
Speeding DRC runs by optimizing panel size 445

380

DRC User Manud

Advanced Tutoria: Simple Spacing Check

Simple Spacing Check

Subj ects covered below

Basic steps to generate input files

Generating temporary layers for verification

Simple spacing check

Setting default width for error wires

DRC Rules Filg
.RUL

Layout Files
.CEL

DRC Rules
Compiler

ICEDD
Layout Editor

Basic steps for importing DRC results into layout editor

Fixing errorsin subcells

First, let us briefly review the steps to prepare
the input files for the DRC. We will need to
create a text file with the rules for DRC and
compile this file. We also need to create the
binary layout data file from the cell files using
the ICED™ layout editor. We will perform this
step first.

Create a new directory for this tutorial. The
name is not important, but we will use the
name Q\ICED\DRCTUTR to refer to this
directory throughout the tutorial. You need to
copy the tutorial cell files into this new
directory.

Compiled Ruleq
.BB

Bin
Layout Data
PO

!.

DRC

Command
File

Layout Editor

ICED O

Figure 216:

DRC dataflow.

Open an appropriate console window by clicking the ICED icon on your

desktop. Type at the console prompt:

MD DRCTUTR
CD DRCTUTR

COPY Q:\ICED*SAMPLES\DRC\ADV*.CEL

2 Q:\ICED represents the drive letter and path where you have installed the DRC.

DRC User Manud

381

Advanced Tutorial: Simple Spacing Check

Preparing the Binary Layout Data File

™y Launchtheicep™ layout editor to edit the file ADVTUTR.CEL. If you use the

Layout File Windows version, launch the layout editor with the following command in the
_CE-__J console window:

ICWIN ADVTUTR
ICED™
Layout . .
Ez{tor The shapes in this |~ =1
cell should look
similar to Figure 4.
D
Biney (>l Once in the editor, s NN
~_POK_~ we create the binary e | R
layout data for the RIEZZEe »EHV i
DRC using the DRC ﬁ
command. Type the N
following on the
command prompt
DRC n

el
ZZ

oo

o
MooovmOToT

This will export the
entire layout con-
tained in the cell to
the ADVTUTR.POK
file. Then use the |L -
%ﬂ;ﬁ‘;‘)iﬂgﬁtéﬁ Figure 217: ADVTUTR.CEL

(If you wusing a

multitasking operating system, you can leave the editor open and return to it
later.)

382 DRC User Manual

Advanced Tutoria: Simple Spacing Check

Creating the RulesFilefor a Simple Spacing Check on a Generated L ayer

N

DRC RulesFilg
.RUL

DRC Rules
Compiler

Let us assume that you are working with a
CMOS technology that forms transistor | 'spacing = ° ' s
gates where a layer with the name “poly” | 2um : /////// R
crosses a layer with the name “active’. | . —— - — .
You need to verify that every gateis at least
2 microns away from any contact hole
indicated by the cpoly layer.

To create the DRC rule set to check this
spacing rule, we first need to create an
ASCII text file to contain the rules. Create
the file with any method, but be sure to
store it in the ADVTUTR directory. If you
use DOS, you can use the following

command:

N

\

g

=

Figure 218: Poly contact to gate
spacing rule.

EDIT ADVTUTR.RUL

Type the lines shown in Figure 219. Note that all layer names are in lowercase

and all DRC keywords
are in uppercase. This
is to help you identify
which text represents
layer names. If you
copy these lines for
another use later on, you
can change the layer
names to any
convenient strings, but
the DRC rule keywords
should remain as typed.
The unbolded text
represents comments.

ALL_SAFE
INPUT LAYER 4active IDiffusion
INPUT LAYER 8poly !Poly

INPUT LAYER 9cpoly !Contact from Metal to Poly
OUTPUT LAYER 0 gate !ITransistor gate

OUTPUT LAYER 101 gate cpoly sp_err
WIRE_WIDTH=0.3

gate = active AND poly

gate cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)

Figure 219: Initial contents of the
ADVTUTR.RUL file.

DRC User Manud

383

Advanced Tutoria: Simple Spacing Check

Dangerous
processing
options are
explored on
page 430.

The first rule in a rule set is usually the choice between safe and dangerous
processing. The“ALL SAFE” rule should be the first rule in any rule set unless
you need dangerous processing that creates shapes hierarchically.

The layer definitions come next. All layers used in the rule set must be defined,
including the layers used to mark errors. The WIRE_WIDTH rule sets the size
for al error wires created by the DRC.

The AND rule near the bottom of Figure 219 creates shapes on the scratch layer
“gate” which represents the overlap of the active and poly layers. This scratch
layer must also be defined before it is used. This scratch layer is defined with
therule “OUTPUT LAYER 0 gate”. It isagood ideato create scratch layers as
output layers with a layer number of 0. This allows you change the layer to an
output layer in a later run by changing only the layer number in the OUTPUT
LAYER rule. You may need to look at the shapes on a scratch layer to diagnose
problems with the rule set. Any output layer with the layer number O will not
create shapes in the output.

The final rulein our rule set is the “gate_cpoly_sp_err = MIN_SPACING (gate,
cpoly, 2)” rule. Thisisthe rule that tests the spacing between the gate layer and
the cpoly contact layer. If sides of a shape on the cpoly layer are closer than 2
microns away from sides of a shape on the gate layer, then error marks will be
created on the gate cpoly_sp_err layer. This layer is defined above with the
layer number 101. It is best to use layer numbers not easily confused with
design layer numbers for error or temporary layers. This allows you to easily
delete all imported shapes on these layers from your layout.

Save the rules file. If you are using DOS, exit the editor. (If you are using a
multitasking operating system, you can keep this window open to continue to
make edits to the file as we proceed through the tutorial.)

This rules file must be compiled by the DRC rules compiler. The compiler
command line can be typed in the console window opened by the ICED desktop
icon, or stored in abatch file. If you store the command line in a batch file, you
can execute the compiler by executing the batch file. You can execute the batch
file without explicitly opening a separate console window.

384

DRC User Manud

Advanced Tutoria: Simple Spacing Check

If you do not
use abatch file
for the compiler
command ling,
type the
command line
at the prompt in
the console
window opened
by the ICED
icon on your
desktop.

To create a batch file, create another text file containing the command line
below. Add the PAUSE=ALWAY S option to the end of compiler command line
to keep the temporary console window open long enough to see any compiler
messages. The console window will remain open until a key is pressed. Save
the file with a name similar to DRCRULES.BAT.

Type the following command line:
D3RUL-NT?® ADVTUTR

D3RUL-NT.EXE is the name of the compiler program and the rules file is
ADVTUTR.RUL. This program will create the compiled rules in a file named
ADVTUTR.BB. Wewill usethisfile later when we run the DRC.

The console messages will be very brief. The version of the compiler, along
with a copyright notice is followed by areport of how much memory is available
to the compiler. When the compiler finds no errors, the next lineis:

Done.
Thisindicates a successful compile.

If you type a mistake in a rules file, you will get an error message from the
compiler. For example, if you mistype the layer name in the AND rule and use
“ppoly” instead of “poly”, you will see an error message similar to the following
in the console messages and in the rules compiler log file ADVTUTR.RLO:

Error in file @Q\ICEDH ADVTUTR\ ADVTUTR. RUL,
gate = active AND <ppol y>
Layer name expect ed.

line 11, colum 19:

Theitem enclosed in <> isthe item in error. Fix any typing errors in your rule
set and recompile until the rulesfile successfully compiles.

2 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versions is named D3RU-NTX.EXE.

DRC User Manud

385

Advanced Tutoria: Simple Spacing Check

Executing the DRC

Typethe DRC
command line
in the console
window opened
by the ICED
desktop icon or
create a batch
file. Addthe
PAUSE
keyword to the
end of the DRC
command line if
you use a batch
file.

Now we are ready to run the DRC. The DRC command lineis:
DRC3-NT** ADVTUTR ADVTUTR DRCOUT SLOW

The program DRC3-NT.EXE will execute using the ADVTUTR.BB compiled
rules file and the ADVTUTR.POK hinary layout data file. All output file names
will begin with “DRCOUT”. The SLOW keyword is required to make the
choice between quicker algorithms that may miss errors in some rare cases and
the slower but more accurate algorithms.

The end of the console messages should look similar to:

If you see an Done.

€error message

from the DRC 100% of chi p done.

about “not ***No i nput ski pped.

enough free ***No bad | CED pol ygons.

memory to run”, ***Error count=8 (raw=20)

try adding an ***Total output non-error output count=0

appropriate O total figures output to non-error |ayers.

HOG option to 8 total figures output to error |ayers.

the command

line. See page N .

339, This indicates that the DRC has generated 8 error marks. Most spacing errors
generate a pair of error marks. When error marks on the same layer overlap,
they are merged into single shapes. A single error in a subcell creates error
marks in the flattened main cell for each instance of the subcell. After looking at
the error marks, we will see that these 8 error marks represent 2 errors in the
layout. We will now cover how to locate these errors from the command file
generated by the DRC.

% The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versionsis DRC3-NTX.EXE.
386 DRC User Manual

Advanced Tutoria: Simple Spacing Check

Looking at the Output

DRC

Command
File

ICED O

Layout Editor

To view the errors found by the DRC, we will use the ICED™ layout editor.
Launch the layout editor again to edit the ADVTUTR cell. You can use the
same command we mentioned earlier:

ICWIN ADVTUTR

To execute a command file generated by the DRC, you use the @file_name
command in the layout editor. To execute the command file created by our
tutorial, type the following command in the editor:

@DRCOUT

This will execute the DRCOUT.CMD command file generated by the DRC.
(The name of this file was determined by the third parameter on the DRC
command line.)

The 8 error wires are now added to the cell. Even with asimple layout, it can be
difficult to spot the error marks. To select the error wires just added to the cell,
use the following editor command:

SELECT LAYER 101 ALL

Hopefully you can now make out where
some of the error wires are present. Let
us zoom in on one of these spots by
typing the following command (or
selecting it from the menu):

VIEW BOX

Now select view box corners near the
points indicated in Figure 220.

Figure 220: Defining zoom view.

DRC User Manud 387

Advanced Tutoria: Simple Spacing Check

Usethe
BLANK
command in the
layout editor to
hide the display
of certain
layers.

If it is till difficult to see the error marks, you can blank layers Metall and
Nwell aswe havein Figure 221.

parts of those sides also violate the \\\\\\\\\\\\ N ¢

2 um spacing rule. The error wire

wraps around the edges of the \
shape on the gate layer even though S \\\\\\\\\\\
this shape is not present in either W cpoly

the cell or the data created by the N poly

DRC. Y active

If you did want the gate shapes Figure22l: Error wires.

created in the cell, you could

change the gate layer number in the rule set to a non-zero number and re-execute
the DRC. However, that would add extra data that is not required in this case to
see how to fix the spacing error.

At thisscale, it is easy to see that the contact is %2um too close to the edge of the
gate. Now we need to move it YJum to the left. However, if you try to select the
just the contact, you will not be successful. Thisis because it is contained in a
nested cell. To edit the cell with the error, the easiest method is to use the
PEDIT command. Type the following at the command prompt:

PEDIT NEAR
Now click on the edge of the contact where it is not covered by the error wire so
there is no conflict. You are now editing the nested cell ADVCKT. Verify this
by noting the “ADVTUTR:ADVCKT” message at the top of the window.

Now you can select the contact with the following command:

SELECT IN

388

DRC User Manud

Advanced Tutoria: Simple Spacing Check

The
UNSELECT
ALL command
isused to insure
that no
components are
selected.

Using the cursor, define a box that intersects
an edge of the contact (as shown in Figure
222) and then make sure that only one

t is selected. Th th NN
prompt line should end with "Sek=1". Now \\\\i\\\\\\\\\§
::r(]%/% :r]fj ;omponent and unselect it with the her &\\\\\\\\\\\\%

M cpoly
MOVE -5, 0 S poly

UNSEL ALL % active

Now go back to the main cell, while saving Figure 222: Selecting contact.
your change to the subcell, with the following
command:

EXIT

Now that you are back at the main cell, type (or select from the menu) the VIEW
ALL command to see the entire cell. By zooming in on the other selected error
marks with the VIEW BOX command, you can see that editing the ADVCKT
cell hasfixed 3 of the 4 errors marked on layer 101.

The cell on the lower right is a different cell and needs to be fixed separately.
Follow the same steps beginning on the previous pageto fix the error in the
lower right cell, ADVCKTP.

Once back at the main cell, you can delete the error marks. If the same 8 error
wires are still selected, simply type the DELETE command. If other shapes were
selected, or if you unselected the error wires, type the following commands:
UNSELECT ALL
SELECT LAYER 101 ALL
DELETE
Now export the design again for DRC checking with the following command:

DRC

DRC User Manud 389

Advanced Tutoria: Simple Spacing Check

You can exit the layout editor session at this point. Execute the DRC again with
the command line shown on page 386. The end of the console messages should
now look similar to:

Done.

100% of chi p done.

***No i nput ski pped.

***No bad | CED pol ygons.

***No errors found

***Total output non-error output count=0
O total figures output to non-error |ayers.
O total figures output to error |ayers.

This indicates that no other violations of the contact to gate spacing design rule
are present in the layoui.

Next we move on to a spacing rule that could be difficult to check without
generating alot of false errors.

390 DRC User Manual

Advanced Tutorial: Directional Spacing Check

Directional Spacing Check

Subjects covered below

Avoiding false MINSPACING errors for overlap extension spacing
Refining MINSPACING rule with directional keywords
Reminder when modified rule set is not recompiled

Many spacing design rules Minimum
need a more complex check spacing 2um
than just a simple spacing

Caehion on the paly e ////////////

You need to prevent fase 7)) active
errors that will arise from a
simple spacing check. You [] poly

do not want to mark
coincident edges of poly
and gate, perpendicular Figure223: Minimum spacing rulefor poly
edges, or edges of separate €xtensions beyond gates.

poly shapes.

DRC User Manual 391

Advanced Tutorial: Directional Spacing Check

Gateswith 0
poly extension
will not be
marked as errors
by either rule
with the /OUT
keyword. We
cover how to
add thistest on
page 397.

A simple spacing check
will mark false errors for all
edges of all gate shapes
since all have edges that are
coincident with and per-
pendicular to poly shapes.
These false errors are
indicated in Figure 224.

A better test is to look only

False coincidenta

©error < 2um

s
error Real error
. <2um ,,///'
’///a
" False perpendicular // /

B

Figure 224: MIN_SPACING (gate, poly, 2)

outward from the gate shapes for edges of poly shapes. Thisis accomplished by
adding the /OUT keyword after the gate layer namein therule. Thiswill prevent
coincident edges from being marked. Perpendicular edges will also not be
marked since the /OUT keyword automatically invokes the /~PERP option.

However, this type of test
can still mark a class of
fase errors. Unrelated
poly shapes that are too
close may be marked.
However, if you see no
false errors of the type in
Figure 225, simply adding
the /OUT keyword to the
rule as shown may be your
best solution to this type of
problemrule.

A better test isto add the |-

/IN keyword after the poly
layer to restrict potential
errors to those seen |look-
ing in from the edge of
poly shapes. This will
avoid the type of false er-
rors seen in Figure 225.
When both /OUT and /IN

. Faseerror
<2um

/

Figure 225: MIN_SPACING (gate/OUT, paly, 2)

. &

////////

///

_:?

Figure 226:

MIN_SPACING (gate/OUT, poly/IN, 2)

are used, only the real error shown in Figure 226 is marked.

392

DRC User

Manual

Advanced Tutorial: Directional Spacing Check

Modifying the Rule Set

We need to add two lines to our rule set to add the poly extension rule. The

set:

actual spacing check is created by adding the following line to the end of the rule

gate overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

where “gate_overlap_err” is the name of the layer where the error marks will be
created. We need to define this layer at the end of the layer definition lines with

the following line:

OUTPUT LAYER 102 gate overlap_err

Error marks will now be created on layer number 102 when the output from the
DRC isimported into your cell.

You rule set
should now look
like Figure 227.
Save thefile.

Now let's see
what happens if
you forget to re-
compile the rule
set before exe
cuting the DRC.
Execute the DRC
now as shown on
page 386.

ALL_SAFE

INPUT LAYER 4 active !Diffusion

INPUT LAYER 8poly !Poly

INPUT LAYER 9cpoly !Contact from Metal to Poly
OUTPUT LAYER Ogate !Transistor gate

OUTPUT LAYER 101 gate cpoly_sp_err

OUTPUT LAYER 102 gate overlap_err
WIRE_WIDTH=0.3

gate = active AND poly

gate cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)

gate overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

Figure 227: New contents of the ADVTUTR.RUL file.

DRC User Manud

393

Advanced Tutorial: Directional Spacing Check

The console messages should end with something like the following:

Q \ I CED\ ADVTUTR\ ADVTUTR. BB was not made with the current
version of the file Q\I CEDH ADVTUTR\ ADVTUTR. RUL.

Q \ I CED\ ADVTUTR\ ADVTUTR. RUL was created 1 Jan, 2001,
09: 00: 00

Q \ | CED\ ADVTUTR\ ADVTUTR. BB was generated with input file
Q \'| CED\ ADVTUTR\ ADVTUTR. RUL created 1 Jan 2001, 08:00: 00

Do you want to proceed anyway<Y/[N]>?

You must reply to this prompt to proceed. The square brackets around the N
imply that simply pressing <Enter> will indicate that you have chosen the default
reply of “NO”. Press <Enter> now to terminate the DRC.

To run the modified rules, we first need to recompile the rule set. Use the same
method used on page 385.

The DRC will remind you to recompile the rules when you forget, but it cannot
remind you when you have forgotten to recreate the binary layout data file. Any
cell file may be have changed. Checking the date stamp of the main cell is not
enough to insure that the layout has not changed. You must be sure to always
recreate the binary layout data file with the DRC command from the main cell in
the layout editor any time you change the layout.

Now execute the DRC as shown on page 386. The end of the console messages
should now look similar to the following:

Done.

100% of chi p done.

***No i nput ski pped.

***No bad | CED pol ygons.

***No acute angl es were out put

***Error count=2 (raw=3)

***Total output non-error output count=0
O total figures output to non-error |ayers.
2 total figures output to error |ayers.

394

DRC User Manud

Advanced Tutorial: Directional Spacing Check

If your error
wires extend
past the edges,
execute the
USE

WIRETY PE=0
command
before
importing the
DRC shapes.

Open the layout editor. Import the DRC generated shapes with the following
command on the editor command prompt line:

@DRCOUT

To select the error shapes and see them clearly, type the following commands:

UNSELECT ALL
SELECT LAYER 102 ALL
VIEW SEL

VIEW OUT 6

You should now see two error marks
indicating an error as shown in Figure
228.

the following a the editor command F19ure228: Selecting shapein cell
prompt:

PEDIT NEAR
Now click on an edge of the poly shapein error as shown in Figure 228.

Now you are editing the subcell ADVCKTP. Y ou need to select only one side of
the poly shape to stretch it rather than shift the entire shape. Select the only the
end side by using the following command and selecting the correct side as shown
in Figure 229 on the next page. The error wire will not interfere with selecting
the side since the error wires are contained in the main cell, not the cell you are
currently editing.

SELECT SIDEIN

DRC User Manual 395

Advanced Tutorial: Directional Spacing Check

Y ou should see a single selection mark on the one side. Now you can stretch the
poly shape by using the MOVE command. First make sure that only one
component is selected. The message on the prompt line should end with
“Sel=1". Now move the component and unselect it with the commands:

MOVE 5, 0

Now save your change to the subcell [sfSssstissnidassiiasinsss
and return to the main cell with the
following command:

Click

here
v

EXIT

Now that you are back at the main cell,

delete the error marks. If the same 2 &3
error wires are dtill selected, simply Wzzzzzzzzzzzzzzz:

1
| FFTITTITITATTTSSITTTTTTFS |
T T

type the DELETE command. If other Figure 229: Selecting end of poly
shapes were selected, or if you shape.

unselected the error wires, type the

following commands:

UNSELECT ALL
SELECT LAYER 102 ALL
DELETE
Now export the design again for DRC checking with the following command:

DRC

Run the DRC as shown on page 386. The console messages should now report
that no errors were found.

396

DRC User Manud

Advanced Tutorial: Directional Spacing Check

Finding Errors Involving Touching Shapes

Subjects covered below
Finding coincident edge errors not found by MINSPACING rule
TOUCHING rule

Counting shapes as errors that would not ordinarily be counted as errors

[
R R R SR IR
R o

SRRk
o

When you need to add

directional keywordsto a s:“:“‘
spacing rule as we did in RERRKERERERNY
the last example, there is 3
an important side effect
of which you should be
aware. Coincident edges
are excluded from con-
Sideration when direc-
tiona keywords are
added to a MINSPAC-
ING rule.

RN
ORI

P
R

extension
beyond
SRR
v,

oy

‘\.\g.m.\. a s gate
2 R e

R R

A AN
S5 S
X RS
RS

TR AN,
RO
RN
AN

,
S
;

Thisis usually desirable. N\
However it can prevent RRBVIEEERY
real spacing perrors

formed by a 0 overlap

from being marked. Figure 230: Coincident poly-gate edge that does
forman error.

k.
e
2
bt
13
17
e
2
3

In the previous example

that tested the minimum spacing of poly extensions beyond gate shapes, you may
have noticed that one gate had no poly extension. See Figure 230. However this
gate was not marked as an error. If al coincident poly-gate edges had been
marked, many false errors would have been marked. How do we add a rule so
that only errors like the one above are found?

DRC User Manual 397

Advanced Tutorial: Directional Spacing Check

Several solutions are possible for this
particular example, including remov-
ing the directional keywords from the
MINSPACING rule, and then
filtering the error shapes to get rid of
the false errors. However the best
solution isto find all gate shape edges
that do not have extensions of either
poly or active on every side. This
way we also find gate shapes with no Figure 231: Coincident active-gate
active extension as shown in Figure edgethat doesformanerror.

231.

7

The only way to test that every side of each gate shape has a non-zero
overlapping shape of either poly or activeisa TOUCHING test. We need to test
that no gate shape touches a layer formed by the inverse of the union of the poly
and active layers.

First let us add the lines that will create thisinverse layer. Add these linesto the
end of therulesfile.

gate _overlaps= poly OR active
not_gate overlaps= NOT gate overlaps

Now add a TOUCHING rule to find gates that touch this inverse layer and copy
them to an error layer. Add the following line to end of the rulesfile.

gate no_overlap_err = gate TOUCHING not_gate overlaps

Note that we stated above that the shapes should be copied to an error layer. The
results of the TOUCHING rule are not automatically counted as errors. If we do
not define the gate_no_overlap_err layer as an error layer, the shapes created on
it would not be added to the error count and could easily be missed.

We need to define the layer with the ERROR keyword in the OUTPUT LAYER
rule.

OUTPUT ERROR LAYER 103 gate no_overlap_err

398

DRC User Manud

Advanced Tutorial: Directional Spacing Check

Our other error layers are the result of MINSPAING rules, and the result layers
of MINSPACING rules are automatically considered error layers. You do not
need to add the ERROR keyword to these rules. However the layers created by
TOUCHING rules have other uses than finding errors, so the DRC does not
automatically consider these layers as error layers. Any layer may be defined as
an error layer, including the results of Boolean processing or size/shape rules
such as ASPECT_RATIO or IS_BOX.

The scratch layers also need to be defined. Add the following lines:

OUTPUT LAYER 0 gate overlaps
OUTPUT LAYER 0O not_gate overlaps

ALL_SAFE

INPUT LAYER 4active IDiffusion
INPUT LAYER 8poly !Poly
INPUT LAYER 9cpoly !Contact from Metal to Poly

OUTPUT LAYER Ogate !Transistor gate
OUTPUT LAYER O0gate overlaps
OUTPUT LAYER Onot_gate overlaps

OUTPUT LAYER 101 gate cpoly _sp_err
OUTPUT LAYER 102 gate overlap_err
OUTPUT ERROR LAYER 103 gate no_overlap_err
WIRE_WIDTH=0.3

gate = active AND poly

gate cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)

gate overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)
gate overlaps= poly OR active

not_gate overlaps= NOT gate overlaps
gate no_overlap_err = gate TOUCHING not_gate_overlaps

Figure 232: New contents of the ADVTUTR.RUL file.

DRC User Manual 399

Advanced Tutorial: Directional Spacing Check

Save the rules file and compile it. Run the DRC. The console messages should
indicate that 1 shape was created on an error layer.

Open the layout editor. Import the DRC results once the editor is open.
@DRCOUT
To select the error shapes and see them clearly, type the following commands:

UNSELECT ALL
SELECT LAYER 103 ALL
VIEW SEL

VIEW OUT 6

Y ou should now see the gate shown in Figure 230 on page 397 has been copied
to the error layer 103. Delete the shape on layer 103 with the following
command:

DELETE

This time the shapes that form the transistor are not nested in a subcell. You can
select the correct side of the poly shape with the following command:

SELECT LAYER POLY SIDE IN

You must specify the poly layer in the above
selection rule otherwise the shape on active would be
selected at the same time. Now move the poly edge to
the correct minimum overlap distance with the
command:

MOVE 2, 0 Figure 233: Selecting
end of poly shape.

Now recreate the layout file for the next exercise with the DRC command and
exit the editor. Rerun the DRC if you desire to see that the design is now error-
free.

400

DRC User Manud

Advanced Tutorial: Directional Spacing Check

o e e o | %/////////////

minimum poly shape
extension beyond gate
shapes. You may wonder
about the case where a poly &
shape does not even extend

Rcari. |

Figure 234: Invalid gate

While this type of error

will not be found by this DRC rule set, it will still be found. Any program that
recognizes devices and circuits to compare the layout to a schematic will short
the source of the gate to the drain and will report the error.

However, such circuit discrepancies can be difficult to locate. If you prefer to
find these types of errors with the DRC, you can add the following rules (and the
appropriate layer definitions) to the rule set.

source_drain = active AND NOT poly
bad_gate=gate NOT TOUCHING 2 source_drain

This will copy to the bad gate layer all gate shapes that do not touch two
separate source/drain shapes. Be sure to define the bad_gate layer as an error

layer.

DRC User Manual 401

Advanced Tutorial: Electrical Connections

Tests That Involve Electrical Connections

Subjects covered below

Defining electrical connections

Masking input layersinto 2 different layers with the TOUCHING rule
Adding /~CONN to MINSPACING rules

Verifying wells with the STAMP rule

Many spacing rules involve electrical connections. For example, let us suppose
that metal2 shapes that are part of a pad construct must be at least 30 um away
from unconnected shapes on the same layer. (In this case, unconnected indicates
an absence of an electrical connection.)

|f Wetested thaI a” meta|2

Shap%mustbeatleastSOZIII%IIIIIIIIIIIIIIIIII
pum apart, probably most R 2
Of the metalz ShapeSH"la oo s NN v s e e e s T Ty e T
typical chip would be | rey N8#EEAZZZA K W | BEZZZZZ
marked as false erors. | spacing N - - - B - - - - - N
We must identify the | eror C % % R
metal2 shapes that are in ;::_....:::::B‘i.. e
pad constructs and treat e /Erarlc?:} N
them differently from the

rest of the layer. We must
aso avoid marking as
false errors metal2 shapes
that are close to the pad,

but are electrically con- o :Metall Co
nected. . NoMeta2 in
_VE!

Figure 235: Pad and metal wiring

402 DRC User Manual

Advanced Tutorial: Electrical Connections

Masking the M etal2 L ayer

ThelS BOX
rule with exact
dimensions
could also be
used to find pad
metal. However
touching shapes
on the same
layer are
merged by the
DRC during
preprocessing,
SO some pads
may not be truly
rectangular and
will not be
collected by the
IS BOX rule.

We can use various methods to differentiate the metal2_in layer. If your pad
constructs are contained in separate cells you could use the INCELL keyword in
the INPUT LAYER ruleto separate the metal2_in layer. However, let us assume
that the pad shapes are either in the main cell, or in cells with many different
names. Then the easiest method to find pad metal is to use proximity to the
overglass layer.

We could use a simple Boolean rule such as the following, but if the glass layer
has a different outline than the metal layer, the entire metal 2 shape that forms the
pad will not be moved to the pad_metal2 layer, only that portion that is covered
by the glass layer. (See Figure 235.) The spacing rules will measure to this
boundary rather than the larger metal 2 shape that really represents the pad.

pad_metal2 = metal2_in AND glass !will identify only parts of pad

A Dbetter method is to consider all metal2 that touches a glass shape as
pad_metal2. For this we need a TOUCHING rule. Add the following rules
before the first MIN_SPACING rule.

pad_metal2 = metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

Now the metal2_in layer will be separated into two non-overlapping layers:
metal2 and pad_metal2. The entire metal2_in shape that comprises the pad
construct will be moved to layer pad_metal 2.

We will need to define the input layers for this processing. Add the following
lines to the end of the INPUT LAYER rules:

INPUT LAYER 11 metall IFirst Metal
INPUT LAYER 12 via IContact from Metall to Metal 2
INPUT LAYER 13 metal2 in 1Second Metal

INPUT LAYER 16 glass I'Pad OverGlass layer

DRC User Manud

403

Advanced Tutorial: Electrical Connections

We also need to define the new scratch layers and the new error layer. Add the
following lines to appropriate places:

OUTPUT LAYER 0 metal2
OUTPUT LAYER 0 pad_metal2

OUTPUT ERROR LAYER 104 m2_pad_spacing_err

Adding Electrical Connection Rules

If you use the
NLE program to
extract the
circuit data
from the layout,
you can create

Electrical connections are defined with the CONNECT rule. This rule can
connect two layers by a contact or via layer, or directly connect two layers. We
need both forms to implement the electrical connections for this test.

CONNECT metal2 metall BY via
CONNECT pad_metal2 metall BY via
CONNECT metal2 pad_metal2

the CONNECT The |ast 2 CONNECT rules are important. Whenever you mask a layer into two
;‘;:gr;‘ei” eand SEPAAte layers, you must remember to account for both new layers in the
indudethefile = CONNECT rules. Duplicate the CONNECT rules involving contacts or vias.
inboththeDRC ~ Add a CONNECT rule to connect the two layers together.
and NLE rule
Isﬁlt(s:\livlljgg]?ule The pl acement of CONNECT rules is Safe proc ng directive
Thisinsuresthat 1mportant. They must occur after the L definiti |
the circuit layer manipulation rules, because layer ayer definition ruies
recognition manipulation may invalidate the | Layer manipulation
rules are previous electrical connections. The | Electrical connections
identical and up
todaefor botn CONNECT rules must occur before : doth P |
programs. any MINSPACING rules since the | SPacingand other verification rules
electrical connections may invalidate Figyre 236: Rule set order
the results of previous spacing rules
that checked connectivity. This rule order is enforced by the compiler. The
error messages can vary based on the contents of the rule set, so just be sure to
divide your rule set as shown in Figure 236.
In our case, add the CONNECT rulesjust before the first MIN_SPACING rule.
404 DRC User Manual

Advanced Tutorial: Electrical Connections

Finally, we need to add the MIN_SPACING rule that tests the pad spacing. Add
the following rule directly after the CONNECT rules:

m2_pad_spacing_err = MINSPACING(metal2, pad_metal2, 30 /~CONN)
The /~CONN option will prevent the DRC from marking errors on shapes that
are electrically connected even if they are closer than 30 microns. All
unconnected shapes will be marked as errorsif they are too close.

The entire rule set now should look like Figure 237 on the next page.

You will probably have other spacing rules that involve the M2 layer. Be careful
to test both the metal2 and pad_metal 2 layers for each of these rules, just as you
had to add CONNECT rules for both layers.

For example, a test for metal2 overlap of the via layer should test both metal2
layers.

m2_via_overlaperr = MINSPACING(via/lOUT, metal 2/IN, 1)
padm2_via overlaperr = MINSPACING(via/lOUT, pad_metal2/IN, 1)

However, in this case, since no electrical connections are involved, you can test
both layers with the original undifferentiated layer.

m2_via_overlaperr = MINSPACING(via/lOUT, metal2_in/IN, 1)
If electrical connections were involved, you would have to test both layers

individually since electrical connections are not defined for the metal2_in layer.
No shapes on metal2_in are electrically connected to any other shape.

DRC User Manual 405

Advanced Tutorial: Electrical Connections

ALL_SAFE

INPUT LAYER 4 active IDiffusion

INPUT LAYER 8poly IPoly

INPUT LAYER 9cpoly IContact from Metal to Poly
INPUT LAYER 11 metall IFirst Metal

INPUT LAYER 12via IContact from Metal 1 to Meta 2
INPUT LAYER 13 metal2_in !Second Metal

INPUT LAYER 16 glass IPad OverGlass layer

OUTPUT LAYER O gate ITransistor gate

OUTPUT LAYER 0 gate overlaps
OUTPUT LAYER O0not_gate overlaps
OUTPUT LAYER 0 metal2

OUTPUT LAYER 0 pad_metal2

OUTPUT LAYER 101 gate cpoly_sp_err
OUTPUT LAYER 102 gate overlap_err
OUTPUT ERROR LAYER 103 gate no_overlap_err
OUTPUT ERROR LAYER 104 m2_pad_spacing_err
WIRE_WIDTH=0.3

gate = active AND poly

pad_metal2 =metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metall BY via
CONNECT pad_metal2 metall BY via
CONNECT metal2 pad_metal2

m2_pad_spacing_err = MIN_SPACING(metal2, pad_metal2, 30 /~CONN)

gate cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)

gate overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)
gate overlaps= poly OR active

not_gate overlaps= NOT gate overlaps

gate no _overlap_err = gate TOUCHING not_gate overlaps

Figure 237: New contents of the ADVTUTR.RUL file.

406

DRC User Manud

Advanced Tutorial: Electrical Connections

L ooking at the Pad Spacing Error

See page 400 to
learn how to
select a shape
on acertain
layer even when
it overlaps
shapes on other
layers.

Save the rules file and compile it. We do not need to regenerate the layout file
since the layout has not changed. Run the DRC. The console messages should
indicate that 2 shapes were created on an error layer.

Open the layout editor and import the DRC results.

@DRCOUT

The error maks should | *© * - Npemterrosrig © * ° ° ° Dt

look similar to Figure 238. | - - - -

Note that the DRC marked | - - - coe e e e e ..
only the true error where | - . - R e I
the metal2 that forms the | - . - Co. .. L e

ground wire comes too
closetothepad. Thefase |
error of the connected | . ‘\
metal2 wire on the right

: N
did not get marked. . NN \
Select the end of the \ \ \
metal2 ground wirein error

where it is marked with the
error shape. Thiswireisin
the main cell. Now shift the end of the wire above the extent of the error marks.
Delete the error marks on layer 104, and regenerate the layout file with the DRC
command. Exit the cell to save your changes.

AN,

Figure 238: Error marksfor pad rule

Adding the Rest of the Good Conductor Electrical Connection Rules

Let us assume that we have many rules that depend on electrical connections.
We need to define the electrical connections for all conductive layers on the
chip. In addition, we need to define the connectivity for poor conductor layers,
such aswells. We will do a poor conductor layer in a separate step beginning on
page 411.

DRC User Manual 407

Advanced Tutorial: Electrical Connections

The entire active layer is not a conductive layer. We must mask it and create the
source/drain layer by removing the transistor gates before we can use it in the
connect rules. Add the following rule directly below the “gate = active AND
poly” rule.

sredrn = active AND NOT poly
We need to define this new scratch layer with the following rule:

OUTPUT LAYER Osrcdrn !'Source/Drain layer with gates removed

We need to add a new input layer that forms the connections between the active
layer and the metal1 layer.

INPUT LAYER 10 cactive !Contact from Metal 1 to Diffusion
Now we are ready for the additional CONNECT rules.

CONNECT srcdrn metall BY cactive
CONNECT poly metall BY cpoly

The entire rule set now should look like Figure 239 on the next page.

408

DRC User Manud

Advanced Tutorial: Electrical Connections

ALL_SAFE

INPUT LAYER 4 active IDiffusion

INPUT LAYER 8poly !Poly

INPUT LAYER 9cpoly IContact from Metal to Poly

INPUT LAYER 10 cactive IContact from Metal to Diffusion
INPUT LAYER 11 metall IFirst Meta

INPUT LAYER 12via IContact from Metal 1 to Metal 2
INPUT LAYER 13 metal2_in !Second Metal

INPUT LAYER 16 glass IPad OverGlass layer

OUTPUT LAYER Ogate ITransistor gate

OUTPUT LAYER Osrcdrn !Source/Drain layer with gates removed
OUTPUT LAYER 0 gate overlaps

OUTPUT LAYER O0not_gate overlaps

OUTPUT LAYER 0 metal2

OUTPUT LAYER 0 pad_metal2

OUTPUT LAYER 101 gate cpoly _sp_err
OUTPUT LAYER 102 gate overlap_err
OUTPUT ERROR LAYER 103 gate no overlap_err
OUTPUT ERROR LAYER 104 m2_pad_spacing_err
WIRE_WIDTH=0.3

gate= active AND poly
sredrn = active AND NOT poly

pad_metal2 =metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metall BY via
CONNECT pad_metal2 metall BY via
CONNECT metal2 pad_metal2

CONNECT sredrn metall BY cactive

CONNECT poly metall BY cpoly

m2_pad_spacing_err = MIN_SPACING(metal2, pad_metal2, 30 /~CONN)
gate cpoly_sp_err = MIN_SPACING (gate, cpoaly, 2)

gate overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate overlaps= poly OR active

not_gate overlaps= NOT gate overlaps

gate no_overlap_err = gate TOUCHING not_gate overlaps

Figure 239: New contents of the ADVTUTR.RUL file.

DRC User Manual 409

Advanced Tutorial: Electrical Connections

See an example
of an
incomplete rule
Set that creates 2
groups on 413.

Now we can add other verification rules that involve connectivity. Let us
assume that the minimum distance from a poly contact to an unconnected poly
shape is 4 microns. (See Figure 240.) If we tested the spacing between all
contacts and the poly layer, almost every contact would be marked as a false
error since al are covered by poly. We need to add the /~CONN option to the
MIN_SPACING rule to avoid all of these false errors. Add the following with
the other spacing rules:

poly_unconn_contact_err = MINSPACING(poly, cpoly, 4 /~CONN)
We also need to define this new error layer with the other error layers.
OUTPUT ERROR LAYER 105 poly_unconn_contact_err

Now save the file and compile it. Note that at the end of the console messages,
the following comment is present:

Connect ed
one group

| ayers form o &§§§§§§

SR

\\\
~

5

This message is important. If you see a
different message stating that 2 or more
separate groups have been formed,
check the log file (DRCOUT.DLO in
our case) to see details on each group to
help figure out if a CONNECT rule is
missing or mistyped.

spacing

.
|

';%%%%
%

7

-

o
-

Run the DRC. The console messages
should report that 2 error marks have S

been created. When you open the &\\\\\\\\ 7
layout editor and import the DRC S .
results, you should see that only the top
contact shown in Figure 240 has been
marked. Move the top contact (in the
main cell) up 0.5 unitsto fix the error.

7

7\
7
i

.

metal1
cpoly
poly
active

Sz |0

Figure 240: Poly contacts

410

DRC User Manud

Advanced Tutorial: Electrical Connections

The bottom contacts are not in error since they are connected electrically to the
near pieces of poly wire.

NWELL Connections and Verification

Let us suppose that some of your verification rules involve testing the spacing
between unconnected NWELL shapes. To test this, we need to extend the
definition of electrical connectionsto include wells.

Well layers represent poor conductors, rather than good conductor layers such as
metal or poly. Good conductors can connect to them, but connections should not
pass through them. We can demonstrate the importance of verifying well
connections with Figure 241. Let us
assume that the GND wire on the right

connects to the metal GND bus and @NDW—i TWW
from there to a pad on the chip. —
However, the GND wire on the left does

not connect to the bus. You meant to | [| WELL PDIFF
connect these two wires, but a gap exists
by accident. The ground wire on the left M1 [l covtacts

isnot really electrically connected to the
wire on the right. If you used only Figure241: Open on GND node
CONNECT rules to define electrical that connectsonly through WELL
connections to wells, then the problem layer.

would not be found.

Thisis mainly a circuit recognition problem, but if you use CONNECT rules to
define the electrical connections for well shapes, you may prevent real spacing
verification errors involving electrical connections from being found. False
errors may be generated. It is best to find electrical shorts or opens to well
shapes early in the design process, rather than waiting for circuit recognition and
comparison (LVS) tests.

The STAMP rule is the best method for defining electrical connections to poor
conductor layers. The STAMP rule allows connections to poor conductors, but
does not allow connections to pass through them to other nodes. The well in

DRC User Manual 411

Advanced Tutorial: Electrical Connections

gas ”ﬂ)ﬂ)ﬂ)ﬂ;ﬂ;ﬂ;ﬂ;ﬂ;ﬂ;ﬂ;ﬂ)ﬂ)ﬂ)ﬂ)ﬂﬂ#lﬂ”
L N A NN ¥, %
e R R
B R R R
R N AR R ¢ =
R A R R 4
R R AR Y
R AR PR PR R RO 41
e
R R R R £
RN

]| nselect

T
¥

¥

[] nwell
) active

T
¥

is covered by a shape on the
nselect layer and a shape on the
nwell layer forms a shape on the
nplus layer. The nplus layer
connects the nwell shape to the

active shape.

Figure 241 would be marked as an overstamped well, i.e. a poor conductor that
A shape on the active layer that

connects to two different electrical nodes.
To generate the nplus layer, add the

the nwell layer in our example are
following lines just below the “scrdrn
active AND NOT poly” rule:

Let us assume that the connections to
formed asfollows:

Figure 242: Nwell contact

welldiff = sredrn AND nwell

welldiff AND nselect

nplus

IAs-drawn Nwell
IN-select

INPUT LAYER 7 nselect

These new input layers and scratch layers must be defined as shown below:
INPUT LAYER 3nwell_in

IN+

OUTPUT LAYER O welldiff INwell diffusion

OUTPUT LAYER Onplus
OUTPUT LAYER Onwsell

!Generated Nwell

In alater lesson, we will be generating the nwell layer for export based on the as-

drawn nwell layer and some other layer interaction. For now, we can test these

DRC User Manud

Itemporary nwell layer generation

rules using the nwell layer asit isdrawn. So add the following line just after the
nwell = nwell_in

layer definition rules, above all other layer processing rules:

412

Advanced Tutorial: Electrical Connections

The rule to form the electrical connections follows. Add this rule just after the
CONNECT rules:

STAMP nwell BY nplus MUL TI=nwell_shorts NONE=nwell_opens

This STAMP rule can create shapes on two new error layers: nwell_shorts and
nwell_opens. Define these new error layers near the other error layer
definitions.

OUTPUT ERROR LAYER 106 nwell_shorts
OUTPUT ERROR LAYER 107 nwell_opens

The nwell_shorts layer will contain copies of all nwell shapes that connect to
two or more separate electrical nodes. The nwell_opens layer will contain
copies of al nwell shapes that have no connection to any other electrical node,
i.e. unconnected wells.

If we saved the rules and compiled them at this point, we would have a problem.
The rules compiler would post the following message to the console:

*xxxxx*WARNI NG** Connected | ayers form 2 groups.

To determine the source of this problem, we would need to look at the rules
compiler log file. 1t would contain the following lines near the end of thefile:

*xxxxx*WARNI NG** Connected | ayers form 2 groups.
Connection group 1:

POLY[8]

CPOLY[9]

CACTI VE[10]

METALL[11]

VI Al 12]

SRCDRN

VETAL?Z2
PAD_METAL?2

Connection group 2:
NPLUS
NVEL L

DRC User Manual 413

Advanced Tutorial: Electrical Connections

Looking at the two lists above, it is easy to see that we forgot to connect the
nplus layer to the rest of the connected layers. The nplus layer connects to
srcdrn layer. 1t can be easy to forget that even though one layer is generated
from another, the electrical connections are not inherited in any fashion.

The compiler message is just a warning. We could go ahead and run the DRC
with the compiled rules that generated the warning. If we did, every nwell shape
would be copied to the nwell_opens layer.

To solve the problem, we need one more CONNECT rule. Add the following
rule just above the STAMP rule:

CONNECT srcdrn nplus
Now we can add a rule to test the spacing of unconnected well shapes. Let us
assume that well shapes that are not electrically connected to each other must be
at least 10 microns apart. The following rule will test this without marking false
errors for well shapes that are electrically connected.

nwell_sp_err = MINSPACING(nwell, nwell, 10 /~CONN)
The layer definition rule for this new error layer must be included.

OUTPUT ERROR LAYER 108 nwell_sp_err

Now the entire rule set |ooks as follows:

414

DRC User Manud

Advanced Tutorial: Electrical Connections

ALL_SAFE

INPUT LAYER 3nwell_in
INPUT LAYER 4 active
INPUT LAYER 7 nselect
INPUT LAYER 8 poly
INPUT LAYER 9 cpoly
INPUT LAYER 10 cactive
INPUT LAYER 11 metall
INPUT LAYER 12via
INPUT LAYER 13metal2_in !Second Metal
INPUT LAYER 16 glass

OUTPUT LAYER
OUTPUT LAYER
OUTPUT LAYER
OUTPUT LAYER
OUTPUT LAYER
OUTPUT LAYER
OUTPUT LAYER
OUTPUT LAYER
OUTPUT LAYER

OUTPUT LAYER
OUTPUT LAYER

0 gate
Osrcdrn

1As-drawn Nwell
IDiffusion
IN-select

Poly

IContact from Metal to Poly
IContact from Metal to Diffusion

IFirst Metal

IContact from Metal 1 to Metal 2

IPad OverGlass layer

ITransistor gate

ISource/Drain layer with gates removed

0 gate overlaps
O not_gate overlaps

0 metal2

0 pad_metal2

0 nplus IN+

0 welldiff INwell diffusion
0 nwell IGenerated Nwell

101 gate cpoly_sp_err
102 gate overlap_err

OUTPUT ERROR LAYER
OUTPUT ERROR LAYER
OUTPUT ERROR LAYER
OUTPUT ERROR LAYER
OUTPUT ERROR LAYER
OUTPUT ERROR LAYER
WIRE_WIDTH=0.3

103 gate _no_overlap_err

104 m2_pad_spacing_err

105 poly_unconn_contact_err
106 nwell_shorts

107 nwell_opens

108 nwell_sp_err

DRC User Manud

415

Advanced Tutorial: Electrical Connections

nwell = nwell_in

gate = active AND poly
srcdrn = active AND NOT poly
welldiff = sredrn AND nwell
nplus = welldiff AND nselect

pad_metal2 = metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metall BY via

CONNECT pad_metal2 metall BY via

CONNECT metal2 pad_metal2

CONNECT srcdrn metall BY cactive

CONNECT poly metall BY cpoly

CONNECT srcdrn nplus

STAMP nwell BY nplus MUL TI=nwell_shorts NONE=nwell_opens

m2_pad_spacing_err = MINSPACING(metal2, pad_metal2, 30 /~CONN)
nwell_sp err = MINSPACING(nwell, nwell, 10 /~CONN)

gate cpoly_sp err = MIN_SPACING (gate, cpoly, 2)
poly_unconn_contact_err = MIN_SPACING(poaly, cpoly, 4 /~CONN)

gate overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate overlaps= poly OR active
not_gate overlaps= NOT gate overlaps
gate no_overlap_err = gate TOUCHING not_gate overlaps

Figure 243: New contents of the ADVTUTR.RUL file.

Compile the rule set and run the DRC. The DRC should report that 4 error
shapes have been created. If you open the log file you can see what layers these
error marks were created on:

gures output to |ayer NVWELL_ OPENS[107]
gures output to layer NVELL SP _ERR[108]

1 fi
3 fi
4 total figures output to error |ayers.

416

DRC User Manud

Advanced Tutorial: Electrical Connections

Open the layout editor. When you | Faseerror?
import the results of the DRC with the
@DRCOUT command, the results
should look similar to Figure 244. Note
that the 3 shapes on layer 108 mark two
pairs of unconnected wells that are
closer than 10 microns. At first glance
you may think that the top pair of wells
is marked in error. However, once you
see that the well on the left has been
marked on layer 107 as an unconnected
well, you can see that the two wells are
really unconnected. No well contact |Real nwell

was added to connect the ground wireto |spacing error
the well.

Figure 244: Generated nwell shapes
This problem must be fixed by adding cut at panel boundaries.
shapes on layers active, cact, and nselect
to the upper left of the nwell shape under the ground wire. You can copy the 3
shapes that form the nwell contact from the guard ring structure below. Do this
NOW.

The lower nwell in Figure 244 could be meant to connect to ground aswell. Itis
not marked as an unconnected well since the contact is present. The STAMP
rule tests only that each well is electrically connected to exactly one other node.
It does not test that each well is connected to the right node. This type of error
needs to be found by the LVS.

Let us assume that the well is meant to connect to a different node. We will fix
the problem by shifting both lower cells further away from the other wells.
Select the two lower cells and shift them down with the MOV E command.

Recreate the binary layout data file with the DRC command and rerun the DRC
to insure that the problems are fixed.

DRC User Manual 417

Advanced Tutorial: Creation of Shapes for Export

Creation of Shapes for Export

Subjects covered below

Generation of mask layer for export back into cell

Fixing acute anglesin generated layer

Finding bad polygonsin input layer

Use of the subcell error command file

Sometimes a required mask layer may be difficult to create by hand in the layout
editor, but easy to create from other layers with a few simple rules in the DRC.
Perhaps a design rule change after much of a chip has been laid out requires
simple but widespread changes to a layer.

The process to generate a layer that represents a real mask layer is the same as
that for any other output layer. The layer must be defined with a proper layer
number.

If you are generating a layer that will replace an old layer, be careful to use an
output layer number different from the old layer number in the cell. Keep the
layers separate to allow for changes in the layer generation until you have used
the new layer extensively. You can swap layer numbers later, or change the
Stream or CIF definitions to use the new layer number.

Even if you want to wait until the design is amost finished to import the fina
version of the new layer, it is best to create the layer in your regular rule set so
that any design rule problems between it and the other layers are found early on.

418

DRC User Manud

Advanced Tutorial: Creation of Shapes for Export

Nwell Layer Generation

For our tutorial, let us say that you discover that an extension of nwell beyond
active layer shapes improves reliability. You want to change the nwell layer so
that there is a 2.5um extension of nwell beyond al active layer shapes.
However, most of your next chip is already laid out. To fix all nwell shapes by
hand might take a considerable amount of time.

You can accomplish the same task with the DRC in a matter of hours.
Moreover, you can insure that the new layer is created without design errors, or
automatically choose the best option when the optimal design rules cannot be
followed in a particularly dense area.

Let us assume that our design includes pwells in addition to nwells. It is critical
that the wells do not overlap. Thisis more important than the extension of the
nwell layer beyond the active layer. So we will write the rules to insure that the
new nwell layer never overlaps the pwell layer.

First we need to expand the nwell layer to insure the 2.5um extension beyond the
active layer. We do not want to involve any active layer shapes that are not
covered by nwell, such as those covered by pwell. We want to use only p_active
shapes, those active shapes covered by nwell, for this processing.

Replace the “nwell = nwell_in” rule with the following rules:

p_active= active AND nwell_in
p_active bloat = BLOAT (p_active, 2.5)
nwell = nwell_in OR p_active bloat
nwell = nwell AND NOT pwell_in

This is the first time we have used the pwell layer, so we must now define it in
the list of input layers.

INPUT LAYER 2 pwell_in IAs-drawn Pwell

DRC User Manual 419

Advanced Tutorial: Creation of Shapes for Export

We need to define the new scratch layers.

OUTPUT LAYER 0 p_active
OUTPUT LAYER 0 p_active bloat

We also need to change the nwell layer number in the output layer definition to a
non-zero number so that shapes on the layer are created in the output file. So the
“OUTPUT LAYER 0 nwell” rule gets changed to:

OUTPUT LAYER 61 nwell IGenerated Nwell

So far, we have not used panel rules to control how the layout is divided into
chunks for more efficient processing. These rules are not really necessary in our
testcase because the default processing is usually adequate. However, a typical
chip will be divided into many panels and we want to force those panel
boundaries to be in a specific place in our testcase to highlight a possible
problem with generated layers.

Add the following lines directly after the ALL_SAFE rule near the top of the
file:

PANEL X =50
PANELY =50

The entire rule set should now ook like the one shown in Figure 245.

420

DRC User Manud

Advanced Tutorial: Creation of Shapes for Export

ALL_SAFE

PANEL X =50
PANELY =50

INPUT LAYER 2pwel_in IAs-drawn Pwell
INPUT LAYER 3nwél_in IAs-drawn Nwell

INPUT LAYER 4 active IDiffusion

INPUT LAYER 7 nselect IN-select

INPUT LAYER 8 poly IPoly

INPUT LAYER 9cpoly IContact from Metal to Poly
INPUT LAYER 10 cactive IContact from Metal to Diffusion
INPUT LAYER 11 metall IFirst Metal

INPUT LAYER 12via IContact from Metal 1 to Metal 2
INPUT LAYER 13 metal2 in !Second Metal

INPUT LAYER 16 glass IPad OverGlass layer

OUTPUT LAYER O gate ITransistor gate

OUTPUT LAYER Osrcdrn ISource/Drain layer with gates removed
OUTPUT LAYER O0gate overlaps

OUTPUT LAYER Onot_gate overlaps

OUTPUT LAYER 0 metal2

OUTPUT LAYER 0 pad_metal2

OUTPUT LAYER O0nplus IN+

OUTPUT LAYER Owselldiff !'Nwell diffusion

OUTPUT LAYER 0p_active

OUTPUT LAYER 0 p_active bloat

OUTPUT LAYER 61 nwell IGenerated Nwell

OUTPUT LAYER 101 gate cpoly_sp_err

OUTPUT LAYER 102 gate overlap_err

OUTPUT ERROR LAYER 103 gate no_overlap_err
OUTPUT ERROR LAYER 104 m2_pad_spacing_err
OUTPUT ERROR LAYER 105 poly_unconn_contact_err
OUTPUT ERROR LAYER 106 nwell_shorts

OUTPUT ERROR LAYER 107 nwell_opens

OUTPUT ERROR LAYER 108 nwell_sp_err
WIRE_WIDTH=0.3

DRC User Manual 421

Advanced Tutorial: Creation of Shapes for Export

p_active = active AND nwell_in
p_active bloat = BLOAT (p_active, 2.5)
nwell = nwell_in OR p_active bloat
nwell = nwell AND NOT pwell_in
gate = active AND poly

sredrn = active AND NOT poly
welldiff =srcdrn AND nwell

nplus = welldiff AND nselect

pad_metal2 = metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metall BY via

CONNECT pad_metal2 metall BY via

CONNECT metal2 pad_metal2

CONNECT srcdrn metall BY cactive

CONNECT poly metall BY cpoly

CONNECT srcdrn nplus

STAMP nwell BY nplus MUL TI=nwell_shorts NONE=nwell_opens

m2_pad_spacing_err = MINSPACING(metal2, pad_metal2, 30 /~CONN)
nwell_sp err = MINSPACING(nwell, nwell, 10 /~CONN)

gate cpoly _sp err = MIN_SPACING (gate, cpoly, 2)
poly_unconn_contact_err = MIN_SPACING(poaly, cpaly, 4 /~CONN)

gate overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate overlaps= poly OR active
not_gate overlaps=NOT gate overlaps
gate no_overlap_err = gate TOUCHING not_gate overlaps

Figure 245: New contents of the ADVTUTR.RUL file.

Now save the rule set and compileit. Runthe DRC.

422 DRC User Manual

Advanced Tutorial: Creation of Shapes for Export

The console messages should now look as follows:

1 bad I CED pol ygon

***2 acute angl es were out put

***No Errors found

***Total output non-error output count=20
20 total figures output to non-error |ayers.
O total figures output to error |ayers.

We will cover what to do about the bad P
polygon later on page 426. We will n [
investigate the acute angles below. The
20 non-error output shapes are the
shapes generated for the new nwell :
layer. All of the large nwell shapes Overlap with
pwell avoided

generated on layer 61 have been cut at :

. . . automatically.
panel boundaries as shown in Figure e
246, 1
When you look at the layout, you can
see how the original nwell shapes have
been dlightly expanded around the active Acute angles are
layer. The nwell in the middle has had generated here.

some material removed near the upper
right corner to avoid an overlap with the Figure 246: Generated nwell shapes
pwell layer. cut at panel boundaries.

Finding the Acute Angles

What causes the acute angle warning when no acute angles were in the input
data? Since the guard ring nwell shape has been cut at panel boundaries, the
skewed sides near the top have resulted in acute angles in the top two polygons.
These types of problems can happen whenever shapes with skewed sides are in
the input data used to generate a layer. Sometimes a panel boundary cuts such a
shape and the acute angles arise.

DRC User Manual 423

Advanced Tutorial: Creation of Shapes for Export

If you want to
suppress these
acute angle
warnings, add
the
NO_WARN-
_ACUTE rule
to your rule set.
Besureto
removethisrule
from the rule set
used on your
final design.

Acute angles can be a problem for software that reads mask set data. This can be
the case even when the acute angle would disappear when touching shapes are
merged. Thistype of problem is easily fixed in the layout editor. If you will be
generating the layer many times as your design progresses, you may choose to
ignore these warnings until you are ready to finalize the design and use the
generated layer as a mask layer.

The log file will by default list a detailed error message for every acute angle on
an output layer. Look at the log file now with your favorite text editor. The log
filenameis DRCOUT.DLO.

Near the middle of the log file are the following warning messages:

An acute angle was formed on output of |CED

| ayer 61 at (-66.364, -50)

The acute angle(s) will be marked on | ayer 99

An acute angle was formed on output of |CED

| ayer 61 at (-38.636, -50)
The error marks created on layer 99 ~ Wires
are included with the other shapes created on
created by the DRC. Execute the W layer 99
DRC command file with the : ;’:u”t]:rk
@DRCOUT command in the layout ~ angles
editor now.
The acute angles will be marked
with error wires on layer 99 as
shown in Figure 247. We can
easily merge the shapes generated 7.0 active
on the new nwell layer (layer & old nwell
number 61) to remove the acute U new nwell

angles. However, remember that
the acute angles will be generated
every time the DRC is run and you
replace layer 61. You may want to wait to fix the acute angles on layer 61 until
the design is complete and you begin using layer 61 as your final nwell layer.

Figure 247: Acute angle marks.

424

DRC User Manud

Advanced Tutorial: Creation of Shapes for Export

To fix the acute angle on the right,
type the following commands,
digitizing the select box as shown
in Figure 248 during the SELECT
command:

UNSELECT ALL
SELECT LAYER 611N
MERGE POLYGONS

To fix the acute angle on the left,
repeat the same three commands,
digitizing the select box as shown
in Figure 249 during the SELECT
command.

There are now no acute angles.
However, they will be recreated in
the next DRC run unless we
change the design to use layer 61
as the real nwell layer and change the rule set to remove the nwell generation
rules and change the layer number in the nwell layer definition rule. We will not
do this at thistime.

Figure 249: Selecting other two polygons
for merge.

The point at which to import DRC generated layers as the real mask layers is
dependant on the state of your design and your comfort level with the rules that
generate the mask layer.

For now we will continue to generate layer 61 in successive runs. So we need to
delete this version of the new nwell layer (as well as the acute angle marks on
layer 99) with the following commands:

UNSELECT ALL
SELECT LAYER 61+99 AL L
DELETE

Regenerate the layout file for the next DRC run with the DRC command. Exit
the layout editor.

DRC User Manual 425

Advanced Tutorial: Creation of Shapes for Export

Besureto
remove the
NO_WARN-
_ACUTE rule
from the rule set
used on your
final design.

It is best to have mask layer generation rules in a rule set from an early stage to
verify design rules with what will be the real mask layer. In your own designs
you can choose whether to ignore the acute angle warnings until the design is
complete, or to add the NO_WARN_ACUTE rule to the rule set used for
preliminary checks so that no warnings need to be ignored. For this tutorial, add
this rule now near the beginning of the rule set.

NO_WARN_ACUTE

Finding the Bad Polygon

If you do not
want bad
polygons on
unused layersto
generate
warnings, add
the
NO_CHECK-
_INPUT ruleto
therule set.

Remember that the DRC console messages shown on page 423 warned us about
a bad polygon. Bad polygons are a particular class of shapes with self-
intersecting sides that can cause problems for mask processing software. By
default, the DRC will warn you about all bad polygons on all defined input
layers. Since bad polygons will never be created by DRC rules, only input layers
are checked for bad polygons. (This is opposite the acute angle test that verifies
output layers since acute angles can be created by the DRC on output layers.)

Since all input layers are tested for bad polygons, why was this warning not
present in earlier runs? The answer is that the pwell layer was not defined as an
input layer in earlier DRC runs. Only layers that are defined as input layers in
the rule set are checked for bad polygons. For this reason, it is a good idea to
define all mask layersin thelayout asinput layersin therule set, even if you
have no design rules to test for some layers.

The warning about the bad polygon is expanded in the log file (DRCOUT.DLO
in our case) with the following message:

1 bad pol ygons in cell ADVCKTP

1 bad pol ygons on | ayer 2

Bad pol ygon(s) or wire(s) appear on |layer 99
of error file Q\ICED\H DRCTUTR\ ADVCKTP. ERR i n cell
ADVCKTP coor di nat es.

426

DRC User Manud

Advanced Tutorial: Creation of Shapes for Export

Since the bad polygons are found before the DRC flattens any data, only one
warning is posted for a bad polygon in a subcell, even when that subcell is used
many times. Since the error isfound in a subcell, the error mark created on layer
99 is created in a command file created specifically for that subcell,
ADVCKTP.ERR instead of the main command file DRCOUT.CMD. Other
error shapes can be created in subcell error files as well; however, spacing
violations are always marked in the main command file because they are not
found until the layout data is flattened.

Open the layout editor now to edit the ADVCKTP cell (not the main cell
ADVTUTR). Import the error mark created by the DRC by executing the
subcell error command file with the following command:

@ADVCKTP.ERR
The error mark is a copy on layer 99 of the entire pwell shape. The misdigitized

coordinates that make the pwell shape a bad polygon may not be obvious until
you zoom in on the lower right hand corner with a VIEW BOX command.

This bad polygon was created by
misdigitizing the final corner of a polygon.
This can happen if you are digitizing the
last corner of alarge shape at ascalethat is
too large to show you fine detail. You try
to close the polygon by redigitizing the
starting vertex, but overshoot the vertex
and digitize a point past the starting vertex.
(See Point 1 in Figure 250.) If you simply

POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT
POToTTUTUTUTODTTOUNTOTOOTTOOUT

k'u'u'u'u'a'u'u'a'u'u'u'u'a'u'u'a'u'a'u'u'a'u'u

P
P
P
F
P
P
F
P
P
F
P
F
P
P
F
P
F
F
P
F
P
P
F
u]

click a few times in the vicinity you may 3
digitize points similar to those in Figure | gting vertex A :ﬁ
250 before redigitizing the starting vertex 1 2

to close the polygon. You may not realize
that you have not digitized the corner
correctly.

Figure 250: Oneway to
accidentally create a bad

polygon

DRC User Manual 427

Advanced Tutorial: Creation of Shapes for Export

When you digitize a polygon like this, the sides intersect each other as shown in

Figure 251. This type of polygon
definition is likely to cause problems for
mask-processing software.

MooTowooooo
MooTowooooo
Mooooooood
MooTowooooo
MooTowooooo
Moooooooo
MooTowooooo
Moooooooo
MooTowooooo
MooTowooooo
Mooooooood
MooTowooooo
MooTowooooo
MooTowooooo
MooTowooooo
Moooooooo
MooTowooooo
MooTowooooo
mMooowooooo

It can be a little tricky to edit a shape with
intersecting sides. The MOVE SIDE
command will sometimes fail when you try
to uncross intersecting sides. You must

select both sides of vertex 2 using the Figure251: Self-intersecting
following commands: sides of a bad polygon

UNSELECT ALL
SELECT LAYER PWELL SIDE IN

Then move the vertex to the starting vertex with the following command:
MOVE VERTEX

Once the vertex is moved successfully, delete the shape on layer 99 with the
commands:

UNSELECT ALL
SELECT LAYER 99 ALL
DELETE

Save the cell and terminate the layout editor with the EXIT command.
Now we need to regenerate the layout data for the next DRC run. Open the

layout editor to edit the ADVTUTR cell and use the DRC command to export
the data. Y ou can then terminate the editor.

428 DRC User Manual

Advanced Tutorial: Hierarchical Output

Hierarchical Output

Y ou should be
familiar with the
information on
hierarchical
processing
beginning on
page 134 if you
want to use
hierarchical
output for real
designs.

Subjects covered below

Dangerous processing options

Hierarchical output — generating shapes for import into nested cells

Replacing hierarchical output

Deleting hierarchical output

Except for the few errors found in subcells (e.g. bad polygons) the shapes
generated by the DRC are usualy created flat in one main cell. The nwell
shapes that we created in the last exercise were al output at the main cell level,
even though the nwell and active shapes used to create the new layer were nested
in subcells.

Thisis usualy the preferred method for creating new layers with the DRC. All
shapes generated by the DRC are kept separate from the other cellsin one cell at
the main cell level where they can be deleted or replaced all at one time.

However, once you are comfortable with the DRC, you can use options to
generate shapes hierarchically. Shapes created from shapes in subcells will be
nested in separate subcells. These new subcells can be added automatically to
each of the original subcells. This can save a significant amount of storage
space. One new nwell shape stored in a subcell used 20,000 timesin a chip takes
much less disk space than 20,000 shapesin the main cell.

Of coursg, if you want to take your time, you can run the DRC flat on individual
subcells one at a time and import the results into each subcell. However,
hierarchical options let you perform this same procedure automatically on all
cellsin your design with asingle DRC run.

DRC User Manual 429

Advanced Tutorial: Hierarchical Output

In this part of the tutorial we will generate the new nwell layer hierarchically so
that the nwell shapes remain in the subcells rather than being created at the main

cell level.

Danger ous Processing Dir ectives

The DRC will
post awarning
message and
generate error
marks when
dangerous
processing
CaLISES errors.

Dangerous operations generate layers in
subcells that may be invalidated by shapesin a
higher level cell. The example used earlier in
this manual is shown in Figure 252. Let us
consider the following rule

c=aANDNOT b

A shape on layer a is contained in a subcell
and a shape on layer b isin a higher level cell.
When you process layer ¢ “dangerously”, the
entire shape on layer a is copied to layer c
while processing the subcell. When the DRC
is processing the higher level cell it realizes
that the section of the shape on layer c that is
covered by the layer b shape was generated in
error. Since there may be other copies of the
subcell not covered by shapes on layer b, the
DRC cannot solve the problem by going back
and changing layer c in the subcell.

Bla @b

Figure 252: Layer A in
subcell and layer B in main
cell.

When layer cis processed “ safely”, the DRC will not create shapes on layer cin
the subcell. It will wait until it is processing the main cell and create the shapes

correctly.

Throughout this tutorial we have used the ALL_SAFE rulein our rule set. This
rule directs the DRC to process all dangerous operations in a safe manner. While
this avoids problems like the one shown above, it results in many layers being
generated at the main cell level rather than within subcells.

430

DRC User Manud

Advanced Tutorial: Hierarchical Output

Seethelist of
dangerous
operations on
page 137.

Safe processing directives interfere with hierarchical processing since most or all
shapes must be generated at the main cell level. Only layers that have no
dangerous operations associated with them will be generated at the subcell level.

If we leave the ALL_SAFE directive unmodified, even when we use the
hierarchical command line options all of the nwell shapes will still be generated
at the main cell level. This is because the nwell generation rules include
dangerous operations (i.e. BLOAT and AND NOT.)

If we used the ALL_DANGER rule instead of ALL_SAFE, we would have a
different problem. Some of the scratch layers used for verification rules are
generated by dangerous operations. The not_gate overlaps layer in particular
will have several processing errors when processed dangerously. The log
messages would look as follows:

*****DA,\ERk*****DA,\ERk*****DA,\ERk*****DA,\ERk**
*****DA,\KER******DA,\KERk*****DA'\KERk*****DA'\KERk**
*****DA,\ERk*****DA,\ERk*****DA,\ERk*****DA,\ERk**

A | ogi cal error was nade processi ng | ayer
NOT_GATE _OVERLAPS in cell ADVIUTR One of ADVIUTR s
subcells contains a section of NOI_GATE OVERLAPS that was
renoved by a logical operation in ADVTUTR This means any
further results in ADVIUTR or a cell containing ADVTUTR
i nvol ving | ayer NOT_GATE _OVERLAPS are likely to be wong.

An outline of the offending area (in cell ADVTUIR
coor di nat es) appears on | ayer 99 of error file
E: \ | CED\ DRC\ ADVTUTR\ DANGER\ ADVTUTR. ERR. This outline can be
used to | ocate the of fendi ng subcells.

4 | ayer NOT_GATE OVERLAPS figures were outlined on |ayer 99.
What we need to do is restrict the dangerous processing to the generation of the
nwell layer. We can do this with the DANGER_LAYER rule. We need to add
the following rule to the rule set:

DANGER_LAYER nwell

DRC User Manual 431

Advanced Tutorial: Hierarchical Output

However, since the nwell layer is generated from the p_active, and
p_active_bloat layers, they must also be generated dangeroudly. If those layers
are generated safely, the shapes used to create the nwell shapes are already at the
main cell level. So we must add the following lines as well:

DANGER_LAYER p_active
DANGER_LAYER p_active bloat

When adding the rules above to the rule set, place them after the layer definition
rules. The danger properties of a layer cannot be set until after the layer is
defined.

Command Line Optionsfor Hierarchical Output

When typing
thisoptionin a
Windows
shortcut, replace
the ‘=" with a
‘# to avoid
misinter-
pretation of the
command line.

To get hierarchical output from the DRC we must add the HIERARCHICAL
option to the DRC command line. The syntax of the option for our testcase is as
follows:

HIER=_WELL

The HIERARCHICAL keyword has been abbreviated here to “HIER”. The
string “_WELL” will be added to the end of every cell name in the hierarchical
output data. The nwell for cell ADVCKT will be created in a cell with the name
ADVCKT_WELL. We will demonstrate how this cell is added to the ADVCKT
cell after we run the DRC.

Other command line options should be combined with the HIERARCHICAL
option.

432

DRC User Manud

Advanced Tutorial: Hierarchical Output

The NO_HIER-
_WARNING
directive can be
specified in the
rule set or on
the command
line.

Since the DRC is processing some layers safely despite the HIERARHICAL
option, the DRC will warn you that some of the output data will not be
hierarchical. You would need to reply to this warning prompt with a keystroke
to continue with the DRC run. To avoid this warning prompt, we need to add the
following option to the command line.

NO_HIER_WARNING

The DRC will automatically flatten some cells during preprocessing. Subcells
containing 5 or fewer shapes will be flattened by default. So will subcells used
only once. To prevent this we need to add the following option to the command
line:

NO_FLATTEN

Creating and Importing the Hierar chical Data

Recompile the rule set. Then execute the DRC. The entire DRC command line
should now look like the following:

DRC3-NT® ADVTUTR ADVTUTR DRCOUT SLOW ...
... HIER=_WELL NO_HIER_WARNING NO_FLATTEN

The run should end with messages similar to the following

9 total figures output to non-error |ayers.

O total figures output to error |ayers.
*****DA,\ER******DA,\ERk*****DA,\ERk*****DA,\ERk**
*****DAI\KER******DAI\KER******DA'\KER******DA'\KER***
*****DA,\ER******DA,\ERk*****DA,\ERk*****DA,\ERk**
This run may have incorrect answers --- Read your |og
file @\l CED\ ADVTUTR\ DRCOUT. DLO

This how the DRC aerts you to errors in subcells caused by dangerous
operations. We will look at the log file and diagnose the problem in a moment.

% The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.

DRC User Manud 433

Advanced Tutorial: Hierarchical Output

First we need to create a temporary cell from which we will import the results of
the DRC run. We need atemporary cell since the command file that will add the
newly created cells to the existing design cells must be executed while none of
the design cells are open.

When we perform the import operation in the temporary cell, the procedure will
modify all of the design cells to add the newly created cells. The temporary
cell’s environment settings (e.g. layer names, color properties, grid definitions)
will be saved in all of these modified cells. If the temporary cell has different
environment settings than the original design cells, the old environment settings
would be lost.

So, we need to create this temporary cell with the same layer and other
environment settings as our design cells. If al of your environment settings are
defined in a startup command file so that all new cells have the same properties,
then any temporary cell you create will have the appropriate environment
automatically. However, we have added unique layer propertiesin our main cell
for DRC generated layers. (In the case of rea designs, the main cell may be
modified with many layer definitions for DRC generated layers that may include
layer names, patterns, and colors.) We don’'t want to lose these layer definitions
when the environment settings get replaced.

The There are severa ways to get the environment of our main cell stored in the new
I.Fn’:"nf’a'-ng:the temporary cell, but the easiest way is to create the temporary cell after the layout
layout editor editor has been opened to edit the main cell. Open the layout editor now to edit
can be used to the ADVTUTR cell. Now execute the following commands:
exp_ort al
ggt‘;';‘;f;f:‘rigta EDIT CELL TEMP
command file. EXIT
QUIT
Now open the layout editor to edit the cell we have just created with the name
“TEMP”. From this cell we can execute the command files created by the DRC.
First execute the main command file with following editor command:
@DRCOUT.CMD
434 DRC User Manual

Advanced Tutorial: Hierarchical Output

This command file will create all of the new cells generated by the DRC. All
cell names will end with “_WELL” as we specified in the command line. The
existing design cells are still unmodified at this point.

Now we need to execute an additional command file generated by the DRC to
actually add the new cells to your design cells. These procedures are kept
separate because if you repeat this process, you do not want to add additional
copies of the new cells to your design cells. (We will cover how to replace the
hierarchical DRC output with new results on page 438.) Execute this additional
command file with the following layout editor command:

@DRCOUT.ADD

Now the new cells are added to each of the design cells. Now exit the editor to
save al of the cell files.

Fixing a Danger ous Processing Error

Now that we can look at the results, let us diagnose the error reported in the log
file. Thewarning inthelog filewill look similar to the following:

~k~k~k~k~kDA,\ER******DAI\ER******DA'\ER******DAN&R***
*****DAI\KIR******DAN(IR******DAN(ER******DAN(ER***
~k~k~k~k~kDA,\ER******DAI\ER******DA'\ER******DAN&R***
A logical error was made processing |layer NWELL[61] in
cell ADVTUTR. One of ADVTUTR s subcells contains a
section of NWELL[61] that was renoved by a | ogical
operation in ADVTIUTR. This neans any further results in
ADVTUTR or a cell containing ADVTUTR i nvol ving | ayer
NWELL[61] are likely to be wong.

The problem can be corrected by specifying that
| ayer NWELL[61] or the problem subcells (not ADVTUTR) be
ungr ouped.

An outline of the offending area (in cell ADVTUTIR
coordi nates) appears on layer 99 of error file
E: \ | CED\ DRC\ ADVTUTR\ DANGER\ ADVTUTR. ERR. Thi s outli ne
can be used to locate the of fendi ng subcells.

Let us look at the error mark generated by the DRC. Open the layout editor to
edit the ADVTUTR cell.

DRC User Manual 435

Advanced Tutorial: Hierarchical Output

Now we need to import the file indicated in the error log message,
ADVTUTR.ERR. This is a different file than the main DRC command file.
Dangerous processing error marks are stored in a subcell error command file. It
just happens that in our case the cell where the error is found is the main cell, so
this subcell error file is named for the main cell. Execute the following
commands in the editor.

@ADVTUTR.ERR
UNSEL ALL

SEL LAY 99 ALL
VIEW SEL

VIEW OUT 4

At this scale, it is relatively easy to see that the mark on layer 99 (a line
component in this case) is marking the area where the pwell shape overlaps the
new nwell shape. (See Figure 253.) The new nwell shape on the left was
created nested inside the cell ADVCKT, and the pwell shape on the right is
nested in the cell ADVCKTP. When the DRC processed the main cell and
flattened both cells to test for dangerous processing errors, the rule “nwell =
nwell AND NOT pwell_in” rule could not be performed correctly for this area.

== - .

zzZz77777ZZZZZZZZZZZ
=N T

.i£. .

o
Ll ZZZEFTZFLTEZFTTIEZZTZZ " =

P
DK

&
e 1
e
AL L Ly ey P e p

)

e
e
e
e
e
e
e
e/
e
|
e
e
e
e
e
e
e
e
e
e
e
e

P

Ty e g

QT A A A A A A A A AR A

e 0. aocd AR
>

MOV TOOTTUTOToTOT

’ % A
s
s
e

Me L EL T F T T ZFTTIEZFLTTEEDL
FEIEFEIITIIZTIZIZIZIZZEE

frzzzzzzzz

e

TTT%
kR

Z]

7%
54
"I

5

(e eBanlc e ly: Byt

N
X

Figure 253: Dangerous processing error mark selected

436

DRC User Manud

Advanced Tutorial: Hierarchical Output

Y ou have options on how to solve errors like the one above. The easiest method
isto move the ADVCKTP cell dlightly to the right. However let us assume that
space is at a premium and that it would be better to shift the side of the active
shape to the left to fix the problem. Now when the active shape is bloated, it will
not cause the new nwell shape to overlap the pwell shape. This will require the
recreation of the nwell layer.

We need to delete the error mark on layer 99 and shift the side of the active
shapein cell ADVCKT with the following commands:

UNSEL ALL

SEL LAY 99 ALL
DELETE

PEDIT NEAR

SEL SIDE NEAR
MOVE -1,0

EXIT

S TP PP T T P T B
NI :

E—f—h

ITZEZELZZZIFTITEZZZIEZY O
zzzzzzzrzzrEZlRY
oo oo o0 0 000 :

‘DT ddowoooothhool 0

ZEZ L EZ LT
N
TR EEZEZEZR
‘o' oo

e g e B e e e m oy w e i = T = = e = I

TvvvuvUTUoDuOODoDoDoOwUoowm|
T T T T ..

TrTouowdd
TwwTUoUudd
nroowwoUood

%:\EZZZZZZ
EEEEZ
DO

P

Figure 254: Correct select box for selecting cell ADVCKT and active side

For the “PEDIT NEAR” and “SEL SIDE NEAR” commands, use the cursor to
position the select box as shown in Figure 254. Note that all copies of the
ADVCKT cell have been changed.

DRC User Manual 437

Advanced Tutorial: Hierarchical Output

Now recreate the DRC data with the DRC command and rerun the DRC with the
same command line shown on page 433. If any other error messages are posted,
fix the problems before continuing.

Replacing Hierarchical Output

The command files created by the DRC now contain the corrected nwell layer on
layer 61. However, if we execute the DRCOUT.CMD command file now to add
these new shapes to each _WELL cell, both the old shapes and the new shapes
will be contained in each cell.

If the cell structure has not changed, we can recreate all of the _WELL cellswith
DCROUT.CMD, but leave the cell references nested inside all of the original
cells. The DRCOUT.ADD command file does not need to be executed.

Close the layout editor. Using your favorite method, delete all of the WELL
cell files. In the console window, use the following DOS command:

DEL *_WELL.CEL

Open the layout editor to edit the temporary cell, TEMP.CEL. Execute
DRCOUT.CMD command file and exit the editor with the following commands:

@DRCOUT
EXIT

Thisrecreatesthe WELL cells. The cell files are now saved to disk.

Do not re-execute DRCOUT.ADD since the WELL cell references are till
included in the original cells.

438

DRC User Manud

Advanced Tutorial: Hierarchical Output

Deleting Hierar chical Output

If you want to delete all of the hierarchical results from the DRC, copy the
DRCOUT.ADD command file to DRCOUT.DEL. Edit the DRCOUT.DEL file.
For each of the “ADD CELL="xxx WELL" AT (0.0, 0.0)” commands, replace
the command with the following set of commands:

UNSEL ALL
SEL CELL xxx WELL ALL
DELETE

Where “xxx_WELL" should be replaced with each appropriate cell name.

Thetemporary Execute the DRCOUT.DEL command file while editing the temporary cell. This

cell should be will remove the hierarchical results from each of the original cells.
created with the

environment of
adesign cell.
See page 434.

DRC User Manual 439

Advanced Tutorial: Speeding Long DRC Runs

Speeding Long DRC Runs

Add the
SHOW-
_BORDER
option to the
DRC command
line to see how
the panel border
iscdculated by
the DRC.

Subjects covered below

Separating long reach and short reach rulesinto rule subsets

Pad size verification using MIN_WIDTH rule

Optimizing panel size

The most important methods to improve DRC efficiency are to optimize the
panel size and panel border.

The DRC can process only small designs as a single panel. Larger designs are
divided into panels and processed one panel at a time. Only one panel is
flattened at a time, allowing the rest of the design to remain hierarchically nested
which saves large amounts of storage space. This panel processing allows the
verification of entire chips with only the resources of atypical PC. However, the
overhead of panel processing increases run time, especially when the panel size
is not optimized for a specific design density on a PC with specific storage
capacity.

When you dlice a design into panels for verification, spacing rules must ook
beyond the boundary of a panel to verify that no shape just outside the boundary
is too close. In order for shapes near or crossing a panel boundary to be
processed correctly, the DRC must include a border around all sides of each
panel. The panel border is automatically calculated by the DRC based on the
layer with the maximum reach as determined by the rules. Reach is defined as
the minimum border distance that insures that no violations will be missed or
marked as false errors.

Y ou may have noticed that the DRC took longer to execute once we began using
apanel size of 50x50. A large part of this delay is caused by the metal2 spacing
rule that requires a border of 30 microns on each side of each panel. This wide

440

DRC User Manud

Advanced Tutorial: Speeding Long DRC Runs

border forces most shapes to be tested many times due to the overlapping borders
on the panels.

Our artificidly small panel size
magnifies this problem, but all long Panel
reach rules will cause this type of
extra processing when the design is 1
divided into panels.

The extra time involved to process
shapesin alarge border is multiplied
by each rule processed in the same
pass, even those rules with a
relatively short reach. The same
panel border is used by most spacing
rules.

boundary

The DRC would be far more Figure 255: Neighboring panels with
efficient if only the long reach rules overlapping long reach borders

were processed with the large panel

border. If the shorter reach rules were processed with a small border, far less
processing time would be needed.

Testing Minimum Pad Size

Let us add another long reach rule to our rules file to highlight the problem of
large panel borders. Let us assume that the minimum dimension of glass shapes
in pad constructs is 50um x 50um. We need to verify thiswith aMIN_WIDTH
rule. Open the rule set for editing now. Add the following rule after the
m2_pad_spacing_err rule:

small_glass=MIN_WIDTH(glass, 50)

DRC User Manual 441

Advanced Tutorial: Speeding Long DRC Runs

We need to define the new error layer even though our design will have no
violations of thisrule. Add the following layer definition rule with the others:

OUTPUT ERROR LAYER 109 small_glass

Separating Long Reach/Short Reach Rulesinto Rule Subsets

When you use rule subsets to separate long reach rules from short reach rules,
you can speed the DRC considerably. You can use the log files to find which
rules are causing a large border. Save the rules file now and compile it. Then
execute the DRC with the SHOW_BORDER command line option. The DRC
command line should now be as follows:

DRC3-NT* ADVTUTR ADVTUTR DRCOUT SLOW SHOW_BORDER

The border calculations are shown in the log file (DRCOUT.DLO in our case.)
Open this file now to see the border calculations. The following lines should be
near the beginning of the file.

***Deriving border for pass 3

19. SMALL_GLASS[109] = M N_W DTH(GLASS[16], 50/ ~DET)
reach(SMALL_GLASS[109]) =50.

***Deriving border for pass 7
34. M2_PAD SPACI NG_ERR[104] = M N_SPACI N&
METAL2,
PAD_ METALZ2,
30
/ ~CONN/ P/ OVER/ CROSS/ T/ ENDY ~DET)
reach(M2_PAD_ SPACI NG ERR[104]) =30.

The bolded lines above show us that the rule that creates the small_glass layer

and the rule that creates the m2_pad_spacing_err layer are the rules causing the
longest reaches.

% The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.

442 DRC User Manual

Advanced Tutorial: Speeding Long DRC Runs

See another
example of
testing long
reach rules
efficiently on
page 164.

If you could test only the long reach rules with the large border, and test all short
reach rules with a smaller border, the short reach rules could be processed much
faster. We can do this using rule sets without dividing the rules into two files.
The same rules file can be used to test different sets of rules without further
modification of the file. We specify on the DRC command line which rule
subsets should be executed.

The RULE_SET ruleis used to identify subsets of rules that can be executed by
the DRC instead of executing all of the rules in afile. Add the following rule
near the top of therulesfile:

RULE_SET LONG_REACH SHORT_REACH

Now we bracket the verification rules into named subsets. It is important to
bracket only the verification rules. Layer processing rules and/or connection
rules that are unnecessary are removed by the DRC automatically. However the
DRC cannot remove unnecessary rules if they are specified in arule subset. The
DRC may crash quickly with a message similar to the following if unnecessary
layer generation or connection rules are contained n the specified rule subset.

You sel ected rule:
30. CONNECT METAL2 PAD METAL2
In set SHORT_REACH
whi ch generates a connection never used.
Run cancel ed.

CRAS'_{****CRAS'_{*******CRAS'_{*******CRAS'_{*****

First we bracket only the two rules that result in a long reach. (The unbolded
lines below should already be present.)

LONG_REACH ON

m2_pad_spacing_err = MINSPACING(metal 2, pad_metal 2, 30 /~CONN)
small_glass = MIN_WIDTH(glass, 50)

LONG_REACH OFF

Now we bracket the rest of the verification rules in the other rule subset.

DRC User Manual 443

Advanced Tutorial: Speeding Long DRC Runs

When typing
this command
lineina
Windows
shortcut, replace
the‘=" with a
‘# to avoid
misinter-
pretation of the
command line.

SHORT_REACH ON

nwell_sp_err = MINSPACING(nwell, nwell, 10 /~CONN)
gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)
poly_unconn_contact_err = MIN_SPACING(poly, cpoly, 4 /~CONN)
gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate _overlaps = poly OR active

not_gate overlaps= NOT gate overlaps

gate no_overlap_err = gate TOUCHING not_gate overlaps
SHORT_REACH OFF

To specify that the DRC should verify only the long reach rules, execute the
following command line (the parentheses around the name of the rule subset are
required):

DRC3-NT ADVTUTR ADVTUTR DRCOUT SLOW ...
... DO=(LONG_REACH)

The rules in the SHORT _REACH rule subset are not executed; neither are the
layer generation rules that are not necessary to execute the LONG_REACH
rules. If you look at the DRCOUT.DLO log file, you can see that the
unnecessary rules have not been executed, including the generation of the gate
and not_gate overlaps layers. This DRC run should have taken less time than
the execution of the entire rule set. You can then execute only the short reach
rules by specifying the SHORT_REACH rule subset in the command line.

When you divide the rules this way, you can probably run the long reach rule
subset less often. The long reach rules are typically important mainly in areas of
the chip that do not change that often, e.g. pad constructs.

Using Rule Subsetsfor Very Long DRC Runs

You do not have to separate long reach rules from short reach rules to use rule
subsets. You can arbitrarily separate the verification rules into as many subsets
as desired. Any DRC run that executes only a subset of the rules will execute
more quickly.

DRC User Manud

Advanced Tutorial: Speeding Long DRC Runs

Let us assume that you are verifying a large design with along rule set. Divide
the rules into two subsets and execute the DRC on the first subset with the
appropriate DO option. Then after the first run is finished, run the DRC again
on the second subset. The total execution time of the two DRC runs will be
longer than if you ran the DRC on the entire rule set, however, you will have
results for the first subset more quickly. Then you can fix the errors found by
the first subset while the DRC is executing the second subset.

When you want to execute all the rules in a single run, just leave the DO option
off of the DRC command line. You do not need to remove the rule subset lines
from therulesfile.

Optimizing Panel Size

Panel size is directly related to the amount of memory the DRC requires. A
large design must be divided into panels so that only a small portion of the
layout is flattened and in memory at any given time.

However, panel size also has an important impact on how quickly the DRC will
execute. Extra processing is involved, especially in testing areas where panel
borders overlap.

Since there is a trade off between extra processing required for panel processing
and storage saved due the smaller amount of data stored in flattened form at any
given time, time may be saved by increasing or decreasing the number of panels.

This lesson will be quite a bit more time consuming than our other exercises
have been. Your computer will be tied up for some time. You may want to
spread this lesson over afew lunchtimes.

Our current testcase is too small to adequately explore panel size trade off. If
you have a large design that you can use as your testcase, you may want to use
that layout instead of the input file we build next. The error status of the layout
is not important. We are not fixing errors in this lesson, only optimizing run
time by modifying the panel size.

DRC User Manual 445

Advanced Tutorial: Speeding Long DRC Runs

If you have no layout file suitable for atest of alarger design, expand the size of
the ADVTUTR layout. Open the layout editor to edit the ADVTUTR cell. Add
an array of cells to add a large amount of layout data with a single command.
Type the following command:

ADD ARRAY=ADVCKT N=(100,100)

Once you place the corner of the array with the cursor, you have added 10,000
cells to the design. Now create the file for the DRC and exit with the
commands:

DRC
EXIT

Y ou can use the same rules file we used in the last lesson, or you can modify it
to use MINSPACING rules that verify similar distances to the rules you will be
using on your real data. If you edit the file, save and compileit.

\:]OU can add Y ou should test various panel sizesin the rulesfile. First use the existing panel
these options to 7 H
tho DRC Size settings added on page 420.
command line
orintherules PANEL X =30
file PANELY =50
This is most likely to small a panel size for a realistic design, but it provides a
suitable minimum panel size. Now run the DRC and look at the run time
stetistics at the end of the log file, DRCOUT.DLO. The listing should look
similar to the lines below:
Scratch file size=0 bytes.
Information was witten to the scratch file 0O tines.
Information was read fromthe scratch file 0 tines.
Runni ng ti ne:
3,967,256 total tinmer on/offs
Tot al 1:11: 03 (1 times)
D sc swaps 0
446 DRC User Manual

Advanced Tutorial: Speeding Long DRC Runs

The listing above indicates that no disk swapping to a scratch file was necessary
for thisrun. If any of your runs indicate that the scratch file was used, try smaller
panel sizesif possible. Disk swaps add to processing time considerably.

The run time for the run above was 1 hour and 11 minutes. Note the time of
your run and the panel size used.

For the next run, try removing the PANEL rules entirely. This lets the DRC
attempt to find an optimal panel size. Try different panel sizesin other runs until
you have optimized run time. Be sure to save and compile the rules file each
time you change the panel size.

On a sample computer, we ran the DRC on the | panel size Run Time
entire rule set. We limited the DRC to using in minutes
32Megabytes of memory with the “HOG=32"
command line option. See the results of | 90x50 71
various panel sizesin Figure 256. Therunwith | 150x150 10
no panel size restriction did not end
successfully. It was cancelled with the <ESC> | 290250 l
key in less than an hour since little progress | 500x500 10
was being made. The log file looked similar to

. No PANELXx >60
the thrashing example shown on page 120. rules. default
You can see the dramatic effect of optimizing calculated to
pane! size. 1428x1392

Figure 256: Variousrun

You can cancel any run early by pressing the timesfor various panel sizes

<ESC> key if desired. The log file is still
created, and you can get a good feel for how long the entire run will take by
watching the progress of the first pass with the console messages.

DRC User Manual 447

Advanced Tutorial: Conclusion

Conclusion

This concludes the tutorial. We have covered all of the tasks common to most
large scale designs.

Continue to experiment with these files to test aspects of the DRC as needed.
Edit the testcase rules file to test design rules more unique to your designs.
Refer to the reference sections of this manua to learn more about various
additional rules and aspects of the program needed for more advanced testing.

If you run into problems, please consult the trouble-shooting guide on page 27
before contacting technical support.

Good Luck and Enjoy.

448

DRC User Manud

Appendix A: Obsolete Syntax

Appendix A: Obsolete Syntax

Obsolete DRC Rules

If you want to
use these
obsolete rules
only for old
versions of the
DRC, seethe
version control
rules2_ONLY
and
286_ONLY.

The following rules were developed for previous versions of the DRC. These
rules are still supported by the current version of the DRC to enable users of old
rule sets to use the current version of the program without forcing them to
modify their rule sets.

The correct rule in the current version to use in place of each obsolete rule is
mentioned at the beginning of each description.

DRC User Manual 449

Appendix A: Obsolete Syntax: MAX_QUAD

MAX_QUAD Limited air bridge recognition

error_layer =MAX_QUAD (layerl, max_length)

This rule has been replaced by the more thorough air bridge recognition rule
BRIDGE described beginning on page 196. The main problem with the
MAX_QUAD rule is that missing posts at the end of air bridges will not be
marked as errors.

The MAX_QUAD rule will mark as errors all shapes on layer1 that meet either
of the following conditions:

the shape does not have exactly 4 sides
or
at least one side of the shape islonger than max_length

To use this rule you will need to use the BLOAT rule to expand the layer that
represents the posts so that the expanded post shapes overlap the metal layer of
the bridges. Next, you need to subtract the expanded post layer from the metal
layer with arule similar to:

BRIDGE = METAL AND NOT BLOATED_POST

The MAX_QUAD rule should be written to verify the new BRIDGE layer.
Bridge corners without posts should be found. However, bridges with missing
posts at the ends will not be found. Slanted bridges may or may not be classified
correctly.

Be sure to subtract twice the value used to bloat the post layer from the
maximum bridge length when specifying max_length in the rule.

450

DRC User Manud

Appendix A: Obsolete Syntax: RECTANGLES

RECTANGLES Find shapes that are not rectangles of specific sizes

eror_layer =RECTANGLES (layerl, sizel[,size2[...,sizen]])

This rule has been replaced by the more robust IS BOX rule. (See page 222.)
One main difference between the two rules is that the IS BOX rule does not
automatically classify the shapesit creates as errors.

The RECTANGLES rule will consider all rectangles that fit the size criteria as
valid shapes. All other shapes on layerl will be copied to error_layer and
counted as errors. To pass the test, rectangles must be square with the axes (i.e.
the sides must be vertical and horizontal).

(Remember that all shapes on the same layer are merged by the DRC.
Rectangles that touch another shape on the same layer will be merged during
preprocessing. When a rectangle is merged with touching shapes, the resulting
shape may no longer be rectangular.)

You must specify at least one sizen parameter. You may specify up to ten
different sizen parameters. You can type additional sizen parameters on
different lines for readability, but you cannot start a new line in the middle of a
Sizen parameter.

The syntax of each sizen parameter is:

(xmin [: xmax], ymin [: ymax])

To alow the dimensions of the rectanglesto be in arange, specify both the mini-
mum and maximum dimension separated by a colon (:"). To specify an exact
dimension, type only the minimum value. When the maximum value is not in-
cluded, it is assumed to be equal to the minimum. Each dimension must be a
positive real number. The units are the user unitsin the ICED™ cell.

The syntax of the sizen parameters is exactly the same as the syntax used in the
IS BOX rule. Seethat rule for many examples of sizen parameters.

DRC User Manual 451

Appendix A: Obsolete Syntax: SKIPPED_POLY

SK|PPED_POLY Assign layer number for shapes unknown to DRC

SKIPPED_POLY = layer_number

In the past, new versions of the ICED™ layout editor have supported shapes that
the DRC was not able to process correctly. This version of the DRC supports all
shapes that can be created by the current versions of the layout editor. However,
if the layout editor is enhanced before you receive a new version of the DRC, or
if you are using an older version of the DRC, the DRC will classify shapes it
cannot process correctly as "skipped" and copy them to layer number 99 by
default.

You can add the SKIPPED_POLY rule to change the layer number where the
DRC will store skipped shapes.

452

DRC User Manud

Appendix A: Obsolete Syntax: OUTPUT LAY ER Keywords

OUTPUT LAYER Obsolete Keywords

The following keywords of the OUTPUT LAYER rule are considered obsolete.
They al have exact correspondences to syntax documented in the current syntax
of the OUTPUT LAY ER rule covered beginning on page 284.

MASK

The MASK keyword is exactly equivalent to the POLYGON keyword. It
indicates to the DRC that the layers defined with the rule should contain only
polygon shapes suitable for mask generation as opposed to error wires. If you
attempt to use a layer defined with this keyword as the error_layer for any of the
rules that generate wires (as shown in the table on page 62), you will receive an
error message from the rules compiler.

OUTLINE

The OUTLINE keyword is exactly equivalent to the WIRES keyword. Shapes
on layers defined with an OUTPUT OUTLINE LAY ER rule will be converted to
wires that outline the edges of the shapes during DRC output. This is useful
primarily to allow all of your error layers to have similar properties.

OUTPUT ERRORS

This syntax is exactly equivalent to:
OUTPUT WIRE LAYER

DRC User Manual 453

Appendix A: Obsolete Syntax: OUTPUT LAY ER Keyword

OUTPUT GEOMETRY

This syntax is exactly equivalent to:
OUTPUT POLYGON LAYER

454 DRC User Manual

Index

Index

I Comment character.........ccovevvvreeecnennns 153,173 in MIN_ANGLE and MAX_ANGLE rules107
iNMIN_NOTCH rule......ccccovevevvrnrrcrnne. 106
used to replace =ooeveverevesese e 333 iNMIN_WIDTH rulecceovevevverereene 104
$D3RVIRT.000......ccotrrerrerierenierienienens 323, 324 listed inlog file.....cccooireviiinniece 364
$D3VIRT.000......ccceerereeeierierienens 332, 341, 362 output layer NUMDES........cccevvevveeeereeeen 313
% variable layer number indicator 58 suppressing check.......oovvvvveereeenene 280, 314
% variable layer number indicator 346 ADD fileextension........ccccceevvveeeceeeenn 147, 374
%n batch file parameters.......cccoevvvvevecenene, 359 ADD layout editor command
& continuation character..........c.ccecveuee. 172,221 L 100 = 373
() not allowed in Boolean layer rules............... 64 used in DRC command filecc.ccceenenee. 366
* wildcard in cell name specifications208, 219, 297 Adjacent sides
... used to indicate continuationc......... 175 verifying angleS....oovevevevevce v 107
 AEliMILEr (oo 218 Advanced
; Semicolon characters.........ccoevvveeerieneenieneas 172 TULOMT@ .. 379
@file_name layout editor command....... 368, 369 ADVTUTR.CEL....coeieeeeeevece e 382
@MAIN cell name specification.................... 219 Air bridge recognition..........cccceeevvvvierieeiennnens 196
@opt_file command line option.............c....... 336 (01015 o] = (/= £ To] o 1R 450
[] used to indicate optional keywords............ 174 Algorithm Options........cccccevvvevieienieseceeens 337
_underscore charactercccoeevveveeennnns 172, 333 ALL_SAFErule
{} used to alow rulesto span several lines....218 usein advanced tutoridccccoceevvennnnne. 384
| delimiter in cell name specifications.....219, 297 ALL DANGERTUIE.. ...ttt 180
+ used to combine input layers.........c.ccceunee.. 218 importance in hierarchical output.............. 148
= overriding for specific layerccccoecue.. 299
disappearing from command line.............. 333 usein hierarchial outputcccccccevvennnen. 277
=useinassignment rule..........coeeeveennen. 187, 281 ALL _SAFETrUle....ccoceeeeeeeeecec e 181
2 ONLY TUIE..cuictiiicieeecece e 176 overriding for specific layerccccceuneee. 209
286 ONLY rUl€....ccveeeeeeeie e 178 OVEIVIEW ..o 141
3 ONLY TUIE..c.oiitieicieecece e 179 problemsin hierarchical outptt................. 431
Acute angles ALLOW_QUICK command line option........ 338
DIOAES....ccveieeececee e 126 ALLOW_QUICK rUl€....cceverrieeeierieeeieene 182
finding and fiXingcccceverviineneneneenn, 423 AND NOT rule
finding notches on specific layer 231 not sufficient to verify enclosure............... 312
finding on al output layers...........cccoceveenee. 313 AND UL ..ot 183
finding protrusions on specific layer 242 examplein advanced tutorid 383
inbloated Shapes........coceevveveeeverieeieeiens 191 simple example.......ccoeveeeverenenie e 64
INMaSK [AYErS.....cccevveieiveise e 76 using to find overlap errors.........ccccceeveveenns 85
DRC User Manua 455

Index

Angled sides........ccoeuenenen. See also Acute angles Betatestcoooeeeeeeeeee e 95, 258, 331
Exceptionsto MIN_SPACING violations93, 256 Binary layout datafile................ 16, 47, 334, 382
N OULPUL ShAPES.eeveeeeeeeie e 132 Bipolar transistors
Angles sample layer processing.......c.ccoeeeeeeeeeenens 114
overview of MIN/MAX_ANGLE.............. 107 BLANK layout editor command.............. 20, 371
Area Blank paces.......ocovieierieeiee e 172
classify shapesby area........cc.ccoceveenvienenen. 66 BLINK layout editor command 371,372
classifying hole coveragec.ccooveeeeieenene 211 Bloat angle
design areareported in log file................... 363 reported iN1og......ccooevererieenene e 327
finding shapes|ess than minimum area......243 BLOAT rule.....ccoovevviniinne 68, 164, 190, 419
limiting design areachecked...........c.ccco... 350 reach calculations..........ccccoveveevenenenienenn, 126
overview of MIN_AREA rule.................... 107 using to classify WIreS.......cccocvevvevviennnnns 65
overview of MIN_FILL rule.........c..c........ 109 BLOAT _ANGLETrule......ccveeeerree 68, 191
restricting area checked.........ccccceeeeeeeenenne 159 reach calculations..........cccoevvevenenenccenne 126
verifying layer coverage.........cooovereeneennnne 245 Bloats of acute angles..........ccoceeeeeveennnne 126, 191
ASPECT_RATIOUIE ..o 184 Boolean Operations..........ccooveeevveneresiesenennens 63
FEACH....eciieec e 125 adding to MIN_SPACING tests.................. 85
ASSIgNMENE FUIE.....eoieeeeeee e 187 AND L. 183
319 effects of Hierarchical processing.............. 136
Automating DRC import in the layout editor..370 example of counting results as errors.......... 85
AWAY option of MIN_SPACING rule...93, 256 NOT oot 187, 281
Backups not sufficient to verify enclosure............... 312
comparing two designs........ccoceveeereeieeenns 335 OR e 283
of previous DRC ruNccooevevenienenenenne 361 TOUCHING rule more robust for verification68
Bad polygons XOR et 316
COONdINALES.....cveeeeeeeeee et 376 Border.......cooveeieiiiiniee See also Panel border
defined.....cooiie 74 rewriting rulesto reduce.................... 163, 441
finding and fiXingcccceverevinenienenenn, 426 testing enclosure..........cooeveveeenencceieneenn, 90
importing error Shapes.........coceveveeeereeeene 375 BORDER command line option 348
listed inlog file.....cccooeiiniiiieeceee 363 CaUtion WheN USINGcoeeuerieeieenie e 127
output layer NUMbBEXccovvevvirercree, 189 BORDER rUl€........cccooveiriineinireenieneeeniens 193
restricting check to used layers................... 276 Borders of panels........ccccoovvnenene. 124, 348, 440
BAD _POLY rUl€....ccoeeveevrceeeceeeee e 189 overriding border on command line........... 348
remove BADPOLY=0infina run............. 169 BOTTOM command line option............ 159, 351
Base layer in bipolar transistors.............. 114,115 Boundary of design area.........cccccceevvvrrvreenenn 350
BAT file extension........cccceeevvvevevesesceeeens 359 reported inlogfile....cevveveviviivieciiec 363
BatCh fil€ .cvveee e 359, 385 Bounding box
PAUSE command no longer required 322, 345 of entire design......ccccveevevere v 245
Batch file Of SNAPES. ..o 64
avoiding user interaction.................... 182, 279 storing cell boundary as shape................... 221
BB file extension.........cccocevevvecerieecnenenns 320, 325 using aspect ratio to classify shapes.......... 184
BeNt SIAES ...ocvvcieeeeesee e 79 using cell boundary to classify shapes....... 221
456 DRC User Manua

using sizeto classify polygons................... 194 overview of hierarchical processing.......... 134
Bounding box of acell..........ccoceiiiiiiinenene 60 saving DRC datain separate cell 356
BOUNDS UIE ... 194 turning off display of design cell 371

reach calculations...........ccceveinnceinnenene, 126 CFLATTEN command line option......... 145, 353
Bow tie shapes Checklist for Final Run..........cccooooeveneneniene. 168

FoTor- 1] o SRS 74 CIICIES..cii et 64
BOXES....oiiieiiieierit e 222 using to classify polygons...........cccceevrvenene. 225
BRIDGE rul@.......ccooiiiiiiiieeeeeee e 196 Classifying Shapes by Distance..........c.ccccveuee 67

adding tolerancesto logfile.........cccooeuenee. 350 Classifying Shapes by Size or Shape............... 64

ignored if QUICK_PASSusad........... 131, 337 Coincident dgES..........covvrveerereienereeenreseeees 93
Bulk layer avoiding marking as MINSPACING errors391

verifying poor conductors...........coceeeeune 116 fINAING .o 86
BY keyword in STAMPrule..........cccccvennee. 308 finding touching shapes..........ccccccvvreuene. 397
BY keyword of CONNECT rule..........ccco..... 201 iNMIN_SPACING rule........ccccovvrenenenn 90
CAP option of MIN_SPACING rule.............. 259 Collector layer in bipolar transistors.............. 114
CAP=anglein MINSPACING rule.................. 95 Combine the datain two cells..........cccooeverunnnee. 54
Case Commandfile................. See DRC command file

INDRC rUIES.....ccueeieeeeee e 172 conserving disk SPace........cccovveeererienennens 134
Cell boundaries QENENIC OVEIVIEW ..o 52

using to classify layers........cocoevevcenenienens 221 importing DRC results...........ccccoeeereneennne 387
Cell flatteningccccoevereennen See also Hierarchy Command File Options..........ccccvvreeenenienenn. 355

preventing in iNPUEcccoeeeeereneeeneiennens 352 Command line
Cell hierarchyc.ccccecvrnenene. See also Hierarchy DRC ..o 329

Preserving ininPuUL.........ccoeeeveneeeneneseennee 352 DRC rules compiler.........ccoeveenenenenienenn 319
Cell Hierarchy Options..........ccccoveveeenenenennen. 352 OPtiONSTile. .o 336
Cell names Comments

in hierarchical OUtPUL..........ccccovvvenenene 147, 354 examplein advanced tutoridl 383

recorded inlogfile.......ccoeoininnininnnnen. 364 iNDRC rulesfile......coveniineiniienene, 173

using to classify layers........occovveneenene 215, 219 iNOPLIONSTile....ccveiiieeee e 336
Cell ungrouping........c.cceeevenene See also Hierarchy INTUIE SELS .. 153

preventing in iNPUEcccoeeeereneeeneiennens 352 Comparing layouts............ccceererenenienenn 54,335
Cdlls Compiler......ccoeuene See also DRC rules compiler

bounding bOX.......cccceeeriiiiiniree e 60 Compiler......ccoeenee. See also D3RUL-NT.EXE

classifying shapesby cellccccooecvrinienenn 59 Compiler......cccvvveennnne See also Rules compiler

combining with SECOND_CELL option.....54 Compiler 10g file......ccvvvrireiireee 325

creating hierarchical output............ccccceeee 354 Compiling DRC rulesfile........ccoveininnennn 319

AefiNItION .o 40 Conductive layers..........cccovrereeenenieenn 110, 408

flattening automatic for cells used once.....353 finding opens through poor conductors..... 116

flattening done automatically for small cells353 removing material from.........ccoceeeevniennn 113

flattening ON iNPULccooeiiiiieneeee, 144 CONN option of MINSPACING rule............ 405

how hierarchical datais generated 134 CONNECT rule....ccooeeririeririeeneeeesieees 200

isolating DRC shapes from original data....369 added to process touching shapes.............. 129

DRC User Manual 457

Index

always processed safely.......ccoovererieeieenenne 139
causes multiple passes.......ccoeeeeeeereereeienenns 129
errors due to design area restrictions.......... 350
examplesin advanced tutorid 404
ignored if QUICK_PASSused........... 131, 337
importance of not using for poor conductors116
[ISHNG. e 327
MIN_SPACING examplecccccvrerernrnnen. 267
OVEIVIBW ...t 110
problems connecting to wells..................... 411
Connected 1ayers........ccooererenenenene e 410
Connection groups
diagnosing problems..........ccccceveneieiennene 413
Connections
finding opens through poor conductors......116
inMIN_SPACING rules........cccceevvvrieivriannns 99
COoNS0le MESSATES.....cveemeenie e neeneas 343, 386
progress reports increase run time.............. 165
ConsS0lE WINAOWcoveeereirienieneeieie s 11
CloSING ..o 25, 322, 345
CONST rUl€...c.eevrieieerereere e 153, 174, 203
examplein quick tutorialcccceevrviennnnne. 14
(1= 0] 326
CONSLANES ...t s 153
INDRC TUIES.....ooeevivieeeseeereee e 203
including by file reference..........cccccevuneee. 216
listing of in compiler 09cceeveveererienne 326
Contact layers......ccooeeevenevesesieeieseenen, 201, 408
Contacts
eliminating false errors........ccccevevercevenennn, 36
in bipolar processing........ccccvevevveseereenenns 114
iN CONNECT rule.......cccovveneerinneniennnens 111
overview of enclosure verification................ 37
verifying CoVErage.......oumvmreeveneninsensiennenns 87
Continuation [iNES........cccooevevrennenenereseens 172
Coordinates
design boundarieslisted in log file............. 363
1l Lol 1 = T 362
listed by detailed 10ggingccoovvvrveverennen. 50
not normally listed inlog file.......cc.ceevuene. 49
of bad polygons.........ccceeeeeverievennnieeieens 376
of errorsin command file..........ccoceveennenens 366

of errorsin subcell command file.............. 373

shifted dueto grid problems...........ccccceeueee. 79
COopy ProteCtioncccceeveereereenereneeeeiens 10, 28
Copying alayer......cccoeveeerieenene e 187
Copying files

sample DOS commands............ccccereene 13, 381
Corners

treating differently in spacing check............ 96
Coverage

verifying layer coverage.........ccooveeeeenenen. 245
Crashes ...cccv i 27

insufficient MEmMOrYccccoeeveverene e 162

try PANEL_VERTICESrule............ 123, 291

try smaller panels........ccooeieieicneniccieens 118
Crossing shapes

iNMIN_SPACING rule........cccccovvrenenenn 85
Crossing SIES......cceveeierere e 97

handling specially in spacing check........... 260
CITKEY ..o 324, 332
Current directory

sample of DOS command to change.... 13, 381
Current drive

sample of DOS command to change............ 13
CUT layout editor commandcceveeeeenenne 77
CUT_RESOLUTION rule.....ccccooevrierinnnne 205

effect oninverse of layer......cccccecveveveennene 188

number listed inlog file......cccoovvvvvveennne 363
D3RULES.EXE

other executable Nnames..........ccocoveevenencne 319
D3RUL-NT.EXE....ccoeiiiriinireene e 318

command liNE.......ccovevnererereere e 319

command line in advanced tutorid............. 385

command linein quick tutorial 14
(D E1010 = g 1] £ T 431

FIXING 1oveeeeerere e 435
DANGER logical error message..........cceevenee 140
DANGER_CELL rule......ccccccevvveivrinieiiinnns 207

overriding for specific layerc.ccccece.... 299
DANGER_LAYER rule.....cccovvreiriciins 209
Dangerous Operations...........cceeverereesresieenens 136

ALL_DANGER rUle.......ccovvieiriieiene 180

ALL _SAFETrUle. ..o 181

458

DRC User Manud

DANGER_CELL rule......cccocoeeunneenerennes 207
DANGER_LAYER rul€.......cccoeeerriinne 209
methods of avoiding........cccceveveieicncnenne 141
SAFE_CELL rule......coocoevviinneenreeens 297
SAFE_LAYER rule......ccoovvcineecereen 299
Dangerous processing
cells used once flattened automatically353
creating hierarchical output...........cccccceee 354
importing error Shapes........ccoceveveereereeeenes 376
preventing by flattening input data............. 352
small cellsflattened automaticaly.............. 353
Dangerous processing options............cceeeueee. 429
Database.............. See also Binary layout datafile
reserving memory forccocovenenceeeene 162
Date stamp
cause of DRC Warningc.cceeeeerereeens 394
listed in DRC log fileccooovreriiiiiine 363
Default panel SIZe......ccooeeerieieiiieeeee 120
DELDRC.CMD......ooiiiirririneeseeeeeee 368
Deleting DRC Shapes.......cccooeverereriesieseeeenes 389
Deleting results of hierarchical output....147, 439
Design area
optionsin DRC command line................... 350
reported inlog file.......ccooieininennne 363
restricting area checked.........ccocceeeeeeeennne 159
storing bounding box of céell...........c.ccc...... 60
Design rules.......cocoeeveeeieneeieeieiens See also Rules
OVEIVIBW ...ttt 39
overview of theoryccocevvnieienniecee 32
DETAIL ON/OFF rule.......c.coovvevnnreinreeneen, 210
examplein quick tutorialc.cccceeveivvenennee. 14
OVEIVIBW ..o 51
Detailed logging 50, 158, 210, 249, 269, 272
finding cause of unpaired error wires......... 100
Device layers
removing from conductive layer................. 113
Device recognition..........cceeeverereseseesseenens 8, 68
by containing cellcoovevevevvnirecee, 59
diagnosing problems.cccccvvvvireeieenens 284
Device terminalS........ccoveovrneenneennreenennens 401
electical coNNECtionS..........cccvevrrrererereenne 112
Device wells

verifying poor conductors...........cccceeeeeenee. 116
Diagnosing Mysterious Errors...........cccceeeee. 157
Diagnosing problemswith rule sets......... 56, 168
Diffusion layerccoeeeeveiiieeeeeen, 112

example of generationc.coeeeereeeceenenns 71
DImeNnSioN........ccoeeevereeneneee e See Size
Dimension verification

merged shapes verified.........cccooeiiiincene 59

OVEIVIBW ...ttt 34
Dimensions of shapes

using to classify layers........cocooienencceienens 64
Directional minimum spacing.........c.cccceeeeenee. 391
Directional spacing checks..........ccccee.e. 89, 254
DireCtory.....coeeereeeeneee e 319, 325

for output fil€S......ceoveiiiiieeeercee 361

for rulesSfiles. ..o, 334

long names causing crashcccccoeeeee 27

sample DOS command to change........ 13, 381
Directory creation

sample of DOS command to create............. 13
DiSK SPACE....ccueeieieirieie e 341

effectsof ALL_SAFErule........ccue..e.e. 181

Scratch direCtories.......ccvvvvveereneeeniereees 341
Disk swapping

caused by ineffective panel size................ 119

minimizing during DRC run..........cccccc...... 119
DISPLAY_OPERATIONS cmd line option165, 344
Distance

classifying shapes bycccocveveninicninnenns 67

classifying shapes by distance apart 235

notch and width verification...................... 103

spacing verification overview............c......... 84

spacing verification theory overview........... 33

verifying distance apartccoceeeereeeenen. 252

verifying sidelength.........cocooiiinnen, 251
Distributing arule set.........ccccoceeeeenennene 203, 279
DO command line option............cccc....... 158, 347

defining rule SetScooevenevine e 295

importance of removing from final run 169
DOS batch files......ccceeeerriierreerereeereene 359
DOS commands

change directorycccceeeeeenen. 13, 360, 381

DRC User Manud

459

Index

change drive........ccooiiiiiee e 13
COPY fil€n i 13, 381
create direCtory......ccoovevevenerieesece s 13, 381
EAITON . 15
find unclosed files.......cccvvvvcnineciniee 324
max line length ... 336
PAUSE ... 322, 345
SET e 319, 320, 331, 359
DRC
command liNe......ccoeveerereireeeeeee 317
AEfiNEd......cviieeieee e 6
diagram of dataflowccocvvniiinnienen. 12
OVEIVIBW ..ot 45
overview of stepsto execute............cccceneee 318
running inside of layout editor 7
tipsontesting new rules..........ccoceeeeeceeneennn. 154
troubl€shooting.........coevererieee e 27
DRC command file........cccoovveininennicnese 365
adding commandsto.........cccceeererereniennene 356
executing in layout editorcccceeeceenene 368
OENENC OVEIVIEW ..o 52
hierarchical OULPUL...........ccccoveririeniieine 354
importing DRC results...........ccooevererenenne 387
selecting output layers.........cceeeeeeeeeiieneenn. 284
SUPPIreSSING MBCTOS -...veveeeeneereeneesieerenaeeneas 357
DRC command line
= diSAPPEANG...coveevereereree e 333
adding commands to command file............ 356
adding scalestolog file.......ccooverinicnicene 350
ALLOW_QUICK 0ption........ccccrueeererueuenens 338
border calculation reportcccceeeeeenene 348
creating in batch file.........ccooooinniiiienns 359
defiNEd ..o 329
DO rule SUDSELS.......oevverrereereeeeseereesenenes 347
file parameters......ccoeeevevievce v 334
FILESIZE 0ption......c.cccocvvivvesereeeeeeeenns 342
[[@1CT o o11To] o S 339
in advanced tutorialccccovvereeiinnnnnn. 386
inquick tUtorialcoevveeeeieerere e 16
iNPUt redireCtioncccevveeveeeneceeseeneenes 336
[iSt rUlesSile. ..o 350
MAIN_HOG 0ption.......cccceveveveernrrniernnn 340

MAIN_MEMORY 0ption......c.ccccereeerenes 340
MAIN_USE 0ptioncccceveieienienenenne 340
MaX 1ength ..o 336
NO_VIRTUAL_MEMORY option........... 340
overriding panel borderccocooereeene 348
overriding wirewidth ... 355
PAUSE 0ption........ccooevevenenicninene 322, 345
QUICK_PASS 0ptioncccoueveverereeerinienes 337
QUICK_SPACING 0ption.......ccceeereneene. 338
reported inlog file......ccoooveiiiiinincnne 362
SCratCh dir€CtOrycoeeeeeiiere e 341
screen display ...oeeeeeeeeneieicceeee 343, 344
screen display refresh ... 344
SECOND_CELL 0ption.....cccceeeveevenerennene. 335
SLOW 0PtiON ..c.eeiieeieeieie e 337
specifying design area........ccocceeeeveeeenenns 351
specifying input hierarchy 352, 353

specifying input hierarchy by num shapes. 353
specifying input hierarchy by use count 353

specifying layer numbers..........cccceeeeeeeee 346
specifying output hierarchycccceuee 354
suppressing rule file warning message 349
USE OpLioN.....cooeiieieneeee e 339
DRC layout editor command16, 159, 318, 334, 382
DRC10g fil€....eoeieiiiiiiireeeeee e 362
short definitioncoeveeeeereenncnc 49
DRC output fileS......coeeeeieiire e 361
DRC PreproCessing......cocoeveeeeereseeneeseeseeseesees 58
DRCrUles.....coovveiiereereren 69. See also Rules
adding listing to DRC 10g.........coceeerieennnne 350
compiled rulesfile.......cccooreinnnnnn. 320, 325
filename......ccooeiiinceen 319
OPLIMIZALT 0N, 151
DRC rules compiler
command linein tutoria............c.c...... 14, 385
command 1ine SyNtaX..........ccceeerereeniennene 319
EITON MESSAGESeeeveereereereeresieesieesiee e 325
10g fIlE e 325
OULPUL FIlES....ceiieirieieee e 325
sample of log filein quick tutorial............... 15
DRC_PATH environment variable........ 334, 359
DRC3CMD.$$$......coveriiiirieerenieesieieesenienes 362

460

DRC User Manud

Index

DRC3-NT.EXE ..o 318, 331 ENDn keyword of version control rules........ 176
command line in advanced tutorial............. 386 End-to-end SIdesS..........cooveriieenieeee 97
command linein quick tutorial 16, 433, 442, 444 Environment variables
executing with batch file ... 359 long strings cause Crashccceeeeeereesieneene 27

DRC3xxx.EXE Equilateral triangles........cocevevirenienenieeenns 226
executable NAaMES.........cccovveerinceneneens 331 ERR file eXtension.........ccccooeveenenccncnicenns 376

DRCNAUX.EXEoooiiiiiiee 10, 28 Error count

Drive letter acute angles not added to..........ccccovererenens 77
sample DOS command to change................. 13 adding shapes on arbitrary layersto............. 61

Drives bad polygons not added to.............cccceeeenne 75
using multiple scratch drives...................... 342 forcing shapes to be counted as errors....... 398

DUMMY [QYEFS....ooeii e 36 including shapes on arbitrary layer............ 285
important to verify before fina run............ 169 reported inlog file.......coooveniiiinnceene 364
removing area from conductive layers........ 113 terminating when maximum reached......... 310
EESEHING - 154 warning when maximum reached 233
to avoid dangerous operations.................... 142 ERROR keyword in OUTPUT LAYER rule. 285
VENfICaiON ... 68 Error [ayer....cocoeeee e 61

Edges appearance in layout editor........ 366, 370, 371
finding coincident edges..........cccooverereneenne. 86 defiNiNG ..o 285
Spacing errors mark sides..........ccocoeererenen. 84 deleting in layout editor...........cccceceeveenne 368

EDIT layout editor command.......... 147, 372, 373 forcing errors to not be counted 301

EDIT.COM DOSfile editorc.cooereerieeieenenne 15 location of shapesin hierarchical output ... 373

Electrical connection checks..........cccooviniienens 8 overriding width on command line............ 355

Electrical connections..........c.cccceeeiienenns 110, 402 selecting in editorcoeveveicnirceeee 371
defiNiNG ...coeiie e 200 setting width inrule set.......cocoooeiiiieens 315
errors due to design arearestrictions.......... 350 shape coord in command file.................... 366
finding opens through poor conductors......116 shape coord in subcell command file......... 373
finding shorts through poor conductors......308 shape coord in subcell error command file 376
ignored if QUICK_PASS used................... 337 shape coordinates in command file............ 366
in MIN_SPACING rul€s.......ccccceerenenenuns 99 using to force errors........... 213, 228, 240, 308
using in MAX_SPACING rule................... 239 387
using in spacing check...........ccooverereeene 267 Error MarkS.......cooeeereieneneeieneese s 386

Emitter layer in bipolar transistors.................. 114 delEting......ccceoeeieeeee e 389

ENCLOSUR.RUL ..ot 90 example in advanced tutorid 387

ENCIOSUNe....ceiieiieeie e 90 examplein quick tutoriacccoceneienens 18
in MIN_SPACING rule.......cccooeiiniinnnns 85 OENENC OVEIVIEW ... 52
VENTYING .o 312 387

Enclosure verification setting width inrule set........ocoooiiieens 315
OVEIVIBW ...ttt 37 Error messages

ENd CaPS ..o 95, 259 preventing console window closing........... 345

END_CMD command line option................... 356 stored inlog file........ccooeieniiiiiiiicies 362
EXAMPIE ...t 370 Error wires

DRC User Manual 461

Index

appearance in layout editor 366, 370, 371 Export
cause of unpaired.........cccoeeveneneneniceienenne 100 brief overview ... 70
finding other wirein pair..........cccocoeeeeenee. 158 example of mask layerccooveeriennnne 418
location in hierarchical output.................... 373 executing command file in layout editor ... 368
overriding width on command line............. 355 generic overview of command file.............. 52
setting width for all ..., 315 hierarchical output............cccceeeeieneene 146, 354
Errors isolating DRC shapes from original data... 369
adding boolean results to error count 85 overview of hierarchical output................. 134
compler syntax Warnings.........c.cceeeeeeceenenns 385 Exporting layers
CONNECLION GrOUPSc.veeveeneereeieseeeiereeee e 413 OVEIVIBIW ...ttt 38
coordinatesin command file...................... 366 Extension of one layer past another 398
coordinatesin subcell command file.......... 373 Fabrication proCess.........cocceeererenerencreeeenns 32
coordinates in subcell error command file .376 accounting for device shrinkage................ 302
DANGER logical error message................ 140 Simulating in rules........ccocoveveieiereees 201
danger Warnings........ccoceeeereneneniesesieeneens 431 False errors
determining which rule generated a shape..372 avoiding false errorsfor letters.................. 157
executing DRC command file..................... 365 avoiding for contact layers..........ccceeeeceeenns 87
fixing in layout editorcccceeeeenee 372, 388 avoiding in MIN_AREA rule................... 108
forcing shapes to be counted as errors........ 398 avoiding in MIN_SPACING rule........ 89, 392
layout editor tips when fixing..........ccccece.... 20 avoiding with layer manipulation................ 63
merged shapes are checkedccoceeeienee 59 casued by incorrect dummy layer 154
messages from rules compiler 326 caused by limited area checked................. 160
Panel istoo small to subdivide further 127 diagnosing false shorts.........ccccevevenicnene 112
table of rulesthat do/don’t generate errors...62 discarding short errors..........ccoceeeeeneenenennns 99
tipsfor eliminating false errors................... 156 due to disappearing small shapes................. 81
tips on diagnosing problems.............ccccc..... 157 due to resolution grid..........cccceeeierencnennnns 80
use SHOW to find rule that generated shapel9 elimination of ... 35
using detailed logging to pinpoaint................. 50 MIN_AREA violations caused by other cells138
ERRORS keyword of OUTPUT LAY ER rule453 tipsfor eliminatingc.ccooevevvenenenennne 156
ERRWIRE.CMD......cccotiriiririienreereeeee 368 FET devices
ESCape Keycoeeueeeeee e 324, 332 electrical connections...........ccocceeeeceeneennnne. 112
EXAMPLELRULoviiiriiieiee e 14 File editor.....cooveeiereereee e 15
Examples File names
list of rulesfilesiningtalation..................... 26 long names causing crashcccccoeeeee 27
Exclamation mark ..o 173 Files
Exclusive OR Of layers.......cccocoveveienenceene 316 DRC input files......ccccveeeiereine e 334
Executable Names.........coceeeevenene e 331 DRC output file names.........cc.covveeeeieenne 334
Executing command file in the layout editor ..368 DRC output fil€S.......coceeeererineieeeeeei 361
Executing the program with a batch file......... 359 extensions of output files..........c.ccocevennene 361
EXIT layout editor command..............cccceeuuee 373 extra commands in command file.............. 356
EXIT layout editor command............cccceeeeieeenne 25 file namesrecorded inlog file.................. 362
Expanding |ayersccooeeeienenineneeeeeee 190 hierarchical OUtPUL...........cccoverererereeinne 354
462 DRC User Manua

iNPUESfOr DRCcviiiiieeeee e 330
nesting rulesfiles.........ooooveniieieiee 216
overview of dataflow..........cccecvveiriiiiniennn 12
rules compiler output files.........cccccoevenene 325
FILESIZE command line option............. 162, 342

should be removed for very large designs..167
Fill

verifying layer coverage.........coocooereeneennnne 245
Final checklist.......cocoiveeninceeeece 168
FiXiNG €ITOrS ...t 388

layout editor tipS......cocoeeeeeeieeienee e 20
Flat output

reported inlog file.......ccooi i 364
FLATTEN command line option............ 145, 352
Flattening.......ccocoveveveneniceieienene See Hierarchy

definitioncoooeeiiee e 40
Flattening cells

ALL_DANGERTrUle......ccvrieiee 180

ALL_SAFErUle.....ccciiieee 181

DANGER_CELL rule.......cccooevviininnnnen. 207

DANGER_LAYER rule.......cccooeviiiienne 209

SAFE_CELL rule.....cccoovveinineenencenees 297

SAFE_LAYERTUIE.....ciiiiiciece 299
Flattening of Cellson Input............ccccceeenee 144
FIOW Of data........ccveereeirierieerereeeeeee e 12
Fundamentals

Design Rule Verification...........ccocceeereeenen. 31
Gallium Arsenide technology

air bridges.......oooeveveneeieeese e 196
Gatelayerooeeeeeeeeee 112
Gate layer testing......coccovevereveneneeeeeeeen 401
Gate overlaps.......ccoeeeeeverenene e 397
Gates

finding incomplete gates..........ccoceeveeeenen. 401
Generated CONNECT rules.........coceveeennenene 202
Generated |ayers.coevvevenenencecieseee 38, 327

effects of panel processing.........c.cceeeeeenene 131

hierarchical OULPUL...........ccocerereeiieienee 134
Generating mask layers........ccoooeverenenieneneeenn. 71
Generating of mask layers.........ccooveeeeeenecnne 418
Generating Output Layers.........ccceeererenerennens 70
Geomerty

using to classify layers........cocooieienicnienens 64
GEOMELNC DaSIS ..o 66
Geometric basis of alayercccccocvvenieeieenne 61
Geometric basisof rules...........cccvvreieneniennn 62
GEOMETRY keyword of OUTPUT rule...... 454
Getting Started........oooeveeeeeeee s 9
GIIAS ..ottt e 79

finding off-grid vertices............ccocveereeenns 282

resolution of Cut lineS..........cccecevvrereriennen 205

snapping verticesto arbtrary grid...... 304, 306

vertices shifted on output............cccceeeeenee. 132
Ground nets

finding opens through poor conductors..... 116
Groups of 1ayers.......ccoerererieenene e 111
HI COLOT ...t 371
Hierarchical cell command file.............. 147, 374
HIERARCHICAL command line option 146, 354

avoiding warning Message..........cceeeeeeeenes 277

examplein tutorialcocceoeveiene e 432

imMpOrting results.........coovereeeeenesenecee, 372

incompatible with QUICK_PASS............. 337
Hierarchical output

ALL_DANGER rule......cccvriirrieiine, 180

ALL_SAFErUle.....cooirrircecee 181

command line option.........cccceeeevenereeenne 354

DANGER_CELL rule......cccccorinereienenennes 207

DANGER_LAYER rule......ccovieiirirenns 209

deleting results.........cccooeveneneeeenennn. 147, 375

diagnosing problems...........cccceceiiienennene 149

example in advanced tutoridl 432

iMpOrting results.........cooveereeeeneiere e, 372

indicated inlog file........cccoeieninineicnene. 364

NO_HIER_WARNING rule.......c.cccceeneee. 277

OVEIVIBW ...t 146

FEPIACING...ccueeeeie e 438

SAFE_CELL rule.....ccooveinncinreenennes 297

SAFE_LAYER rule.....ccooeoinvciceees 299
Hierarchical processing 134, 180, 181, 209

avoiding danger errors..........ccoeeveeereeenn 141

effect of ALL_SAFE.......ccooeinnciirnne, 141

OENENiC OVEIVIEW ... 44

OVEIVIBW ..ottt 134

DRC User Manud

463

Index

Hierarchical verification............ccocooeeonininenne 41
Hierarchy
adding hierarchical output as subcells........ 374
adding hierarchical output to original cells373
AefiNItION ..o 40
deleting previous hierarchical output 375
effect on panel processing.........ccoceveeeceeenne 118
flattening cellsoninputcccceeeeeeenen. 144
input hierarchy listed in logfile.................. 363
preserved according to number of shapes..353
preserved according to use count 353
preserved in OULPUL.........cccoeveerverienecreeene 354
Preserving in inPUE.........oooeeeeeeere e 352
preserving in input entirely...........cccooenee. 353
preventing ininput entirelyc.cccceuee. 352
HOG command line option...........c.cc..... 162, 339
for rules compilerccocoeeviiincnceienn, 321
HOLE_AREA_FRACTION rule.........cccceue... 211
HOLES. ..o 66, 68
classifying polygons........cccocvevvvvvnenieennns 211
finding with ISLANDS rule..........cceeveneeee. 230
iNnMIN_NOTCH rul€......cccevvevvrerrrirrenn, 106
locating improperly drawncccccceevveenene 74
removed with BLOAT rule.......cccoceveenene 190
representationin DRC.................. 78, 188, 281
ICED desktop iCOonccccvevevrvererreeeerennn, 11, 384
ICED™ layout editor..... 8. See also layout editor
changing appearance of DRC layers..366, 370
executing DRC command file..........c.c..c..... 365
fixing DRC €ITOrS.......cccoveevevereniese e 372
importing DRC layersinto.................. 284, 368
importing hierarchical output..................... 372
save DRC datain other cell automatically .357
selecting error layer shapes.........c.cceeveeenen. 371
terminating without saving.........ccccceeveenen. 375
turning off display of design cédll................. 371
using to execute DRC command 16, 382
[CWIN.BAT ..ottt 382
Importing DRC layers........cccocevevvneieceeeeenen 274
Importing DRC results.........cccvevveneveceeieenens 387
Importing DRC shapes with layout editor368
IN_CELL rUl€....oeeeeeieieesieseeece e 215

INCELL option of INPUT LAYER rule 219, 403

INCELL Processing......ccccceeeeeereereesiesiesuesienens 59
to avoid dangerous operations................... 142
INCELL rule
effect on hierarchy indicated in log file..... 363
using to identify devices..........ccocerereeenene 113
INCLUDE FUle ... 153, 216
INAUCEONS....c.eieeceierre s 59
INPUL FIlES...eeeecie e 47
flattening CallS....oveverieveeece e 144
nesting rulesfiles......cooevevvvcevevivnnveceene. 153
overview of dataflow.........ccccevverrcinennee 12
preparation of layout datafile.............. 16, 382
specifying on DRC command line............. 334
INPUT LAYER rUl€.....ccociirieirinieerriceeae 217
example in advanced tutorid 383
examplein quick tutorialcccoceveienens 14
INPUL TQYEIS ... 56
INput REdireCtionccceverenenenereeiene 336
INStallationccoceeeeeenenere e, 10, 11
Installation directoryccoceeveveienenceneeieene, 11
Intermediate layers
exporting to diagnose problems................... 56
Interrupting program
DRC ..ttt 332
rules Compilerooeveeeenenee e 324
Intersecting sides
handling specially in spacing check........... 265
Intersection of layers.............. 183, 288, 311, 316
INtroduCtioNcceieiiieeeeeee e 5
INVErSE 1ayer ...cccooeeieeeiieeee e 398
Inversion of layerccccceveiiienenicnn 187, 281
IS BOX TUIE...ueeeeveeee e 222
reach calculations.........ccocoeveereennccennns 126
IS _CIRCLE rUl@.....oueiieieereeeree e 225
ISLANDS UL ..o 68, 230
ignored if QUICK_PASSusad.......... 131, 337
JOURNAL layout editor command 375
Key
used for copy protection..........ccccevevvvevennns 10
KeyWOords.........ccoeveeverennseneseeeereeie s 174, 333
Large designs

464

DRC User Manud

tipsfor efficient checking.........c.ccoceeeeennee. 166 classifying by Size........ccoovveveeiennennnn. 194, 222
Layer O...cccoceveveeeeeeieenns 56, 221, 287, 301, 314 classifying by touching other layers.. 288, 311
used to store bounding box of cell................ 60 classifying shapesby cellccocoooiieeeens 59
using to identify devices.........c.ccocererennne 113 classifying shapes by distance apart 235
using to SUPPress OULPULcoevevereereereennens 75 classifying with subcell bounding boxes ... 221
Layer Definition combing layer numbersoninput 218
detailed OVErVIeW ..., 55 combining DRC layers into one output layer285
Layer generation comparing two designs.........ccoeeveeeereeene 335
OVEIVIBW ..o e 38 CONAUCEIVE ... 110
Layer Generation RUIES..........ccocoveienineninenne 63 (0(0]0)Y/1 0o FORS PR RUR 187
LAYER layout editor command....... 18, 367, 370 Creating iNVErsecccooevenenceeeseennn, 187, 281
Layer manipulation defining in advanced tutorid 383
OVEIVIBW ...ttt 37 defining input layers..........ccooevevenerceeene 217
Layer NAIMES.......cceiereerierienieeee e 172 defining input/output layers...........ccccccu.e... 273
of DRC output layers........ccoceeerererieeieenenns 284 defining output layers.........coceeevererieeeene. 284
sample of differencein editor vs. rules......... 20 deleting layer in layout editor 368
Syntax restrictionS........cocceeeeeerenevenese e 55 DRC input layers.......cooevenenenenereeenes 217
Layer number 99 DRC output layers........ccceeereneienenieeeenn 284
BCULE ANGIES....cveeeeeeeieie e 313 DRC scratch layers.......cccoveveneiencecceene 300
bad polygons.........ccoererieieninceeeeee 189 ELCHING ...ve et 183
Layer number is also used as input message...326 eXCIUSIVE OR ..o 316
Layer NUMDErS........cocerierene e 55, 418 finding acute angle notches............cccc..... 231
defining at run timeoccoveveveneneeeeeene 57 finding acute angles.........ccoooeoeiinenieeiinenns 242
defining input layers.........ccocooeevenenenieeenne 217 finding all acute angles........c.ccoceeerieeinnens 313
defining input/output layers...........c.ccceeeueee 273 finding hOIES.......ooeieiie e 230
defining output layers........cocooeverercceiienenne 284 finding Notches.........ccccceiiiiiiiiiies 248
[ISHNG. e 327 finding shapes less than minimum area..... 243
specifying on command line...........cccce.... 346 finding violations of minimum width 271
use care to create unique numbers................ 70 flattening hierarchy..........ccocooiiiiniiienns 299
Layer Processing generating hierarchical output 354
detailed OVErVIeW ..., 55 how hierarchical dataisgenerated............. 134
Layers INEErSECHING ...cveveeveeeeeeee e 183
adding output layersto cell file.................. 366 INVEITING e 187
appearance in editorc.ceeeeeeenenne 366, 371 list of unconnected..........cocceeevenencicnienne. 327
appearance of error wires................... 366, 370 listing layersused inrulesin DRC log....... 363
DlOAtING ...cveeeeeeee e 190 manipulation with DRC rules...........ccccc.... 63
changing number of in layout editor............. 70 merging during DRC preprocessing 58
classifying air bridges........c.cooevererieniienenne 196 OVENTAD. ..ot 288
classifying by aspect ratioccccceeeecueene 184 overview of DRC internal layers................. 61
classifying by cell name..................... 215, 219 overview of DRC rules..........cocooeveveeeeenenns 63
classifying by circular shape............ccccc... 225 POOr CONAUCEONS.......ceeeiereeeierieeieeenne 110, 116
classifying by holes........cccooviiiniiciens 211 removing material from.........c.ccoceeeevennne 113
DRC User Manual 465

Index

replacing in cell ... 273
report on DRC layersin compiler log 326
resolution of cut lines on outptt................. 205
retaining hierarchy.........c.ccooeveeneieeeeneeeene 209
setting width for error wires..........cccceee.e. 315
SAFNKING. .. 302
specifying on command line...........ccccee.e. 346
summary of output shapesin log file.......... 365
UNTOM <ttt 283
UNUSE ..ot 326
verifying area coverage.........ocovvvvnereennnnee 245
verifying minimum distance apart 252
verifying minimum side length................... 251
viasand CoNtactSceovrereereneenereenenns 201
LAYERS command line option.............ccc...... 346
Layout
comparing two designs........cccceveeerereeenns 335
limiting area checkedccoorieiinnnnne 350
Layout coordinates of errors.........ccoceeereenenne 362
Layout datafile.......ccoovrereniencenennnn, 16, 47, 334
comparing two designs........ccccevererenieneenn 335
Creation Ofccceeveneerie e 318
Layout editor 8. See also ICED ™layout editor
importing DRC shapes........c.cccoeeeeeneene. 18, 387
running DRC inside ofccccooeeniennnenn, 7
tips when fixing errors.........cccceeeevenevcnienne. 20
Layout export to DRCccceveeieniiennnne 16, 382
Layout verification
OVEIVIBW ..ot 39
LEFT command line option.................... 159, 351
Length
using to restrict spacing errors................... 268
verifying minimum side length................... 251
Length of error shapes
discarding short errors.........ccoceeeeeveenereseenne. 99
Letters on mask layers
avoiding false errors.......cccoeveveneneneeenne 157
COMMON CaUSE Of EITOIScoveveeeerieieeine 75
Level
definitioncooeeriee e 40
Limiting area checked..........cccoooviineneniennne 159
LIST_RULES command line option163, 350

Logfile

adding border calculations............cccceeuee. 348

adding rules listingcceoeevereneienicnnene 350

detailed 10gging.......cccooevererceiennennn. 210, 249

DRC ..ttt 362

listing tolerancesinfile........ccccoovoenenuene. 350

rules Compilerooeveeienenene e 325

sample of compiler log file.......ccoceeeeeeennen. 15

short definitioncovveveevinecneece 49
Logical error meSSage........ccoveveereerierueseeniennens 140
Long reach rules

EXAMPIE ..t 440
LONGCASE command line option 165, 343
LV S ULHITY oo 8
Macros

suppressing in command file.......... 357

Main cell

definitionooeveeirice e 40
MaIN MEMONY.....coviriereiniereeeeie e 162
MAIN_HOG command line option........ 162, 340
MAIN_MEMORY command line option162, 340
MAIN_USE command line option 162, 340
Manipulation of layers.........cccocveienenienneneene 63
Manual Organizationcccceeeeeneeresesieneenne 7
Mask generation iSSUES.cccoererereericrenennes 74
MASK keyword of OUTPUT LAYER rule... 453
Mask layer dimensions.........ccccveverencncnenne 68
MaSK |aYErS......ccoo v 63, 70

Creation Ofcocoveiieieee e 284

example of generationc.ccoeeeeererenenns 71

generation check list.......cooveveieieiincicnns 82

modification of NWELLcccccoevennenenn. 418

output layers tested for acute angles.......... 313

problems With..........ccocviiiniiieiee 74

resolution of cut lines on outpt 205
Mask layers......... See also Output Layers; Layers
Masking

dividing input layers..........ccooeeverenicnnnne 403
Masking layers

using to identify devices........c.ccooeeereenene 113
MAX_ANGLE rule.......ccoveirreeericeenes 231
MAX_COUNT rul€.....cccoeeererireninnne. 154, 233

466

DRC User Manud

Index

change warning to automatic termination...310

MAX_QUAD TUl€....coeeerrrieeeriree e 450
MAX_SPACING rul€........cccvcereerineiriene 235
brief OVerview ..., 67
ignored if QUICK_PASSusad........... 131, 337
Memory
conserving with FILESIZE option.............. 342
effect of border........ccovvvvveevenciee, 127
importance of panel size........ccccccccevveienee. 119
insufficient casusescrashoccccevvvecnienene 28
limiting for DRCccoveivvvverieeceeen 339
limiting in rules compiler command line....321
MaIN VS, data.......cccoovvernireeeneeereine 340
memory available listed in log file............. 363
minimizing use of INDRC........ccccccovvvennee. 118
old virtual memory methodc.ccccveneee 340
optimizing panel Size........ccocvevvvvvnieciennne 445
Memory managementccceeeereererieesennnns 161
Memory problems
solving with smaller panels...........ccccoueee. 118
try PANEL_VERTICESrule............. 123, 291
Memory requireMENtS.........cceevererererereerenneens 10
MERGE layout editor commandcccc..... 77
Merging of geometry during preprocessing......58
MIN_ANGLE rule......cccovveiriirininieeseienns 242
MIN_AREA rule.....ccoovirerieeeeceeenes 243
OVEIVIBW ..ottt 107
FEACK.....eitiiieieie e 125
using to classify shapes.......cccccocvvvvvseeneenen. 66
MIN_FILL rule......coovveiiieeeeceee 109, 245
MIN_NOTCH rule......ccccovevrirerinerene 248
DRC definition of notch..........c.ccccoevennens 106
effect of QUICK_PASS.......ccccoeevirieene, 130
finding other error mark in pair.................. 158
MIN_SIDE rul€.....ccocvveirvieieeseeenne 108, 251
MIN_SPACING rul@.......ccccovereerineirinenes 252
angled side exceptions.........cc.cceevevenenns 93, 256
avoiding false errorstutorial 391
choosing quicker algorithm..........c.ccccvnee 338
CONN ignored if QUICK_PASS used.......337
defining electrical connectionsfor110, 200
detailed 10ggiNg.....ccevevererere e 50

differencesfrom MAX_SPACING rule.... 237

directional checks.........c.coovoeieiininiiens 89

effect of QUICK_PASS........ccveeievinnene. 130

example in advanced tutorid 383

examplein quick tutorialcccoceneienens 14

finding other error mark in pair 158

important to pair with MIN_NOTCH.. 87, 249

OVEIVIBW .. 84

result in quick tutorial...........c.cccceveenee 20,23

simple examples.......cooeoeeererene s 88

splitting over multiple lines..........ccccce.e. 173
MIN_WIDTH rule......cccceovriieieirrcienes 271

DRC definition of width...........c.ccccoevennns 104

examplein quick tutorialccoceeevvienens 14

finding other error mark in pair 158

result in quick tutorial..........cccecevvrevenvenene 22
Minimum dimension verification

OVEIVIBW ...t 34
Minimum spacing rules

OVEIVIBW ...t 84

theory OVEIVIEWcceeeeeeeee e 33
Minimum width rule

OVEIVIBW ... 34
Missing rulesfile

SUPPressing WarNingcoeevereeniereesseseenns 279
MODIFY LAYER TUIE.......ceiriiirieiccae 273
Modify layers.......ccoooeieiereeeeee e 57
MOSFET technology........cccooeverereneneenennns 112
MOVE layout editor command...............c........ 21
MULTI keyword in STAMP rule.................. 308
Multitasking operating Systems...........ccoeuenee. 339

keeping console window open........... 322, 345
Nested

AefiNitioN ..o 40
Nested cells

automatic flattening on input..................... 145
N[5 1 o [See also Hierarchy
Nesting rules files ..., 216
Net or node recognitioncccceeeevererennens 200
Nets

defiNitioncoe e 110

finding opens through poor conductors..... 116

DRC User Manud

467

Index

Networks
restrictions for scratch file.................. 323, 332
users should not share scratch file.............. 341
NFLATTEN command line option................. 145
NLATTEN command line option................... 353
NLE ULTTIEY ..o 8
NO_CHECK_INPUT rule......cceevevvrererrennnn. 276

NO_FLASH_ PANELS cmd line option.165, 344
NO_FLATTEN command line option....145, 353

importance in hierarchical outptt............... 148
NO_HIER_WARNING rule........ccccovevrrnnnne. 277
NO_PANELSTIUlE. ..ot 278
NO_RUL command line option............cccu..... 349
NO_RUL TUI€ ..ot 279
NO_VIRTUAL_MEMORY cmd line option.340
NO_WARN_ACUTE rule.......cccovverennee. 76, 280

removeinfina run ... 169
NOE NUMDENS.......coiriieeireiere e 129

OVEIVIBW ..ottt 110
Nodes

defined........ccoooveririe e 200
Non-design layers..... 36. See also Dummy layers

important to verify beforefina run............ 169

1= 1o [154

to avoid dangerous operations.................... 142
NONE keyword in STAMP rule..................... 308
NOT keyword in AND rule........cccccovvvverennnee. 183
NOT keyword in IN_CELL rule..................... 219
NOT KEYWOrdScovveieriesierierieeeereee e 64

simple example........cccoveervevevere e 64
NOT FUIE .. e 281
(N0 7= 1o o F S 174
NOECHES. ...ttt 248

DRC definition of notch...........cccceceenee 106

finding acute angle notches........................ 107

finding acute angles on specific layer......... 231

importance in spacing verification 87

removed with BLOAT rule.......ccccoceeenee 190
NPN transistors

sample layer processing........ccooeeeeeeeeneenen. 114
Numbers

using constantsin rules..........ccooceeeeeeeeenenne 153

NWEL 1aYEF ..o 411
Nwell layer generation..........ccocoeeeveeeceeeenennen. 419
Obsolete DRC RUIES.........ccoovinieieieeieeeene 449
OCLagONS......eeeieeeieeee ettt e 226
OFF keyword

inrule set definition...........ccocooeeveieniceenne 295
OFF_GRID rul€....cccocvreeririeeesereeee 81, 282
Offsetting alayercccccvvevvvvveeececennns 190, 302
ON keyword

inrule set definition........cccoceveeevencnenienenn 295
O0ps CoNAItioN.......ccveereeiererese e 140
Opens

finding opens through poor conductors..... 116
Operation NUMDBESccccveeeveevrre e 163
Optimization of DRC rules..........ccccvvvvevvennnne. 151
Optimizations

tipsonincreasing speed.........coovvveeevennnns 161
Optimizing DRC runs.........ccocoeevvievvnereennenes 151
Optimizing MEMOrY USAgE......cccvvverrerrereeeenes 161
Optimizing runtime.........cocoeevvveeeeiennnns 123, 291

separating long reach rules...........ccocueene. 127
Optimizing the DRC

for large amounts of data.............cccceeevenee 166
Optional Keywords..........cccceevevenieresereeeenns 174
OptionS il ..o 336
OR TUIE ..o 283
Order inrule Set....coveieieieeee e 404
Orientation optionsin MIN_SPACING rule ... 97
OULIINE @rEA......eeee e 211
OUTLINE keyword of OUTPUT LAYER rule453
Output

isolating DRC shapes from original data... 369
save DRC datain other cell automatically. 356

OUTPUT ERROR LAYER......ccccooeirririnenn. 398
387

OULPUL FIlES ... 49
DRC ..ttt 361
Hierarchical output...........cooeiviininicennne 146
importing DRC output..........ccccccveeenee. 18, 387

Output layer
using to create mask layercccceeeeenee 418

468

DRC User Manud

OUTPUT LAYER TTUIE.......oeieererceeee 284 Panel istoo small to subdivide further........... 127
examplein advanced tutorid...................... 383 Panel processing
examplein quick tutorialcccccvvreennene. 14 border calculations...........ccooevevererieennne 348
obsolete Keywords...........ccoeeveneeenenecnne, 453 default behavior ... 121
OULPUL [QYEX'S ... 56, 70 OENENC OVEIVIEW ...t 42
adding DRC layersto cell file.................... 366 overriding border on command line........... 348
effects of panel processing........ccccceeveveneene 131 OVEIVIBW ..ot 118
resolution of CUt liNES.........ccoveevrrreenennnne 205 Panel SIZe......cccovveiiie e 293
suppressing acute angle check............ 280, 314 listed inlog file.....cooeoeieniiiieeee 363
output_file base name........ccccccevvivvvcinnenen. 49 OPLIMIZALT 0N, 445
Overlap of one layer past another 398 overriding in DRC command line.............. 358
OVERLAPPING rule........ccooveinennenen. 68, 288 setting by number of vertices per panel122, 290
effect of dangerous processing................... 139 setting eXpliCitlycccovveeeeviceeee 123
ignored if QUICK_PASS used.........cccoeee 337 specifying by maximum area..................... 358
ignored if QUICK_PASS used..........cccce.. 131 SPECITYING FatiO.....cveeeeeceeeeeee 358
Overlapping shapes PANEL_VERTICESTIUlE.....ccvtriiirieriecinne 290
and MIN_SPACING rule.......cccoveerrierenene 84 OVEIVIBW ... 122
directional spacing checks..........cccocvvuernnne. 89 Panels
MIN_SPACING rule does not aways find 252 generated CONNECT rules........ccccevveneene 202
Overlapping SIES......covereierereeiee e 97 PANELX and PANELY rules.......c.ccocevenene 293
handling specially in spacing check 263 overriding on DRC command line............. 358
Overlaps OVEIVIBW .. 123
electrical connections..........ccocceeeeeeeieeieenne 111 removing fromoldruleset ..o 121
Overview of dataflowccceevveicincnneen. 12 Parallel Sides........cccovvireiiieeee 98
Overview of manual..........ccoceoeveerenienrieienene, 7 exceptionsin MIN_SPACING rule..... 94, 256
Overview of stepsto execute DRC................. 318 Parametersccoveeeienerieeee e 174
Pads Pass
impact of pad ruleson speed...................... 441 defined......ooov i 41,128
testing minimum spacing of wires from.....402 PaSSES. ..o 151
writing efficient rulesto verify.................. 164 number listed inlog file........ccocooeneninene 363
Pagetable.......ccoiiiiiiee 342 OVEIVIBW ... e 128
Panel border........ccooveeiininieniieeens 124, 440 reasons for varying border.............ccoceeuee. 127
effect of ASPECT_RATIOrule................. 185 PATH DOS environment variable................. 331
effect of HOLE_AREA_FRACTION rule.213 319
effect of MIN_AREA rule.........cccceeeeeenene 243 PAUSE command line option................ 322, 345
EXAMPIE ...t 442 345
OVEITIAING ..ot 193 PAUSE Optionccooverireeiee e 385
recorded inlog file.......ccocorveriiniiiiiiiene 364 PEDIT layout editor command.............. 372, 388
reducing execution time.............cccceceeveennne. 163 Pentagons........cocererereneneeeee e 226
Panel boundaries Perpendicular edges
affect output Shapes..........ccoceeerceienens 78,131 avoid marking as MINSPACING errors.... 392
cause of acute angles........ccoevevenerceeieenenne 423 Perpendicular SIdes........ccoceveeiiiniiiicneeee 97
DRC User Manual 469

Index

handling specially in spacing check 262
Physical memorycococeeeieninencceeee 339
POK file

Creation ofcoceevvreieierineee 16, 318, 382
POK file extension..........cccvereenenecniesienenns 334
Polygon [ayer ... 61
Polygons

classifying by aspect ratiocccceeeeeceeene 184

classifying by circular shape............cccccuee 225

classifying by hole coverage............cc......... 211

classifying by Size......ccocoovveniiicnnne 194, 222

classifying by touching shapes........... 288, 311

classifying shapes by distance apart............ 235

finding notches.........cccooeiiiiiiiiee 248

finding off-grid vertices...........ccocvovrerenen. 282

finding shapes less than minimum area......243

finding violations of minimum width 271

merging during DRC preprocessing............. 58

removing small polygons...........cccceceeeeueee 303

verifying enclosure.......cccooeveieiencecceene 312

verifying minimum distance apart 252

verifying minimum side length................... 251
Poor conductor layers..........cc....... 110, 308, 411

finding Opens.........cocoereeieie e 116
Post-processing of Output Layers...........ccceeuee 78
Preparing the Binary Layout Data File.....16, 382
Preparing the Rules File

in advanced tutorialcccceverereneieiennens 383

iNQUICK tULOrialcceveereeirecee e 14
Program names..........coccoeeeneeneenensesiee e 331
Program Requirementsccocceeevenenenenene 10
Progress reports........coooceeeeereeneesesiesee e 343

overview of reducing run time with............ 165
Protrusions

finding acute angle protrusions.................. 107

iNMIN_WIDTH rule.......cccooevnineienee 104
P-Select layer

example of generation.............ccoceeerererieenn. 71
Q\ICED

defined.......ccoovveinirce 11
QEMM .o 339, 340
QUICK TULOTTA ..o 12

QUICK_PASS command line option 164, 337

avoiding warning prompt..........c.cceeeeeeeeene 338
choicelistedinlogfile......cccovnininnnene 363
eliminates electrical tests........cccovvveiirennn. 99
important to remove from final run........... 169
OVEIVIBW ...t 129
QUICK_PASS option
avoiding warning prompt..........c.cceeeeeeeeene 182
effect on electrical spacing checks............ 268
QUICK_SPACING command line option100, 164, 338
choicelisted inlogfile......cccovnininnnene. 364
important to remove from final run........... 169
REBCH ... 348
definitioncoeeeeiiece e 124
rewriting rulesto reduce...........c.cceceeeeennnne 163
specifyinginrule........ccoeeeneee 185, 213, 243
Rectangles........ooooererieeieneneeseeee e, 64, 222
RECTANGLESTUlE. ...ttt 176, 451
Reducing run times........cccoeeereneneneneeieenns 161
Redundant DRC rules..........cceovvineereneennnes 151
Refresh interval of screen display.................. 344
Removing material from alayer 136
Reports
DRC output fil€S.......coceeeeiineieieneeeei 361
rules compiler output files.........ceeeeeenee 325
Resistors
removing from conductive layer................ 113
verifying dummy layer...........ocooeveeeeeneenen. 154
Res0IULioN grids.......ccooeeevenirieee e 79
avoiding false errorsdueto............ccu..e... 158
defining for cut lines........cceeeveiiiincnnene 205
finding off-grid vertices............ccocveereeeenns 282
snapping verticesto arbtrary grid...... 304, 306
vertices shifted on output............cccceeeeenee. 132
FESUIT TAYEN ..o 63
RESUILS ...t 49
Reusing rule Sets.........cooeeeeevenenenene e 203
RIGHT command line option 159, 351
RLO file extension..........cccoeveeereneenenneennes 325
RUIE NUMDENS.......coiviriiiiee e 158
determining which rule generated a shape. 366
example of reported in compiler log............ 15

470

DRC User Manud

executing SINgle rules........cocoveeeeeeceeceeenne 158 command 1ine SyNtaX..........cccceeerereeneennenn 319
listed in command file.........c.ccooeeeiennnnnne 366 delays on exXecutionccccceeevererieeene 321
listed in compiler [0g.......ccoovrererieniiennne 327 diagram of dataflow..........ccccoeeererinienennen. See
use SHOW to find rule that generated shape19 Syntax error Warnings.........ccoeveevereeeeneens 385
using to execute single rules....................... 347 usein advanced tutorialccccoeeevennenne. 383
Rule st order........ccooveeene e 404 usein quick tutorialccooeeveienenieniienenns 14
RUIE SELS ..o 295 Rules compiler........ See also DRC rules compiler
evolution during testing..........cceevevereeruennns 168 RUIES Tl 47
exXecuting SUDSELS.........covvvreinncincceee 347 adding to DRC10Q........cccveererieiniirieeenens 350
optimizing for speed.........cccccvvveininecnns 163 example in advanced tutorid 383
tipsfor organizingccccoceeverenenenenennenn 153 examplein quick tutorialccccooeevenennens 14
writing for portabilityccccveviiveiiereenne 203 list of examplesininstalation..................... 26
RUIE SUDSELS......coveeirereeeieereereeeneeeenas 152, 442 missing source file DRC warning.............. 349
Rules NESHING ..t e 216
recommended order.........oeeveeeennee. 404 reccommended OdErcceevrereeenerienenns 404
adding listing to DRC 10g..........coceveveuennnnee. 350 SEArCh Path.......ccovviveeiiiee e 334
automatic optimizations during compilation151 suppressing warning when missing............ 279
compiled filename........cccoeeveverennanns 320, 325 Rules File Options........cccovvevenenieniceieneenn, 346
COMPITING vt 319 Run time
determining which rule generated a shape..372 bloats can cause excessive..........ccooeveeuenee. 192
diagnosing problems..........ccevevvveereveererennn. 56 decreasing with QUICK_PASS................. 130
DRC command line options...................... 346 effect of border........cooeveieiiniiiire 127
executing SINgle rules........ocveveveeeevcveeennne. 158 effect of panel Size........ccovveiiiiiiiee 119
EXECULING SUDSELS.......covervcrereeieee e 347 importance of panel Size..........cccooverennee. 445
EXECUtion time Per rul€........ooveveveeveerereenne. 365 important to remove shortcuts from final run169
fIl@ NAME......cocveeeeeeeee s 319 listed inlog file......coovininiiiiiiicicin, 365
QENENIC OVEIVIEW ..o 39 optimizing rul€ SetSceevvreccenereieneies 163
listing in compiler 10gccccvevvveeeievrnne. 327 tipS ON reduCingcceeeeieerese e 161
listingin DRC log file.....cccccevvviveerernne. 363 Running the DRC.........ccccocnvnienencnnnn 317, 329
(0155 (10710 R {1 =T 216 Safe Processing.......coevviinieeeeiiinas 137
ODSOIEtE SYNEAX ...t 449 effect on hierarchical output...................... 149
(o]0 /= QEURURTS S 201, 327 (0] 0111001 PR 141
reach calCulations...........oveveeveveveeeveeneerennns 125 preventing hierarchical warning prompt.... 277
splitting over multiplelines...........c.cc........ 172 SAFE _CELL rul€..uovvcececeeeeeeee e 297
SYNEBX EITOS..e.veveverereeeeereeeeeerere s eeseseeeeens 325 overriding for specific layer 209
SYNLAX OVEIVIEW......eeeeereeeeeeeereveeeese e 172 OVEIVIEW ..ot 141
table of CONENLScevvveceeercereeeeeees 69 SAFE_LAYERTUlE. ..ot 299
table of geometic and error basis.................. 62 OVEIVIBW .. 142
time to execute reported in log file............. 163 Sample rulesfiles
tips on testing New Sets.........ccceeeeeveveeennnne 154 list of examplesininstallation..................... 26
RUIES COMPIIEN ..., 172, 319 Scale factors
automatic optimizations.............cccceveeenenee. 151 listed inlog file.....coceieiiiiieeeee 363
DRC User Manua 471

Index

Scratch file. ..o, 324, 362
for rules compilerccccooeiiiininiciene, 323
for Simultaneous runs.........cccooeeereicecnen. 332
left ON disK.....coeiererieeee e 332
MAXIMUM SIZE....viiieiieieeeie e 342
report inlog file.......ocoviiinniii 365
SIZE et e 10
specifying locations...........ccocvevereeenieenn. 341
tipsfor large......cooveveeeeiceee e, 167

Scratch layer never used message...........c...... 326

SCRATCH LAYER rUle ... 300

Scratch layers.......oveeeeevcevieveceeseenn, 57, 287, 300
defining in advanced tutorialccce..... 384
exporting to diagnose problems................... 56

SCRATCH_DIR command line option..167, 341

SCRATCH_DIR option
for rules compiler command line................ 323

Screen display......eeeeeeereneveseseeee e, 343, 344

Screen Display Options........c.cccevvvvvcveeennne 343

SECOND_CELL command line option.......... 335

SELECT layout editor command.................... 371

Selecting error marksin layout editor............... 18

Self-intersecting sides
FoTor- 1] o SO 74

Separation
classifying shapes by distance apart............ 235
verifying minimum distance apart 252

SET DOS commandccceevreererenenienennenns 359

Shapes
adding output shapesto cell file................. 366
appearance of error wires........... 366, 370, 371

determining which rule generated a shape..372
error coord in subcell error command file..376
error coordinates in command file.............. 366
error coordinates in subcell command file .373
isolating DRC shapes from original data....369

notch and width verification............c.co...... 103

using to classify layers........cccocvvivvievceceeeenn, 64
Sharp angles......cccovvevevvennne See also Acute angles

INMASK [QYENS....ccooerirrie e 76
Sharp points

DIOALS....ccveveeereree e 126

Shorting layers

diagNOSING ...ccoveevereieieeeeeee s 112
SHORTRUN command line option............... 343
SHOW layout editor command.............. 158, 372
SHOW layout editor command...........cccceceenee 19
SHOW_BORDER command line option....... 348
SHOW_SCALES command line option........ 350
SHRINK Ul ..o 68, 302

L 1010 = 274

Hierarchical example.........cccccoovvvvveceennene 135

reach calculations..........ccccovevrenencnenienenn 126

using to classify WIreS........cocvevvevvviennenns 65
Side length

verifying minimumccccoeeveeneeneeceeneennn, 251
Sides

finding coincident edges.........cccecvvevvrennens 86

Spacing errors mark edges..........ovevvvecvennns 84
Simple spacing Checks........ccvvvvvvereneeeeeene 254
Simultaneous execution..............c.cceveeee.. 332, 362
Size

finding shapes less than minimum area..... 243

optimizing DRC for large amounts of data 166

removing small polygons............cccceveeuenne 303

using to classify polygons.......... 184, 194, 222

verifying sidelength.......cccooovvvvevecieenen, 251
Size of shapes

using to classify layers.......cccocvevveevvnieccnennns 64
Skewed SIdeS.......covvieeirie e 79

iN OULPUL ShAPES.....ccveveeeeeeeeeeie et 132
SKIPPED_POLY rul€....cccooeerinienirieeenne 452
Slanted sides

iN OULPUL ShAPES.....ccveieeceeeeeeeee e 132
SHIVES. o 81
SLOW command line option..........ccccevueeneene. 337
Slow method

algorithm choice listed in log file.............. 363
Small shapes

finding by area........cceeevevevn i 107
Smooth_tolerance......c.ccovvvvceeceerevcnese e 350
SNAP rUlE....ocveeiee e 158, 304
SNAPAS rUle.....cceevieeee e 158, 306
Source/Drain |ayercccocveevveeeieeiieneens 112, 408

472

DRC User Manud

Spacing bad polygon layer numberccccceee.. 189
classifying shapes by distance apart............ 235 Subcells
finding violations of minimum width 271 classifying layersby cell..................... 215, 219
verifying minimum distance apart 252 AefiNItioN ...ocoieeeeeeee e 40

Spacing method flattening hierarchy..........ccococeeenee 181, 297
choicelisted inlogfile......c.ccovinininnnene. 364 flattening hierarchy of specific layers........ 299

Spacing rules generating ShapeS iNccoeveeeneneeeceeene 430
OVEIVIBW ...ttt 84 how layers are generated.............cccoeeeenne 135
thEOrY OVEIVIEW.....cceeieeieeieie e 33 retaining hierarchy.........cccccooveeinnne 180, 207

Spacing verification..........ccooverenenceiiienien 252 retaining hierarchy of specific layers......... 209
OVEIVIBW ...t 84 terminating run when error used frequently233
verifying serpentine shapes..........c.ccoceveeene 87 Swap files

Spanning rules over multiple lines.................. 172 conserving memory if smallcc.c....... 162

Speed tiPSTOr large ..o.vevveeeeeeeieeee e 167
fixing low DRC for small designs............. 339 SWAP layout editor commandc.cccceeuee 70
importance of panel size...........ccccevenienene 119 Syntax
important to remove shortcuts from final run169 DRC command line........cccceeevenenenenienne 329
improving by limiting design area.............. 350 DRC FUIES....ciiiiietsiereeee e 172
increasing with QUICK_PASS. 130 DRC rules compiler command line........... 319
methods of imProvingcccceeeeeveneneene 440 SYNEBX BITOIS....ceeeeeeeie e 385
optimizing for rules compiler 321 Rules compiler.......cccooeoeninienenenenee 325
optimizing rule SEtSccveveerere e 163 Tab charaCters........oooeeeieiene e 172
QUICK_PASS 0ptioncoceveeeeeeerieieein 337 TAG .ttt 366
QUICK_SPACING algorithm.................... 338 Tag NUMDEY ... 158
dtatistics of run listed inlogfile.................. 365 using to determine rule that generated shape19
tiPS ONINCrEaSING......eevereeeeeee e 161 Target AUdIENCEcoovviiiiieeeee e 6

Splitting rules over multiplelines................... 172 Technical SUPPOITcooververiienereeie e 27

SQUAEScenereeierie et 226 try smaller panelsfirst.......ccooieiinininnenns 118

STAMPTUIE ..ot 116, 308 TEDIT layout editor command...................... 372
examplein advanced tutorid..................... 413 Temporary layers
ignored if QUICK_PASS used........... 131, 337 exporting to diagnose problems................... 56
OVEIVIEW ..ottt 110 Terminating program

Stamping node nUMbers...........cccoeeruenee 200, 308 DRC ..ot 332

START_CMD command line option.............. 356 rules Compilerooeveeieeniee e 324
EXAMPl .. 370 Termination

STOP_ON_MAX_COUNT rule............ 154, 310 automatic when max error count reached.. 310

Storage reqUIremMents.........cceeveerereeesenesennene 10 Testing New RUIES..........cooeiieiniee 154

Strorage problems Time
solving with smaller panels...........cc.ccceeee. 118 importance of panel Size.........cccocvveverienen. 119

Subcell bounding boxes listed inlogfile......ccoooiniiiniiicns 365
StOriNg @s SNAPES........covrveereerereeereeeeiereens 221 tipS ON reduCingcccevvvereeeenereeeneseees 161

Subcell error command files..................... 75, 375 Time stamp

DRC User Manual 473

Index

listedin DRC log fileccccoveeniiiiecne 363
T-INtErseCtionS......ccooeeeieienereeeee e 97

handling specially in spacing check 262
TOEND keyword of version control rules......176
Tolerances

adding report to log file.......cccoeririiennene 350

listed inlog file....cccooiiiniiiieeee 363
TOP command line option...........cccc....... 159, 351
Touching

overview of enclosure verification............... 37
TOUCHING rul@......cccoveerereenierecnienes 68, 311

adding to MIN_SPACING tests.......cceueeee. 93

effect of dangerous processing.........c.c.c..... 139

example in advanced tutorial...................... 397

example of counting results as errors........... 93

ignored if QUICK_PASSusad........... 131, 337

using to divide input layerc..ccccveveneee. 403

using to find coincident edges............cc........ 86
Touching shapes

and MIN_SPACING rule.......cccecvreeerennne. 84

finding shapes that are not connected......... 230
Touching vs. overlappingccccoevveveveeieeiveneens 288
TranSIStor gateS......ccveeveeeereereeseseeseseeeeeens 383
Transistor wells

verifying poor conductors.........c.ceeveveenene. 116
TrHANGIES. ..o 226
TRIVIAL.CEL.....ooiiiiieteeeeeee 16
Troubleshhoting.......cceveeeeveereresie e 27
TULOMTA . 12

AAVANCE ..o 379
Unconnected layers........ocecvevereneveseeneenenns 327
(61070 To 18 o1 oo [See Hierarchy
Ungrouping

definition ... 40
Ungrouping cellsoninputc.ccceveeeeenene 145
Ungrouping to prevent danger errors.............. 140
UnNion of [ayerS.....ccoccevveveceererese e 283
Unpaired error WireS.........ooeevveeeereereeseeseenes 268
UNSELECT layout editor command.............. 371
USE command line option...........ccccueuee 162, 339

for rules compilercccoocvvevivvvveccecerenn, 321
USE layout editor command................... 367, 370

Variable layer numbers..........ccoceveevennne 57, 346
Variables.......ccooveneriiiiieree See Congtants

using constantsin rules.........ccocoveeeeeenenne 153
Version

of rules compiler........ocovvveieninieniene 325

old versions of the DRC...........cccccevenennee 449
Version controlcceceeeveeeceenenne 176, 178, 179
Version number of program..........c.cceeeeeeennene 362
VEISIONS. ..ot 331

comparing two designs.........ccoceevereeniennenn 335
Vertex shifting

iN OULPUL ShAPES.....cveveeeeeieeeeie e 132
Vertices

shifted dueto grid problems...........ccccceeueee. 79

SNapPINg to grid......cccceeeieveerienieeinne 304, 306
VIBS.uiuieiiiieieii it seenea 87, 201

in CONNECT rule......cccoeeeeieinnenereeiene 111
VIEW layout editor command............c.cc....... 371
ViolationSccoeverereeieereee e See Errors
Virtual array pagetable.........ccocoovienininnnne 162
Virtual memory.......cccceeervevenenceeieeneeen 339, 341

efficiency listed inlog file........ccccceenee 365

MBAX SIZ€...eeeeeieeniereesie et sb e nes 342

old method.........ccooiiininiienee 340

optimizing DRC for large amounts of data 166
WARN_ACUTE rUl€....ccoveerireeeneeiee 313
WARN_ACUTE=0rule

important to remove from final run........... 169
Warning messages

default panel Size......cccvveeeceecere e 121

stored inlog file....ccoevevevieniniiiicecees 362

window closing too soon................... 322, 345
Warning prompt

F= V[0 Ko] 0T PSS 338, 349
Warnings

from rules compilerccocvvevvvvevceccennns 326
WE TAYEN ..o 411

verifying poor conductors..........cccevevenenen. 116
WEell layer generation..........ccceevvvvveerieeeennnns 419
Well shapes

finding shorts through poor conductors..... 308
Whitespace charaCters.........ocvvvvvvveeeceeciennns 172

474

DRC User Manud

Width WIRE_WIDTH rule.....cccooeoninieecreee 315
default for error wires...........ccoeueee.e. 315, 355 overriding on command line..........ccco...... 355
DRC definition.......ccocooeveneieneneceeeeenes 103 Wires
finding violations of minimum................... 271 appearance in layout editor........ 366, 370, 371
Of ETON WITES.....ccveeeeceeciece e, 366, 370 classifying by width...........ccccoevvivniiiiciens 65
387 converted to polygons during preprocessing 58

Width of wires creation in output data..........cceevvvreeeennnne 286
classifying by width.........ccooeevovnienniviienn, 65 finding spacing errors in serpentine shapes. 87

Window overriding width on command line............ 355
closing console window 322, 345 setting width for error wires...........coc...... 315

WITE IAYES .o 61 XOR UG it 316

Wir€IYPE ..ot 366, 370

WIRE_WIDTH command line option............ 355

DRC User Manua 475

	Introduction
	Target Audience
	Manual Organization
	Other Available Programs

	Getting Started
	Program Requirements
	Installation
	Quick Tutorial
	Preparing the Rules File
	Preparing the Binary Layout Data File
	Looking at the Output

	Troubleshooting

	Fundamentals of Design Rule Verification
	What Are Design Rules?
	How Design Rules Are Verified
	Minimum Spacing Rules
	Other Verification Rules
	Eliminating False Errors
	Layer Manipulation Prior to Rule Verification

	Creation of Layers for Import Back Into Design

	How Do Design Rule Checkers Work?
	A Few Definitions
	How Large Amounts of Data Are Processed
	Panel Processing
	Hierarchical Processing

	How the DRC Works
	Generating the Input Files and Running the Program
	Looking at the Results
	The DRC Log File
	Detailed Logging
	The DRC Command File
	Additional Uses of the DRC

	Layer Processing
	Layer Definition
	Input Layers
	Output Layers
	Scratch and Modify Layers
	Variable Layer Numbers

	Preprocessing of Layers
	IN_CELL Processing

	Types of DRC Layers
	Layer Generation Rules
	Boolean Processing
	Classifying Shapes by Size or Shape
	Classifying Shapes by Distance
	Overview of Other Layer Generation Rules

	Generating Output Layers
	Example of Generation of P-Select and Diffusion Mask Layers
	Problem Shapes for Mask Generation
	Post-processing of Output Layers
	Resolution Grids
	Recommended Procedure for Writing Rules to Generate Mask Layers

	Spacing Verification
	Using Rules Other Than MIN_SPACING to Mark Spacing Problems
	Overlaps and enclosed shapes
	Notches in serpentine or fingered shapes

	Simple Spacing Checks
	Optional Keywords to Reduce False Errors
	Directional Spacing
	Side-side angle exceptions– Beta test only!
	We do run a test suite comparing the new and old versions before we post a beta version. But just because our cases worked, that doesn't mean yours will.
	End Caps
	Orientation Options
	Electrical Connection Criteria
	Error Wire Length Criteria
	QUICK_SPACING Algorithm

	Other Verification Rules
	Width and Notch Verification
	DRC Definition of Width
	DRC Definition of Notch
	Angular Notches and Protrusions

	Minimum Area and Side Length
	MIN_AREA
	MIN_SIDE

	Design Area Coverage by a Layer

	Electrical Connections
	The CONNECT and STAMP Rules
	Building Electrical Connections
	Using the STAMP Rule to Verify Wells

	Panel Processing
	Purpose
	Effect of Panel Size on Memory and Running Time
	New Default Panel Size Calculations
	The New PANEL_VERTICES Rule
	The PANELX and PANELY Rules
	Panel Borders
	Multiple Pass Processing
	Effects of the QUICK_PASS Option
	Effects of Panel Processing on Generated Layers

	Hierarchical Checking and Hierarchical Output
	Hierarchical Processing Algorithm
	Dangerous Operations
	Oops Conditions
	Safe Processing Options
	Automatic Flattening of Cells on Input
	Hierarchical Output
	Quirks of Hierarchical Processing

	Optimizing DRC Runs
	Optimizations in Rule Sets
	Optimizations Performed by the Rules Compiler
	Rule Subsets
	Other Ways to Organize Complicated Rule Sets

	Testing New Rules
	Removing False Errors
	Diagnosing Mysterious Errors
	Limiting Area Checked
	Reducing Run Times
	Memory Management
	Rewriting Rule Sets to Improve Speed
	The QUICK_SPACING and QUICK_PASS Options
	The Progress Report Options

	Using the DRC on Very Large Designs
	Preliminary Checks Vs. Final Checks
	Checklist for Final Run

	DRC Rules Syntax
	General Syntax Restrictions
	Manual Notation

	2_ONLY	DRC version control
	286_ONLY	DRC version control
	3_ONLY	DRC version control
	ALL_DANGER	Prevent cell flattening for dangerous operations
	ALL_SAFE	Force cell flattening for dangerous operations
	ALLOW_QUICK 	Avoid warning prompt for QUICK_PASS processing
	AND	Boolean AND of two layers
	ASPECT_RATIO	Classify shapes by relative dimensions
	The Assignment Rule	Copy layer or inverse of layer
	BAD_POLY	Assign layer number for bad polygons
	BLOAT	Expand shapes
	BLOAT_ANGLE	Define angle for BLOAT rule
	BORDER	Explicitly define panel overlap
	BOUNDS	Classify shapes by the size of their bounding box
	BRIDGE	Recognize air bridges
	CONNECT	Electrically connect layers
	CONST	Define constant value
	CUT_RESOLUTION	Place cut lines on specific grid
	DANGER_CELL	Prevent cell flattening for dangerous operations
	DANGER_LAYER	Override cell flattening for certain layers
	DETAIL	Turn detailed logging on or off
	HOLE_AREA_FRACTION	Classify polygons with holes
	Using the NOT Keywords
	The /BORDER Keyword
	Counting Shapes as Errors

	IN_CELL	Classify shapes in certain cells
	INCLUDE	Allow rules file nesting
	INPUT LAYER	Define input layers
	Restricting Input Layers by Subcell
	Restricting Input Layers by Subcell Boundaries

	IS_BOX	Classify rectangles by size
	IS_CIRCLE	Classify polygons with circular shape
	Specifying Radii
	Specifying the Number of Sides
	The Optional POLY_INSIDE and POLY_OUTSIDE Keywords
	Using the NOT Keywords
	Counting Shapes as Errors

	ISLANDS	Find Holes
	MAX_ANGLE	Find sharp points in notches
	MAX_COUNT	Change maximum number of errors found before warning
	MAX_SPACING	Classify shapes by distance
	Using the NOT Keywords
	Counting Shapes as Errors

	MIN_ANGLE	Find sharp points
	MIN_AREA	Find small shapes
	MIN_FILL	Verify layer coverage of design area
	MIN_NOTCH	Find small notches
	MIN_SIDE	Find shapes with at least one small side
	MIN_SPACING	Find spacing errors
	MIN_WIDTH	Find shapes with small width
	MODIFY LAYER	Define layer used as both an input and output layer
	NO_CHECK_INPUT	Prevent some bad polygons from being marked
	NO_HIER_WARNING	Prevent warning during hierarchical output
	NO_PANELS	Execute DRC on entire design at once
	NO_RUL	Prevent warning when source rules file is missing
	NO_WARN_ACUTE	Prevent marking acute angles
	NOT	Copy inverse of layer
	OFF_GRID	Find vertices that are not on resolution grid
	OR	Boolean OR of two layers
	OUTPUT LAYER	Define layer for output
	Defining an Error Layer
	The WIRE and POLYGON Keywords
	Defining Temporary Scratch Layers with Layer 0

	OVERLAPPING	Find shapes with common area
	PANEL_VERTICES	Control number of vertices per panel
	PANELX and PANELY	Define maximum panel size
	RULE_SET	Define sets of rules to control execution
	SAFE_CELL	Flatten only certain cells for dangerous operations
	SAFE_LAYER	Force cell flattening for critical layers
	SCRATCH LAYER	Define temporary layer
	SHRINK	Shrink shapes uniformly
	SNAP	Relocate vertices on resolution grid
	SNAP45	Relocate vertices on resolution grid preserving slope of 45º angles
	STAMP	Electrically connect poor conductors
	STOP_ON_MAX_COUNT	Halt DRC on maximum number of errors
	TOUCHING	Find touching shapes on different layers
	WARN_ACUTE	Assign layer number for acute angle warning marks
	WIRE_WIDTH	Set error wire width for all error layers
	XOR	Boolean exclusive OR

	Running the DRC
	DRC Rules Compilation
	Rules Compiler Command Line Syntax
	Output Redirection
	Memory Options
	Batch Console Window Control
	Scratch Directories
	Terminating the Rules Compiler
	Rules Compiler Output Files

	Running the DRC
	DRC Command Line Syntax
	Name of the Program
	Terminating the DRC
	Simultaneous DRC Runs
	Command Line Options
	Using '#' in Place of '=' in Command Line Options
	File Parameters
	Input Redirection
	Algorithm Options
	Memory Options
	Screen Display Options
	Rules File Options
	Design Area Options
	Cell Hierarchy Options
	Command File Options
	Panel Size Options
	Batch Files

	DRC Output Files
	DRC Log File
	DRC Command File
	Before Executing the Command File
	Executing the Command File in the Layout Editor
	Isolating the DRC Shapes from the Original Layout Data
	Making the DRC Shapes More Visible
	Determining Which Rule Generated a Shape
	Fixing the Errors
	Hierarchical Output

	Hierarchical Cell Command File
	Subcell Error Command Files

	Advanced Tutorial
	Simple Spacing Check
	Preparing the Binary Layout Data File
	Creating the Rules File for a Simple Spacing Check on a Generated Layer
	Executing the DRC
	Looking at the Output

	Directional Spacing Check
	Modifying the Rule Set

	Finding Errors Involving Touching Shapes
	Tests That Involve Electrical Connections
	Masking the Metal2 Layer
	Adding Electrical Connection Rules
	Looking at the Pad Spacing Error
	Adding the Rest of the Good Conductor Electrical Connection Rules
	NWELL Connections and Verification

	Creation of Shapes for Export
	Nwell Layer Generation
	Finding the Acute Angles
	Finding the Bad Polygon

	Hierarchical Output
	Dangerous Processing Directives
	Command Line Options for Hierarchical Output
	Creating and Importing the Hierarchical Data
	Fixing a Dangerous Processing Error
	Replacing Hierarchical Output
	Deleting Hierarchical Output

	Speeding Long DRC Runs
	Testing Minimum Pad Size
	Separating Long Reach/Short Reach Rules into Rule Subsets
	Using Rule Subsets for Very Long DRC Runs
	Optimizing Panel Size

	Conclusion

	Appendix A: Obsolete Syntax
	Obsolete DRC Rules
	MAX_QUAD	Limited air bridge recognition
	RECTANGLES	Find shapes that are not rectangles of specific sizes
	SKIPPED_POLY	Assign layer number for shapes unknown to DRC
	OUTPUT LAYER Obsolete Keywords
	MASK
	OUTLINE
	OUTPUT ERRORS
	OUTPUT GEOMETRY

	Index

