
Reference Manual

Version 3.xx

IC Editors, Inc.

DRC-NT Design Rules Checker



© 2001 by IC Editors, Inc.

No part of the information contained in this manual may be represented in any form without the
prior written consent of IC Editors, Inc.

The software described in this manual is subject to change without notice.  Although all
information is given in good faith, neither IC Editors, Inc. nor its agents accept any liability for
any loss or damage arising from use of the software or from use of any of the information
provided herein.

Acknowledgments:

The majority of this manual was written or revised by Ference Professional Services in Sonora,
CA.  We are also responsible for formatting the text and creating the screen captures that
illustrate the examples.

Michael Gentry of MGC, Inc. created the layout that is used on the cover and as a frontispiece.  It
is a section of a CMOS simulation of a 74181 4-bit ALU.

Bob Fleming of Aether Wire & Location, Inc. provided a rule set used for parts of the Advanced
Tutorial.



Table of Contents

DRC User Manual 1

Table of Contents
INTRODUCTION .........................................................................................................................................5
Target Audience ..............................................................................................................................................6
Manual Organization .......................................................................................................................................7
Other Available Programs ...............................................................................................................................8

GETTING STARTED...................................................................................................................................9
Program Requirements ..................................................................................................................................10
Installation .....................................................................................................................................................11
Quick Tutorial ...............................................................................................................................................12

Please read the following section before any technical support calls.
Troubleshooting.............................................................................................................................................27

FUNDAMENTALS OF DESIGN RULE VERIFICATION ....................................................................31
What Are Design Rules? ...............................................................................................................................32
How Do Design Rule Checkers Work? .........................................................................................................39

HOW THE DRC WORKS..........................................................................................................................45
Generating the Input Files and Running the Program....................................................................................47
Looking at the Results ...................................................................................................................................49
Layer Processing............................................................................................................................................55
Spacing Verification ......................................................................................................................................84
Other Verification Rules..............................................................................................................................103
Electrical Connections.................................................................................................................................110
Panel Processing..........................................................................................................................................118
Hierarchical Checking and Hierarchical Output ..........................................................................................134
Optimizing DRC Runs.................................................................................................................................151

DRC RULES SYNTAX.............................................................................................................................171
General Syntax Restrictions.........................................................................................................................172
2_ONLY DRC version control .............................................................................176
286_ONLY DRC version control .............................................................................178
3_ONLY DRC version control .............................................................................179
ALL_DANGER Prevent cell flattening for dangerous operations...................................180



Table of Contents

2 DRC User Manual

ALL_SAFE Force cell flattening for dangerous operations......................................181
ALLOW_QUICK Avoid warning prompt for QUICK_PASS processing .........................182
AND Boolean AND of two layers..................................................................183
ASPECT_RATIO Classify shapes by relative dimensions .................................................184
The Assignment Rule Copy layer or inverse of layer...............................................................187
BAD_POLY Assign layer number for bad polygons..................................................189
BLOAT Expand shapes ......................................................................................190
BLOAT_ANGLE Define angle for BLOAT rule...............................................................191
BORDER Explicitly define panel overlap .............................................................193
BOUNDS Classify shapes by the size of their bounding box ................................194
BRIDGE Recognize air bridges............................................................................196
CONNECT Electrically connect layers ....................................................................200
CONST Define constant value............................................................................203
CUT_RESOLUTION Place cut lines on specific grid..............................................................205
DANGER_CELL Prevent cell flattening for dangerous operations...................................207
DANGER_LAYER Override cell flattening for certain layers .............................................209
DETAIL Turn detailed logging on or off.............................................................210
HOLE_AREA_FRACTION Classify polygons with holes.................................................................211
IN_CELL Classify shapes in certain cells..............................................................215
INCLUDE Allow rules file nesting .........................................................................216
INPUT LAYER Define input layers................................................................................217
IS_BOX Classify rectangles by size ....................................................................222
IS_CIRCLE Classify polygons with circular shape...................................................225
ISLANDS Find Holes.............................................................................................230
MAX_ANGLE Find sharp points in notches .................................................................231
MAX_COUNT Change maximum number of errors found before warning...................233
MAX_SPACING Classify shapes by distance...................................................................235
MIN_ANGLE Find sharp points...................................................................................242
MIN_AREA Find small shapes..................................................................................243
MIN_FILL Verify layer coverage of design area ....................................................245
MIN_NOTCH Find small notches ................................................................................248
MIN_SIDE Find shapes with at least one small side................................................251
MIN_SPACING Find spacing errors ...............................................................................252
MIN_WIDTH Find shapes with small width ................................................................271



Table of Contents

DRC User Manual 3

MODIFY LAYER Define layer used as both an input and output layer .............................273
NO_CHECK_INPUT Prevent some bad polygons from being marked ...................................276
NO_HIER_WARNING Prevent warning during hierarchical output ..........................................277
NO_PANELS Execute DRC on entire design at once..................................................278
NO_RUL Prevent warning when source rules file is missing................................279
NO_WARN_ACUTE Prevent marking acute angles................................................................280
NOT Copy inverse of layer ............................................................................281
OFF_GRID Find vertices that are not on resolution grid..........................................282
OR Boolean OR of two layers.....................................................................283
OUTPUT LAYER Define layer for output..........................................................................284
OVERLAPPING Find shapes with common area .............................................................288
PANEL_VERTICES Control number of vertices per panel....................................................290
PANELX and PANELY Define maximum panel size..................................................................293
RULE_SET Define sets of rules to control execution...............................................295
SAFE_CELL Flatten only certain cells for dangerous operations...............................297
SAFE_LAYER Force cell flattening for critical layers ..................................................299
SCRATCH LAYER Define temporary layer .........................................................................300
SHRINK Shrink shapes uniformly .......................................................................302
SNAP Relocate vertices on resolution grid......................................................304
SNAP45 Relocate vertices on resolution grid preserving slope of 45º angles .....306
STAMP Electrically connect poor conductors....................................................308
STOP_ON_MAX_COUNT Halt DRC on maximum number of errors.............................................310
TOUCHING Find touching shapes on different layers...............................................311
WARN_ACUTE Assign layer number for acute angle warning marks ............................313
WIRE_WIDTH Set error wire width for all error layers.................................................315
XOR Boolean exclusive OR ..........................................................................316

RUNNING THE DRC ...............................................................................................................................317
DRC Rules Compilation ..............................................................................................................................319
Running the DRC ........................................................................................................................................329
DRC Output Files ........................................................................................................................................361



Table of Contents

4 DRC User Manual

ADVANCED TUTORIAL ........................................................................................................................379
Simple Spacing Check.................................................................................................................................381
Directional Spacing Check ..........................................................................................................................391
Finding Errors Involving Touching Shapes .................................................................................................397
Tests That Involve Electrical Connections ..................................................................................................402
Creation of Shapes for Export .....................................................................................................................418
Hierarchical Output .....................................................................................................................................429
Speeding Long DRC Runs...........................................................................................................................440
Conclusion...................................................................................................................................................448

APPENDIX A: OBSOLETE SYNTAX ...................................................................................................449
Obsolete DRC Rules....................................................................................................................................449
MAX_QUAD Limited air bridge recognition................................................................................450
RECTANGLES Find shapes that are not rectangles of specific sizes ..............................................451
SKIPPED_POLY Assign layer number for shapes unknown to DRC.................................................452
OUTPUT LAYER Obsolete Keywords.......................................................................................................453

INDEX ........................................................................................................................................................455



Introduction

DRC User Manual 5

Introduction



Introduction

6 DRC User Manual

The DRC (Design Rules Checker) program from IC Editors, Inc. is a rules-
driven program to manipulate layout data and verify technology specific layout
restrictions for integrated circuit mask sets.  The algorithms used by the DRC
allow it to process the data for an entire semiconductor chip on most personal
computers at reasonable speeds.

The DRC program combines layer generation algorithms (such as bloats, shrinks,
and Boolean operations) with size, spacing, and shape rules to verify that your
design meets technology dependant design criteria.  The program can also be
used to generate mask layers for import back into your design.

Target Audience

There are two different classes of DRC users:
•  Design Rule Writers These users create DRC rules files and use them

on design data and/or testcases.
•  End Users These users are provided with rules files from

another party, but they are responsible for running
the program on design data and possibly for
installing the program as well.

Design rule writers will be able to do their job best after reading this entire
manual.  Familiarity with how to execute the program is required in addition to
familiarity with the syntax of rules to test rule sets.  A thorough understanding of
the fundamentals of design rule verification as well as the specifics of how the
DRC verifies huge amounts of data with only the memory available on a PC is
critical to ensure that all design errors are found by the program.

End users may be able to skip ahead to “Running the DRC” on page 317, but
they will be better able to troubleshoot problems if they read everything with the
possible exception of the “DRC Rules Syntax” section.



Introduction

DRC User Manual 7

Manual Organization

This manual is organized into the following sections:

"Getting Started" covers the program requirements and installation.  This
section also includes a brief tutorial covering the basic steps for preparing the
input files and running the rules compiler and the DRC program.

"Fundamentals of Design Rule Verification" introduces the processes
involved in verifying design rules and presents the reasons for some of the more
complex features of the DRC.  This section is intended primarily for users who
have little experience with design rule checkers.

"How the DRC Works" covers the theory behind all DRC features in a detailed
manner.  Once you have completed this section, you will have at least a basic
understanding of how the DRC works.  To use the DRC effectively, you will
have to read the more detailed syntax sections of features you want to use, but
you will have learned enough to know where to look to solve unique problems
and avoid common hazards.

"DRC Rules Syntax" covers the syntax for all statements in a DRC rule set.
Detailed examples are included.  The rules are listed in alphabetical order.

"Running the DRC" describes how to execute the rules compiler and the DRC
program after you have a complete rule set.   All command line options are
covered with examples.  The output files are completely described.   You will
also learn how to import the results of the DRC run into the ICED™ layout editor.

The "Advanced Tutorial" uses examples provided on the installation diskettes
to take you through all the steps in the verification of a realistic semiconductor
design.

"Obsolete Features" mentions some of the rules and command line options that
were used by older versions of the program.  These features are still supported in
the current version so users with older rule sets may still use them without
modification.

If you will not
be writing a
DRC rule set,
you may want
to skip ahead to
"Running the
DRC" after
reading the
"Getting
Started"
information.

Recent versions
of the layout
editor support
executing
simple DRC
operations from
inside of the
layout editor.
However this
manual does not
specifically
cover this use of
the DRC.



Introduction

8 DRC User Manual

Other Available Programs

The DRC is intended to be executed in conjunction with the ICED™ layout editor
available separately from IC Editors, Inc.  This layout editor is required to export
the input data file for the DRC from the layout data, and to import the geometry
created by the DRC.

The DRC program uses many of the same rules and features as the NLE utility.
The NLE utility contains additional rules that allow you to perform device
recognition and electrical connection check (ECC) tests to find shorts and opens.
The layout netlist generated by the NLE can be compared to a schematic netlist
with the LVS utility.  (Both the NLE and LVS utilities are available separately
from IC Editors, Inc.)



Getting Started

DRC User Manual 9

Getting Started



Getting Started: Program Requirements

10 DRC User Manual

Program Requirements

The DRC program may execute with as little as 8 Megabytes, but run times are
likely to be long.  We recommend that you execute the DRC program on a
computer with at least 16 Megabytes of memory.  The DRC does create scratch
files for virtual memory, however this disk swapping will slow the program
down.

The scratch files created by the DRC can grow very large.  We have seen scratch
files over 1 Gigabyte in size for large chips.  If you have limited memory for the
DRC, you will need plenty of free disk space.

You must use version 2.0, or a more recent version, of the ICED™ layout editor to
generate the data for the DRC.  Recent versions of the layout editor support
executing simple DRC operations from inside of the layout editor. However this
manual does not specifically cover this use of the DRC.  Longer DRC runs
should be executed in a DOS console window, outside of the layout editor.

The DRC requires a key on your printer port or USB port for copy protection.
IC Editors, Inc. provides this key when you purchase the program.  Install the
key on the appropriate port.  (Connect your printer cable to the key if necessary.)
The customized copy protection program DRCnAUX.EXE will look for this key.
Do not remove or rename this program.  Do not copy it when sending files to
other users.  You may overwrite their customized copy.



Getting Started: Installation

DRC User Manual 11

Installation

Follow the instructions provided in the installation software.  You will need to
specify the name of the ICED™ layout editor installation directory.  This can be a
new or an existing directory.  If you specify a directory that does not already
exist, it will be created.  You can specify an existing directory from a previous
DRC or ICED™  installation.  All executable files will be stored here.  We refer to
this directory throughout this manual as Q:\ICED.  Whenever you see
"Q:\ICED", replace the 'Q' with the drive letter you chose during installation.
Replace "ICED" with the name of the installation directory.

Some useful examples are included during installation.  We will be using some
of these files in the tutorial below.  See a list of rule file examples on page 26.

The recommended method to launch any of the ICED™ products is to first open
a DOS console window with the icon created on your desktop during
installation.  This icon is labeled “ICED” and displays a representation of a
silicon wafer.  You can type the DRC and rules compiler command lines at the
prompt in console window.  The path to the executable files is already added to
the system search path when you execute the programs in this manner.

Change the current directory to the desired directory with the DOS command
“CD dir_name” before executing the DRC program.  See how this works in the
following tutorial.

The DRC
requires a key
on your printer
port or USB
port.

Close the
console window
by typing EXIT
at the prompt or
by clicking the
‘X’ in the upper
right corner of
the window.



Getting Started: Installation

12 DRC User Manual

Quick Tutorial

This tutorial will cover one of the examples provided with the installation.

The flow of data
to prepare the
input files is
shown in Figure
1.

To run the DRC,
you must have
two input files.
The first contains
rules for ma-
nipulation of the
layers and for
design rule test-
ing.  These rules
must be com-
piled by the DRC
rules compiler
prior to execut-
ing the DRC.
The second file
contains layout
data generated
by the DRC com-
mand in the
ICED™ layout
editor.

The
recommended
method to launch any of the ICED™ products is to first open a DOS console
window with the icon created on your desktop during installation.  This icon is

DRC Rules File
.RUL

Layout Files
.CEL

ICED
Layout Editor

DRC Rules
Compiler

Compiled Rules
.BB

Binary
Layout Data

.POK

DRC

File

Program

Command
File

ICED 
Layout Editor

Figure 1: The flow of data to run the DRC.



Getting Started: Quick Tutorial

DRC User Manual 13

labeled “ICED” and displays a representation of a silicon wafer.  Click this icon
now using the left button of your mouse.

The executable search path is modified before the console window opens.  This
means that the operating system will automatically search in the correct place for
the DRC programs.  The current directory is set to the ICED™ directory,
Q:\ICED1.

Copy the files for this tutorial to a new, empty working directory.  This allows
you to keep the original copies of the sample files intact for future reference.

Before we create the new directory, we need to make the current DOS drive a
drive with some available space.  Replace the drive letter "C" in the following
command to a disk drive with free space and type at the console prompt:

C:

Now create the new directory with the command:

MD DRCTUTR

Make this new directory the current directory with the command:

CD DRCTUTR

Now copy the required files with the following commands:

COPY Q:\ICED\SAMPLES\DRC\TRIVIAL.CEL
COPY Q:\ICED\SAMPLES\DRC\EXAMPLE1.RUL

                                                     
1 Throughout this manual, Q: and \ICED are used to represent the drive and directory path where
you have installed the DRC.  If you have installed the software on your C drive in the directory
\ICWIN, you should replace Q: with C: and \ICED with \ICWIN.

The exact
location and
name of the
tutorial
directory is not
important.
Create it
wherever it is
convenient.



Getting Started: Quick Tutorial

14 DRC User Manual

Preparing the Rules File

The rules file we will
be using is
EXAMPLE1.RUL.
The contents of the file
are shown in Figure 2.
The lines that are not
bolded are comments.

This rules file must be
compiled by the DRC
rules compiler.  The
command must be
typed at the console
prompt.  Type the
following:

D3RUL-NT2  EXAMPLE1

D3RUL-NT.EXE is
the name of the
program and the rules
file is EXAMPLE1-
.RUL.  This program
will create the
compiled rules in a file
named EXAMPLE1-
.BB.  We will use this
file later when we run
the DRC.

                                                     
2 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versions is named D3RU-NTX.EXE.

3ONLY! Tells DRC version 2 to ignore next line.
ALL_SAFE
!Will be explained later.  For now, use ALL_SAFE in all rule sets.
input layer 1 boxes; 3 one_box;
!    ICED layer 1 will be referred to as "boxes" in the following
! rules.
!    ICED layer 3 will be referred to as "one_box"
!    The semi-colon between layers is required.  The semi-colon
! at the end of any line is optional.

output layer 20 too_close1; 20 too_close2;
!      Two layers, referred to as "too_close1" and "too_close2" in
! these rules, will be output to ICED layer 20.

DETAIL ON
!   This should NOT normally be used.  In most real runs, it will
! produce a too-long log file.  Use DETAIL ON only for small
! subsets of normal runs.

output layer 20 narrow;
!      Layer "narrow" will be output to ICED layer 20.

const min_distance=10;
!      The name "min_distance" can now be used instead of 10.

too_close1=minspacing(boxes, boxes, min_distance)
!      Check spacing between polygons in layer 1.

too_close2=minspacing(boxes, one_box, 7)
!      Check spacing between layer 1 and layer 3.

narrow=minwidth(boxes, min_distance);
!      Check width.

badpoly 0
!      Bad polygon output is suppressed.  ("Bad polygons" will be
! explained later.)  A non-zero number would have copied bad
! polygons to an ICED layer.

Figure 2: EXAMPLE1.RUL

DRC Rules File
.RUL

DRC Rules
Compiler

Compiled Rules
.BB



Getting Started: Quick Tutorial

DRC User Manual 15

The console messages will be very brief.  The version of the compiler, along
with a copyright notice is followed by a report of how much memory is available
to the compiler.  When the compiler finds no errors, the next line is:

Done.

This indicates a successful compile.

The log file created by the rules compiler is EXAMPLE1.RLO.   When the
compiler finds an error, a message will be printed both on your screen and in this
file.  Browse or edit this file now. The version and copyright information is
followed by the contents of the source rules file.  This is followed by lines
similar to Figure 3.

Note that each rule has been assigned a number.  These numbers are occasionally
useful.

If you are not
already familiar
with an ASCII
file editor, use
the editor that
comes with your
DOS
installation,
EDIT.COM.

5 layers used.
Name Number Line  Type

  1 BOXES 1 4 INPUT
  2 ONE_BOX 3 4 INPUT
  3 TOO_CLOSE1 20   11 OUTPUT
  4 TOO_CLOSE2 20 11 OUTPUT
  5 NARROW 20 20 OUTPUT
1 named constants.

Name                           Line  Value
MIN_DISTANCE   23  10

5 actions, requiring 3 passes.
Pass 1.  Process input and:
Pass 2:
   1. CONNECT BOXES[1]
    (Generated)
   2. CONNECT ONE_BOX[3]
    (Generated)
Pass 3:
   3. TOO_CLOSE1[20] = MIN_SPACING(BOXES[1], BOXES[1], 10/DET)
    (Rules line 26)
   4. TOO_CLOSE2[20] = MIN_SPACING(BOXES[1], ONE_BOX[3], 7/DET)
    (Rules line 29)
   5. NARROW[20] = MIN_WIDTH(BOXES[1], 10/DET)
    (Rules line 32)
Done.

Figure 3: Portion of contents of the EXAMPLE.RLO
compiler log file.



Getting Started: Quick Tutorial

16 DRC User Manual

Preparing the Binary Layout Data File

We create the layout data file in the ICED™ layout editor.  Launch the layout
editor to edit the file TRIVIAL.CEL.  If you use the Windows version, launch
the layout editor with the following command in the console window:

ICWIN  TRIVIAL

The shapes in this cell should look
similar to Figure 4.  The cell contains
two shapes on layer BOXES: one
rectangle and a larger polygon with a
5 user unit "neck".  There is also one
rectangle on layer ONE_BOX.

Once in the editor, we create the
binary layout data for the DRC using
the DRC command without any
parameters.  Type the following
command:

DRC

This will export the entire layout
contained in the cell to the file TRIVIAL.POK.  Once the command is
completed, use the QUIT command to terminate the editor.

Now we are ready to run the DRC.  The DRC command line is:

DRC3-NT3  EXAMPLE1  TRIVIAL  DRCOUT   SLOW

                                                     
3 The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.

Layout File
.CEL

ICED™
Layout
Editor

Binary Layout
Data
.POK

BOXES ONE_BOX

5 units

5 units

5 units

5 units

Figure 4: Shapes in TRIVIAL.CEL

Type the DRC
command line
in a DOS
console window
or create a batch
file.



Getting Started: Quick Tutorial

DRC User Manual 17

The end of the console messages should look similar to:

Done.
100% of chip done.
***No input skipped.
***No bad ICED polygons.
***Error count=7 (raw=10)
***Total output non-error output count=0

0 total figures output to non-error layers.
7 total figures output to error layers.

This indicates that the DRC has generated 7 error marks.  Most errors generate a
pair of error marks.  When error marks on the same layer overlap, they may be
merged into single shapes.  After looking at the error marks, we will see that
these 7 error marks represent 4 errors in the layout.  We will now cover how to
locate these errors using the command file generated by the DRC.



Getting Started: Quick Tutorial

18 DRC User Manual

Looking at the Output

To view the errors found by the DRC, we
will use the ICED™ layout editor.  Launch
the layout editor again to edit the
TRIVIAL cell.  You can use the same
DOS command we mentioned earlier:

ICWIN  TRIVIAL

Once in the editor, type the following
command:

@DRCOUT

This command will execute the
DRCOUT.CMD command file generated
by the DRC.  The error wires shown in
Figure 5 are now added to the cell.  Your
display will probably look somewhat different.  We have changed the layer
patterns with the LAYER command in the editor to highlight the error marks.

You can change the layer color or pattern of the error wires with the LAYER
command if you desire.  (See the layout editor reference manual.)

Now we want to select the error wires in the upper right to determine why this
error has been marked.   Type the following command:

SELECT LAYER 20 IN

BOXES ONE_BOX

Figure 5: Error marks generated
by rules in EXAMPLE1.RUL.

ICED 
Layout Editor

DRC

Command
File



Getting Started: Quick Tutorial

DRC User Manual 19

Note that the cursor has changed to the select cursor shaped like an 'X'.  Click the
two points as shown in Figure 6 to select the error wires.

The two error wires should be selected as shown in Figure 7.  To see why these
error wires were created, type the following command on the command line:

SHOW *

This will report the following information about the selected shapes:

The tag number refers to the rule that generated the error shapes.  If you refer to
the rules compiler listing shown in Figure 3 on page 15, you will see that rule
number 4 is:

   4. TOO_CLOSE2[20] = MIN_SPACING(BOXES[1], ONE_BOX[3], 7/DET)

Click here

Then here

BOXES ONE BOX

Figure 6: Selecting error wires.

BOXES ONE BOX

Figure 7: Selected error wires.

ADD  WIRE  LAYER=20  ID=19  TAG=4  TYPE=2  WIDTH=2.000  AT (10.0,-2.0) &
   (10.0, 0.0) (39.899, 0.0)
ADD  WIRE  LAYER=20  ID=20  TAG=4  TYPE=2  WIDTH=2.000  AT (35.0, 7.0) &
   (35.0, 5.0) (10.0, 5.0) (10.0, 10.0) (12.0, 10.0)

Figure 8: Information reported by SHOW command.



Getting Started: Quick Tutorial

20 DRC User Manual

This rule indicates that the minimum distance between shapes on layers BOXES
and ONE_BOX is 7 user units.  The distance between the shapes in the cell is 5
user units.

Note that the DRC has marked an error on the left side of the ONE_BOX
rectangle as well.   We can assume that this error is caused by a violation of the
same rule since this is another case of a shape on layer BOXES being closer than
7 user units to a shape on layer ONE_BOX.  If you want to verify this by
selecting this error wire as well and repeating the SHOW command, do so now.

We should fix both errors by moving the shape on layer ONE_BOX 2 user units
up and to the right.  We want to unselect the currently selected shapes, then
temporarily hide the error wires to allow us to see the design more clearly by
typing the following commands:

UNSELECT ALL
BLANK LAYER 20

We need to select the shape on layer ONE_BOX.  Try the following command:

SELECT LAYER ONE_BOX IN

The layout editor will report the following error:

SELECT LAYER <<ONE_BOX>> IN
ERROR: Layer name not in use

This is due to the fact that the layer name in the rule set is not the same as that
used in the cell.  We can see the layer number of layer ONE_BOX in the line
from the rules compiler listing shown on page 15.  The number in square
brackets following the layer name, "ONE_BOX [3]", indicates the number of the
layer.  The layer number is always the same in the rule set and the cell, but
the layer name in the rule set can be any convenient string.

In the rule set (shown on page 14) the name ONE_BOX was associated with the
layer number 3 in the following rule:

Input layer 1 boxes; 3 one_box;



Getting Started: Quick Tutorial

DRC User Manual 21

To select the shape we need to
move, let us select it by number.
Type the following command:

SELECT LAYER  3 IN

Now use the cursor to select the
rectangle in the upper right of the
cell.  The shape should be
indicated with select marks as
shown in Figure 9.

We can move the selected shape
2 user units up and to the right
with the following command:

MOVE BY 2,2

This should fix the errors caused by rule number 4.

Now let us unselect the current shape and then see the error wires again by
typing the following command:

UNSELECT ALL
UNBLANK ALL

Now let us select the error wires around the neck of the lower shape with the
command:

SELECT LAYER 20 IN

Then use the cursor to select the wires in the neck of the lower shape so the two
error wires are selected as shown in Figure 10 on the next page.

Figure 9: The shape on layer 3 is selected.



Getting Started: Quick Tutorial

22 DRC User Manual

We can find out the rule number
that created these error wires with
the command:

SHOW *

When you do this, you will see
that the tag number is 5.  This
means that rule number 5
generated the error wires.  From
the rules compiler log we see that
rule number 5 is:

5. NARROW[20] =
MIN_WIDTH(BOXES[1], 10/DET)

This rule states that shapes on
layer number 1 must be at least 10
user units wide.  We can see that the neck indicated by the error marks is only 5
user units wide.  We must fix this by moving one side of the neck 5 more user
units away from the other.

First let us unselect the selected error marks, and then hide all of them with the
commands:

UNSELECT ALL
BLANK LAYER 20

To select the desired side, use the command:

SELECT SIDE IN

Figure 10: Error wires in "neck" area
are selected.

You can write
the rule set to
place error
marks from
different rules
on different
error layer
numbers.  This
way you do not
have to use the
SHOW
command to see
which rule
generated each
error mark.



Getting Started: Quick Tutorial

DRC User Manual 23

Use the cursor to indicate a very small box around the left
side of the neck to select the side shown in Figure 11.  Now
move this side 5 units to the left with the command:

MOVE SIDE BY  -5,0

This fixes the error found by rule number 5.

Let us unselect the side and turn the display of the error
marks back on again with the commands:

UNSELECT ALL
UNBLANK ALL

Now let us select the error marks we have not yet looked at with the command:

SELECT LAYER 20 IN

Select the error wires shown in
Figure 12.

To determine the rule number that
generated this error, type:

SHOW *

The tag number associated with
these error marks is number 3.
Rule 3 is:

 3. TOO_CLOSE1[20] =
MIN_SPACING(BOXES[1],
BOXES[1], 10/DET)

This rule indicates that shapes on
layer 1 must be at least 10 user
units from other shapes on the same layer.  We can see from the cell that the
indicated sides are only 5 user units apart.

Figure 11

Then
here

Click
here

Figure 12: Remaining error wires
selected.



Getting Started: Quick Tutorial

24 DRC User Manual

Unselect the selected error wires, and hide all of the error wires with the
commands:

UNSELECT ALL
BLANK LAYER 20

Now select the side of the lower shape with the command:

SELECT SIDE IN

Use the cursor to select the side
indicated in Figure 13.  Shift
this side away from the other
shape on layer 1 with the
command:

MOVE SIDE BY  5,0

We have accounted for all error
found by the DRC.  Let us
unblank and delete the error
marks with the following
commands:

UNSELECT ALL
UNBLANK ALL
SEL LAY 20 ALL
DELETE

To test that all errors have been fixed, we will execute the DRC again.  It is very
important to remember to always recreate layout data file (TRIVIAL.POK in
this case) when you have changed the design.  If you forget to recreate this file
with the DRC command in the layout editor, the DRC will use the same
obsolete layout data that you used in the last run.

Type the command to regenerate the layout data for the DRC:

DRC

Figure 13: Side of shape on layer 1 is
selected.



Getting Started: Quick Tutorial

DRC User Manual 25

We are done with the layout editor. The following layout editor command will
save our changes to TRIVIAL.CEL and terminate the editor:

EXIT

You should now be back at the console prompt.  Execute the DRC again by
typing the following command at the console prompt or in a batch file:

DRC3-NT  EXAMPLE1  TRIVIAL  DRCOUT   SLOW

We can tell that no errors have been found by this run of the DRC by the last line
of the console messages:

0 total figures output to error layers.

This concludes the tutorial.  There are several other sample rule and cell files
included in the Q:\ICED\4SAMPLES\DRC\ directory.  See the table on the next
page for a list of these samples and the pages in this manual where they are
discussed.

                                                     
4 Remember that Q:\ICED represents the drive letter and path where you have installed
the DRC.

The DRC
program can
have several
different
executable file
names.  See
page 16.

Close the
console window
by typing EXIT
at the prompt or
click the ‘X’
button.



Getting Started: Quick Tutorial

26 DRC User Manual

Rules file Related cell file Rule covered Page
ALLALL.RUL TOUCH.CEL MIN_SPACING
ALLIN.RUL TOUCH.CEL MIN_SPACING /IN
ALLOUT.RUL TOUCH.CEL MIN_SPACING /OUT
CONTACT.RUL CONTACTS.CEL MIN_SPACING /IN
ENCLOSUR.RUL ENCL.CEL MIN_SPACING /IN /OUT 91
EXAMPLE1.RUL TRIVIAL.CEL MIN_SPACING and

MIN_WIDTH
14

EXAMPLE2.RUL Removal of redundant rule
by compiler

IN.RUL TOUCH.CEL MIN_SPACING /IN
INALL .RUL TOUCH.CEL MIN_SPACING /IN
ININ.RUL TOUCH.CEL MIN_SPACING /IN
ININI.RUL TOUCH.CEL MIN_SPACING /IN
INOUT.RUL TOUCH.CEL MIN_SPACING /IN /OUT
INOUTI.RUL TOUCH.CEL MIN_SPACING /IN /OUT
LEXAMPL.RUL LEXAMPL.CEL MIN_SPACING /LENGTH
NOTCHSP.RUL WIRECELL.CEL MIN_SPACING (does not

mark spacing problems in
single shape)
MIN_NOTCH

87

OUTALL.RUL TOUCH.CEL MIN_SPACING /OUT
OUTIN.RUL TOUCH.CEL MIN_SPACING /IN /OUT
OUTINI.RUL TOUCH.CEL MIN_SPACING /IN /OUT
OUTOUT.RUL TOUCH.CEL MIN_SPACING /OUT
OUTOUTI.RUL TOUCH.CEL MIN_SPACING /OUT
OVERLAP.RUL GATE.CELL MIN_SPACING /IN /OUT

Figure 14: Rules files included with DRC installation



Getting Started: Troubleshooting

DRC User Manual 27

Troubleshooting
If the DRC crashes while you are trying to run the tutorial test case, or at any
later date, try to look your problem up in the table below.  Try the
recommended fixes before you call technical support.

Symptom Possible
Cause

Recommended Fix Refer
to page

Long
directory or
file names

Best Solution: Change to Windows version.
Otherwise, rename or move directories (including
installation directories and data directories) to
names that have no more than 8 characters in any
one string.  Do not use blanks in names.
Use file names that follow the classic 8.3 format (no
more than 8 characters before the ‘.’ and 3
characters for the extension). Do not use blanks in
names.
Cell names do not have to be less than 8 characters,
only file names.

N/A

Long
environment
variables

Best Solution: Change to Windows version.
Otherwise, ensure that all environment variables
have no more than 127 characters in the entire
var=value string.  Use DOS SET command to verify
and/or change values.

359

DOS version
crashes on
Windows
operating
system

?? Change to Windows version.  Sometimes the DOS
version will not run under Windows for other
reasons that cannot be fixed.  If the two other fixes
above do not fix the problem, you must change to
the Windows version.

N/A



Getting Started: Troubleshooting

28 DRC User Manual

Symptom Possible
Cause

Recommended Fix Refer
to page

Mysterious
crash very
early in run

Not enough
memory to
start
program

Check top of log file for actual amount of memory
available to the DRC.  Try USE or HOG options to
reserve more memory for program.
Reboot or free more memory in operating system.

339

Options with
‘=’ in the
command line
not read
correctly

Operating
system
command
line parsing

Replace ‘=’ with ‘#’ in options where the ‘=’ is
removed by operating system before the DRC is
passed the command line.  The DRC considers the
two equivalent, but the ‘#’ symbol is not stripped by
the operating system.

333

Copy
protection
(DRCnAUX.EXE)
fails in
Windows

Operating
system in-
compatibili-
ties

Obtain new copy protection package from IC
Editors, Inc.

10

MIN_SPACING
not marking
errors between
shapes on same
layer.

Polygons
are merged
to form
single
shape.

Add a MIN_NOTCH rule to test spacing between
fingers of a single shape. All touching shapes on a
single layer are merged and MIN_SPACING marks
only errors between different shapes.

87

MIN_SPACING
not marking
other errors.

QUICK-
_SPACING
option
hiding
errors

Remove QUICK_SPACING from command line. 100

Hierarchical
output is not
generating
shapes in the
correct cells.

Cell
flattening on
input, safe
processing,
etc.

Quirks of hierarchical processing are covered on the
indicated page.

149



Getting Started: Troubleshooting

DRC User Manual 29

Symptom Possible
Cause

Recommended Fix Refer
to page

QUICK-
_PASS
option

Remove from command line.  This option speeds up
DRC runs at the cost of not executing rules that
require more than one pass.

337Some rules are
not being
executed

DO option Remove from command line.  This option restricts
which rules are executed at run time.

347

Resolution
grid issues

Vertices of output shapes may be shifted to lie on
more restrictive resolution grid.

79

Panel
processing

Shapes that are cut at panel boundaries may result
in acute angles.
QUICK_PASS option may be forcing problems at
panel boundaries.

76

129

False errors

Other
causes

See guide to removing miscellaneous false errors. 156



Getting Started: Troubleshooting

30 DRC User Manual



Fundamentals of Design Rule Verification

DRC User Manual 31

Fundamentals of Design Rule
Verification



Fundamentals of Design Rule Verification: What are Design Rules?

32 DRC User Manual

What Are Design Rules?

Each integrated circuit technology has design rules determined by the fabrication
process used to manufacture the chip.  Factors like the resolution of the
photographic process and misalignment of layers during manufacture require that
shapes on certain layers have a minimum width, are a certain distance apart, etc.

The engineers who develop new technologies usually specify these design rules.
These specifications are documented and distributed to chip developers.  Designs
that have violations of these design rules will often fail to perform as expected.

Some chip designers modify these design rules for certain purposes:

More stringent rules may be required to insure a longer life for the chip,
or because of the uniqueness of a particular design.

If you are developing a standard cell library, you may need to add
restrictions so that you can verify that all cells obey the added
requirements required for features like interchangeability or automatic
placement.

Some designers may need to relax certain criteria in some areas of the
design to get the very best performance or density from the technology.
These types of modifications to the design rules should be made only
after careful consideration and review.



Fundamentals of Design Rule Verification: What are Design Rules?

DRC User Manual 33

How Design Rules Are Verified

Minimum Spacing Rules

In simple terms, a minimum spacing rule is a rule that checks that shapes on one
layer are far enough apart from other shapes on the same layer, or from shapes
on a second layer.  Due to the ever-increasing density of modern integrated
circuits, spacing criteria are increasingly complex.

What design rule verification programs actually check is the distance from a
given side of a shape to sides of shapes on the other specified layer.  Therefore,
one pair of shapes may result in several violations of a spacing rule if several
different pairs of sides are too close.

Simple spacing rules that verify that each side of one shape is at least a minimum
distance in all directions from a second, non-overlapping shape are easy to
understand.  However, to allow as much density as possible, minimum spacing
rules are often modified to allow exceptions in certain situations.

Inside/outside criteria:These types of exceptions restrict the spacing
rule to sides of shapes that are found looking toward the interior of a
shape, or toward the outside.

End caps: Often the minimum spacing is critical only along the
length of a side.  Sides a minimum distance away from an end vertex in a
diagonal direction are acceptable.  This area around the end vertex of a
side is called the end cap of the side.

Intersections of sides: Sometimes the direction of sides is critical to a
design rule.  Wires that cross may be acceptable, while wires that travel
parallel to each other need to be a minimum distance away.

Electrical connections:Whether or not two shapes are part of the same
electrical net is often important to spacing rules.

Minimum length: Many design rules allow very short violations to
be present, however, longer violations must be fixed.



Fundamentals of Design Rule Verification: What are Design Rules?

34 DRC User Manual

Other Verification Rules

Most other design rules are more straightforward than spacing rules.  A common
category of rules insures that shapes on a given layer are not smaller than a
certain minimum dimension.  However, even this simple concept can require
some careful thought to write design rules that will catch all possible problems.

A common rule in this category is a minimum width rule.  This type of rule
insures that a polygon is at least a minimum distance wide in any direction.  The
primary reason for this type of rule is that opens may occur due to processing
issues if a shape is too small at any point.

Verifying this type of rule comes down to testing each side of a shape to see if it
is too close to another side.  However, this is more complicated than it seems at
first.

Refer to the figure above.  Sides A1 and A2, or any adjacent pair of sides, will
violate a minimum width rule if the program does not prevent adjacent sides
from being marked as errors.  You can see that adjacent sides cannot be
considered a violation.  However, in this case, sides B1 and B2 cannot be
considered to be a violation.  When sides are allowed to be at any angle, this
type of problem must be found with a different rule.

You can see that you must understand how a program verifies even such a simple
rule as a minimum width check to insure that all violations are found.

A1

A2

B1

B2

C1 C2

Figure 15: Various side-side distances.



Fundamentals of Design Rule Verification: What are Design Rules?

DRC User Manual 35

Sides C1 and C2 may be closer than a minimum distance, however they do not
represent a minimum width violation.  To avoid marking this pair of sides, a
program must consider whether the distance is measured through the inside of
the polygon, or across a gap.

The gap between sides C1 and C2 is called a "notch".  Minimum notch rules are
also common in some technologies.  Minimum notch rules have all the same
problems in verification that minimum width rules have.

It is often important to test more than just minimum width for some layers.
Most devices must be tested to insure that they have at least a minimum area in
addition to being a minimum width wide.  Occasionally, it is important to test
each side to insure that it is at least a minimum distance in length.  This type of
rule is usually referred to as a minimum side rule.

The software used to create masks often adds additional design rules.
Configurations such as self-intersecting shapes and acute angles must often be
eliminated before a layout can be used to create a mask set.  The hole that is left
when a shape intersects itself can often not be fabricated properly.  Acute angles
can result in unexpected results when a shape is bloated prior to creating a mask.
Bloats of acute angles will make the shape grow disproportionately long.

Eliminating False Errors

A false error is a shape or relationship between sides that violates the design
rules, but for some reason is not considered a real error.

One cause of false errors may be that the design is incomplete. Let us say that
you are verifying a subcell.  This cell will be connected to other cells with wires
at a higher level in the design.  You have rule that states that all contact shapes
must be covered by metal, but the metal is not contained in the subcell.   It will
be added in the higher level cell.

When you run the rules on the subcell, violations will be marked for all
uncovered contact holes.  You consider these to be false errors.  One way around
this problem is to simply ignore the false errors.  However, if the subcell is a



Fundamentals of Design Rule Verification: What are Design Rules?

36 DRC User Manual

large complicated cell, and you have many false errors that you ignore, it is very
easy to ignore some real errors as well.

One way to avoid false errors is to add shapes on non-design layers (often called
dummy layers) to the design.  You could add shapes on layer TEMP_METAL
that cover the contact holes, then modify the rules to say that contacts covered by
TEMP_METAL are not errors.

However this type of processing has risks as well.  Let us say that you forget to
remove the shapes on TEMP_METAL when you are testing rules on the higher
level design.  You have real uncovered contacts at this level, however the errors
will never be reported since you are still using the TEMP_METAL processing.

When you add shapes on dummy layers, you should always think carefully
about how they may prevent real errors from being found.  Remove shapes
on dummy layers, or add methods to insure that they are not hiding real
errors, before you run design rule verification on the final design.

A more risk-free method to prevent the false errors mentioned above is to create
a temporary cell with shapes on the real metal layer, then add your subcell to this
cell.  Output the data to test the subcell from this temporary cell.  This method
requires no non-design shapes in your design cell, and no risk of missing real
errors at the higher level.

Other false errors that do not result from missing shapes at a lower level may
require other solutions.  Let us say that wide metal wires must be at least 5
microns apart, but narrow wires can be 3 microns apart.  If your rules test that all
metal wires are at least 5 microns apart, you would consider error marks on some
narrow wires to be false errors.  However, if you just try to ignore these errors, it
is very likely that you will miss real spacing errors hidden among the rest.

To solve this problem, you need to filter the metal layer into groups that are
tested with different rules.   When the rule set takes into account why some
shapes should be tested with different rules, the rule set is more risk-free.  In the
case of the metal wires, you can use layer processing to classify the wires and
put wide wires into one layer and narrow wires into another.  Then write
separate spacing rules for each layer.  (An example of this process is covered on
page 65.)



Fundamentals of Design Rule Verification: What are Design Rules?

DRC User Manual 37

Layer Manipulation Prior to Rule Verification

It is almost always required to process the layers in a design before they can be
verified.  Even if false errors are not an issue, you must often combine or filter
layers to isolate shapes that represent devices or other special shapes that must
be checked with a different set of design rules.

Sometimes the layers you use in the layout must be bloated, shrunk, or combined
with Boolean operations to simulate the fabrication process before the design
rules can be applied.

For example, if you are building a design in a FET technology, you must create
the gate layer using a Boolean AND operation on the diffusion and polysilicon
layers.  The gate layer device shapes are very likely to have different design rules
than either the diffusion or polysilicon layers.

Some design rules are tested with Boolean operations or with rules that test if
one shape touches another.  This can be an important distinction.  Let us use the
example of contact holes again.  Consider a restriction that all contact holes must
not only be covered by metal, but also must be surrounded by a non-zero amount
of metal on all sides.  This
is sometimes referred to as
enclosure verification.

Look at Figure 16.  Case 1
is the only case where the
contact hole does not
violate the rule stated
above.  If you use a
Boolean rule to test this
restriction, such as
"CONTACTS AND NOT
METAL", it will find cases
2 and 3, however case 4 will not be found.  Case 4 can be tricky to find even
with a spacing rule.  There are cases where complex spacing rules will not mark
coincident edges.  It is best to find this type of error with a pair of rules such as
the following:

METAL CONTACTS

Case 1 Case 3Case 2 Case 4

Figure 16: Contact hole positions.



Fundamentals of Design Rule Verification: What are Design Rules?

38 DRC User Manual

NOT_METAL = NOT METAL
ERR = CONTACTS TOUCHING NOT_METAL

Creation of Layers for Import Back Into Design

The same layer generation methods that combine or transform layers before
design rules are verified can be used to manipulate layers for import back into
design cells.  This allows you to perform layer manipulation that cannot be
accomplished with the functions available in the layout editor.

You can use this feature to generate mask layers from simpler layers in your
design.  Layers like diffusion layers or wells can be far easier to design if you
use layer manipulation in the verification program to generate the layers exactly
to specification.  The layout designer does not have to worry as much about
following the design rules for layers like this, since they will be generated
automatically based on the presence of other layers.

Generated layers can be created and then verified with design rules in the same
rule set.   The rule set can be written to not only verify the new layer, but to
automatically modify it to obey the design rules.



Fundamentals of Design Rule Verification: How Do Design Checkers Work?

DRC User Manual 39

How Do Design Rule Checkers Work?

The basic flow of data into and out of a design rule checker is the same for all
programs of this type.  There are two primary input files: the design rules and the
layout data.

The design rules are translated from written specifications to the programming
language of the design checker.   This step can be complicated and requires quite
a bit of careful thought.   The most dangerous mistake beginners make is
assuming that stupid mistakes will not be made in the layout.  You must assume
that every possible error will be present in the layout, no matter how silly it may
seem.  Layout designers often turn the display of most layers off as they design a
layer, so even the most obvious problems between two layers are not visible to
them as they are working.  Problems like shifting a shape or a cell often cause
problems beyond the portion of the design visible on the screen.  Everybody
makes mistakes, and the writer of the design rules must insure that all of them
will be found.

Some programs (like the DRC) compile the source rules set into a compact form
that allows the program to execute faster.  Since this an extra step, you must be
careful to remember to compile a modified rule set before executing the design
checker again.  By default, the DRC will warn you if your rule set has changed
since the last compile.

The layout data is usually exported from the layout editor into a compact
machine-readable format.  This is also an extra step that you must be careful not
to forget, otherwise after you make a change to the layout, you will verify the old
data again rather than the updated layout.  There is no way the DRC can warn
you if one of your cells has changed since the last time you created the DRC
data.

The primary output from a design rule checker is a report of all violations of the
design rules found by the program.  It is easiest to locate these errors if this
report is in the form of graphic data that enables you to see the errors in the
layout editor rather than finding them from lists of coordinate data.  This is the
method used by the DRC.

See the
NO_RUL rule
description for
details on how
the DRC
verifies that a
modified rule
set has been
recompiled.



Fundamentals of Design Rule Verification: How Do Design Checkers Work?

40 DRC User Manual

A Few Definitions

Before we go into the details of how design rule checkers process data, let us
define a few terms.

Cell A cell is a collection of shapes that is stored
as a group with a name associated with it.

Hierarchy This term refers to the nesting of cells in a
design.  When cell A is added as a compo-
nent to cell B, we say that cell A is nested
in cell B, or that cell A is a subcell of cell
B.  Cell B has hierar-
chy, or is hierarchi-
cally nested.  That is,
it contains other cells
as components.

Level The level of a cell
refers to its place in
the hierarchy.  In the
example above, if cell
A has no cells nested
in it, it is the lowest level cell.  Cell B is a higher level cell.  If
cell B is added to cell C, and cell C is not added to any other
cells, it is the highest level cell, or the main cell.

Flattening When you replace a
nested cell with the
shapes contained in the
cell, you have flattened
it.  Ungrouping is an-
other term for
flattening.

Cell A

Figure 17: A cell.

Cell A Cell A
Cell B

 Figure 18: A nested cell.

Cell B

Figure 19: Cell B after flattening.



Fundamentals of Design Rule Verification: How Do Design Checkers Work?

DRC User Manual 41

Pass A pass is a collection of operations that can be performed by a
design rule checker with one sweep through all shapes in the
database.

Sometimes, the rules require that all shapes must be processed
several times to complete all operations.  We will discuss later
what types of operations require this type of processing. For
now let us just say that if some types of operations were
executed with a single pass through the data, errors could be
missed, or false errors could be generated.

How Large Amounts of Data Are Processed

One of the biggest problems with design rule checkers is the huge amount of
data involved in verifying the design of an entire chip.

To reduce this problem, and speed the verification of your chip, it is best to
verify smaller portions of your design first.  The time and storage required to
verify the design rules for a NAND circuit is negligible. If you find most of the
design errors in subcells first, there will be fewer runs required on the entire
design.  However, you must run the design rules checker on the entire chip
before you can release it for fabrication.  Areas where cells meet or overlap are
common places for design rule violations.

Other programs that verify design rules allow true hierarchical verification by
imposing design constraints.  These constraints are usually forbid cells to
overlap.  Wiring in the main cell is not allowed to travel over subcells.  Some
programs allow some overlap by forcing all devices to be in one area of a cell
with only wiring and contacts allowed in a border area.  This border area may
overlap wiring in the main cell.  Both of these methods waste design space.

The DRC program imposes no design constraints.  Any customization allowed
by the technology is supported.  When no constraints are imposed, a design rule
checker must flatten a design prior to verifying the design rules to find all errors
where cells meet or overlap.



Fundamentals of Design Rule Verification: How Do Design Checkers Work?

42 DRC User Manual

For example, let us say that your design contains 10,000 NAND cells.  These
cells are added to a cell called WIRING that contains metal wires that connect
the NAND cells.  It is not sufficient for a program to verify a single copy of the
NAND cell, then verify the wire shapes that are contained in the WIRING cell.
There may be design rule violations between shapes in the NAND cells and
shapes in the WIRING cell.  Each copy of the NAND cell must be flattened (or
unnested) so that every shape in each copy of the NAND cell is verified against
the wire shapes in its vicinity.

When you flatten a hierarchically nested design, the amount of data increases
dramatically.  In the example above, if we assume that the NAND cell contains
50 shapes, and the WIRING cell contains 20,000 shapes, the flattened design
contains 520,000 shapes.  Just one layer of a modern dense chip design may
contain millions of vertices.

In addition to the coordinates of every vertex of every shape in the design, the
program stores temporary data for every vertex to enable the program algorithms
to execute at reasonable speeds.  When an entire chip is verified, the huge
amount of data that must be stored is usually far too much for a personal
computer.

Panel Processing

The solution to the storage problem for a whole chip is to divide the design into
panels and process only a single panel at a time.

The portion of the design that is not included in the current panel can remain
hierarchically nested to conserve storage space.  In the example above, if each
panel contains only 50 copies of the NAND cell, only 50 copies must be
flattened at a time, resulting in a database of only 22,500 shapes.

Panel processing has overhead associated with it.  An area outside the boundary
of each panel must be tested to insure that no violations occur between the
shapes in the current panel and its neighbors.  This area is called the panel
border.



Fundamentals of Design Rule Verification: How Do Design Checkers Work?

DRC User Manual 43

The shapes in the panel borders are tested at least twice.  The shapes near the
interior corner of a panel are tested at least 4 times.  In the diagram above, a
shape in the lower right corner of panel 1 will be verified once when panel 1 is
checked, then again when panels 2, 3, and 4 are checked.

The border distance is determined by the design rules.  If your rule set contains a
single rule that verifies that each shape on the metal layer is at least 2 units away
from all other shapes on the metal layer, the border distance must be at least 2
units.  In this case, if a shape on the metal layer is right at the panel boundary, a
violation in a neighboring panel that is less than 2 units away will be found.

There is a tradeoff between the storage savings in testing one panel at a time and
the overhead in testing the border area multiple times.  The optimum panel size
for a particular design and rule set can be determined only by trial and error.

METAL

Panel 1 Panel 2

Panel 4Panel 3

Border
distance

Panel
boundary

Border
boundary

Figure 20: Panels and borders



Fundamentals of Design Rule Verification: How Do Design Checkers Work?

44 DRC User Manual

Hierarchical Processing

A design must be flattened to verify design rules.  However, many layer-
processing operations that must be performed prior to applying the design rules
can be performed while the design is still nested hierarchically.

Remember the chip with 10,000 NAND cells?  Let us say that this NAND cell
needs to have the GATE layer generated from the diffusion and polysilicon
layers to test FET device design rules.  The generation of the GATE layer can be
performed only once on the nested NAND cell, rather than 10,000 times.  Only
one copy of the shapes on the GATE layer must be stored.  This will not prevent
design rule errors from being found.

Each pass through the data requires that intermediate data must be stored for the
next pass.  If the design is being processed in panels, the program cannot test the
GATE layer in the same pass that generates it.  All data for the new layer must
be stored until the next pass can use it.  When you have many generated layers,
and several passes, this amount of data can be huge.  If it is stored hierarchically,
significantly less storage space is required.

There is overhead incurred when processing layers in this manner.  The layer
stored for a higher level cell must have the data in the lower level cell subtracted
from it, or you may generate several copies of the shapes.  These subtractions
take processing time.  Also, shapes in a higher level cell may modify a layer
stored in a lower level cell.  This must be checked at every level, or incorrect
results may be generated.

Due to these types of problems, there is trade off between time saved by
hierarchical processing and the time spent in the extra calculations.  The best
solution is to flatten small cells and those cells used few times.

Now that we understand most of the issues involved in testing design rules, let us
go into the specifics of how the DRC deals with these issues.



How the DRC Works

DRC User Manual 45

How the DRC Works



How the DRC Works

46 DRC User Manual

This chapter is an overview of how the DRC operates.  Once you have
completed this material, you should have at least a basic understanding of all
features.

The theory behind the more complex features is described completely.  To use
these features, you will have to read the relevant syntax sections.  However, this
chapter covers the key ideas that will allow you to solve problems you may
encounter, and to avoid all major pitfalls.

Every subject is followed by a table of references to other places in the manual
where you can find more details and examples.  You may find these tables
especially useful if you need to review a particular subject in detail at a later
date.



How the DRC Works: Generating the Input Files and Running the Program

DRC User Manual 47

Generating the Input Files and Running the
Program

The DRC requires two
input files: a compiled
rules file and a binary
layout data file.

The source rules file can
be written using any
ASCII text editor.  We
suggest that you use a
.RUL extension for
these files.

The rules file must be
compiled with D3RUL-
NT.EXE5.  The compiled
rules file will be created
with the same file name
as the source rules file
with a file extension of
.BB.

The binary layout data is
created by the DRC
command in the ICED™
layout editor.  A
complete description of
the DRC command is
provided in the layout
editor reference manual.

                                                     
5 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versions is named  D3RU-NTX.EXE.

DRC Rules File
.RUL

Layout Files
.CEL

ICED32
Layout Editor

DRC Rules
Compiler

Compiled Rules
.BB

Binary
Layout Data

.POK

DRC

File

Program

Command
Files

ICED32
Layout Editor

Figure 21: The flow of data to run the DRC.

A few hints on
using the DRC
layout editor
command are
provided on
page 159.



How the DRC Works: Generating the Input Files and Running the Program

48 DRC User Manual

Once both of the input files are prepared, the DRC program is executed outside
of the layout editor.  There are many command line options for the program.
You should be familiar with them before executing the program.  The purpose of
each option is mentioned below in this chapter, but they are more fully described
later in the manual when we discuss the syntax of the DRC command line.

The DRC program generates few console messages.  The final line of a
successful run is the most important one.

n total figures output to error layers.

If n = 0, then the DRC has found no errors in your layout.  (We will describe
exactly what an error layer is in a few pages.)

Subject Description Page

Rule syntax Detailed syntax and examples for every rule in
alphabetical order

171

NO_RUL rule and
NO_RUL command
line option

Avoid warning prompt from DRC when source rules
file is not present

277
and
349

Rule compilation Details on compiler and syntax of command line 319

DRC program Details on DRC command line syntax and output files 329

Figure 22: References for running the program



How the DRC Works: Looking at the Results

DRC User Manual 49

Looking at the Results

The third parameter on the DRC command line (output_file_base_name) is the
string used to create the two primary DRC output files: the log file and the
command file.

The DRC Log File

The log file will have the name output_file_base_name.DLO.  The log file
contains all messages about program errors or warnings.  Some other
information provided in this file includes details on how the design was
flattened, the panel size, and the border dimensions.

There are some DRC command line options that will add information to this file.
See the list below.

The number of shapes created on each output layer, including error layers, will
be listed in the log file.  This is a quick way of seeing how many violations were
found by each design rule checked.  The coordinates of each violation are
usually not listed in the log file.   Since the DRC is designed to verify large
designs, if all violation coordinates were printed, the log file could grow to be
unreasonably large.

You will be
warned in the
console
messages when
you need to
check the log
file for warnings
or error
messages from
the program.

Subject Description Page

Log file description Detailed description of contents 362

LIST_RULES DRC command line option to add rule listing to log file 350

SHOW_BORDER DRC option to add border calculations to log file 348

SHOW_SCALES DRC command line option to add vertex resolution
parameter information to log file

350

DRC program Details on DRC command line options and output files 329

Figure 23: References for DRC log file



How the DRC Works: Looking at the Results

50 DRC User Manual

Detailed Logging

You can enable detailed logging of violations for some
rules.  Detailed logging may be helpful when you
cannot determine why a particular side has been
marked as an error.   The coordinates of pairs of sides
that violate the rules listed in Figure 24 will be listed
in the log when detailed logging is enabled.

Use detailed logging only for small areas of your design when you cannot
determine the exact cause of an error.  The log file gets unreasonably large
quickly when this feature is used.

The more common way to mark errors is the command file that creates shapes in
the layout editor.  (We over this subject next.)  If many error marks are
generated, it can be difficult to determine from these error marks which specific
pair of sides violates a rule.  Since the detailed log messages explicitly list each
pair, this can help you pinpoint a problem.

The marks in the command file mark only the portions of sides that violate the
rule.  However, the messages printed when detailed logging is enabled are the
coordinates of the entire side, not just the portions in error.

All violations for a specific rule will be preceded by a listing of the rule.  The
rule number (“4” in the sample above) is indicated first.

Each violation message begins with an incremented error number.  Next a unique
number for the polygon containing an edge in error will be listed.  The vertex

MIN_NOTCH
MIN_SPACING
MIN_WIDTH

Figure 24: Rules that
can produce detailed
listings in log file.

   4. RESULT1[11] = MIN_SPACING(A[1], A[1], 20
     /+~CONN/P/INTER/OVER/CROSS/T/END/DET)

1: 1 (-29.5,19.5)-(-29.5,-5) <-> 2 (-30,-10)-(-20,-10)

2: 1 (-29.5,19.5)-(-29.5,-5) <-> 2 (-30,-10)-(-30,-15)

Figure 25: Sample log messages produced when detailed logging is enabled.



How the DRC Works: Looking at the Results

DRC User Manual 51

coordinates for the edge in error is printed followed by the symbol “<->”.  Next
comes the number of the polygon containing the edge that was too close, and
finally the coordinates of the vertices of this edge.  Figure 25 above shows two
error messages printed for violations of a MIN_SPACING rule.  A single edge of
polygon number 1 is too close to two different edges of polygon number 2.

There are two ways to enable detailed logging.   The rule DETAIL ON enables
detailed logging until a DETAIL OFF rule disables the feature.  The other
method is to add the /DET option to specific rules.  (The rules listed above in
Figure 24 all have this option.)  If detailed logging has been enabled with
DETAIL ON, the /~DET option in a rule disables detailed logging for only that
rule.

Subject Description Page

DETAIL ON/OFF Rule to enable/disable detailed logging 210

MIN_NOTCH Spacing rule for notches 248

MIN_SPACING Spacing rule for separate shapes 252

MIN_WIDTH Spacing rule for width of individual shapes 271

Limiting Area Checked Overview of methods to check only part of a
layout.

159

TOP, BOT, etc
command line options

Restrict area to check on the command line at run
time.

350

IN option of layout
editor’s DRC command

Restrict area to check in input layout file. 159

Figure 26: References for detailed logging



How the DRC Works: Looking at the Results

52 DRC User Manual

The DRC Command File

The command file is used to create shapes in the ICED™ layout editor.  The DRC
will create ADD commands in the command file for all shapes on output layers
at the end of the DRC run.  These shapes will include both error marks and
shapes on all other output layers.  You execute this command file in the layout
editor to add the shapes to a cell.

The name of the file is output_file_base_name.CMD, where output_file_base-
_name is the third parameter on the DRC command line.  You execute the
command file in the layout editor with the command:

@output_file_base_name

The shapes will be created in the current cell.  (Except in the case of hierarchical
output.  We will cover this special case later.)  If the current cell is your design
cell, it will be modified when you execute the above command.  We suggest that
you execute the command file in a temporary cell until you are familiar with the
process.  You can add your design cell to this temporary cell to see the error
marks at the same time as your design.

Most verification rules generate wires for error marks.  This is due to the fact
that wires can clearly mark the sides of polygons.  Only the portions of sides that
are in violation of a rule will be marked.  If the DRC marked entire polygons, it
would make the error marks much more ambiguous.

One helpful feature of wires is that you can set their width to be consistent with
the size of the shapes they are marking.  Unless you use the WIRE_WIDTH rule
or the WIRE_WIDTH command line option, the command file does not set the
size of the wires it creates.  The default width for the layer in the cell file will be
used as the width of the wires.   If you have shapes that are usually 10 user units
wide, you can set the width of the layer for the error wires to 1 or 2 user units to
clearly mark the edges.  If you are marking errors on shapes that are only 2 user
units wide, you can set the default width of the error layer to .3 user units.

The coordinates
for each error
shape are
included in the
commands in
the command
file.  You can
browse this file
to read the
coordinates if
you desire.

See page 62 for
a chart that
indicates which
rules generate
wires and which
generate
polygons.

See an example
of setting wire
width and wire
type on page
367.



How the DRC Works: Looking at the Results

DRC User Manual 53

It is difficult to change the width of wires after they are created.  You want to set
the default width of your error layers before you execute the command file.  The
LAYER command in the layout editor sets the default width.  You also set the
color and fill pattern of the layer with this command.  The default end type of all
wires is set with the USE command.  You should always set the default end type
to type 0 wires before executing the command file.

If you do not want to customize the width for every error layer in the cell file
before you execute the DRC command file, you should add a WIRE_WIDTH
rule to the rule set to set the width of all error wire marks.

Some errors are marked in separate subcell error command files.  The errors for
a specific subcell will be created in a separate file with a .ERR file extension.
The shapes are created in the coordinate system of the subcell.  These files
facilitate fixing the type of errors found in nested cells.  (Remember that most
errors can be found only after the layout has been flattened.)  Execute these
command files while editing the corresponding subcell.

You can set
these layer
properties in a
command file
that you can
reuse as
required.  See
page 355 for
details on
executing such
a command file
automatically
when you
execute the
DRC command
file.

Subject Description Page

Command file description Detailed description of contents and how to
import shapes into the layout editor

365

WIRE_WIDTH rule
and command line option

Set width for all error wires created by the
command file.

315
346

Simple tutorial Example of use of command file 12

Hierarchical output Overview of how hierarchical output is
handled in command file

146

Subcell error command files Detailed description of .ERR command files 375

Figure 27: References for DRC command files



How the DRC Works: Looking at the Results

54 DRC User Manual

Additional Uses of the DRC

In addition to finding design rule violations, the DRC can be used to manipulate
layout data.   You can use the layer manipulation operations to transform input
layout data into mask layers or other useful layers.

Combining the DRC with the ICED™ layout editor allows you to perform
operations too complex for the layout editor alone.  These operations include:

Boolean operations

Shrinks or bloats

Isolation of subsets of shapes by size, touching criteria, or other
characteristics

The output data created by these operations can be hierarchical.  This means that
the structure of a nested design can be preserved in the output data.

One more feature of the DRC is the ability to compare two designs.  The
SECOND_CELL command line option allows you to compare two layouts or to
combine the data in two cells with the control available with the layer generation
operations mentioned above.

Subject Description Page

Layer manipulation Overview of rules that manipulate layers 63

Hierarchical output Overview of how hierarchical output is handled 146

Mask layer generation Overview of mask layer generation issues 70

SECOND_CELL DRC command line option to import second layout
file

335

Figure 28: References for additional uses of the DRC

See an example
of how useful
this feature can
be on page 71.



How the DRC Works: Layer Processing

DRC User Manual 55

Layer Processing

Layer Definition

All layers in a DRC rule set must be defined before they are used in a rule.
These definition rules associate the DRC layer name in the rule set with the layer
number in the ICED™ cell.  The only place in the rule set where the layer number
is used is the layer definition rule.  The rest of the rule set uses only the DRC
layer name.  The name of the layer in the ICED™ cell is ignored completely
by the DRC.

DRC layer names may be up to 30 characters long.  The first character must be a
letter.  The remaining characters can be letters, digits, or any of the following
special characters: '_', '~', '$', '.', or '#'.

You may define up to 2100 unique layers in a rule set.  Layer definitions are
usually grouped together at the top of the file, but this is not required.

Name of rule Use Page

INPUT LAYER Defines input layers 217

OUTPUT LAYER Defines output layers 284

MODIFY LAYER Defines layers used as both input and output layers 273

SCRATCH LAYER Defines temporary layers used in the rule set 300

Figure 29: Layer definition rules

Use the LAYER
or TEMPLATE
commands in
the ICED™
layout editor to
determine the
layer number
from the layout
cell’s layer
name.



How the DRC Works: Layer Processing

56 DRC User Manual

Input Layers

Input layers correspond to layers in the input ICED™ layout.  Only input layers
will be read in from the layout data file.  Other layers are ignored.  Input layers
cannot be modified during the rule set (unless they are defined by a MODIFY
LAYER rule.  This is covered on the next page.).  If you want to modify the
shapes on an input layer, you must first copy the input layer to an output or
scratch layer.

Output Layers

Shapes on output layers will be included in the command file generated by the
DRC.   Shapes on other layers in the DRC database will be discarded at the end
of the DRC run.  Output layers can be either error layers or non-error layers.  We
will cover this subject a little later.

The OUTPUT LAYER rule assigns a layer number to the DRC layer name used
in the rest of the rule set.  Multiple DRC layers can all be combined into one
output layer number at the end of the DRC run.  The layers are processed
separately during the run.

Output layers can be useful for diagnosing problems with your rule set as well as
finding errors in your layout.   If the rule set is not creating the shapes you think
it should, or not marking errors you think it should, the problem is often that the
rules that process intermediate layers are incorrectly written.  When you look at
these intermediate layers the problem is often quite obvious.

One syntax trick you can use to make your rule set easier to troubleshoot is to
define all intermediate or temporary layers in OUTPUT LAYER rules using
layer number 0.  Shapes on layer number 0 are not included in the output.
However, it is easy to edit the rule set later to temporarily set specific layers to a
layer number other than 0.  When the layer number is non-zero, shapes on the
layer will be included in the output.

Use the
assignment rule
to copy a layer.
See page 187
for details.

See an example
of this type of
scratch layer
definition on
page 152.



How the DRC Works: Layer Processing

DRC User Manual 57

In other words, layers defined in OUTPUT LAYER rules with layer number 0
are really scratch layers which will not be included in the output.   The other
method used to define scratch layers is described next.

Scratch and Modify Layers

Any layers that the DRC will create or modify, that are not output layers, must
be defined in a SCRATCH LAYER rule.  These layers are defined only by name
since they are never output to an ICED™ cell as numbered layers.  As mentioned
in the previous paragraph, you may prefer to use OUTPUT LAYER 0 rules for
scratch layers instead of using the SCRATCH LAYER rule.

A layer defined with the MODIFY LAYER rule is both an input layer and an
output layer.  Modify layers are useful when you are using the DRC to create
new cells.  You can list all layers in a cell in MODIFY LAYER rules, then all
layers will be included in the output data using the same layer numbers.

However, it can be dangerous to use modify layers when you import the DRC
output into your original cells.  When you do this, shapes on all layers defined
with MODIFY LAYER rules will be added to the original cells.

For example, you have a cell with two shapes, one on layer 1 and one on layer 2.
In the DRC rule set you define layers 1 and 2 with MODIFY LAYER rules.
Your rule set uses these two layers to create layer 3.  When you import the DRC
results into your original cell to see layer 3, you are also adding copies of the
shapes on layer 1 and 2.

Variable Layer Numbers

Occasionally, you may want to specify layer numbers when you run the DRC
rather than in the rule set.  One case of this is when you have a simple rule set
that performs a Boolean operation on two input layers.  If you can specify the
layer numbers on the DRC command line, you do not have to edit the rule set,
then recompile it, to perform the same operation on other layers at a future time.



How the DRC Works: Layer Processing

58 DRC User Manual

You can use variables in place of layer numbers in INPUT LAYER, OUTPUT
LAYER, or MODIFY LAYER rules.   Simply use a percent sign ('%') and a
counter in place of the layer number in these layer definition rules.  Then specify
the layer numbers for each variable on the DRC command line using the
LAYERS option.

Subject Description Page

INPUT LAYER Define input layers 217

OUTPUT LAYER Define output layers 284

MODIFY LAYER Define layers used as both input and output layers 273

SCRATCH LAYER Define temporary layers used in the rule set 300

LAYERS command
line option

Define layer numbers used for input/output at run
time instead of in rule set

346

Figure 30: References for layer definition

Preprocessing of Layers

Lines and text components in the input data are ignored by the DRC.   Even
when they are present on a layer used as both an input layer and an output layer,
they will be stripped from the input data and will not be present in the output
data.

One of the first preprocessing steps the DRC performs on your layout data is to
convert all shapes, including wires, to polygons.  All touching polygons on the
same layer in the same panel are then merged into single polygons.  This is done
before any rules are processed.

The %n syntax
used for
variable layer
numbers is
designed to be
similar to the
syntax used for
parameters in
DOS batch files.

Forcing the
DRC to handle
shapes
dangerously can
result in shapes
in subcells to
not be merged.
See page 138.



How the DRC Works: Layer Processing

DRC User Manual 59

The two boxes on the left in Figure 31 are converted into the polygon on the left
in Figure 32.  The wire on the right in Figure 31 is converted to a polygon and
merged with the triangle to create the polygon you see on the right in Figure 32.

The topology of the original shapes is not used by the DRC.  The program will
use the topology and dimensions of the merged shapes.

This also means that wire shapes copied to (or used to generate) an output layer
will be created as polygons in the output data.

IN_CELL Processing

There are three ways to force the DRC to handle shapes in certain cells
differently than other shapes on the same layer.  You may want to do this
because the shapes in certain cells should be considered devices, even though
other shapes on the same layer are considered to be conductive material.

Inductors are a good example of this problem.  If you have a winding shape on a
metal layer that you consider to be an inductor, you may want this metal to be on
a different DRC layer and test this layer with different rules.  If you put this
shape in a separate cell it is relatively easy to do this.

Only shapes in
the current
panel (and
touching shapes
on the same
layer in
neighboring
panels) are
merged.  To
learn more
about panels,
see page 118.

Figure 31: Layer before DRC
preprocessing.

Figure 32: Layer after DRC
preprocessing.



How the DRC Works: Layer Processing

60 DRC User Manual

There are three ways to filter a layer based on the cell in which it is contained:

INPUT LAYER rule IN_CELL parameter This method will place
all shapes on a layer contained in a specific subcell on a
different layer during input processing.

IN_CELL rule This method allows you to filter any layer
contained in a cell and its subcells at any time in the rule set.

Layer 0 processing Layer 0 represents the bounding box of a cell.
If you use the INPUT LAYER IN_CELL parameter to define
layer 0, you will store a rectangle that covers all shapes in the
cell.  You can then use Boolean processing to filter all shapes
within the rectangle.  In this case, all shapes within the rectangle
are processed differently, regardless of the cell that contains
them.

Subject Description Page

INPUT LAYER rule Define input layers 217

IN_CELL Classify shapes in certain cells 215

Example of Layer 0
processing

Classify flattened shapes in all cells within a
specific cell boundary.

221

Figure 33: References for IN_CELL processing



How the DRC Works: Layer Processing

DRC User Manual 61

Types of DRC Layers

In the DRC database, all layers have two important properties:

Geometric basis: polygon layer vs. wire layer

Error status: error layer vs. non-error layer

All input layers are polygon layers.  (Remember that DRC preprocessing will
convert all wire components into polygons.)   All layers that are used to generate
mask layers should be polygon layers.

Wire layers are generated by DRC verification rules to mark edges as errors.
Any layers generated by rules that create wires (as indicated in the table on the
next page) cannot be used on right side of the '=' in any succeeding rule.  You
cannot perform Boolean or any other processing on wire shapes.

You can use the OUTPUT LAYER rule to define a layer that would normally be
a polygon layer as a wire layer.  You may want to do this because you consider
shapes on that layer to be errors and you want all of your error layers to have
similar properties.

When you use the WIRE keyword in the OUTPUT LAYER rule for a layer that
contains polygons, the shapes on the layer remain polygons during the DRC
processing.  Only during output file creation are the shapes converted to wires
that outline the boundaries of the polygons.

Any output layer can be defined as an error layer.  Only shapes on error layers
are added to the error count.  Some rules (see table on the next page)
automatically classify their result-layers as error layers.  Other layers that may be
the result of Boolean or other processing must be defined explicitly as error
layers in the OUTPUT LAYER rule if you want shapes on that layer to be
included in the error count.



How the DRC Works: Layer Processing

62 DRC User Manual

Rule Use Geometric basis Error status
AND Boolean AND of two layers Polygon Non-error
ASPECT_RATIO Classify shapes by relative dimensions Polygon Non-error
Assignment Rule / NOT Copy layer or inverse of layer Polygon Non-error
BLOAT Expand shapes Polygon Non-error
BOUNDS Classify shapes by size Polygon Non-error
BRIDGE Recognize air bridges Polygon Non-error
HOLE_AREA-
_FRACTION

Classify polygons with holes Polygon Non-error

IN_CELL Classify shapes in certain cells Polygon Non-error
IS_BOX Classify rectangles by size Polygon Non-error
IS_CIRCLE Classify circular polygons Polygon Non-error
ISLANDS Find holes Polygon Non-error
MAX_ANGLE Find sharp points in notches Wire Error
MAX_SPACING Classify shapes by distance apart Polygon Non-error
MIN_ANGLE Find sharp points in protrusions Wire Error
MIN_AREA Find small shapes Polygon Error
MIN_NOTCH Find small notches Wire Error
MIN_SIDE Find shapes with at least one small side Wire Error
MIN_SPACING Find shapes too close together Wire Error
MIN_WIDTH Find shapes with small width Wire Error
OFF_GRID Find vertices not on resolution grid Polygon Error
OR Boolean OR of two layers Polygon Non-error
OVERLAPPING Find shapes with common area Polygon Non-error
SHRINK Shrink shapes uniformly Polygon Non-error
SNAP Relocate vertices on resolution grid Polygon Non-error
SNAP45 Relocate vertices on resolution grid

preserving slope of 45º angles
Polygon Non-error

STAMP Find improperly connected wells Polygon Error
TOUCHING Find touching shapes on different layers Polygon Non-error
WARN_ACUTE Identify all acute angles on output layers Wire Non-error
XOR Boolean exclusive OR Polygon Non-error

Figure 34: Properties of layers generated by DRC rules



How the DRC Works: Layer Processing

DRC User Manual 63

Layer Generation Rules

Layer generation rules create polygons on output or scratch layers based on the
contents of existing layers.

These rules are used to manipulate layers for several reasons:

Layers used to design the layout can be transformed automatically into
mask layers for export.

Layers may need to be combined into mask layers to test design rules.

Certain shapes on a layer may need to be filtered into subsets to test
design rules that depend on certain properties or to avoid false errors.

Some classes of design errors are found not by spacing or other
verification rules, but by simple Boolean processing (e.g. ERR1= VIA
AND NOT M1).

The result_layer of a layer generation rule will always be cleared of its previous
contents and replaced with the result of the operation.   If the previous contents
have not been used yet in another rule, the rules compiler will warn you.  The
result_layer can be the same layer as one of the layers to the right of the '='.  The
following is a valid rule:

Example: SUBSTRATE = SUBSTRATE  AND  NOT  PWELL

Boolean Processing

Several Boolean operations cannot be combined into a single rule (other than the
use of the NOT keyword).  Complex Boolean processing must be broken down
into separate rules.

Example: POLY_IN = POLY_WIRES OR DEV_POLY
RESISTOR_POLY = POLY_IN AND RESISTOR_MASK
POLY = POLY_IN AND NOT RESISTOR_MASK



How the DRC Works: Layer Processing

64 DRC User Manual

Parentheses are not allowed in Boolean expressions.  "C = (NOT A) OR B" may
seem like the natural way to write a rule, but it will generate syntax errors.  In a
DRC rule, the NOT keyword always applies only to the layer it precedes.

Example: C  =  NOT  A  AND  NOT  B

This rule will be interpreted by the DRC compiler as:

C  =  (NOT  A)  AND  (NOT  B)

Rule Use Page number

AND Boolean AND of two layers 183

Assignment Rule /
NOT

Copy layer or inverse of layer 187

OR Boolean OR of two layers 283

XOR Boolean exclusive OR 313

Figure 35: Boolean layer generation rules

Classifying Shapes by Size or Shape

Several rules classify shapes by size.  The IS_CIRCLE rule finds circular
polygons in arbitrary size ranges.  The IS_BOX rule is used to filter rectangles
by size.

The BOUNDS rule is very similar to IS_BOX, but the size criteria apply to the
size of the bounding boxes of shapes.  The bounding box of a shape is the
smallest rectangle square with the axes (i.e. a rectangle with horizontal and
vertical sides) that encloses the shape.  The ASPECT_RATIO rule classifies
shapes by the ratio of the dimensions of their bounding boxes.  Since the
BOUNDS and ASPECT_RATIO rules classify shapes by the size of their
bounding boxes, they are useful to classify non-rectangular shapes.

You must add
the ERROR
keyword to the
OUTPUT
LAYER rule
when you want
to add shapes
generated by
these rules to
the error count.



How the DRC Works: Layer Processing

DRC User Manual 65

However, when the shapes you need to classify by size are long irregular shapes,
like wires, none of the rules above will be of much use.  Let us say that you need
to apply different minimum distance rules depending on the width of wires.
Wires that are 2 microns wide must be at least 2 microns apart; however wires
that are only 1.5 microns wide must be only 1.5 microns apart.  The best way to
classify wires by width is to shrink the wires by half the width, then bloat them
again by the same amount.  Wires narrower than the width will disappear during
the shrink.  The bloat returns the other wires to their original size.

Example: M1_SHRINK = SHRINK (M1_IN, .999)
M1_2_WIDE = BLOAT (M1_SHRINK, .999)
M1_UNDER_2 = M1_IN  AND  NOT  M1_2_WIDE

ERR1 = MIN_SPACING ( M1_2_WIDE, M1_2_WIDE, 2)
ERR2 = MIN_SPACING ( M1_2_WIDE, M1_UNDER_2, 2)
ERR3 = MIN_SPACING ( M1_UNDER_2, M1_UNDER_2, 1.5)

Note that the value used to separate the wires is slightly less than half of the size
criteria.  If the SHRINK and BLOAT rules used a value of exactly 1.0, then
wires 2 microns wide would wind up on the M1_UNDER_2 layer.  These rules
separate M1_IN shapes into those wider than 1.998 and those 1.998 wide or
narrower.  Each of these subsets is then verified for different minimum spacing.
Note that the distance between shapes in either subset is also checked with the
rule that generates the ERR2 layer.

The SHRINK and BLOAT rules are fairly expensive in terms of processing time,
and they can lead to the distortion of polygons with varying width or skewed
sides.   A single polygon with a thin segment in the middle may wind up as two
polygons after a shrink and bloat.  Shrinking then bloating a shape with a skewed
side (i.e. a side that is not horizontal or vertical) may result in the slope of the
skewed side changing because the vertices of such sides are often not on grid
after the shrink.  The bloat operation then magnifies the problem.   Look
carefully at the layers created before you rely on them for design rules checking.

If the M1_IN layer contains acute angles, you may want to add a pair of
BLOAT_ANGLE rules around the BLOAT rule to prevent the acute angles from
being cut by that rule.  However, decreasing the bloat angle will increase the
reach of the rule and the DRC processing time.  See the description of the
BLOAT_ANGLE rule for details.



How the DRC Works: Layer Processing

66 DRC User Manual

The MIN_AREA rule is usually used as a verification rule to find shapes that
violate a design restriction on the minimum area of shapes.  However, it can be
used as a filter to classify shapes by size.  Let say that you need to apply
different verification rules to shapes with an area larger than a certain minimum
size.  The following rules will filter shapes based on area without classifying
shapes with a small area as errors.

Example: INPUT LAYER 1 A
OUTPUT ERROR LAYER 11 ERR1
OUTPUT  LAYER 0 SMALL_A; 0 LARGE_A

SMALL_A= MIN_AREA (A, 10/BORDER=0)
LARGE_A= A  AND NOT  SMALL_A
ERR1= MIN_WIDTH ( LARGE_A, 3)

Since the SMALL_A layer is defined with layer number 0, shapes created on
that layer will not automatically be counted as errors as they would normally be.

The MIN_AREA rule can be used as a filter this way because it generates shapes
with a polygon geometric basis.  The DRC can use these shapes in other rules in
the same manner as any other rule that generates polygons.  The shapes created
by verification rules that generate wires cannot be used this way.   Layers that
contain wire shapes cannot be used on the right side of the '=' in any other rule.

One other rule that involves classifying shapes by size is the
HOLE_AREA_FRACTION rule that classifies shapes by the fraction of their
area that is removed by holes.

The table on
page 62 lists the
geometric basis
and automatic
error status of
shapes created
by each rule.



How the DRC Works: Layer Processing

DRC User Manual 67

Rule Use Page
ASPECT_RATIO Classify shapes by relative dimensions 184

BLOAT Expand shapes 189

BLOAT_ANGLE Specify how acute angles are processed by the
BLOAT and SHRINK rules

311

BOUNDS Classify shapes by the size of their bounding boxes 194

HOLE_AREA-
_FRACTION

Classify shapes by fraction removed by holes 211

IS_BOX Classify rectangles by size 222

IS_CIRCLE Classify circular polygons 225

MIN_AREA Isolate shapes with small area 243

SHRINK Shrink shapes 302

Figure 36: Rules used to filter shapes by size

Classifying Shapes by Distance

The MAX_SPACING rule finds shapes on a certain layer that are at least a
specific distance away from other shapes on the same layer or from shapes on a
different layer.  You can tailor the rule to collect only shapes that are, or are not,
electrically connected from the other shapes.  You can also treat shapes that are
near the corners of each shape differently from those that are near a side.

This rule can also be written to collect only shapes that are within the indicated
distance from the other shapes.

Rule Use Page
MAX_SPACING Classify shapes by distance to other shapes 235

The related
MIN_SPACING
rule finds errors
rather than
classifying
shapes.



How the DRC Works: Layer Processing

68 DRC User Manual

Overview of Other Layer Generation Rules

The BLOAT and SHRINK rules are also used to expand or reduce shapes on a
layer for reasons other than separating shapes on a layer by size (covered on
page 65.)  These rules can be used to change a layer used to design the layout to
mask layer dimensions before design rules are applied.   They can also be used in
sophisticated processing to automatically generate a mask layer from layout
layers.  (See the example on page 71.)  The BLOAT_ANGLE rule changes how
acute angles are handled for both rules.

The OVERLAPPING and TOUCHING rules classify shapes by whether or not
they touch shapes on a second layer. The OVERLAPPING rule will recognize
shapes that share a common area.  The less restrictive TOUCHING rule will
identify shapes that share area or just a line segment along two sides.  This can
be very useful in many situations.  These rules are commonly used to identify
devices.  They can also be used to verify that non-design shapes (often referred
to as dummy shapes) are located in the correct place.  A TOUCHING rule is
often used in place of a Boolean rule to test that two layers do not overlap since
it will locate shapes that share an edge.

The ISLANDS rule is used to find unconnected shapes on a layer that should be
composed solely of a single connected shape.  This rule is more commonly used
to find holes in large shapes that span your layout.  The
HOLE_AREA_FRACTION rule finds shapes that have at least a minimum area
removed by holes.  The BRIDGE rule finds air bridges.  (This rule is of interest
primarily to users of the Gallium Arsenide technology.)

Overlapping
and Touching

Overlapping
and Touching

Touching only Not Overlapping
or Touching

Figure 37



How the DRC Works: Layer Processing

DRC User Manual 69

Rule Use Page
BLOAT Expand shapes 189

BLOAT_ANGLE Specify how acute angles are processed by the
BLOAT and SHRINK rules

311

BRIDGE Recognize air bridges 196

HOLE_AREA-
_FRACTION

Classify shapes by fraction removed by holes 211

ISLANDS Find holes or unconnected shapes 230

OVERLAPPING Find shapes on different layers with common area 288

SHRINK Shrink shapes 302

TOUCHING Find touching shapes on different layers 311

Figure 38: Other non-error layer generation rules

You must add
the ERROR
keyword to the
OUTPUT
LAYER rule
when you want
to add shapes
generated by
these rules to
the error count.



How the DRC Works: Layer Processing

70 DRC User Manual

Generating Output Layers

One of the last tasks performed at the end of a DRC run is to export shapes to a
command file.  This command file can create shapes in the ICED™ layout editor.
All shapes on non-error output layers are created in same command file as error
shapes (unless the HIERARCHICAL command line option is used.  See page
146.)

Unless the HIERARCHICAL command line option is used, all shapes will be
created without cell hierarchy in the current cell when the command file is
executed in the layout editor.  If the current cell already has shapes on the same
layer numbers as those used as output layer numbers in the DRC rule set, you
can corrupt the contents of the current cell.  There is no easy way to classify the
shapes just added to your cell from the original contents unless you have added
all shapes to new layer numbers.

If you are using the DRC to create layers for import to your existing cells, you
can use unique layer numbers in the OUTPUT LAYER rule, then change the
layer number of these shapes later in the layout editor.  The SWAP command in
the layout editor will change the layer number of selected shapes.

To learn how to import shapes on output layers into your design, read about the
DRC command file beginning on page 365.  The following pages describe
important issues about how the DRC generates shapes on output layers.  This
information is primarily of interest to people who will be using the DRC to
generate mask layers for import back into their design.



How the DRC Works: Layer Processing

DRC User Manual 71

Example of Generation of P-Select and Diffusion Mask Layers

Let us cover an example of generating mask layers
from design layers.  In this example, the layout has
been created with the N and P layers for the bulk or
well layers for transistors.  These layers must be
transformed into the DIFF (for diffusion) and PSEL
(for P-select) layers for mask processing.  The DIFF
layer is the union of both the N and P layers, while the
PSEL layer is a bloated area around the P shape that
transforms the DIFF layer into a P-well.  A PSEL
shape should never overlap an N shape, or the well
will wind up as a partial P-well rather than an N-well.

A simple attempt at the
rules to create the DIFF
and PWELL layers is
shown in Figure 40.  This
rule set will work
acceptably on most N
and P shapes, however,
when N and P shapes
touch, there is a problem.
The result of these rules
is shown in Figure 41.
Note that the PSEL layer
overlaps the N-well
shape.  This will result in
an incorrect mask set.

Figure 39: N and P
shapes for NP2DS
examples.

input layer{ 2 n;
   3 p;
}
output layer{ 42 diff;
  43 psel;
}
diff = n or p;
psel = bloat(p, 2.5);

Figure 40: NP2DS0
rule setDIFFPSEL

Figure 41: DIFF and
PSEL layers generated
by NP2DS0 rules



How the DRC Works: Layer Processing

72 DRC User Manual

A slightly better version of the rule set is shown in
Figure 42.  This version generates a temporary layer
P1 that has a bloated N layer (temporary layer N1)
subtracted from it.  The results are shown in Figure
43.  Now the PSEL shape does not overlap the N
shape.  However, these shapes share a horizontal
edge.  If the mask sets are slightly misaligned during
mask processing, these shapes will overlap.

The DRC can perform more processing on the N and
P layers to minimize this problem, resulting in a less
hazardous mask set.

input layer{ 2 n;
   3 p;
}
output layer{ 42 diff;
  43 psel;
  102 n1;
  103 p1;
}
diff = n or p;

n1 = bloat(n, 2.5);
p1 = p and not n1;
psel = bloat(p1, 2.5);

Figure 42: NP2DS1
rule set

DIFFPSEL

Figure 43: DIFF and
PSEL layers generated
by NP2DS1 rules



How the DRC Works: Layer Processing

DRC User Manual 73

Look at the rule set in Figure 44.   This rule
set performs a series of bloats and sub-
tractions when building the PSEL layer.
This results in a diagonal edge on the PSEL
shape that minimizes mask misalignment
problems.

This rule set could still be improved by
adding rules that test for the overlap of the
N and PSEL layers.  Also the
CUT_RESOLUTION rule should be added
to avoid potential mask problems.  These
and other DRC output layer post-
processing issues are covered next.

input layer{ 2 n;
   3 p;
}
output layer{ 42 diff;
  43 psel;
output layer{ 0 n1;
  0 p1;
}!these are reusable scratch
layers

diff = n or p;

n1 = bloat(n, 2.5);
p1 = p and not n1;
psel = bloat(p1, 2.5);

p1 = bloat(p, 0.5);
n1 = bloat(n, 0.5);
n1 = n1 and not p1;
psel = psel and not n1;

p1 = bloat(p, 1.0);
n1 = bloat(n, 1.0);
n1 = n1 and not p1;
psel = psel and not n1;

p1 = bloat(p, 1.5);
n1 = bloat(n, 1.5);
n1 = n1 and not p1;
psel = psel and not n1;

p1 = bloat(p, 2.0);
n1 = bloat(n, 2.0);
n1 = n1 and not p1;
psel = psel and not n1;

Figure 44: NP2DS2 rule set

DIFFPSEL

Figure 45: DIFF and
PSEL layers generated
by NP2DS2 rules



How the DRC Works: Layer Processing

74 DRC User Manual

Problem Shapes for Mask Generation

There are two special classes of polygons that are likely to cause problems for
mask processing software: bad polygons and acute angles.  If your design
contains these types of shapes, they should be fixed before your final design.

Bad Polygons

Bad polygons can be present in your input data, they will never be generated by
the DRC.  The DRC will by default locate all bad polygons on input layers
during preprocessing.

The simple definition of a bad polygon is a polygon with self-intersecting sides
that are not adjacent.  Let us visualize drawing a "good" polygon on a piece of
paper.  As your pencil draws the sides of the shape in a clockwise direction, the
inside area of the polygon should always be on the right.   Your pencil should
never cross an existing side.  The following types of polygons are all "bad".

"Bow tie" shapes: An example of this type of bad
polygon is shown in Figure 46.  Note that as
you trace the diagonal sides, the inside area of
the polygon shifts from the right side of the
line to the left side.  Mask processing software
will usually fail to generate the shape you
would expect from this type of data.  You
should draw this type of shape as two properly
drawn triangles that touch at a point.

Improperly drawn holes: When you create a
polygon with a hole in ICED™, the sides of the
hole must be connected to the sides on the
outside of the polygon.  If the sides cross so
that the edges of the hole and the outside
edges are both drawn in a clockwise direction,
the shape cannot be processed properly.  If
you visualize drawing this shape, you can see
that the inside area of the shape shifts from the
right of each edge to the left of the hole edges.

All input layers
are checked for
bad polygons by
default.  For this
reason, it is a
good idea to
define all mask
layers as input
layers, even if
they are not
verified by any
rules.

Figure 46: "Bow
tie" bad polygon

Figure 47:
Improperly drawn
hole



How the DRC Works: Layer Processing

DRC User Manual 75

Self-intersecting shapes: Letters are a common case of
this type of bad polygon.  When the interior area
of the polygon intersects itself and creates a hole,
most mask processing software will not create the
shape you expect.  Draw this type of shape
without intersecting sides.

Bad polygon shapes found as the input data is processed will
be reported in the log file, then copied to a special error layer.
This special layer is layer number 99 by default.   This layer
number can be changed to a different number with the
BAD_POLY rule.

Bad polygon shapes are not added to the error count. When bad polygons are
present, the console messages and the log file will both report warnings, but the
error count will not be incremented.

The copied bad polygon shapes are created in the subcell error command files
rather than the main DRC command file.  These files have a file name extension
of .ERR.  One subcell error command file is created for each subcell containing
errors that can be found without flattening the data.  One bad polygon in a
subcell used 100 times in the main cell will result in one error message, not 100
error messages.  One shape will be created in the corresponding subcell error
command file.  The shape is created in the coordinates of the subcell.  This
enables you to locate and correct the error while editing the subcell.

If you use the BAD_POLY rule to set the bad polygon layer number to 0, the
creation of shapes in the subcell error command files is suppressed.  No shapes
will be created to mark the error.  However, the log file will still contain warning
messages about bad polygons with the cell names and coordinates indicated.

By default, the DRC will locate bad polygons on all input layers defined in the
rule set.  If you prefer to have the DRC ignore input layers that are not actually
used in other rules, add the NO_CHECK_INPUT rule to your rule set.

Figure 48:
Self-
intersecting
shape



How the DRC Works: Layer Processing

76 DRC User Manual

All bad polygon shapes remain in the DRC database during the run.  They will
be used in layer generation and verification rules, however, a shape with an
improperly drawn hole will be handled as though the hole is not there.

Acute Angles

By default, the DRC marks on layer number 99 all acute angles on all output
layers.  This test is performed at the end of the DRC run when shapes are created
in the output files.  Shapes with acute angles that are not on output layers will
not be found.  If the NO_WARN_ACUTE rule is present in the rule set, this test
will not be performed.

This test is intended primarily to find acute angles that have been created
inadvertently by the DRC on mask layers.   There are two cases where shapes
with acute angles may be created from shapes that have no acute angles:

1) A horizontal or vertical panel boundary cuts a shape with skewed
sides.

2) A polygon with holes, or more than 199 vertices, has been cut into
multiple shapes to translate it into valid ICED™ polygons.

Both of these types of problems can be fixed by hand in the ICED™ layout editor.

The
WARN_ACUTE
rule can be used
to change the
layer number of
the acute angle
error marks.



How the DRC Works: Layer Processing

DRC User Manual 77

An example of case 1 is shown in Figure 49.
The polygon has been cut into two polygons
by a vertical panel boundary.  The new
polygon on the left has two acute angles.
These acute angles have been marked with
wires by the DRC.  This type of problem is
solved by joining the two polygons again
using the MERGE command in the ICED™
layout editor.

An example of case 2 is shown in
Figure 50.  A polygon with holes
has been created through layer
processing in the DRC run.  The
DRC must cut this shape into two
valid ICED™ shapes.  The bottom
polygon has two acute angles
marked with error wires by the
DRC.

This type of problem may require you to cut the polygons at other locations
(using the CUT command in the ICED™ layout editor) and join the polygons
(using the MERGE command)  in a different combination to avoid the sharp
angles.  In the case of Figure 50, two vertical cuts and two merges will allow you
to create polygons without acute angles.

Both acute protrusions and acute notches will be marked by the acute angle test.

The error wires are created on layer number 99 or the layer number specified in
the WARN_ACUTE rule.  The wires are created in the main output command
file.

The acute angle errors are not added to the DRC error count.   However,
error messages about the presence of acute angles found by the DRC are shown
in the console log and in the DRC log file near the error count.

Acute
angles

Panel boundary

Figure 49: Polygon cut by
panel boundary.

Figure 50: Polygon with holes cut by DRC
to be valid ICED™ shapes.



How the DRC Works: Layer Processing

78 DRC User Manual

Post-processing of Output Layers

The DRC must perform some post-processing of shapes on generated layers that
will cut shapes or distort their shape slightly.  This is an unavoidable result of
grid resolution issues and panel processing.

Some shapes cannot be represented in the ICED™ editor as simple polygons.  For
example, the ICED™ editor will not allow shapes with holes or shapes with more
than 199 vertices.  However, the DRC does not have these limitations.  When the
DRC creates polygons like these, they are used by other rules in their true shape.
It is only at output that these shapes are modified to be valid ICED™ polygons.

Shapes created by the DRC that cross panel boundaries are broken at the panel
boundaries during the DRC run.   If a shape crosses the vertical or horizontal
panel boundary at a skewed angle, there may be a tiny displacement of the vertex
coordinates where the shape is cut by the boundary to keep the vertices on grid.
Shapes that have been cut at the panel boundaries are not merged before output.
This can occasionally lead to the acute angles on output layers problem we have
just covered.  These cuts can also lead to vertex resolution problems.

The resolution grid used by the DRC is much finer than that used by the ICED™
layout editor.  Shapes on output layers may have their vertices shifted to lie on
the grid used by the layout editor.

See other
examples of this
problem on
page 131.



How the DRC Works: Layer Processing

DRC User Manual 79

Resolution Grids

There are two different resolution grids involved
when using the DRC.  A resolution grid is defined
as valid points a certain integral number of units
away in the x or y directions from an origin point.
The coordinate data for every vertex must be
expressed in terms of points on the resolution
grid.

The resolution grid used by the DRC is much
finer than the resolution grid used by the ICED™
layout editor.  The DRC resolution grid is usually
16 times finer, but very large designs may require
a coarser grid.  This allows the DRC to resolve
the results of intersections much more accurately.

Since the DRC uses a finer grid than the ICED™ layout editor, shapes created by
bloats, shrinks, or intersections of skewed sides in the DRC may have vertices
that are not on the ICED™ grid.  When these shapes are created in the output data,
they must be snapped to the nearest point on the ICED™ grid.

For example, let us say that the ICED™ grid has a .0001 user unit resolution.
(This is a typical value.)  If your design rules call for a bloat smaller than .0001,
say .00005, the DRC can perform this operation with valid results.  However,
when you output this layer, the vertices must be snapped to the ICED™ grid.
Some sides will wind up shifted by .0001, other sides will be shifted back to
their original location before the bloat.

Another example of the different resolution grids is when a shape with a skewed
side (a side that is neither vertical nor horizontal) is cut in two by a panel
boundary.  The exact location of the new vertices must be rounded to lie on the
DRC resolution grid.  This can lead to a bend in the skewed side.

Origin

One
unit

Figure 51: Resolution grid



How the DRC Works: Layer Processing

80 DRC User Manual

Look at Figure 52.  Let us say that the small dots represent the DRC resolution
grid and that the crosses represent the ICED™ grid.  When the shape on the left
with the skewed side is cut by a vertical panel boundary, the y-coordinates of the
new vertices must be rounded to lie on the DRC grid.  This has led to a bend in
the skewed side.   This bend will remain in the data during the DRC run.  When
the shapes are output as ICED™ data, the vertices are resolved to lie on the ICED™
grid.   In this case, resolving the data to the courser grid has removed the bend.
In some cases, resolving the data to the new grid will make the problem worse.

Now let us suppose that the bend has resulted in errors from verification rules.
When you look at the output data, you see no bend.  The fact that the shapes that
are checked are not the same shapes in the output data can lead to some
confusing errors.  This is a result of the greater accuracy of the DRC data than
the layout data.

Shape in DRC
database

Shape cut in two
by panel boundary

Shapes resolved to
ICED32™ grid

Panel boundary

Figure 52: Shape with skewed side cut by a panel boundary then resolved to ICED™ grid



How the DRC Works: Layer Processing

DRC User Manual 81

Another example of this type of problem is a shape generated during the DRC
run that is very thin sliver.  If this sliver is less than one ICED™ database unit
wide, the sliver will disappear in the output data.  If the sliver violated minimum
width or minimum spacing rule checks, it can be difficult to determine why the
error is there.

One way to avoid these mysterious errors is to resolve shapes on the problem
layers to the ICED™ grid before you test them with design rules.  The SNAP and
SNAP45 rules can be used for this purpose.

The SNAP and SNAP45 rules can be used to snap vertex data to any desired
grid.  This can result in the distortion of shapes.  Portions of shapes that are
collapsed to zero width will disappear without warning.  Sides that are not
horizontal or vertical will often have their slope changed somewhat.  The
SNAP45 rule differs from the SNAP rule in that sides at 45º angles will have
their slope preserved.  This often requires the addition of vertices that add ledges
or cut off corners.

Shapes that are cut by the DRC to create valid ICED™ polygons, or that are cut at
panel boundaries, may have off-grid vertices.  (See an example on page 77.)
You can prevent this problem with the optional CUT_RESOLUTION rule.

One last rule that can help you find grid resolution problems is the OFF_GRID
rule.  This rule will mark as errors all polygons with vertices that are not on a
specific grid.

Keep in mind that touching shapes are merged by the DRC before any of these
rules are executed.  If touching shapes share off-grid edges that disappear when
the shapes are merged, the merged shape may have no off-grid edges.  In this
case, the OFF_GRID, SNAP, and SNAP45 rules will not flag the merged shape
as having off-grid vertices.



How the DRC Works: Layer Processing

82 DRC User Manual

Recommended Procedure for Writing Rules to Generate Mask Layers

Use the following checklist when generating mask layers:

Write a simple version of the rules first to test the process.

Run a test case using a subset of your design to debug and revise the rule
set until you are generating the layers you require.

Add SNAP or SNAP45 rules to resolve shapes on new layers to the ICED™
grid before testing them with verification rules.

Add DRC design rule verification checks for the new mask layers to insure
that no violations are being generated.

Add the CUT_RESOLUTION rule to force cut lines to be on the ICED™
grid.

Insure that no NO_WARN_ACUTE rule is in the rule set.  Remove the
BAD_POLY=0 rule if it is present in your rule set.

Run the rule set on your whole chip and carefully inspect the results for
unusual cases you may not have considered when writing the rule set.

Always use the SLOW option on the DRC program command line to
insure correct layer generation.

If you will be generating mask shapes from a nested design:

Read about hierarchical output to create the DRC output data in
nested cells that can be imported into each of your original cells.

Read about dangerous processing to generate more shapes in nested
cells.  Be sure to carefully look at and resolve any DANGER
warnings in the log file.  (See page 136.)



How the DRC Works: Layer Processing

DRC User Manual 83

Subject Importance Page
Grid resolution Issues important to placement of vertices on a grid

acceptable to mask processing software
79

Panel processing Issues important to why shapes are cut at panel
boundaries

118

Hierarchical
processing

Method to follow if you want to generate output data
with the nested cell structure of the input data

146

Example of
hierarchical
processing

Detailed example of generating a layer hierarchically 418

BAD_POLY rule Sets the layer number for shapes that mark bad
polygons on input layers

189

CUT_RESOLUTION
rule

Define grid for shapes cut by the DRC 205

NO_CHECK_INPUT Avoid marking bad polygons on unused layers 276

OFF_GRID rule Classify as errors shapes that have vertices off of the
specified grid

282

SNAP rule Relocate vertices on resolution grid 304

SNAP45 rule Relocate vertices on resolution grid preserving slope of
45º angles

306

WARN_ACUTE rule Determines output layer for  acute angle markers 313

NO_WARN_ACUTE
rule

Disables acute angle test 280

DRC command file Details on how to import shapes on output layers into
layout editor.

365

Subcell command
files

Command files that create shapes marking
BAD_POLY errors in subcells

375

Figure 53: References for output layer generation issues



How the DRC Works: Spacing Verification

84 DRC User Manual

Spacing Verification

Spacing errors between shapes are checked with the MIN_SPACING rule.

The MIN_SPACING rule is one of the DRC rules that checks and marks sides of
shapes rather than entire shapes.  Violations of this rule create wire shapes that
mark the portions of sides that are too close to each other.  These violations are
automatically added to the error count.

The DRC minimum spacing algorithm checks the distance between the vertices
of one shape to the sides of other shapes.   If no vertex is too close to a side, no
error will be found.

When shapes do not overlap, minimum spacing violations are always found.
Unless the QUICK_SPACING option is used on the DRC command line, there is
no way for two non-overlapping shapes to be within a minimum distance of each
other and not have a vertex be within the minimum distance. (We will cover the
QUICK_SPACING option a little later on page 100.)

When shapes do overlap, it is common sense to assume that they violate a
minimum distance rule, since they touch.  However, since the MIN_SPACING
rule uses vertex data, overlapping shapes may not violate the rule.  Two sides
can cross each other with no vertex within the minimum distance.

The MAX-
_SPACING
rules classifies
shapes by how
far away they
are from other
shapes rather
than marking
errors.



How the DRC Works: Spacing Verification

DRC User Manual 85

There are two cases of this quirk of minimum spacing:

Enclosure: one shape is covered by another.

Crossing shapes: one shape crosses another.

Using Rules Other Than MIN_SPACING to Mark Spacing Problems

Overlaps and enclosed shapes

Unless a vertex of one shape is within the minimum distance of a side of the
other, shapes like those above will not be marked.  Fortunately, when
overlapping shapes are always considered minimum space violations, there is an
easy way to find them.  Use the AND rule.  The AND rule will mark all cases
where shapes on two layers overlap with a non-zero common area.

Example: OUTPUT ERROR LAYER  101 ABCROSS

ABCROSS = A  AND  B

The AND rule above will create shapes on layer ABCROSS wherever a shape on
layer A overlaps a shapes on layer B with non-zero area.  These shapes will be
counted as errors since the ERROR keyword is used in the layer definition
statement for layer ABCROSS.  If the ERROR keyword was not used, shapes
on ABCROSS would not be counted as errors.

Figure 54: One shape
enclosing another

Figure 55: Crossing shapes



How the DRC Works: Spacing Verification

86 DRC User Manual

If overlaps are not always errors, you may need to use other rules to find errors
when shapes can overlap.

Let us say that enclosure of shapes on one
layer by the other is acceptable.  However,
shapes like the one in Figure 56 are not.  A
MIN_SPACING rule will not mark this
relationship as an error unless a vertex of one
shape is too close to a side of the other.
However, the following Boolean rule will
place on layer ERR all shapes on layer A that
are not enclosed by layer B.

Example: ERR = A AND NOT B

Remember to define layer ERR as an error layer so that shapes on that layer are
counted as errors.

By default, coincident edges are considered violations by the MINSPACING
rule.  However, you can inadvertently prevent
them from being found by adding keywords to
the rule.  The Boolean rules above will not find
errors like coincident edges.  When incomplete
enclosure with a coincident edge (as seen in
Figure 57) is a violation, it is highly recommend
to add rules similar to the following to find
problems like this and the one shown in Figure
56.

Example: NOTB = NOT B
ERR = A TOUCHING NOTB

Figure 56: Overlapping
shapes that may not be
marked by MIN_SPACING
rule.

Figure 57: Incomplete
enclosure.



How the DRC Works: Spacing Verification

DRC User Manual 87

Let us make this example a little more complicated by saying that layer A is
contact layer that is valid when covered by a shape on either layer C or layer B.
So the example above will mark many valid A layer contacts to layer C as errors.
To avoid marking layer C contacts as false errors, rewrite the rules as follows:

Example: BC = B  OR  C
NOTBC = NOT  BC
ERR = A  TOUCHING  NOTBC

Notches in serpentine or fingered shapes

The MIN_NOTCH rule can be a very important addition
to a MIN_SPACING rule when you need to find spacing
errors between shapes on the same layer.  Consider Figure
58.  The long wire folds back on itself and two sides are
very close each other.  This is a notch in a single shape
rather than a spacing error between shapes.

A MIN_SPACING rule will not mark this as an error.  If
your design rules consider this an error, you should add a
MIN_NOTCH rule to find such errors.

Remember that all touching shapes on a single layer are merged during DRC
preprocessing.  So even if a spacing problem like the one in Figure 58 is caused
by two separate wires on the same layer, to the DRC it will be a single shape
with a notch rather than a MIN_SPACING error.

Problems similar to the one above are common in complex chips where many
pieces of wire are merged into single polygons before the DRC performs a
spacing check.  If the DRC seems to have missed a spacing violation of this
nature, add an equivalent MIN_NOTCH rule and retest.

Figure 58: Notch,
not MINSPACING
error.

An overview on
notches is
covered on page
103.



How the DRC Works: Spacing Verification

88 DRC User Manual

Simple Spacing Checks

Now that we have covered what the MIN_SPACING rule does not check, we
will go on to what the rule does check.

error_layer = MIN_SPACING  ( from_layer,   to_layer,   distance)

This is the simplest form of the syntax for the MIN_SPACING rule.  When
written this way, all sides of shapes on the from_layer must be at least distance
away from sides of shapes on the to_layer.   Sides that are less than distance
away will have error wires created for them on error_layer along the portion of
the sides that are in violation.  Sides that are exactly distance away will not be
marked.

Example: ERR = MINSPACING (A, B, 2)

This rule will verify that all sides of shapes
on layer A are at least 2 user units away
from sides of shapes on layer B.  All
portions of sides that are closer than 2 user
units will be marked with error wires on
layer ERR.  This layer will automatically be
classified as an error layer.  All shapes on
layer ERR will be added to the error count.

Note that the underscore ('_') can be left out of the MIN_SPACING keyword.
Underscores are always optional in DRC rule keywords.

The from_layer can be the same as the to_layer in the MIN_SPACING rule.  In
this case any two shapes on the same layer that are too close together will be
marked with errors.

Example: ERR = MINSPACING (A, A, 2)

Figure 59: Error wires created
for shapes closer than 2 units.



How the DRC Works: Spacing Verification

DRC User Manual 89

Optional Keywords to Reduce False Errors

Design rules often allow shapes to be closer than the minimum distance in
special circumstances.  Perhaps the minimum distance rule applies only if the
shape on one layer is inside or outside the other layer.  Perhaps only parallel
sides must be the minimum distance apart and crossing sides are not violations.

If you do not write the spacing rules to take these extra criteria into account, you
will see many false errors.  Ignoring false errors is a dangerous thing to do.  Real
errors can be easily missed.

The DRC provides several keywords to narrow the search for violations.  In
addition you can use Boolean rules or rules that classify shapes by size or
touching criteria to isolate certain shapes on a separate layer prior to applying
the MIN_SPACING rule.

Directional Spacing

The /IN and /OUT keywords are used
to change a simple spacing check into a
directional spacing check.  When these
keywords are used, the spacing criteria
changes so that only sides that are
found toward the inside or outside of
shapes on the indicated layer are
candidates for violations.

Example: ERR=MIN_SPACING( A, B/IN, 2)

When the above rule is run on the
shapes in Figure 60, only the layer A
shape toward the inside of the B shape
is considered for errors.  The layer A
shape on the outside of the B shape is
ignored.

See page 65 for
an example of
separating wires
by size before
applying
spacing checks
that depend on
wire width.

A B

Figure 60: When B/IN is used, only
shapes toward inside of B shape
sides are marked.

Adding /IN or
/OUT to a
MINSPACING
rule can prevent
coincident
edges from
being marked as
errors. See the
following
examples.



How the DRC Works: Spacing Verification

90 DRC User Manual

Now look at Figure 61.  The same rule has been run on
these shapes.  You can see that the shapes do not have
to overlap for a spacing violation to be found.  When
looking toward the inside of the layer B shape, the
indicated side is closer than 1 unit to the indicated side
of the A shape.

When the same rule
above is run on the
shapes in Figure 62, you
might think that both
shapes with coincident
edges would be marked
as errors.  Both boxes on

layer A share an edge with the edge of the layer B
shape.  Therefore, the distance between these sides
and the B shape side is exactly the same.
However, only the top layer A shape is marked.
This is because the B/IN specification means that
only shapes with area toward the inside of layer B
shapes are considered for violations.

Coincident edges must be considered when writing
MIN_SPACING rules.  If the lower shape in
Figure 62 does violate the rules, the /IN specification should not be used, or
another method (similar to the TOUCHING rule examples on page 86) should be
used to find it.

For our next example, let us say that you need to verify that shapes on layer A
that are enclosed by layer B need a 10 user unit border of layer B on all sides.
However, layer A shapes that are outside of layer B shapes do not need to be this
far away.  Shapes on layer A that cross a layer B boundary, so that at least some
non-zero area is outside of layer B should not be marked as errors.

The layout data we will use for this example is a slightly modified version of the
ENCL.CEL file included with the installation.  The first rule set we use is the
ENCLOSUR.RUL file that is also included in the installation.

Figure 61: The
shapes do not need to
overlap for the /IN
keyword to find
errors.

A B

Figure 62: When B/IN is
used, only shape with
area toward inside of B
shape is marked.



How the DRC Works: Spacing Verification

DRC User Manual 91

Example: TOO_CLOSE = MINSPACING  (A/OUT,  B/IN, 10);

The A/OUT specification
means that only layer B
sides that are found while
looking out from layer A
can be marked as errors.
This is represented by the
dashed vectors in Figure
63.  The B/IN specifica-
tion allows the DRC to
look only toward the in-
side of layer B sides.
This is represented by the
solid vectors.  (We have
omitted the vertical
direction for the sake of
simplicity.)

Shape number 1 will not
be marked because the
DRC is looking for errors
only toward the inside of
the layer B edge.  Shape number 2 will not be marked because the DRC will
search for errors only looking outward from the outside edges of the shape.  No
edges of the layer B shape are within 10 units in either direction.

Therefore, it looks like this MIN_SPACING rule will prevent the false errors we
needed it to.  We will test it on the layout in a moment.

In general the direction vectors for two edges must point toward each other for
the DRC to find the error.   We can see that the vectors point toward each other
for the right edge of shape 4.   The DRC will mark an error for this edge.

But how about shape 3?  The direction vectors go in opposite directions, but they
point away from each other, not toward each other.  The DRC will not see
shape 3 as an error.

1

B

2

3
4

A
10 units

Figure 63: Modified ENCL.CEL file with arrows
showing how the DRC will search for sides in
violation.



How the DRC Works: Spacing Verification

92 DRC User Manual

From Figure 64 we can
see that shape 3 is not
marked by the MIN-
_SPACING rule.  This
is an important side
effect of directional
spacing verification.  If
you instruct the DRC to
look only inside or
outside of shapes for
errors, coincident
edges may not be
found.

If we remove the /OUT
specification from the A
layer, the DRC will
mark the coincident
edge of shape 3,
however, the right edge of shape 2 will now be marked as an error.

(You may wonder why the crossing and perpendicular sides of shapes 2, 3, and 4
are not marked with error wires.  This is due to the fact that the DRC treats these
types of sides differently when directional spacing checks are performed.  We
will cover this later when we cover the orientation options.)

The best way to verify incomplete enclosure due to coincident edges is to add a
TOUCHING rule.  In this case, we want to find shapes on A that are covered by
layer B, but touch area that is not layer A or layer B.

1

B

2

3
4

A
10 units

Figure 64: Modified ENCL.CEL with error marks
from MINSPACING (A/OUT,  B/IN, 10) rule.



How the DRC Works: Spacing Verification

DRC User Manual 93

Figure 65 shows the rules
we have added to the
ENCLOSUR.RUL file to
find incomplete enclo-
sures due to coincident
edges.

The three layer generation
rules will find all shapes
on layer A that are
covered by layer B and touch, but do not cross, the boundary of a layer B shape.

If we used a TOUCHING rule that
tested the NOT_B layer (as used in
a previous example) rather than the
NOT_AB layer, then shape 2 would
be marked as an error as well.

Since we will find shapes like
shape 3 with a TOUCHING rule,
we must be sure to add the ERROR
keyword to the OUTPUT LAYER
rule that defines the result layer for
the TOUCHING rule.   Otherwise,
shapes on that layer will not be
counted as errors.  The AANDB
and NOT_AB layers are defined
with layer number 0.  This means
that they are really scratch layers
and shapes on those layers will not
be included in the output command file.

Side-side angle exceptions– Beta test only!

New with beta version 113.65 of the DRC is the AWAY option of the
MIN_SPACING rule. This option is particularly useful if wires that leave a

OUTPUT ERROR LAYER 4 COINCIDENT;
OUTPUT LAYER  0 AANDB; 0 NOT_AB;

NOT_AB = NOT A AND NOT B
AANDB = A AND B
COINCIDENT = AANDB TOUCHING NOT_AB

Figure 65: Extra rules to find coincident layer A
shapes.

1

B

2

3

4

A
10 units

Figure 66: Modified ENCL.CEL with
error marks from MINSPACING rule
and TOUCHING rule.



How the DRC Works: Spacing Verification

94 DRC User Manual

shape at an angle should not be marked as errors, but parallel wires should be
marked if they are too close.

The AWAY option restricts errors to non-overlapping pairs of sides that are less
than a certain angle apart.  The AWAY option should be added to only one layer
specification.  We will call this layer the away_layer in this discussion.

Side-side pairs that are within distance of each other will be not be marked as
errors when both of the following conditions are met:

1) The side on the away_layer is within the specified number of sides
away from the intersecting side on the other layer that is too close.

2) The angle between the sides is greater than the specified angle.

Let us consider the example shown
in Figure 67.  (This geometry is
stored in the AWAY.CEL file
supplied with the beta version
update.)  Let us assume that we need
to find sides of layer B that are
within 20 user units of sides of layer
A shapes.  However, we consider
only parallel sides within this
distance as true errors.  We want to
mark only sides 3 and 4.
Perpendicular side pairs and sides at
a 45º angle are permitted and should
not be marked as errors.

The perpendicular sides 5 and 6
could be prevented from being
marked as errors by adding the /~P
option to the rule.  You could
prevent marking the crossing sides
with the /~CROSS option.  The layer B sides within the layer A shape can be
prevented from being considered as errors by adding the /OUT option to the
layer A specification in the MIN_SPACING rule.

When both
shapes are on
the same layer,
the AWAY
option does not
apply.  Refer to
the
MIN_NOTCH
rule.  Also see
pages 87 and
103.

A
B

1
2

43

5

6

Figure 67: AWAY.CEL



How the DRC Works: Spacing Verification

DRC User Manual 95

Without the AWAY option, there is no way to prevent sides 1 and 2 from being
marked as errors.  However, when we use the AWAY option in the
MIN_SPACING rule we can prevent the DRC from marking sides 1 and 2.  Then
the DRC will mark only sides 3 and 4 as errors.

Beta Test Warning

The new algorithms required to implement the AWAY option required changes
to the MIN_SPACING algorithms.  You should verify the results of all
MIN_SPACING rules tested with this beta version.  This includes the results of
MIN_SPACING rules that do not use the AWAY option.  Verify all
MIN_SPACING results produced by this beta version against the results of the
released version.

If the results of any MIN_SPACING rules are different between the versions,
please contact IC Editors.

We do run a test suite comparing the new and old versions before we
post a beta version.  But just because our cases worked, that doesn't
mean yours will.

End Caps

One more optional parameter applies only to the layer it follows.  The
/CAP=angle parameter is used to avoid marking sides that lie within the end cap
of a side on the indicated layer.  The angle must be in the range 90:180.  The
angle is measured from the edge.



How the DRC Works: Spacing Verification

96 DRC User Manual

Let us first consider the region
checked for various values of the
cap angle for a given single side.
You can see from Figure 68 that
when the cap angle is 180º, the
entire region around the side is
checked.  This is the default when
no /CAP keyword is used.

When the cap angle is set to 90º,
only sides on the other layer that are
within the shaded area shown will
be considered errors.

When you consider all sides of a given
shape, remember that each side has an end
cap.  See Figure 69 for the region checked
around a rectangle when the cap angle is
set to 90º.  Only sides of shapes on the
other layer that are in this region will be
marked as errors.

You can combine the /IN or /OUT
specifications with a cap angle
specification.

Example: ERR=MINSPACING(A, …
… B/OUT /CAP=90 , 1)

When both the /OUT and /CAP=90
options are added to the layer B
specification, the region checked will
look like Figure 70.

180º

180º

Area checked

135º

135º

90º

90º

Figure 68: Region around a single side
that is checked when various cap angles
are set.

Area checked

90º

90º

Figure 69: Region around a
rectangle that is checked when
/CAP=90 is used.

Area checked

90º

90º

Figure 70: Region checked with
/OUT and /CAP=90 options.



How the DRC Works: Spacing Verification

DRC User Manual 97

Orientation Options

These MIN_SPACING options can prevent side-side pairs from being
considered errors based on the orientation of the sides with each other.  These
criteria are applied after the directional and end cap criteria are applied.

Each of the orientation
options is set in every
MIN_SPACING rule.
Only when the option is
preceded with a '~', will
side-side pairs in that
orientation be prevented
from being considered
errors.  For simple
spacing checks, the de-
fault is to consider all of
these orientations as er-
rors.  However, direc-
tional spacing checks
(any MINSPACING
rules that use /IN or
/OUT keywords) will by
default not mark as er-
rors crossing, t-intersec-
tion or perpendicular
side-side relationships.
If you consider one or
more of these relation-
ships to be errors in a directional spacing rule, you must override the defaults.

Overlap

T-intersection

Perpendicular

End-to-end

Crossing

Figure 71: Various side-side orientation
relationships.



How the DRC Works: Spacing Verification

98 DRC User Manual

Example: ERR=MINSPACING(A, B ,1.1 /~CROSS)

When this rule is run on the shapes shown in Figure 72,
violations between sides that cross will not be marked.  Only
the parallel sides closer than 1.1 units will be marked.  If the
/~CROSS option was not used the vertical sides of the cross-
hatched wire would be marked where they cross the other wire.

One pair of sides may have more than one relationship.  If one
of these relationships is indicated with a '~' in the
MIN_SPACING rule, that is enough for the pair to not be considered an error.

A side that is eliminated as an error from one pair due to the orientation options
may still be in error with a different side.

The exact definitions of the various orientations are:

Crossing intersections: Intersections where the sides share a single
point and at least one side continues on both sides of the point of
intersection.  The sides cannot meet at 0º or 180º; i.e. the sides
cannot overlap or meet end-to-end.

T-intersections: The sides must share a single point and that must be the
end point of one of the sides.  The sides cannot overlap or meet
end-to-end.

Perpendicular relationships: The sides must be exactly 90º from each
other.  The sides do not need to intersect.

Overlaps:  The sides must share a non-zero length.

End-to-end intersections: The end points of the sides meet and the
sides are at 180º from each other.

Figure 72:
/~CROSS

If you have
difficulty
determining
why a side is
marked, turn on
detailed
logging.  See
page 50.

Many examples
of these types of
intersections are
provided in the
syntax
description of
the MIN-
_SPACING
rule.  See page
252.



How the DRC Works: Spacing Verification

DRC User Manual 99

Electrical Connection Criteria

If you define how electrical connections between layers are formed in your
layout, the DRC can tell which shapes are electrically connected.   When you
add the /CONN option to a MINSPACING rule, only shapes that are electrically
connected will be considered as potential errors.  When you add the /~CONN
option, only shapes that are not electrically connected will be considered
potential errors.

The default DRC behavior is to check spacing between both electrically
connected and unconnected shapes.

If electrical connections are a criteria in your spacing check, you need to define
electrical connections with CONNECT rules.

The QUICK_PASS command line parameter must not be used when you want
electrical connection criteria to be applied. If you do use the QUICK_PASS
algorithms, the electrical connection criteria are ignored without warning.

Error Wire Length Criteria

Some spacing rules allow two shapes to be closer than the minimum distance if
the length of the sides in violation is shorter than a minimum length.  When short
spacing errors are false errors, you can use the /LENGTH option of the
MIN_SPACING rule to discard error wires that are shorter than a specified
length.  The discarded error wires are not added to the error count.

Using this feature can result in
unpaired error wires.

Example: ERR=MIN_SPACING …
…(A, A, 2 /LENGTH=4)

When this rule is run on the
shapes in Figure 73, the two
boxes on the top are in
violation with the long box

Figure 73: Unpaired error wire.



How the DRC Works: Spacing Verification

100 DRC User Manual

below.  However, the error wires that indicate which sides are in violation for the
two top boxes are shorter than 4 units.  They are discarded by the DRC.  The
longer error wire on the long box is kept.

When it is difficult to determine why a single side is marked when you have used
length criteria, you can turn on detailed logging to list each pair of sides in error.
Errors that are discarded due to length criteria are still listed in the messages in
the log file when detailed logging is enabled.

When you use error length criteria in any MINSPACING rule, the DRC will
automatically invoke the slower spacing check algorithms.   If you override this
default by using the QUICK_SPACING command line option, you may prevent
errors from being found.  We cover this subject next.

QUICK_SPACING Algorithm

The DRC can use one of two different algorithms for verifying MIN_SPACING
rules.  The DRC will automatically choose the algorithm based on the contents
of your rule set and whether or not the entire design is being checked.

The faster algorithm will be chosen automatically if it can not cause errors to be
missed.  Using this algorithm can reduce processing time on the order of 10%.

When the faster algorithm may cause errors to be missed, the DRC will
automatically use the slower algorithm.  However, you can override this
behavior by adding the QUICK_SPACING keyword to the DRC command line.



How the DRC Works: Spacing Verification

DRC User Manual 101

The type of error that
may be missed involves
vertices of shapes that
occur outside of the area
being checked.  Look at
Figure 74.  Let us say
that these two shapes
violate a MINSPACING
rule.  However, since the
vertices lie outside of the
area checked, the quicker
spacing algorithm will miss the error.

There are two situations where the faster spacing algorithm may miss errors:

The design area verified is limited by the LEFT, RIGHT, TOP, or
BOTTOM keywords on the DRC command line.

The area checked is the current panel, including the border.  The error
would be caught in the panels to the left and right.  However, if the
/LENGTH option is used in the MIN_SPACING rule, the errors may be
missed due to being too short in the panels on the left and right.

If you will be performing several DRC runs on your design, you can add the
QUICK_SPACING option to some runs to save time.  However, your final runs
should not use this option or errors like the one above may be missed.

Area checked

Figure 74: Shapes with vertices outside area
checked.



How the DRC Works: Spacing Verification

102 DRC User Manual

Subject Importance Page
MIN_SPACING rule DRC rule to verify distance between different

shapes
252

Example of
separating wires by
size

Sample method to follow when you need to
apply different MIN_SPACING rules to
irregular shapes on a layer based on size.

65

Electrical
Connections

Overview of defining electrical connections
to restrict spacing errors

110

Advance tutorial
examples

Simple spacing example
Directional spacing examples
Using TOUCHING test for enclosure
Electrical criteria example

381
391
397
402

CONNECT rule Syntax of rule to define electrical
connections

200

QUICK_PASS
command line option

Causes the DRC to ignore electrical
connection criteria in a MIN_SPACING rule

129 and
337

QUICK_SPACING
command line option

Can cause the DRC to miss MIN_SPACING
errors in rare cases

338

Command file
description

Hints on using layout editor commands to
make error wires easier to see

365

Detailed logging Add coordinates of specific pairs of sides
marked by MIN_SPACING rules to log file

50

Figure 75: References for spacing verification



How the DRC Works: Other Verification Rules

DRC User Manual 103

Other Verification Rules

These rules automatically add all shapes
created to the error count in the same
manner as the MIN_SPACING rule.

Width and Notch Verification

The MIN_WIDTH and MIN_NOTCH rules
are very similar rules to test minimum
distances within single shapes.
MIN_WIDTH verifies the distance between
all non-adjacent sides of a given shape
where the distance is measured through the
material.  The MIN_NOTCH rule verifies
the distance between all non-adjacent sides
of a given shape where the distance is
measured through a gap in the material

DRC Definition of Width

The exact DRC definition of the width of
polygons is surprisingly complex.  It
helps to visualize tracing the sides of a
polygon like the one in Figure 77.  Begin
at one vertex of polygon, trace clockwise
around each side indicating the sense of
direction of each edge.   The DRC will
search for edges in violation of the width
restriction only to the right of each edge,
toward the interior of the polygon.

Width

Notch
width

Figure 76: Example of width
and notch measurement

Figure 77: Edges of polygon with
directions marked.



How the DRC Works: Other Verification Rules

104 DRC User Manual

Edge A has a width violation to edge B when all of following conditions are met:

1) The edges are closer than the distance specified in the MIN_WIDTH
rule.  (Sides exactly this distance apart are not marked.)

2) The edges do not share a vertex (i.e. adjacent sides cannot have a
width violation.)

3) Edge B is located toward the interior of the polygon from edge A.
Remember that the DRC will look only to the right of the edge in
question.

4) The angle between the sense-of-direction vectors for each edge must
be greater than 90º.

Let us cover some examples that demonstrate conditions 2 through 4. (Number 1
is fairly easy to understand.)

Condition number 2 can be illustrated
with angular protrusions.  Look at the
polygon in Figure 78.  The protrusion on
the left has a bisecting side, and the
protrusion on the right is formed from
adjacent sides.  The protrusion on the left
will be marked by the MIN_WIDTH rule
if these sides are closer than the distance
specified.  However, the protrusion on
the right will not be marked by the
MIN_WIDTH rule.

The reason for this condition is that if the program tested distance between
adjacent sides, every corner of every polygon could be marked as an error.  This
would definitely be undesirable.

Figure 78: Polygon with angular
protrusions.

The
MIN_ANGLE
or
WARN_ACUTE
rules can be
used to find
protrusions like
the one on the
right.



How the DRC Works: Other Verification Rules

DRC User Manual 105

Our next example demonstrates some
of the ideas behind conditions 3 and
4.  Side 1 in Figure 79 may see side 2
as a violation since it is located
toward the interior of side 1.
However, it will not be marked due
to condition 4.  These sides are at 0º
from each other.

Condition 4 will also prevent width
violations from being
marked for cut-off
perpendicular corners.
Most users would agree
that the cut-off 90º
corner of the shape on
the left does not
represent a minimum
width error.  However,
it passes conditions 1,2,
and 3 of the width test.
It is condition number 4
that prevents it from
being a width violation.

The shape on the right is
a different story.  This
type of cut-off corner does represent a width violation.  If you have forgotten
how to measure the angle between vectors, remember that you relocate the
vectors to align their bases before you measure the angle.  When you do this, you
can see that the angle between these sides is greater than 90º.

2

1

Figure 79: Polygon with non-adjacent
sides at 0º.

Figure 80: Two polygons with cut-off corners.
Only the one on the right will be marked as a
width violation since the angle between the sides is
greater than 90º.



How the DRC Works: Other Verification Rules

106 DRC User Manual

DRC Definition of Notch

The DRC definition of a notch is identical to the definition of width, except for
condition 3.  Now the DRC searches only to the left of each edge, toward the
exterior of the polygon.

Angular notches have the same restriction
as angular protrusions.  If they are formed
from adjacent sides, they will not be
marked by the MIN_NOTCH rule.   
However, if there is a bisecting side like
the notch on the left of Figure 81, the
notch will be verified by the
MIN_NOTCH rule.

Our next
example deals
with holes.  Look at Figure 82.  The shape on the top
has an enclosed hole.  The ICED™ layout editor cannot
represent a shape with a hole unless the polygon has
sides that connect the inside hole to the outside edges.
You may think that the DRC will consider this a notch
with a distance of 0 and mark it as an error.  However,
the internal representation in the DRC does not use
such construction lines to connect holes to the outer
boundary.  The DRC layer preprocessing removes the
unnecessary sides of the top shape that connect the
inside edges with the outside edges. The DRC will test
the top shape as an unseamed
shape with a hole so the
MIN_NOTCH rule will not
mark it as an error.  The shape
in the bottom does have a notch
that will be verified by the
MIN_NOTCH rule.

Figure 81: Two notches.  Only the
one on the left will be found by
MIN_NOTCH rule.

The
MAX_ANGLE
or
WARN_ACUTE
rules can be
used to find
angular notches
like the one on
the right.
Find holes with
the ISLANDS
or
HOLE_AREA_
FRACTION
rules.

See page 130
for an example
of a notch that
will not be
found when the
QUICK_PASS
option is used
on the DRC
command line.

Figure 82: One
enclosed hole and one
open-ended hole with
notch.

Figure 83: Notch,
not MINSPACING
error.



How the DRC Works: Other Verification Rules

DRC User Manual 107

Angular Notches and Protrusions

The MIN_ANGLE and MAX_ANGLE rules are used to find acute angles on
shapes on specific layers.   The MIN_ANGLE rule will find angular protrusions,
while MAX_ANGLE will find angular notches.

Both rules measure the angle in
the interior of the polygon.
The MIN_ANGLE rule will
mark all angles less than the
angle specified in the rule.  Use a
value less than 90º to find only
acute angular protrusions.

The MAX_ANGLE rule will
mark all angles greater than the
specified angle.  Find acute
angular notches by using a value
greater than 270º but less than
360º.

Minimum Area and Side Length

MIN_AREA

Some design rules define a minimum area for shapes on a given layer in addition
to (or instead of) minimum width restrictions.  This can be verified in the DRC
with the MIN_AREA rule.

45º

Acute angular
protrusion

Acute angular
notch

45º

315º

Figure 84: Acute angular protrusion and
notch.



How the DRC Works: Other Verification Rules

108 DRC User Manual

The MIN_AREA rule has a required
parameter to determine how false errors
due to panel boundaries will be
prevented.  If several touching shapes
travel across panel boundaries, only the
shapes in the current panel and neighbor
panels are merged.  If a shape is marked
as an error by the MIN_AREA rule only
because pieces of it are not merged due to panel boundaries, this is a false error.
See the syntax of the MIN_AREA rule (page 243) and the discussion of panel
borders (page 124) for examples of how to avoid these false errors.

While this rule is usually used as a verification rule where the shapes on the
result layer are output to mark errors and added to the error count, you can
instead use it as a filter to find small shapes without marking them as errors.
See the example on page 66.

The MIN_AREA rule can be used as a filter because it generates shapes with a
polygon geometric basis.  The DRC can use these shapes in other rules in the
same manner as any other rule that generates polygons.  The shapes created by
rules that generate wires cannot be used this way.   Layers that contain wire
shapes cannot be used on the right side of the '=' in any other rule.

Remember that the DRC contains other rules to classify shapes by size.  The
BOUNDS and IS_BOX rules both filter small shapes.  If you want shapes
generated by these rules to be counted as errors you must define the result layers
with the ERROR keyword.

MIN_SIDE

The MIN_SIDE rule will mark all sides of polygons on the indicated layer that
are less than the indicated length.

The MIN_SIDE rule cannot be used as a filter for isolating shapes that are
verified by other rules.  It generates wire shapes to mark sides.  The result-layer
generated by the MIN_SIDE rule cannot be used by any other rule.  Shapes on
the result-layer will automatically be added to the error count.

Figure 85:  Touching shapes that
form long wire.

The table on
page 62 lists the
geometric basis
and automatic
error status of
shapes created
by each rule.



How the DRC Works: Other Verification Rules

DRC User Manual 109

Design Area Coverage by a Layer

You may need to verify that a layer covers at least a certain minimum fraction of
your total design area.  The DRC rule MIN_FILL performs this function.

Subject Importance Page
MAX_ANGLE rule Used to find acute angle notches 231

MIN_ANGLE rule Used to find acute angle protrusions 242

MIN_AREA rule Copies to an error layer all shapes with less
than the indicated area

243

MIN_FILL rule Verifies that a layer covers at least a
minimum fraction of the total design area.

211

MIN_NOTCH rule Marks sides too close to each other across a
gap on a given polygon

248

MIN_SIDE rule Marks short sides as errors 251

MIN_WIDTH rule Marks sides to close to each other in a single
polygon

271

Figure 86: References for other verification rules.



How the DRC Works: Electrical Connections

110 DRC User Manual

Electrical Connections

If your design rules specify minimum spacing rules that depend on whether or
not two shapes are electrically connected, the DRC can determine this.  You
must define how the electrical connections are formed before the MINSPACING
rules that use this information.  Then the /CONN or /~CONN options in the
MIN_SPACING rule will use this information to eliminate false errors of shapes
that are or are not electrically connected.

If electrical connections are not important to your spacing rules, you may want to
skip this entire section.   However, the information on the STAMP rule may be
important if you want to verify that shapes like transistor wells are electrically
connected to exactly one node.

The CONNECT and STAMP Rules

Your rule set defines electrical connections using a combination of layer
processing rules, the CONNECT rule, and the STAMP rule.  Layer processing
rules are used to create the conductive layers from the layers used in the layout
and to remove device area from the conductive layers.  The CONNECT rule
defines which layers form electrical connections when they touch.  The STAMP
rule defines layers that are poor conductors.

A collection of shapes that are electrically connected to each other is called a
net.  The DRC recognizes which shapes are in the same net by assigning node
numbers.  Initially, each polygon in the DRC database is assigned a unique node
number.  As new polygons are formed on new generated layers, they are
assigned new node numbers.  When the CONNECT rules are processed, two
touching polygons on electrically connected layers will both be assigned the
lower node number of the pair.  Eventually, all polygons in a net are assigned the
same node number.

The STAMP rule is used primarily to insure that poor conductor shapes are
connected to exactly one electrical net, rather than to define electrical
connections for the MIN_SPACING rule.  The STAMP rule assigns node
numbers in a slightly different way.  The STAMP rule will assign a poor
conductor shape the same node number as the first touching conductive shape.

The
QUICK_PASS
option on the
DRC command
line will prevent
electrical
connections
from being
recognized.

See an example
of this process
in the Advanced
Tutorial on page
402.



How the DRC Works: Electrical Connections

DRC User Manual 111

However, other conductive shapes that touch the poor conductor will not be
assigned the same node number.   We will cover the use of the STAMP rule
later.

The simplest form of the CONNECT rule is:

CONNECT  layer1  layer2

When a shape on layer1 touches a shape on layer2, both of them will be assigned
the same node number.  Both shapes will be considered part of the same net.

When shapes on two layers are connected by a shape on a third layer (e.g. a via
or contact hole shape), you use this form of the CONNECT rule:

CONNECT  layer1  layer2  BY  layer3

When this form of the CONNECT rule is
used, shapes on all three layers must
share a common area for them to be
electrically connected.

Example: CONNECT M1  M1WIRE
CONNECT M1  M2  BY  VIA

When the rules above are run on the
shapes shown in Figure 87, all of the
shapes will be electrically connected.

Layers that are used in CONNECT and
STAMP rules form groups.  All layers that can be connected to each other are
collected into a single group.  When layers form more than one group, there is no
way to electrically connect a shape on a layer in one group to a shape on a layer
in separate group.  This may point out mistakes in the rule set.

The number of groups is reported in the log file created by the rules compiler.  If
you have more than one group, you should look carefully at the log file where
the layers in each group are listed to be sure that you are not forgetting to
connect some layers.  However, some temporary layers may form separate
groups.

M1WIRE VIAM1 M2

Figure 87: Electrically connected
shapes.



How the DRC Works: Electrical Connections

112 DRC User Manual

Building Electrical Connections

It can be trickier than you might think to build electrical connections correctly.
It is very easy to short layers together unintentionally.  When you write the rules
for electrical connections, you must consider how a chip is fabricated. Keep in
mind which layers prevent shorts, including which combinations of layers
represent devices that break shapes into separate nets.

Example: GATE = DIFF  AND POLY
SRC_DRN  = DIFF  AND NOT POLY
CONNECT M1   POLY BY  CONT
CONNECT M1   SRC_DRN BY  CONT

In this example of a
MOSFET technology,
the DIFF (diffusion)
layer is separated into
the GATE layer and
the SRC_DRN (or
source-drain) layer.
The GATE layer is the
device layer.  The
SRC_DRN layer rep-
resents the terminals
of the device.  We do
not want to short the
terminals of the device
into one net.

Note that the DIFF
layer is not used as a
conductive layer in the
CONNECT rules.  In-
stead, the SRC_DRN layer is used as the conductive layer.  If you used DIFF in
the CONNECT rules, the source and drain of each FET device would be shorted
together.

M1 CONT POLY DIFF

Node 2

Node 3

Node 1

Figure 88: FET device.

You can use the
NLE program to
test your
electrical
connection
rules. The node
outliner utility
will highlight
entire electric
nets.  Refer to
the NLE/LVS
manual for more
examples.



How the DRC Works: Electrical Connections

DRC User Manual 113

There are four methods for removing material from conductive layers to avoid
shorting the terminals of devices:

1) Use the AND rule to remove the device area from the conductive layer.
This is the method used in the example above.

2) Shapes on a dummy layer are added to the design.  This layer can then be
used to etch the conductive layer using the AND rule, or the TOUCHING
rule can be used to find shapes that touch the dummy layer and these are
removed from the conductive layer.  This method is often used to remove
the area that represents a resistor from the conductive layer.

3) The IN_CELL rule (or the IN_CELL keyword of the INPUT LAYER
rule) changes all shapes on a conductive layer contained in certain cells to
a different layer.  In this case, shapes in the main cell which travel over
the same area will remain on the conductive layer.

4) IN_CELL processing is used to save layer 0 (which represents the
bounding box of a cell) in certain cells to a scratch layer, which is then
used to remove area from the conductive layer.  In this case, shapes in the
main cell which travel over the same area will also be removed from the
conductive layer.

Example: RESISTOR = POLY  AND RESMASK
POLY  = POLY  AND NOT RESMASK
CONNECT M1   POLY BY  CONT

These rules represent an
example of method 2.
Look at Figure 89.  A
shape has been added on
the dummy layer
RESMASK.  This shape
is then used to remove the
area of the resistor from
the POLY layer before it
is used in the CONNECT
rule.

The NLE uses
these same
methods to
recognize
device areas.
See the
examples in the
NLE/LVS
manual if you
will be using
the same
dummy shapes
for device
recognition
using the NLE.

M1 CONT POLY RESMASK

Node 2Node 1

Figure 89: Resistor device.



How the DRC Works: Electrical Connections

114 DRC User Manual

If you will not be performing verification rules on the RESISTOR layer, the size
of the RESMASK shapes is not important.  In this case, all that is important is
that they cut each POLY shape into two nodes.  However, if you have design
rules to verify for the RESISTOR shapes, then add the RESMASK shapes
carefully to accurately create the RESISTOR shapes.

Contact layers can also require careful handling before using them in
CONNECT rules.  The order in which the layers are laid down should be
considered as you build the electrical connections.

Refer to Figure 90 and Figure 91 as we discuss the following example. The layer
generation and connection rules for NPN transistors demonstrate how you must
be careful not to short layers. (We have left out the buried layer to simplify the
discussion.)

The P layer in a NPN transistor prevents the N_PLUS layer from contacting the
N layer.  Also, the N_PLUS layer prevents contacts from connecting M1 to the P
layer.  In this case, the contacts must be filtered to prevent several different
layers from being shorted together.

Example: N_AND_N_PLUS = N   AND N_PLUS
EMITTER = N_AND_N_PLUS  AND P
COLLECTOR = N_AND_N_PLUS  AND  NOT P
BASE = P
CONT_TO_BASE = CONTACTS AND NOT EMITTER

CONNECT COLLECTOR   N
CONNECT M1   COLLECTOR BY CONTACTS
CONNECT M1   EMITTER BY CONTACTS
CONNECT M1   BASE BY CONT_TO_BASE

If you created the COLLECTOR layer as follows:

COLLECTOR = N  AND  N_PLUS

then the shapes that make the emitter will also wind up on the COLLECTOR
layer.  In this case, the N layer will short the collector and the emitter.  You must
be careful to separate the COLLECTOR layer from the EMITTER layer by using
the P layer.

See page 155
for an example
of what happens
when the layout
changes leaving
the shape on the
dummy layer in
the wrong place.



How the DRC Works: Electrical Connections

DRC User Manual 115

You must classify the contacts that are over the P or BASE layer because the
emitter is also over the P layer.  Contacts over the emitter do not connect to the P
layer, since the N_PLUS layer is in between. If the BASE layer is connected to
M1 by CONTACTS, the emitter contact will short to the base since the emitter is
on top of the BASE layer.

CONTACTS

M1

N_PLUS

P

N

Figure 90: Simplified layout for a NPN device.

Figure 91: Simplified cross section of a NPN transistor.



How the DRC Works: Electrical Connections

116 DRC User Manual

Using the STAMP Rule to Verify Wells

We can demonstrate the importance
of using the STAMP rule to verify
transistor well or bulk layer shapes
with Figure 92.  Let us assume that
the GND wire on the right connects
to the metal GND bus and from there
to a pad on the chip.  However, the
GND wire on the left does not
connect to the bus.  You meant to
connect these two wires, but a gap
exists by accident.

In this case, as long as you do not use
the CONNECT rule to define electrical connections to the WELL layer, the two
GND fragments will have different node numbers and you can find this error
with the STAMP rule.

Example: INPUT LAYER  1 NDIFF; 2 POLY; 3 WELL; 4 PDIFF;
INPUT LAYER 10 M1; 8 CONTACTS;
SCRATCH LAYER GATE; SRC_DRN;
OUTPUT LAYER 101 MULTI_WELL; 102 UNCONN_WELL

GATE = NDIFF  AND  POLY
SRC_DRN = NDIFF  AND NOT POLY

CONNECT M1  PDIFF BY CONTACTS
CONNECT M1  SRC_DRN BY CONTACTS

STAMP WELL  BY  PDIFF  MULTI=MULTI_WELL   NONE=UNCONN_WELL

If this set of rules is run on the layout shown in Figure 92, the WELL shape will
be copied to MULTI_WELL since it will be stamped by two different nodes on
layer PDIFF.  The two GND net fragments will not be shorted together and will
be recognized by the DRC as two separate nets.  All WELL shapes that do not
have connections to PDIFF shapes will be copied to layer UNCONN_WELL.
Shapes on both UNCONN_WELL and MULTI_WELL are automatically added
to the error count.

CONTACTS

PDIFF

M1

WELL

Figure 92: Open on GND node that
connects only through WELL layer.



How the DRC Works: Electrical Connections

DRC User Manual 117

Subject Importance Page
CONNECT rule Used to define most electrical connections 200

STAMP rule Used to define electrical connections for poor
conductors and verify these connections

308

Advanced Tutorial Example of set of CONNECT and STAMP
rules for MOSFET process

402

Figure 93: References for electrical connection definition.



How the DRC Works: Panel Processing

118 DRC User Manual

Panel Processing

Purpose

The DRC is designed to verify large amounts of data.   However, a whole chip
can result in a huge database.  At best, a large design can result in a huge scratch
file and very long run times.  At worst, the data will not fit on a typical disk
drive.  The DRC solves this problem by processing large designs in small panels.

Part of the problem is that verification rules must be executed on the design after
it has been flattened hierarchically.  Since the DRC does not require extra design
constraints that prevent cells from overlapping each other, the only way to find
violations that result from abutting or overlapping cells is to flatten the data so
that these problems can be found.

The optimized algorithms require more data to be stored for each shape than a
single set of coordinate data.  Once you flatten the data, a typical chip probably
cannot be stored as one flat unit.

The DRC can process small designs as a unit; however, larger designs may need
to be automatically divided into panels and processed one panel at a time.  Panel
processing allows data that is not included in the current panel to be stored
hierarchically.  Only one panel is flattened at a time.

Unless you specify a maximum panel size, the DRC will attempt to find a
suitable panel size based on the size and density of your design and the amount
of memory available.  However, if the DRC runs out of memory with this panel
size, it will begin all processing again after dividing the design into panels half
the size of the entire design.  This process may be repeated with smaller and
smaller panels.  This type of thrashing may waste considerable time.

If the DRC crashes due to memory problems, or with an error message that
mentions panel size, read the following information carefully BEFORE
calling technical support.

You can now
specify panel
size on the DRC
command line.
See the new
PANEL options
in Running the
DRC.



How the DRC Works: Panel Processing

DRC User Manual 119

Effect of Panel Size on Memory and Running Time

Even if the DRC can process your design in a single panel, the memory
requirements may force the DRC to swap data to a scratch file on your hard
drive.  This is called disk swapping and it will result in long run times.

If you have a small amount of memory on your computer (less then 16Meg), then
dividing your design into panels may allow the DRC to run to completion when
it has run out of memory trying to process the entire design as one panel.  Even if
you have a large amount of memory on your computer, dividing the design into
panels may speed up the DRC run by over an order of magnitude.

For example, a chip that took over 8 hours to process as a single panel took only
and hour and a half to process when divided into "reasonable" panels.  When you
have long run times, you should divide the design into smaller panels.

One indication that the DRC will run faster if you specify smaller panels is when
the log file from your first run reports that the DRC is swapping data to disk.
The DRC reports at the end of the log file the size of the scratch file, the number
of times it was used, and the percentage of processing time spent on swapping.
If these numbers are large, trying a smaller panel size will probably result in a
shorter running time. (In the testcase mentioned above, the log stated that 81% of
the 8 hours was spent on disk swapping.)

If you will be running the DRC many times on your design, you should
experiment with different panel sizes to find an optimum panel size.  This
can speed up the DRC processing time dramatically.

During development of the new panel size defaults, some testcases had the
fastest run time with the default panel size.  However in one testcase, the default
panel size resulted in a run that took 4 times as long as a run with an optimized
panel size.

If your design is processed with panels that are just a little too large based on the
amount of memory available, the DRC may run out of memory and try to recover
by reprocessing all data from the beginning with panels half the size.  Hours of
processing time may be wasted.  In this case the console messages look similar
to the following:

See an example
of the process of
optimizing
panel size on
page 445.

The PANELX
and PANLEY
rules explicitly
set panel size.



How the DRC Works: Panel Processing

120 DRC User Manual

Panel 4, from x=570.167 to 1236.83, y=6570.58 to 7237.29 was too complex
on rule 98, pass 3.
Failure 14, 14 Checking spacing, too many vertices
Panel dimensions were 666.667 by 666.708
Try subdividing panel.
New panel dimensions are 666.667 by 333.354
Can only allocate 3559 size 82 items for processp--10, available=291887
Requested 28180 size 82 items=2310760 bytes

                    ------------------------------------
Panel 6, from x=570.167 to 1236.83, y=6570.58 to 6903.94 was too complex
on rule 118, pass 3.
Failure 402, processp--10
Panel dimensions were 666.667 by 333.354
Try subdividing panel.
New panel dimensions are 333.333 by 333.354
Can only allocate 3559 size 82 items for processp--10, available=291887
Requested 28180 size 82 items=2310760 bytes
.
. (many more similar messages)
.
Panel 25, from x=580.583 to 585.791, y=6575.79 to 6581 was too complex on
rule 118, pass 3.
Failure 402, processp--10
Panel dimensions were 5.20831 by 5.20869
Try subdividing panel.
Panel is too small to subdivide further.
   Sometimes, data in large panels inherited from previous passes makes
it impossible to subdivide panels in future passes.  Try a smaller
initial panel size.
Run aborted.

**CRASH*******CRASH*******CRASH*******CRASH*******CRASH**
**CRASH*******CRASH*******CRASH*******CRASH*******CRASH**
**CRASH*******CRASH*******CRASH*******CRASH*******CRASH**

If the console messages look similar to the ones above, try specifying panel sizes
in the rule set about 10% to 25% of the first panel size reported.  If this does not
work, try even smaller panels in the rule set to avoid problems in future runs
before you call technical support.

New Default Panel Size Calculations

As of version 3.14, the DRC attempts to calculate optimal panel size based on
design size, density, and available memory.  (Previous versions always defaulted
to processing the data as a single panel unless the PANELX and/or PANELY



How the DRC Works: Panel Processing

DRC User Manual 121

rules were used.)  This automates the panel size selection process, and most
designs may complete with acceptable run times with this default behavior.

If your rule set was created for previous versions of the DRC, and includes
PANELX and PANELY rules to explicitly set the panel size, you may see an
improvement in run time by trying the new default panel calculations.  Try
removing the PANELX and PANELY rules for a test run if:
•  The amount of memory available to the program has changed since the panel

size was optimized.  More memory may mean that larger panel sizes can
now be used and may speed up processing.

•  The density or size of your design has increased since you optimized the
panel size.  The larger database may be processed more efficiently with
smaller panels.

However, the calculated default is not usually optimal, and large designs will
almost certainly execute more quickly when an explicit maximum panel size is
specified in the rule set.

If you do not specify the panel size, and the DRC run takes more than a few
minutes, the DRC will add a warning to the console messages and log file similar
to the following:

*****WARNING*****WARNING*****WARNING*****WARNING***
    You used the default panel size.  This will
provide a panel size that does allow your job to run,
but is unlikely to be the size that yields the fastest
running time.

In this case, look at the log file to see the panel size calculated by the DRC and
test panel sizes larger and smaller to find an optimal size.  You can refer to the
section of the advanced tutorial that covers this process on page 445.

The
NO_PANELS
rule forces the
DRC to use a
single panel the
size of the
design.



How the DRC Works: Panel Processing

122 DRC User Manual

The New PANEL_VERTICES Rule

If the default panel sizes seem to not be optimal given your design and memory
constraints, one option is to “tweak” the automatic panel calculations with the
PANEL_VERTICES rule rather than resort to explicit panel sizes with the
PANELX and PANELY rules.

The PANEL_VERTICES rule controls the maximum number of vertices in a
panel, rather than the exact size of a panel.  The value is specified as the number
of vertices per panel per Megabyte of main memory available to the DRC, or:

By default, PANEL_VERTICES is set to 5000.  This provides an optimum
number of vertices in a panel for some designs.  If you have 50 Megabytes of
main memory available to the DRC, this results in the following equation:

or

If the total number of vertices in your design was 25 million, then the design
would be divided equally into at least 100 panels.  The DRC will test each panel
to insure that the number of vertices on relevant input layers never exceeds 5000,
even in dense areas of the design.

Since there is a trade off between extra processing required for panel processing
and time saved due the smaller amount of data stored in flattened form at any
given time, time may be saved by increasing or decreasing the default number of
panels.

•  If a run with the default number of panels completes successfully, you can
see if a different number of panels leads to faster run times by specifying
different PANEL_VERTICES values.  The DRC log file lists the amount of
time spent by each phase of the processing near the bottom of the file.  If the

DRC memory is
divided between
main memory
and data storage
memory.  See
details on page
161.

# Vertices
# Panels * Megabytes Main Memory = PANEL_VERTICES

Max # Vertices in a Panel
50 = 5000

Max # Vertices in a Panel = 250,000



How the DRC Works: Panel Processing

DRC User Manual 123

log file indicates that the DRC is spending significant time swapping data to
disk, try adding a PANEL_VERTICES rule in your rule set with a number
smaller than 5000.  If the log file indicates that little or no time is spent
swapping data to disk, try increasing the panel size by with a
PANEL_VERTICES rule using a value larger than 5000.

•  On the other hand if the DRC crashes with a message that indicates a
memory or panel size problem, or if disk swaps are slowing your run,
try a number smaller than 5000 in the PANEL_VERTICES rule.

You can significantly decrease the amount of time the DRC takes to complete a
run by optimizing panel processing.  Try various values for PANEL_VERTICES
until you come up with an optimal value for your computer and design.
Alternately, you can specify the panel size directly with the following rules.

The PANELX and PANELY Rules

The PANELX and PANELY rules are used to explicitly set the maximum panel
size.  If the PANEL_VERTICES rule does not seem to provide you with a panel
size that is working, you can use these rules to specify panel size.

The DRC attempts to divide the design into roughly equal panels.  The
dimensions you specify with the PANELX and PANELY rules are really the
maximums rather than the exact dimensions used.  If you specify PANELX =
100 and PANELY = 200 and your chip is 190 by 489 units, the chip will be
divided into six 95 by 163 unit panels.

The optimum panel size varies greatly depending on the size of your design, the
dimensions of your shapes, and on the type of rules you are processing.
However, a rough rule of thumb, if most of your shapes and rules involve
dimensions on the order of a few ICED™ units, is to use panels on the order of
300 by 300 units.  (If you have less than 32 Megabytes of memory in your
computer, you may want to start with panels smaller than this.)  Try various sizes
in succeeding runs to see which values give you the fastest run times.

You can
override the
panel size on
the DRC
command line.



How the DRC Works: Panel Processing

124 DRC User Manual

Panel Borders

When you slice a design into panels for verification, shapes near the edge of a
panel must be considered.  If you are verifying a MIN_SPACING rule and a
shape just inside the edge of one panel is too close to a shape in a neighboring
panel, will the error be found?  If panels did not overlap, many rules would miss
errors when nearby shapes are not considered.

In order for shapes near or crossing a panel border to be processed correctly, the
DRC must include a border around all sides of each panel.  Shapes in the border
area will be processed at least twice (at least four times near the corners of
panels).  Very small panels or very large borders will result in some shapes being
processed many times.  However, borders that are too small may allow errors to
go undetected.

The panel border is automatically calculated by the DRC based on the layer with
the maximum reach as determined by the rules.  Reach is defined as the mini-
mum border distance that insures that no violations of shapes on a particular
layer will be missed or marked as false errors.

Add the
SHOW-
_BORDER
option to the
DRC command
line to see how
the border is
calculated by
the DRC.



How the DRC Works: Panel Processing

DRC User Manual 125

Rules that involve
touching have a reach
of 0 due to the way
the DRC processes
touching shapes. (We
cover this subject
next.) Rules that in-
volve dimensions and
rules that involve
changing the dimen-
sions of shapes (like
the BLOAT rule) re-
quire a reach to
insure that shapes are
processed correctly.

Each layer is initially
assigned a reach of 0.
Rules may increase
this reach.  The reach
of a result_layer is
often greater than the
reach of the layers
used to create it.  The
border is defined as
the maximum reach
of all layers plus a
tiny safety factor.

The ASPECT_RATIO
and MIN_AREA
rules cannot compute
reach, so you must
specify it explicitly in
the rule.

Rule Reach of result_layer
AND max ( Reach(layer1), Reach(layer2) )
ASPECT_RATIO Reach(layer1) + max_size parameter
Assignment Rule Reach(layer1)
BLOAT Reach(layer1) +    offset_val

sin(bloat_angle / 2)
BOUNDS Reach(layer1) + max(sizen dimension)

(if max (sizen dimension)>10, reach is
0 instead and second pass is added

BRIDGE 0 (forces multiple passes)
CONNECT 0 (forces multiple passes)
IN_CELL Reach(layer1)
IS_BOX Reach(layer1) + max(sizen dimension)
ISLANDS 0 (forces multiple passes)
MAX_ANGLE Reach(layer1)
MIN_ANGLE Reach(layer1)
MIN_AREA Reach(layer1) + maxsize

(or 0 with extra pass if maxsize=0)
MIN_NOTCH Reach(layer1) + min_width
MIN_SIDE Reach(layer1) + min_length
MIN_SPACING max ( Reach(layer1), Reach(layer2) ) +

distance
MIN_WIDTH Reach(layer1) + min_distance
OFF_GRID Reach(layer1) + grid_resolution
OR max ( Reach(layer1), Reach(layer2) )
OVERLAPPING 0 (forces multiple passes)
SHRINK Reach(layer1) +    offset_val

sin(bloat_angle / 2)
SNAP Reach(layer1) + grid_resolution
SNAP45 Reach(layer1) + grid_resolution
STAMP 0 (forces multiple passes)
TOUCHING 0 (forces multiple passes)
XOR max ( Reach(layer1), Reach(layer2) )

Figure 94: Reach calculation for each rule.



How the DRC Works: Panel Processing

126 DRC User Manual

The SHRINK and BLOAT
rules can increase reach
dramatically if you allow
bloats of acute angles in your
design.

For example, look at the small
polygon with the 30° angle in
Figure 95.  When this
polygon is bloated by 2 units
without constraints, the
bottom dimension expands
from 10 to more than 20.

The reach of a bloated layer is defined as:
Reach( layer1 ) + offset_val / sin ( αααα / 2)

Where α is the bloat_angle parameter defined with the BLOAT_ANGLE rule.
If the reach of layer1 is 0, the offset_val is 2, and the bloat_angle is 30, the reach
of the bloated layer will be:

0 + 2 / sin ( 30 / 2 ) = 7.27

The reach increases dramatically as the bloat angle decreases.  If the bloat angle
is set to 1, allowing unconstrained bloats of angles as small as 1°, the reach of
the bloated layer in the example above goes up to 229.

The BOUNDS and IS_BOX rules add a reach to the result_layer equal to the
amount of the maximum dimension you are verifying.  If we use a BOUNDS rule
with a maximum dimension of 10 units on a bloated layer with a reach of 7.27,
the reach of the result_layer created by the BOUNDS rule is now 17.27.

If you use the layer created by the BOUNDS rule in other rules, the reach may
go up even more.  A reach this large is required to be absolutely sure that no
polygons are improperly processed.  However, this reach may be excessive for
the other layers.  Many polygons will be processed multiple times due to the
large border.

30°

Figure 95: Unconstrained bloat of 30° angle.

See the
BLOAT-
_ANGLE rule
on page 311 for
more details on
bloating acute
angles.

If you do not
have acute
angles in your
design, you
should always
use the
maximum
BLOAT-
_ANGLE of 45°
(the default) to
avoid excessive
reaches.



How the DRC Works: Panel Processing

DRC User Manual 127

The layer with the largest reach sets the border for all layers in a single pass.
The border changes from pass to pass.  Remember that a pass is defined as a
collection of operations that can be performed with one sweep through all shapes
in the database.  Some passes require a large border due to the layers processed
in that pass.  Other passes require no border.

If your rule set is verifying minimum spacing rules on the order of 3 microns,
this will result in a 3 micron reach for at least one pass.  If your panel size is 100
microns, the DRC will have to perform duplicate processing on 12% of your
design.  This should not result in excessive run times.

However, if your rules require a reach of 25 microns (not unusual when testing
pad design rules), then duplicate processing is performed on 50% of your data.
This will include many rules that do not require such a large border.  This will
probably lead to excessive run times and memory usage.  The best solution to
this type of problem is to remove the long reach rules to a separate rule set that
you run less often.  You can increase the panel size for this smaller set of rules to
further reduce duplicate processing.

The panel border used by the DRC is reported in the log file.  Search for the
phrase “Panel Border”.  You can use the SHOW_BORDER option on the DRC
command line to report the reach and border calculations performed by the DRC.
You can sometimes rewrite rules to reduce the reach.

If you are a DRC expert, and your rule set creates a border that you know is
excessive; you can override the border calculated by the DRC with the BORDER
rule or the BORDER option on the DRC command line.  However, if you don’t
know exactly what you are doing, you can easily prevent real errors from
being found by tampering with the border.

If you have a large border and the DRC needs to reduce the panel size to run to
completion, your run may be aborted with the message, “Panel is too small to
subdivide further – check aborted”.  This means that the border is at least one
half the new panel size selected by the DRC.  You will need to reduce the border
by rewriting your rules or increase the memory available to the DRC so it can
complete with larger panels.  You can modify the border explicitly with the
BORDER rule, but remember that you can corrupt the validity of the DRC tests
by doing this.

See page 442
for an example
of separating
long reach rules
from short reach
rules.

See page 164
for a trick to
reduce DRC
running time by
processing long
reach rules as
Boolean rules.



How the DRC Works: Panel Processing

128 DRC User Manual

Multiple Pass Processing

If a polygon crosses a panel plus border
boundary, the DRC will use the whole
polygon when processing each panel.  A
shape in one panel that touches a shape on
the same layer in the border area will be
merged with the other shape into a single
polygon when that panel is processed.
Touching shapes that are beyond this area
will not be merged into single shapes for the
current panel.

To avoid missing errors due to touching
shapes outside panel borders, the DRC adds
extra processing.  All shapes in the database
will be processed several times in multiple
passes through the data.  This extra
processing can be turned off though the use
of the QUICK_PASS option (which is
covered on the next page).

Look at Figure 96. Let us assume that we
will be verifying the three configurations
with a MIN_NOTCH rule.  The notch in the
top configuration will be recognized since
the shape remains a single shape despite the
panel boundary.  The DRC will see the
notch in the middle configuration because
the shapes will still be merged in either
panel.

The configuration on the bottom will not be merged into a single shape.  The
automatic calculation to add a border around the panel cannot solve this problem
because the shape that connects the two horizontal shapes may be a great
distance away.  The notch will be missed unless the DRC uses a different
method to see that the horizontal shapes are really part of a single connected
shape.

Panel boundary
including border

Figure 96: Panel processing will
prevent DRC from merging the
shapes in bottom configuration.



How the DRC Works: Panel Processing

DRC User Manual 129

To avoid incorrectly processing touching shapes that cross panel boundaries, the
DRC will automatically add special cases of the CONNECT rule to the
processing.  The CONNECT rule assigns unique polygon numbers to all shapes.
Touching shapes have their numbers reassigned so that both shapes have the
same polygon number.  Once a CONNECT rule is processed, the DRC can
recognize that two shapes are really part of the same connected shape because
they have the same polygon number.  In the example above, the DRC will see
that the two horizontal shapes in the bottom configuration form a notch because
the polygon numbers of both shapes will be the same.

These CONNECT rules add extra processing time.  The rules that generate a
layer must be executed in one pass through the database, then the CONNECT
processing must take place in a separate pass.  Finally, the rules that verify the
shapes on that layer must be executed in a third pass.  The extra time added to
the DRC run is due not only to processing the CONNECT rules, but also to the
storage of each panel of data for the next pass.

Effects of the QUICK_PASS Option

If the DRC can execute your rules in a single pass through the data it will do just
that.  In this case, the DRC will not need to save the layout data from each panel
for other passes.  When your rule set includes rules that require the DRC to
determine which shapes touch each other, the DRC must perform intermediate
passes through the data to insure that all errors are found.  In this case, the layout
data in each panel must be saved for the next pass through the data.

When your rules require multiple passes, you must make a choice about how the
DRC will proceed.   Either the SLOW or QUICK_PASS option must be added to
the command line.  The SLOW option directs the DRC to process the layout data
in multiple passes.  This insures that all errors will be found.  The
QUICK_PASS option forces the DRC to ignore the problems caused by panel
boundaries and touching shapes.  The DRC will execute in a single pass.  This
may save a significant amount of processing time.  However, some rules will not
handle shapes crossing panel boundaries properly leading to false errors and
even missed errors.

The number of
passes required
to execute the
rules is listed
near the bottom
of the rules
compiler log
file.



How the DRC Works: Panel Processing

130 DRC User Manual

When you use the QUICK_PASS option on
the DRC command line, you force the DRC
to use faster algorithms that ignore some
information relative to rules like minimum
notch and width rules.  This option is
provided to allow for faster intermediate
runs on layouts that are checked several
times.  One of the reasons for the speed
improvement is that touching shapes
outside the panel border will be ignored.  In
rare cases this can result in false errors or
missed errors for the MIN_NOTCH and
MIN_SPACING rules.

Let us consider the effect of the
QUICKPASS option on the three notch
configurations covered on page 128.  As-
sume that the DRC will be verifying a
MIN_NOTCH rule that all three configu-
rations violate.

Even when the QUICK_PASS option is
used, the DRC will recognize that the top
two configurations each represent a single
shape with a notch.

When the SLOW option is used instead of
QUICK_PASS, the CONNECT rules force
the DRC to recognize that the three shapes
on the bottom are connected and so it will
find the bottom notch.

When the QUICK_PASS option is used, the violation of the bottom
configuration will not be found.  The touching shape on the right will be ignored
while the DRC processes the panel on the left.  This means that the DRC will see
the two other shapes as separate shapes on the same layer.  The notch will not be
found.  A false MIN_SPACING error may be generated.

Panel boundary
including border

Figure 97: Bottom configuration
will be processed incorrectly by
the  QUICK_PASS algorithm.



How the DRC Works: Panel Processing

DRC User Manual 131

Due to rare cases like the one above, you must be careful not to use the
QUICK_PASS option in final runs on a design.

Some rules cannot be processed at all when the
QUICK_PASS option is used.  The rules that indicate that
extra passes are required in the table on page 125 will not be
executed at all when the QUICK_PASS option is used.
These rules are listed here in Figure 98.

Since CONNECT rules are not processed, this also means
that the /CONN and /~CONN restrictions of the
MINSPACING rule are ignored.

Effects of Panel Processing on Generated Layers

Shapes generated by the DRC
(including error shapes) must be cut at
the panel boundary to be stored for the
next pass.  Otherwise two copies of
shapes that cross a panel boundary
would be generated.   Let us say that
the rule “C = A  AND  B” is executed
on the shapes in Figure 99.  The shape
on layer C will be created in both
panels.  To avoid creating two identical
shapes on layer C, the DRC cuts the
shape at the panel boundary so that each panel contains the portion of C that lies
within the panel boundary.

BRIDGE
CONNECT
ISLANDS
MAX_SPACING
OVERLAPPING
STAMP
TOUCHING

Figure 98:
Rules not
executed when
QUICK_PASS
is used.

When rules will
be ignored due
to the
QUICK_PASS
option, you must
reply to a
warning prompt
to proceed.  To
avoid the
warning prompt,
use the
ALLOW_QUICK
rule or command
line option.

Figure 99: Shapes on layers A and B
and panel boundary.



How the DRC Works: Panel Processing

132 DRC User Manual

Cutting shapes at panel
boundaries can lead to
problems when the shapes
have skewed sides.  Let us
say that the shapes in
Figure 100 are used to
generate layer C with the
same Boolean rule used
above.  Now the panel
boundary intersects a side
of the layer C shape at an
angle.

The DRC must cut the
triangle on layer C and
create two shapes as
shown in Figure 101.  If
the dots represent the
DRC resolution grid, you can see
that the new vertices to create the
C shapes must be shifted to lie on
the grid.  This results in a
distortion of the shape.

This type of problem is usually
resolved when the shapes are
output to ICED™.  The DRC grid
is much finer than the ICED™ grid.
Snapping all coordinates to the
coarser ICED™ grid forces minor
distortions like this to be removed
except in rare cases.  (Refer to the
examples in the discussion of resolution grids on page 79.)

Figure 100: Shapes on layers A and B and panel
boundary.

Figure 101: Layer C shapes stored
for next pass.



How the DRC Works: Panel Processing

DRC User Manual 133

Subject Importance Page
PANEL_VERTICES
rule

Modify default panel size calculations based
on memory available

290

PANELX and PANELY
rules

Used to set panel size directly 293

NO_PANELS rule Used to force DRC to use a single panel the
size of the design

278

PANEL_X and
PANEL_Y command
line options

Used to override panel size set in rules file 358

BLOAT_ANGLE rule Affects border when BLOAT or SHRINK
rules are processed

311

BORDER rule Overrides calculated border 193

BORDER command line
option

Overrides calculated border on DRC
command line without recompiling rules

348

SHOW_BORDER
command line option

Reports border calculations in DRC log file 348

QUICK_PASS
command line option

Faster algorithm that can lead to incorrect
results at panel borders

337

ALLOW_QUICK rule
and command line option

Avoid having to respond to a warning prompt
when QUICK_PASS may miss errors.  Either
rule or command line option may be used.
Both have the same effect.

182
338

Figure 102: References for panel processing.



How the DRC Works: Hierarchical Checking and Hierarchical Output

134 DRC User Manual

Hierarchical Checking and Hierarchical Output

By default, the DRC retains the some of the hierarchical structure of cell data.
While the verification rules must be processed on flat data, most of the DRC
processing is performed on hierarchical data.

Unless you use a very simple rule set that executes in a single pass, the DRC
must store the results of one pass for the next pass.  Storing this data
hierarchically reduces the storage requirements significantly.

When the DRC algorithms require flattening of cell data, only the current panel
is flattened.  The remainder of the data remains hierarchically nested.

When you use the DRC to generate output layers, you can preserve the hier-
archy.  All layers will be created in cells that mimic the original cell structure.
This can reduce the disk space required for the output files considerably.

Regardless of how you choose to store the output data, the DRC will by default
process the data of multi-pass runs hierarchically.  This conserves disk space
required for the DRC scratch file and usually reduces processing time.
Depending on how the design is nested, the processing time may be 10%-20%
faster or slower than processing the data flat.

Hierarchical Processing Algorithm

The hierarchical processing performed on each panel during layer generation is:

Begin in the lowest level cells (those cells with no subcells).  Compute the
new layer in these cells first.
Go up one level in the hierarchy and temporarily flatten the nested cells.
Compute the new layer and then subtract the new layer stored in the
subcells.
Continue up the chain of hierarchy to the main cell.  At each level in the
hierarchy, the entire layer is generated from the flattened data and then the
data in subcells is subtracted.

To prevent
hierarchical
processing, you
will have to add
command line
options to
flatten cells on
input.  This will
be covered a
little later.



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 135

Look at Figure 103.  Let us
say that a shape on a wire
layer is contained in the
nested cell indicated with
the dotted line.  Two
shapes on the same layer
meet this cell on either side
in the main cell.  Now the
DRC processes a shrink op-
eration on this layer.

The shrink is performed in
the nested subcell first.

Next the shrink is per-
formed in the main cell.
The entire wire is shrunk.
Then the layer in the
subcell is subtracted from
the wire.  This leaves the
shapes shown in Figure 105
in the main cell.

In the entire nested design,
the shrunk wire runs with-
out a break through the cell
as shown in Figure 106.

The hierarchical processing
algorithm can be expensive
in terms of processing time.
The layer generation op-
erations may be performed
several times on each
nested shape. The subtrac-
tion operations take proc-
essing time as well.  However, in most designs this processing is more time

Figure 103: Wire layer in nested cell and main
cell.

Figure 104: Shrunk layer in nested cell.

Figure 105: Shrunk layer in main cell.

Figure 106: Shrunk layer in nested cell and
main cell.



How the DRC Works: Hierarchical Checking and Hierarchical Output

136 DRC User Manual

efficient than flattening the entire design before processing.  The time saved in
storing the design hierarchically is usually significant.

Dangerous Operations

Hierarchical processing has an important side effect.  Since the DRC enforces no
design constraints on how cells may overlap, the contents of a higher level cell
may affect how a layer should be generated in a subcell.  We refer to operations
that may have this side effect as dangerous operations.

A dangerous operation is defined as an operation that may result in the
contents of a subcell being generated in error due to the contents of a higher
level cell.  Dangerous operations include operations that remove material from a
layer and operations that depend on touching relationships to shapes that may be
in higher level cells.

For example, let us consider the simple
Boolean operation "C = A AND NOT B"
where a shape on layer A is in a subcell and an
overlapping shape on layer B is in the main
cell.

When the DRC is processing this operation, a
shape on layer C is generated in the subcell
that is a copy of the layer A shape.   Since the
DRC cannot "see" the shape on layer B, it is
not considered.

When the DRC then processes the main cell, it
"sees" the shape on layer B, but it is too late to
change the contents of layer C in the subcell.
Also, other instances of the subcell probably
should not be altered.

A B

Figure 107: Layer A in
subcell and layer B in main
cell.



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 137

The DRC will warn you at this point that the layer has been processed
incorrectly.   However you may prefer that the DRC generate layer C correctly in
the first place.  You can direct the DRC to generate the result of dangerous
operations "safely".

When a dangerous operation is processed safely, the result of the operation is not
generated until the DRC is sure that no incorrect results can be generated.  This
means that the DRC will not generate the result until it is processing the
flattened main cell.

In the example above, if you direct the DRC to process the Boolean operation
safely, no shapes on layer C would be generated in the subcell at all.  Instead, the
layer C shape would be
created correctly in the
main cell.  No warnings
would be generated.
However, even shapes on
layer A in subcells that
are not overlapped by
shapes on layer B would
result in layer C shapes in
the main cell.

The list of dangerous
operations is provided in
Figure 108.  The rules
that have special options
listed are dangerous only
when those options are
used in the rule.

It is not obvious why
some of these rules can
result in mistakes due to
dangerous processing.
Let us cover a few examples.

Rule Special options causing danger
AND NOT keyword
ASPECT_RATIO
BLOAT
BOUNDS
IS_BOX
ISLANDS
MIN_AREA
NOT
OR NOT keyword
OVERLAPPING NOT keyword or count restriction
RECTANGLES
SHRINK
STAMP
TOUCHING NOT keyword or count restriction
XOR

Figure 108: List of dangerous DRC operations



How the DRC Works: Hierarchical Checking and Hierarchical Output

138 DRC User Manual

The BLOAT rule can result in distortions
when it is handled dangerously.  This is
due to the fact that shapes in subcells
that touch shapes in other cells are not
merged into single shapes before an
operation that is handled dangerously.

Consider Figure 109.  The crosshatched
area represents two shapes on a layer that
is then bloated.  When these shapes are in
the same cell (or when they are handled
safely) they will be merged into a single
shape by the DRC before the bloat.  The
DRC will then bloat the shape as shown in
Figure 109.

Now consider what the DRC will do if the
crosshatched shape on the right is
contained in a subcell and the DRC
processes the operation dangerously.  This
shape will be bloated before the DRC is
aware that a touching shape on the same
layer exists.  The shapes will not be
merged before the bloat and the unusual
bloated shapes shown in Figure 110 will
be the result.  The DRC would issue a
warning message about the error.

The MIN_AREA rule is the only
verification rule that is on the list.  This is
due to the fact that the DRC will process
this rule before flattening the design.
Touching shapes in other cells will not be merged before the area is tested.  This
can result in false errors, but not missed errors.

Consider the shapes in Figure 109 again.  If the two crosshatched shapes are in
different cells and a MIN_AREA rule is processed dangerously, the DRC may

Figure 109: Result of bloat when
touching shapes are merged first.

Figure 110: Result of bloat when
DRC processes shapes
dangerously.



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 139

mark either shape as an error even though the merged shape is large enough to
pass the test.

The OVERLAPPING and TOUCHING rules can also have incorrect results
when they are processed dangerously.  However, the multi-pass algorithms used
for these rules will be able to process the simplest form of the rule correctly even
when they are processed dangerously.  The simplest form is when a shape on one
layer is tested only for touching any number of shapes on another layer.  But
when a count is added to the rule that restricts shapes on the result layer to those
that touch a specific number of shapes on the other layer, dangerous processing
can result in mistakes.  If the DRC sees a shape in a cell that touches the correct
number of other shapes within the cell, the DRC will copy the shape to the result
layer.  However, if another shape in a higher level cell touches the original
shape, the original shape should not have been copied to the result layer.

The same problem arises when the NOT keyword is used in a TOUCHING or
OVERLAPPING rule.  In this case, a shape is copied to the result layer when it
does not touch a shape on the other layer.  In this case, a shape in a subcell may
not touch any shapes on the other layer in the subcell, so it is copied to the result
layer.  But if a shape on the other layer in a higher level cell touches the original
shape, it should not have been copied to the result layer.

Processing any of these rules safely will prevent mistakes at the expense of
creating the result layer as one flat layer in the main cell.

There is one rule that is a special case.  You would think that the CONNECT
rule would have incorrect results when processed dangerously due to shapes in
higher level cells.  However, the DRC always processes this rule safely.   Since
shapes are not created by this rule, there is very little overhead to processing it
safely.  However, in a manner similar to the processing of the TOUCHING and
OVERLAPPING rules, the DRC must process this rule in an extra pass.

One consequence of dangerous processing is that any layer generated from a
layer generated dangerously is also generated dangerously.  Also, any layer
generated from a layer that is generated safely is also generated safely.   When a
layer is generated safely, the shapes are already flattened in the main cell, so
there is no way to create shapes from it in the subcells.



How the DRC Works: Hierarchical Checking and Hierarchical Output

140 DRC User Manual

Example: C = A AND NOT B
E = C AND D

If layer C is generated safely, so is layer E.  Conversely, if layer C is generated
dangerously, any mistakes on that layer may be present in the E layer as well.

Oops Conditions

When a dangerous operation is handled dangerously, the DRC may generate the
contents of a nested cell incorrectly.  We call this an "oops condition".  The
DRC will realize that a shape or shapes have been generated incorrectly and
issue a warning message.

For example, let us say that the Boolean operation we discussed above, "C = A
AND NOT B", is processed dangerously.  The DRC recognizes after the subcell
has been processed that a shape on layer B in a higher level cell should subtract
material from a shape on layer C in the subcell.   At this point, the DRC will
issue a warning message similar to the one below and continue, but further
results may be incorrect.

If the DRC has recognized an oops condition, it will display a warning on your
screen during the run similar to:

*********DANGER***DANGER***DANGER********
*********DANGER***DANGER***DANGER********
*********DANGER***DANGER***DANGER********
This run may have incorrect answers----READ your
log file.

The log file will contain messages about specific cells similar to:

*****DANGER****DANGER****DANGER****DANGER****

A logical error was made processing layer C[11]
in cell MAINCELL. One of MAINCELL's subcells
contains a section of C[11] that was removed by a
logical operation in MAINCELL.  This means any



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 141

further results in MAINCELL or a cell containing
MAINCELL involving layer C[11] are likely to be
wrong.
The problem can be corrected by specifying that
layer C[11] or the problem subcells (not
MAINCELL) be ungrouped.
An outline of the offending area (in cell
MAINCELL coordinates) appears on layer 100 of
error file E:\MYDIR\MAINCELL.ERR.  This outline
can be used to locate the subcells to ungroup.

The number in square brackets after the layer name, "[11]" in the example above,
refers to the ICED™ layer number.  The error file is a subcell error command file
that should be executed while you are editing the indicated cell.

One method to fix the problem is to ungroup (or flatten) the subcell of the
indicated cell in the layout editor.  However, there are other methods you can use
to fix the problem without modifying the layout.  We go into these methods next.

Safe Processing Options

The ALL_SAFE rule will cause the DRC to process all layers safely.  All shapes
generated by dangerous operations will be created in the flattened main cell.
Since the DRC cannot store this data hierarchically, there may be a significant
increase in processing time and storage requirements.  Also, if you want to
generate hierarchical output, the ALL_SAFE rule will prevent the creation of
most shapes in the subcells, so the output data will not be truly hierarchical.

You can direct the DRC to process only certain cells or layers safely.   The
SAFE_CELL rule will process only the named cells safely.  Other cells will be
processed dangerously.  If you have received only a few danger warnings from
the DRC that are caused by one or two cells, you can add this rule to your rule
set to ungroup (or flatten) these cells in the DRC rather than in the layout data.

When you use the SAFE_CELL rule on a deeply nested cell, the dangerous
layers will be generated one level up in the cell hierarchy rather than in the main
cell.

Learn more
about subcell
error command
files on page
375.



How the DRC Works: Hierarchical Checking and Hierarchical Output

142 DRC User Manual

The SAFE_LAYER rule will process only the named layers safely.  This can be
useful when you have only one or two layers you need to generate safely.

When the SAFE_LAYER rule (or the ALL_SAFE rule) is used on layers in a
deeply nested cell, the dangerous layers will be generated in the main cell rather
than one level up in the hierarchy.

Another use for the SAFE_LAYER rule is to process only one area of a nested
design safely.  You can use INCELL processing (see page 59) to isolate a few
shapes in a cell on a new layer.  Or, you can add a shape on a dummy (non-
design) layer to isolate the problem area, then use one or more AND rules to
move shapes on specific layers covered by the dummy layer to new layers.  Then
process only these new layers safely.

Look at Figure 111.  Let us assume that this
represents a large standard cell used many times
in the design. The selected shape is added in the
main cell to some copies of this standard cell to
make it operate in a different manner.

You need to remove the intersection of these
layers from layer A with an operation like "C =
A AND NOT B".  Even though this is a
dangerous operation, it will not cause problems
for most of the intersections since they are all
formed from shapes in the same cell.  The DRC
can remove the intersections accurately and
store the results in the subcell.  However, the
selected shape in the main cell will cause an
oops condition.

If you use the ALL_SAFE rule or the
SAFE_CELL rule, the entire layer will be
created flat in the main cell.  If you use the
SAFE_LAYER rule on the entire layer, the
result will be the same.  However, if you add a box on layer MASK to the
subcell such that it surrounds just this intersection you can use the following

BA

Figure 111: Standard cell
with selected shape added to
main cell.



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 143

processing to accurately generate layer C with only the area near the dangerous
intersection in the main cell.

Example: INPUT LAYER 1  A;  2  B; 110 MASK
OUTPUT LAYER 3  C
OUTPUT LAYER 3  C_MAIN
OUTPUT LAYER 0  A_MASK; 0 A_NOT_MASK

ALL_DANGER
SAFE_LAYER C_MAIN

A_MASK = A  AND MASK
A_NOT_MASK = A  AND NOT MASK

C = A_NOT_MASK AND NOT B
C_MAIN = A_MASK AND NOT B

The shape on layer MASK must be added to the subcell so that creation of
A_NOT_MASK layer will not have an oops condition even though it is
generated dangerously in the subcell.

Note that the C and C_MAIN layers are defined with the same layer number.
The layers will be kept separate during the DRC run, but when they are output,
shapes on both layers will be created on layer number 3.

Note that the ALL_DANGER rule is included in the above rule set.  This rule
indicates that all dangerous operations should be handled dangerously by default.
The SAFE_LAYER rule overrides this default for only the C_MAIN layer.

The default for all dangerous operations must be provided by using one of
the following rules or the compiler will issue an error message:

ALL_SAFE
ALL_DANGER
DANGER_CELL
SAFE_CELL



How the DRC Works: Hierarchical Checking and Hierarchical Output

144 DRC User Manual

The ALL_SAFE and ALL_DANGER rules set the default for all cells.  The
SAFE_CELL rule will process the named cells safely, but the default for all
other cells is to process them dangerously.  The DANGER_CELL rule will
process the named cells dangerously, but all other cells will default to safe
processing.

Until you are familiar with the effects of dangerous operations, use the
ALL_SAFE rule in your rule set unless disk space and processing time is critical,
or when safe processing disturbs the output cell hierarchy too much.

The DANGER_LAYER or SAFE_LAYER rules override the default behavior
set with the other rules.

Automatic Flattening of Cells on Input

The DRC can flatten some cells during input preprocessing before any rules are
processed.  This flattening is different than the temporary flattening of cells
during the run for safe processing or error verification.

Subject Importance Page
ALL_DANGER rule Default to dangerous processing for all cells and

layers
180

ALL_SAFE rule Default to safe processing for all cells and layers 181

DANGER_CELL rule Default to safe processing for all cells except for
cells listed in rule

207

DANGER_LAYER rule Overrides safe processing for only layers listed
in rule

209

SAFE_CELL rule Default to dangerous processing for all cells
except for cells listed in rule

297

SAFE_LAYER rule Overrides dangerous processing for only layers
listed in rule

299

Figure 112: References for safe/dangerous processing options.



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 145

This flattening is performed on all layers and has the same effect as ungrouping
the cells in the original layout data.  Flattening on input will result in loss of cell
hierarchy during the run and in hierarchical output data.

These flattening options are most useful for optimizing the data for speed and
space requirements.  You can tailor how small cells and cells used infrequently
will be handled.  Remember that data stored in its nested form will save some
storage requirements, but this hierarchical processing has overhead that takes
processing time.  Hierarchical processing reduces run time most when the nested
cells are relatively large and used many times.  You may be able to realize some
speed requirements if you adjust how cells are flattened.

The default DRC behavior is to flatten cells that have five or fewer components.
Processing these small cells hierarchically saves very little storage space, so
keeping them in their nested form is likely to make DRC runs take longer.  You
can override how cells with few shapes are flattened with the CFLATTEN
option on the DRC command line.

Keeping cells that are used only once in their nested form will result in no
storage savings.  However they will still require processing overhead.  This is
why the DRC defaults to flattening cells used only once.  You can modify how
cells used infrequently are handled with the NFLATTEN command line option.

If you prefer to flatten all nested cells, use the FLATTEN command line option
rather than using either the CFLATTEN or NFLATTEN options.

If you want cell hierarchy preserved exactly as it is in the input data, use the
NO_FLATTEN command line option.  This option is especially useful when
you are generating hierarchical output.  We cover more details on this subject
next.



How the DRC Works: Hierarchical Checking and Hierarchical Output

146 DRC User Manual

Hierarchical Output

While the DRC stores the design data in hierarchical fashion during the run, by
default it will export shapes on all output layers in flattened form.  When you run
the DRC command file in the ICED™ layout editor, all shapes on these layers will
be created in the current cell in the coordinates of the main cell used to create the
original data.  However, if you use the HIERARCHICAL option on the DRC
command line, data will be created in cells that match the hierarchical format of
the input data.  This can save considerable disk space when you have many
output layers.  When you plan to import DRC data into your design cells, this
allows you to maintain the design in its hierarchical format.

The HIERARCHICAL command line option is used mainly when you need to
import the results of complex layer processing back into your design.  It has little
benefit when using the DRC to only check errors.  Remember that the DRC
always executes verification rules on the flattened data, so rules that produce
error wires (as shown in the table on page 62) will always result in shapes in the
flattened main cell.

HIERARCHICAL="suffix_string"

Subject Importance Page
CFLATTEN
command line option

Controls how cells with few components are
flattened on input.

353

NFLATTEN
command line option

Controls how cells used few times are
flattened on input.

353

NO_FLATTEN
command line option

Prevents the DRC from flattening any cells
on input

353

FLATTEN command
line option

Causes the DRC to flatten design entirely
before processing begins

352

Figure 113: References for cell flattening options.

Shapes
generated for
bad polygons
are always
located in the
subcell error
command files
with .ERR
extensions.



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 147

This is the syntax of the HIERARCHICAL command line option.  The
suffix_string is added to the end of each cell name created by the DRC command
file.  This allows the shapes created by the DRC to be in separate cells from your
design cells.

These cells are created by executing the DRC command file in the ICED™ layout
editor.  These cells can be added to your design cells with another command file
(the hierarchical cell command file) generated by the DRC.  Once this command
file is executed in the ICED™ layout editor, each new cell is added to the
corresponding original design cell.  You should inspect the cells created by the
main command file before executing the hierarchical command file.  Once you
execute the hierarchical command file, your original design cells will be
modified.

The hierarchical cell command file has a similar file name to the main command
file except that the file extension is .ADD instead of .CMD.  To execute the
hierarchical command file, launch the ICED™ layout editor to edit a new
temporary cell.  You cannot execute this command file while editing one of your
design cells since the command file contains EDIT commands to modify these
cells.  An EDIT command will fail if it cannot open a cell due to the fact that the
cell is already open in the current layout editor session.

Once you have launched the layout editor to edit some new temporary cell,
execute the hierarchical command file with the command:

@output_file_base_name.ADD

where output_file_base_name is the third parameter on the DRC command line.
It is critical to include the .ADD file extension when executing this file.

The new cells added by a hierarchical command file can be time consuming to
remove again once it has been executed and the cell files saved to disk.  If you
have added cells from a previous DRC run and need to create a new set that is
slightly different, be sure to not only delete each DRC generated cell from each
original design cell, but also delete the cell files generated by the previous run
before executing the new command file.  If cell files exist with the same names
as the names in the "EDIT CELL" commands in the command file, the command
file will modify these existing cell files rather than create new cells.

See a complete
example of this
process on page
429.



How the DRC Works: Hierarchical Checking and Hierarchical Output

148 DRC User Manual

If you specify the suffix_string as "", the main command file will add shapes to
your original cells rather than create new cells.  In this case, your original cells
will be modified without warning.  This can be very risky unless you know
exactly what you are doing.  Be sure to back up your design carefully before
attempting to use the DRC output in this manner.

This process and the files involved are described in more detail beginning on
page 372.  You should read this information thoroughly before attempting to
import hierarchical data.

When you do use the HIERARCHICAL command line option, you may also
want to add the NO_FLATTEN command line option.  This will preserve the
cell hierarchy entirely instead of flattening small cells and those used
infrequently.

Unless you use the ALL_DANGER rule, some shapes may be created higher up
in cell hierarchy than you would expect.  You will receive a warning prompt to
this effect when ALL_DANGER is not used in conjunction with the
HIERARCICAL command line option.  To avoid the warning prompt, use the
NO_HIER_WARNING rule.



How the DRC Works: Hierarchical Checking and Hierarchical Output

DRC User Manual 149

Quirks of Hierarchical Processing

You may see some unusual characteristics in hierarchical data created by the
DRC.

Verification rules that generate error wires are always executed on the flattened
main cell.  They are always processed safely.  Shapes created from these rules
are always created at the main cell level.

Safe processing of dangerous operations will also create shapes in cells at a
higher level than you would expect.  For example, let us say that you execute the
rule C = A TOUCHING B on a design with a polygon on A in a subcell and
polygon on B in a higher level cell.  If these shapes touch, the shape on layer C
will be generated in the higher level cell, not the subcell.

Subject Importance Page
HIERARCHICAL
command line option

Directs the DRC to export data on output
layers in hierarchical (nested cell) format

354

NO_FLATTEN
command line option

Prevents the DRC from flattening some cells
during input processing

353

NO_HIER_WARNING
rule

Prevent warning prompt when safe
processing may prevent some shapes from
being created in appropriate subcells,

277

DRC command file Description of the main command file and
how to execute it in the ICED™ layout editor

365

Hierarchical command
file

Description of command file to add new cells
to original design cells

374

Complete example of
importing hierarchical
output

We strongly suggest you follow the tutorial
to learn the steps for importing hierarchical
data.

429

Figure 114: References for hierarchical output



How the DRC Works: Hierarchical Checking and Hierarchical Output

150 DRC User Manual

A rule like the SHRINK rule may produce shapes that cross cell boundaries.
The data is accurate, but it may not look the way you would expect.  Wires may
be shrunk away from the edges of a subcell, but connecting wires in the higher
level cell will extend into the subcell area to make it up. Refer to the example on
page 135.

If you do not add the NO_FLATTEN option to the DRC command line, some
cells may be flattened in the output data.

The cells modified by the .ADD command file will have their environment
replaced by the environment of the cell in which you execute the file.  Create a
temporary cell with the appropriate environment for executing the command file
that modifies your original cells.  See an example on page 433.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 151

Optimizing DRC Runs

Optimizations in Rule Sets

Optimizations Performed by the Rules Compiler

The DRC rules compiler will optimize the order of execution for layer-
processing rules to minimize the number of DRC passes required.  Many layer-
processing rules can be executed concurrently in a single pass through the design
data.  You do not need to worry about this issue as you write the rule set.  You
can locate the verification rules for a set of layers directly after the related layer-
processing rules, then follow this with more layer-processing rules.  Keep the
rule set as readable as possible. The compiler will re-order the rule set
automatically.

The compiler will also remove rules that are redundant or unused.  Let us say
that you write several rules
to generate a layer that you
use in a specific rule.  You
then remove the rule that
uses that layer.   You do
not need to search
backward to remove the
rules which created the
layer.  The compiler will
do this automatically to
optimize your rule set.

In the example in Figure
115, the rules that have
been commented out with
'!'s make the TEMP1, E,
and F layers redundant.

See an example
of the compiler
removing a
redundant rule
by compiling
the Q:\ICED-
\EXAMPLES-
\EXAMPLE2-
.RUL file.

INPUT LAYER 1  A;  2  B; 3  C; 4  D;
OUTPUT LAYER 10  E; 11 F; 12 G;
OUTPUT LAYER 101 ERR1; 102 ERR2; 103 ERR3;
OUTPUT LAYER 0  TEMP1; 0 TEMP2;

E = A AND NOT B
F = A AND NOT C

TEMP1 = BLOAT (F, 1.1)
TEMP2 = BLOAT (D, 1.1)

!ERR1 = MINSPACING (TEMP1, TEMP1, 2)
!ERR2 = MINSPACING (E, E, 3)
ERR3 = MINSPACING (TEMP2, TEMP2, .7)

Figure 115: Sample rule set with rules
commented out.



How the DRC Works: Optimizing DRC Runs

152 DRC User Manual

The DRC compiler will remove the rule that creates the TEMP1 layer and will
warn you about this action in the log file and console messages.  The rules that
create the E and F layers will remain since they are output layers.  The DRC
assumes that you need those layers to be exported since they are defined with
valid layer numbers.  However, the TEMP1 layer is just a scratch layer since it is
defined with layer number 0.

Rule Subsets

The DRC itself can perform this kind of optimization at run time.  If you
organize your rules into rule subsets with the RULE_SET rule, this feature can
make it painless to execute only a part of your rule set and have it execute as
quickly as possible without a lot of unnecessary processing.  When you use this
feature, you do not need to
edit or recompile your
rules to execute only a
portion of them.

When we reorganize the
rule set shown above to
place the commented out
rules in a defined rule
subset, then use the
"DO=(-SET1)" option on
the DRC command line,
the DRC will not execute
the rules that create the
ERR1, ERR2 or TEMP1
rules.  You can execute
the DRC again at a later
date without the DO
command line option and
execute all rules without
recompiling the rules file.

INPUT LAYER 1  A;  2  B; 3  C; 4  D;
OUTPUT LAYER 10  E; 11 F; 12 G;
OUTPUT LAYER 101 ERR1; 102 ERR2; 103 ERR3;
OUTPUT LAYER 0  TEMP1; 0 TEMP2;

E = A AND NOT B
F = A AND NOT C

TEMP1 = BLOAT (F, 1.1)
TEMP2 = BLOAT (D, 1.1)

RULE_SET  SET1 SET2

SET1 ON
ERR1 = MINSPACING (TEMP1, TEMP1, 2)
ERR2 = MINSPACING (E, E, 3)
SET1 OFF

SET2 ON
ERR3 = MINSPACING (TEMP2, TEMP2, .7)
SET2 OFF

Figure 116: Sample rule set using RULE_SET
organization.

The DO option
can also be used
to execute only
specific rules by
using the rule
numbers
indicated in the
log file.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 153

Other Ways to Organize Complicated Rule Sets

Rule sets can be very long and complicated.  They frequently need updating as
design rules change or as they are adapted for new designs or technologies.  It is
a very good idea to keep them as readable and organized as possible. Use lots of
comments in your rule set to allow others to follow what you have done.  (You
will be grateful yourself for plenty of comments if you need to update a rule set
that you have not seen for a year.)

The comment indicator is the '!' character.  Any text after that character, up to the
end of the line, is ignored by the rules compiler.

Another way to keep rule sets concise and organized is to separate blocks of
rules into separate files then use INCLUDE rules to combine them.  This allows
you to create rule set files that you may use in several different rule sets.  For
example, you can place rules that process the layers and test the rules for
resistors in a separate file.  You can then include this file with a single line in the
main rules file.  When a design contains no resistors, comment out the single
line.

One way to make rule sets far easier to update is to use named constants instead
of numbers in rules.  The CONST rule allows you to associate a string like
"M1_SPACE" with a number.  You can then use the string in rules in place of
typing the number.  If you place all of your CONST declarations in one place
(perhaps in a separate file) they are easy to find and update when technology
rules change.

Subject Importance Page
CONST rule Define constants you can use by name in other rules 203

INCLUDE rule Combine separate files into one rule set 216

RULE_SET rule Define subsets of rules that be executed without
executing remainder of rule set

295

DO cmd line option Select rule subsets to be executed 347

Rules compiler
description

Complete description of rules compiler 319

Figure 117: References for optimizations in rule sets.



How the DRC Works: Optimizing DRC Runs

154 DRC User Manual

Testing New Rules

When writing new rules, you should test them on small test-cases before using
them on a whole design.   It is easy to make mistakes when writing new rules and
it is much better to find these mistakes with runs that take a minute than with
runs that take two hours.  Carefully inspect the results of the first run on the
entire design to insure that all special cases are treated in the manner they should
be.  It is common to encounter special cases that you did not think of when
writing the rules.  The NP2DS rules shown on page 71 are a good example.

When you are testing new or modified rules, you may want to add a
MAX_COUNT rule to alert you when a certain number of errors are found.  The
default behavior is to alert you after 1000 errors are found.  This may be a high
number when testing new rules.  Use a smaller number to shorten a wasted run
due to large numbers of false errors resulting from an error in the rule set.

If you want the DRC to stop automatically when the maximum error count is
reached, add the STOP_ON_MAX_COUNT rule to your rule set.

If your new rules include dummy layer processing to isolate special cases (like
resistor recognition), you should add rules to test that the dummy shapes are
correctly placed.  When people edit a layout, it is a common practice to blank (or
hide) all but a few layers.  Dummy layers that should be modified at the same
time may not be visible, so they are left unmodified.  If the layout has changed so
that the dummy shapes are now in the wrong place, a layer may be processed
incorrectly causing false errors or missed errors.

You can abort
the DRC once
the alert is
posted with the
<Esc> key.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 155

Look at Figure 118.
This example was used
on page 113 to demon-
strate resistor recog-
nition.   RESMASK is
a dummy layer used to
filter the POLY layer
into the RESISTOR
layer and the POLY
layer used as a con-
ductive layer.  If the
design shapes that
represent the resistor
are shifted away from
the dummy shape as shown in Figure 118, node 1 and node 2 will be shorted
together and the resistor will be the wrong size.  This could easily lead to missed
errors or false errors.

You can reduce the problems caused by dummy shapes in the wrong place by
adding rules that test for their proper placement.  In the case above, you can add
the following rules:

Example: OUTPUT ERROR LAYER   101 BAD_RESISTOR
BAD_RESISTOR = RESISTOR NOT TOUCHING 2 POLY

If these extra rules add too much processing time to your DRC runs, you can
move them to a rule set you execute less often.  Just be sure that you test the
dummy shapes in the final design to insure that errors are not being missed due
to dummy shapes in the wrong place.

M1 CONT POLY RESMASK

Node 2Node 1

Figure 118: Shifted resistor device with dummy
shape in wrong place.

Subject Importance Page
MAX_COUNT rule Change the maximum number of errors to be found

before the DRC alerts the user.  The default is 1000.
233

STOP_ON_MAX-
_COUNT rule

Stops the DRC when the MAX_COUNT number of
errors has been found.

310

Figure 119: References for testing new rules.

M1 CONT POLY RESMASK

Node 1 Node 2



How the DRC Works: Optimizing DRC Runs

156 DRC User Manual

Removing False Errors

When the DRC indicates errors that are not true design errors, we call these false
errors.  It is tempting to simply ignore these false errors and go on looking for
the real errors.  However, this is a very dangerous practice.  Real errors may go
unnoticed as you skip over the false errors.

You should make every effort to avoid marking these false errors in the first
place.  When false errors are caused by special cases of shapes on a given layer,
rewrite the rules to isolate these special cases and treat them differently.  Some
methods of removing false errors are:

1) modification of the verification rule
2) extra layer processing on the design layers
3) dummy shapes

Various rules have different methods for avoiding false errors.  The MIN_AREA
and ASPECT_RATIO rules have options to modify the way shapes overlapping
a panel boundary are handled.  The MIN_NOTCH, MIN_SPACING, and
MIN_WIDTH rules all allow you to discard errors less than a certain length.
The MIN_SPACING rule has many options to discard possible errors.  If you are
seeing false errors for a specific rule, you should reread the syntax for the rule to
see if there is a way to automatically avoid marking the false errors.

To demonstrate method number 2, let us assume that the minimum distance
required to separate metal wires changes depending on the width of the wire.
Wires that are 2 microns wide must be at least 2 microns apart; however wires
that are only 1.5 microns wide must be only 1.5 microns apart.  When you begin
the design, you decide that all metal wires should be at least 2 microns apart to
simplify the rules and layout.   As your design progresses, you decide that you
need to compress the wires in only a few places.  It is tempting to leave the rules
unchanged and ignore the few false errors.

If you do this, and only one real error goes unnoticed, it might be a very
expensive mistake.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 157

You can instead rewrite the rules to isolate the thin wires and test them
separately.  The example of separating wires by width on page 65 pairs a
SHRINK rule with a BLOAT rule to isolate the thin wires.  These wires are then
tested with a different MIN_SPACING rule.

You can see that it may require careful thought to create rules that isolate shapes
that need to be checked differently to avoid false errors.  However, the extra
rules are usually not that difficult to write.

If there is no way to isolate the false error shapes by layout properties, you can
add dummy shapes to isolate them.  (Method 3.) This should be a last resort
because you will need to modify the layout to add the dummy shapes.  Also, as
mentioned earlier, problems often arise when the layout is modified after the
dummy shapes are added.

One common source of false errors is metal letters in a corner of a chip.  These
errors can easily be avoided by carefully adding a rectangle on a dummy layer
over the letters.  Modify the rules to remove shapes covered by the rectangle
from the metal layer.  Be sure to add a MIN_SPACING rule to test that the
dummy layer rectangle is the minimum distance away from real shapes on
the metal layer or real errors may not be found.

Diagnosing Mysterious Errors

There are a number of things you can try when the DRC marks errors that you
cannot find in the layout.

One common problem is when the DRC marks many errors that you know you
have fixed since the last DRC run.  If you forgot to recreate the binary layout
data for the DRC with the DRC command in the layout editor after making your
changes, the DRC is verifying the old data.  Be sure to always generate new
binary layout data file with DRC command in the layout editor after
changing the design.



How the DRC Works: Optimizing DRC Runs

158 DRC User Manual

If you cannot determine which rule generated an error, you can use the SHOW
command in the layout editor to report the tag number of the error shape.  The
tag number refers to the rule number that generated the shape.  These rule
numbers are reported in the rules compiler log file.

Sometimes dense areas can have many sides marked by MIN_SPACING rules
and it is difficult to determine which sides form a pair that is too close.  You can
use detailed logging to list the pairs explicitly in the log file.  Detailed logging is
also useful when you have one unpaired error wire left over when the other error
wire is discarded by a /LENGTH restriction.

Detailed logging can result in very large log files.  It is best to use it only on
small subsets of your design.  When using detailed logging, run the DRC on a
subcell or on small area of your design defined with one methods described next
on page 159.

Occasionally, the shapes checked by the DRC are different than the shapes in the
layout.  If you use complicated processing (especially BLOATS and SHRINKS)
to generate temporary layers for verification, tiny vertex approximations can
escalate to large enough distortions of shapes to cause false errors.  (See
examples on page 131.)  When you cannot determine why a temporary layer has
errors marked, it is best to change the temporary layer to an output layer to see
exactly what the DRC verified.

One related problem that is harder to diagnose is when shapes in the DRC
database are marked with errors but grid resolution issues cause these shapes to
be distorted or to disappear when they are output.  Remember that the DRC
resolution grid is much finer than the one used by the ICED™ layout editor.  Tiny
slivers of shapes may disappear when the data is resolved to the coarser grid
during export.

One way to resolve false errors caused by the different resolution grids is to
resolve shapes in the DRC database to the grid used by the layout editor before
they are verified.  This is done with the SNAP and SNAP45 rules.

If you are having trouble with a specific rule, or set of rules, and want a faster
DRC run to re-execute only those rules, use the DO option on the DRC
command line to execute only specific rule numbers.  The DRC will

Detailed
logging is
turned on in a
MIN_SPACING
rule by adding
/DET to the
rule.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 159

automatically execute all layer-processing rules that are required to execute the
rules listed in the DO option.

Limiting Area Checked

If you want a faster DRC run on only a specific area of your design, you can
limit the design area checked.  The two methods of limiting the design area are
listed below.

•  Use the IN keyword of the DRC command in the layout editor to restrict
the input data to a small rectangle of your top-level cell.  (The SEL
option of the DRC command exports only selected shapes.)

•  Add appropriate the LEFT, RIGHT, TOP, and BOTTOM options on the
DRC.EXE command line.  This method does not require you to change
the DRC input file.

Subject Importance Page
SNAP and SNAP45
rules

Resolve layers to the ICED™ layout editor
grid before verification

304

Grid resolution issues Overview of how vertices can shift on output 79

DO command line
option

Execute only certain rules from a rule set 347

Limiting area
checked

Diagnosing problems is much easier when
checking only a small area around the
problem.

159

Tag numbers Number of DRC rule that generated a
specific shape as reported by SHOW
command in the layout editor

372

Detailed logging List coordinates of pairs of sides in error in
DRC log file

50

Figure 120: References for diagnosing mysterious errors

See page 350 to
learn more
about the LEFT,
etc. options.



How the DRC Works: Optimizing DRC Runs

160 DRC User Manual

You should be aware that limiting the
design area checked can lead to false
errors being marked.  Look at Figure
121.  If the design area is limited to the
area in the dashed rectangle, several
false errors may be marked.

Electrical connections outside of the
area boundary are ignored.  Let us
assume that you check the spacing of
wires with a MIN_SPACING rule that
prevents connected pairs from being
marked as errors.  The pair of wires on
the bottom-right will be marked with a
false error since the shape that connects them is outside of the design area
checked.

The box on the bottom-left may be marked with a false MIN_AREA violation
since the shape will be cut at the boundary.  This same box will also be
misclassified by IS_BOX rules.  The section of the long wire that is cut by the
boundary may be marked with a false MIN_WIDTH violation.

Choose the boundary carefully when you limit design area checked, or ignore all
errors close to the edge of the boundary.  Watch for false errors caused by
missing electrical connections.

Figure 121: Design area checked is
limited to dashed rectangle.

Subject Importance Page
DRC Layout editor
command

The binary data file created for the
DRC can be limited to a portion of
the layout.

See the Layout
Editor
Reference
Manual.

LEFT, RIGHT, TOP,
and BOTTOM
command line
options.

Limit area checked by the DRC 350

Figure 122: References for limiting area checked



How the DRC Works: Optimizing DRC Runs

DRC User Manual 161

Reducing Run Times

We just covered how to perform a much faster run when you want to zero in on a
specific rule or design area, but how do you get faster run times for every DRC
run?

If none of the following methods give you the speed you require, think about
physical improvements.  Adding more memory or a faster processor to your
computer will certainly improve DRC run times.  Be sure that you are not
limiting the memory available to the DRC with a small number in the USE or
HOG command line option.  Also, be sure that the DRC is using the fastest disk
drive on your computer for the scratch file.  The drive used for the scratch file
can be set with the SCRATCH_DIR option on the DRC command line.

The largest DRC speed improvements are achieved by optimizing the panel size
and border area.  Since there is a trade off between extra processing required for
panel processing and time saved due the smaller amount of data stored in
flattened form at any given time, time may be saved by increasing panel size or
by decreasing it.

The DRC log file lists the amount of time spent by each phase of the processing
near the bottom of the file.  If the log file indicates that the DRC is spending
significant time swapping data to disk, try reducing the panel size.  If the log file
indicates that little or no time is spent swapping data to disk, try increasing the
panel size.

Memory Management

If you are having problems with the DRC running to completion with the
memory available on your system, the first thing to try is smaller panels.

Other than panel size, the amount of memory available to the DRC is the largest
factor in execution speed.  You want to not only maximize the total amount of
memory available to the program, but to optimize how that memory is divided.

Optimizing
panel sizes is
completely
covered
beginning on
page 118.



How the DRC Works: Optimizing DRC Runs

162 DRC User Manual

The HOG or USE command line options limit the total amount of memory
available to the DRC.  (Both options perform the same function.  The only
difference is the units used to express the amount of memory.)  If you are using
the DRC in a pure DOS environment, do not use either of these options.  The
absence of both options allows the DRC to use all available physical memory.  If
you are using a multitasking operating system (such as Microsoft Windows) then
use these options to reserve as much memory as possible for the DRC without
impacting the other programs running on your machine.

When the DRC does not have enough memory to allocate tables or load the
database, the crash messages can be somewhat mysterious.  Insufficient memory
is the primary suspect whenever a run crashes immediately before the log file is
even created.  When the system cannot provide the memory indicated by the
HOG or USE parameters, the program will also crash.  If a log file does get
created before a crash, the amount of memory actually available to the program
is listed near the top of the file.

The DRC takes the memory available to it and divides this memory into main
memory (used for computations, tables, etc.) and data storage (easily swapped
to/from virtual memory swap files).  The default behavior is to divide the
memory equally, up to a limit of 128 Megabytes of main memory.

The optimum division of memory depends on your design and the rules in your
rule set.  You will need to experiment with different divisions of memory to get
the fastest run time.

To specify the ratio of main memory to the total amount of memory, use the
MAIN_MEMORY=main/total_ratio command line option.  To specify a fixed
amount of main memory instead, use the MAIN_USE=main_kilobytes or
MAIN_HOG=main_megabytes command line options.

One other option that can increase the memory available to the program for
medium size runs is the FILESIZE option.  This option limits the size of the
scratch file.  The DRC allocates a large virtual array page table in memory to
accommodate the largest swap file possible.  If you are not using a large scratch
file (i.e. less than 2 Gigabytes) then you can conserve memory by reducing the
largest possible size of the swap file with the FILESIZE=scratch_megabytes
option on the DRC command line.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 163

If you use FILESIZE to limit the maximum swap file, and your design requires
more space than this, the DRC will crash with a message explaining the problem.
In this case, increase the maximum size in the FILESIZE option, remove the
option altogether, or optimize panel size so that less memory is required.

Rewriting Rule Sets to Improve Speed

The log file also indicates the time spent processing each rule.  This data is listed
by operation number.  To relate the operation number to a rule, look in the rules
compiler log file or add the LIST_RULES option to the DRC command line.

It can be frustrating to try to modify the rule set to make it faster.  To process
some rules, the DRC needs to generate special tables of data for quick
algorithms.  The first rule that needs this information will have the time it takes
to generate the tables added to its time statistics.  Other rules may use this data
later without taking extra time.  Therefore, if you decide to remove a rule from
your rule set because it is taking a long time to process, the time it takes to create
the tables may then be added to the processing time for another rule that
processes the same layer.

Duplicate processing must be performed for all shapes in the border of each
panel.  Reducing this border by rewriting rules or separating long reach rules
into a separate rule set can lead to dramatic improvements in run time.

Remember that reach is the minimum border distance around each panel required
by a rule to insure that all shapes will be processed correctly.  The long reach
rules force the DRC to use a large border around each panel.  This large border is
used by all rules in the same pass.  Many short reach rules will process shapes in
the border area unnecessarily.

One way to keep all rules in the same rule set, but process the long reach and
short reach rules in different DRC runs, is to use rule subsets. (See page 152.)
You may also be able to rewrite your rules and use clever processing to change
long reach rules to short or zero reach rules.

You can see the
reach required
for each rule by
adding the
SHOW-
_BORDER
option to the
DRC command
line.



How the DRC Works: Optimizing DRC Runs

164 DRC User Manual

Assume that your technology requires that all transistors must be at least 100
microns away from a pad.  If you test this with a MIN_SPACING rule, the
border must be at least 100 microns wide on all sides of each panel.  Other rules
will be forced to use this border and process all shapes in the border of each
panel.  A border this large may cause the DRC to fail entirely if the panels are
too small.

Let us look at a clever way to process this very long reach rule.  Create a rule set
with a BLOAT rule to generate an output layer that contains all pad shapes
bloated by 100 microns.  Import these shapes into your main cell on a new layer
BLOATPAD.  Now when you export the entire design from the layout editor,
you can test the pad rule with a Boolean rule like "ERR = BLOATPAD AND
GATE".  No large border is required to process this rule.

The QUICK_SPACING and QUICK_PASS Options

These DRC command line options are intended to allow
you to force the DRC to use faster algorithms at the cost
of the possibility of missing errors or marking false
errors.  These faster algorithms will be used by the DRC
automatically when they cannot result in false errors as
determined by the contents of the rule set and the DRC
command line options.  These options are available on
the DRC command line to force the DRC to use these
algorithms for faster intermediate runs.  Do not use
these command line options on DRC runs of your
final design.

The QUICK_SPACING option can miss spacing errors
in rare cases like the one shown on page 101.  The
QUICK_PASS option forces the DRC to execute in a
single pass.  This means that the DRC cannot process
operations that require the DRC to recognize touching
shapes like the ones shown in Figure 123.  The DRC will also ignore the
problems caused by panel boundaries and touching shapes.  (See an example on
page 130.)  These restrictions may lead to some false errors and missed errors.

BRIDGE
CONNECT
ISLANDS
MAX_SPACING
OVERLAPPING
STAMP
TOUCHING
/CONN and /~CONN
options of
MIN_SPACING

Figure 123: Rules
not executed when
QUICK_PASS is
used.

When rules will
be ignored due
to the
QUICK_PASS
option, you must
reply to a
warning prompt
to proceed.  To
avoid the
warning prompt,
use the
ALLOW_QUICK
rule or command
line option.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 165

The QUICK_SPACING option may save on the order of 10% of DRC
processing time.  The QUICK_PASS option may save considerably more time.
We recommend that you do not use these options on your initial runs so that you
will not be misled by false errors or by the absence of errors that your rule set
would have found ordinarily.  However, these options can be very useful when
you execute repeated runs of the DRC after minor modifications to the layout.

The Progress Report Options

During long runs, the amount of time spent by the DRC in posting messages to
the console window to update the user on the progress of the run may take a
significant amount of time.  In one seven hour run, reducing the frequency of
these console messages saved around 15 minutes of run time.

If you will not be checking the progress of the run frequently, you will lose
nothing by reducing the frequency of these messages.  The easiest method is to
add the LONGCASE option to the DRC command line.

Newer versions of the DRC automatically suppress most progress reports for
long runs based on the number of rules and the number of panels.  If you want to
suppress most progress reports for even shorter runs add the
NO_FLASH_PANELS=flash_limit option to the command line, where flash
limit is set to a number less than 10,000.  See the option description for more
details.

For medium runs, where the flash limit is not suppressing progress reports, you
can reduce the refresh rate for progress updates with the DISPLAY_OPERA-
TIONS=min_refresh_seconds option on the DRC command line.  Setting
min_refresh_seconds to 60 will result in the display being updated no more often
than once a minute.  The default is once every two seconds.



How the DRC Works: Optimizing DRC Runs

166 DRC User Manual

Using the DRC on Very Large Designs

When you have a large, dense design the panel size and border area become
critically important.  Try various panel sizes as you execute new runs. The speed
improvements can be dramatic.

Subject Importance Page
Panel Processing Complete description of how panel processing

speeds DRC execution
118

Separating long/short reach
rules

Example of splitting single rules file into two
subsets to optimize panel border

442

Advanced tutorial Example of optimizing panel size 445

DRC log file Description of how DRC lists where time is
spent during run

362

SCRATCH_DIR command
line option

Specify disk drive for scratch file 341

USE or HOG command
line options

Specify maximum total amount of memory
available to DRC

339

MAIN_MEMORY,
MAIN_USE, and
MAIN_HOG command
line options.

Specify division of memory between main
memory and database memory

340

QUICK_PASS command
line option

Speed DRC by eliminating multiple passes 337

QUICK_SPACING
command line option

Speed DRC with quicker algorithm for
MIN_SPACING rules

338

LONGCASE command
option line

Optimize display for progress reports for longer
runs

343

NO_FLASH_PANELS
command option line

Changes definition of a “long run” so that
progress reports are suppressed or not

344

DISPLAY_OPERATIONS Changes refresh rate for progress reports 344

Figure 124: References for reducing run times

Review panel
processing on
page 118.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 167

Maximize the amount of total amount of memory available to the DRC by
eliminating other programs that are appropriating memory.  Set the HOG or USE
command line option value to the highest possible number.  When the DRC does
not have enough memory to allocate tables or load a huge database, the crash
messages can be somewhat mysterious.  Insufficient memory is the primary
suspect whenever a run crashes immediately.  Once you have maximized the
HOG or USE parameter, optimize the division of memory with the
MAIN_MEMORY, MAIN_HOG, or MAIN_USE command line options in
successive runs.

Large designs are very likely to result in large DRC scratch files.  These scratch
files can be as large as several Gigabytes.  Be sure to add the SCRATCH_DIR
option to your DRC command line to specify additional directories or disk
drives.  These additional directories will be used when the DRC runs out of
space on the first disk drive or reaches the 2 Gigabyte file size limit imposed by
the operating system.  (If you used the FILESIZE option in previous versions of
the DRC you may want to remove it now.  The FILESIZE option is useful now
only to save memory in medium size runs.  The maximum size of the scratch file
now grows with the number of scratch directories defined with the
SCRATCH_DIR option.)

When the DRC run times are long, the LONGCASE option on the DRC
command line will result in more meaningful console messages displayed during
the run.

Review memory
management on
page 161.

Review
progress reports
on page 165.

Subject Importance Page
LONGCASE
command line option

Display more meaningful console messages
during DRC run

343

USE or HOG
command line
options

Specify maximum amount of memory
available to DRC

339

SCRATCH_DIR
command line option

Specify disk drive for scratch file 341

Panel Processing Complete description of how panel
processing speeds DRC execution

118

Figure 125: References for very large designs



How the DRC Works: Optimizing DRC Runs

168 DRC User Manual

Preliminary Checks Vs. Final Checks

When you are in the preliminary stages of testing a large design, it is best to test
the subcells first.  DRC runs on small cells will execute very quickly, often in
less than a minute.  As errors in the smaller subcells are eliminated, proceed up
the hierarchy of your design.

This method will also allow you to find problems with your rule set early in the
process.  It is much better to find these problems with runs that take a few
minutes than with runs that take 8 hours. By the time you are verifying the entire
design, your rule set should have all problems resolved.

As your rule set matures, you may separate it into different rule sets.  You may
need to move long reach rules to a separate rule set.  If you need to have dummy
layers in your design to avoid marking false errors or for device recognition, you
may want to place rules that test these dummy layers in a separate set.

You may want to add the QUICK_PASS and QUICK_SPACING options to the
DRC command line for intermediate runs.  You will probably want to
experiment with different panel sizes in intermediate runs on the whole design.
If you have found an optimal panel size before you need to be making final
verification runs, it will allow the final runs to be executed in a timely fashion.

Checklist for Final Run

As you proceed through the design process, it is tempting to cut corners that
allow you to get faster DRC runs.  You may remove rules that take too long to
process when they have not found any errors in your design so far.  You may add
shapes on dummy layers to hide errors that you consider false errors.  You will
likely add the QUICK_SPACING and QUICK_PASS options to the command
line.   These types of methods to speed up repeated runs are not a bad idea,
however you must eliminate all of these methods on final DRC runs.

In the final days of getting a major design out the door, it is far too easy to forget
about the corners you cut weeks or months ago.  As you make these
modifications to speed things up, create a checklist for yourself that will insure

When rules will
be ignored due
to the
QUICK_PASS
option, you must
reply to a
warning prompt
to proceed.  To
avoid the
warning prompt,
use the
ALLOW_QUICK
rule or command
line option.



How the DRC Works: Optimizing DRC Runs

DRC User Manual 169

that the final design is verified without these methods that may hide errors.  You
may find to your sorrow that your cleverness in getting the DRC to run quickly
has resulted in an undetected error added to the layout at the last minute.

The following list should only be the start of your final checklist.  Keep this
checklist in mind as you modify the rule set.  Think hard about how changes may
allow weird and unlikely layout errors to go undetected.  Be sure that any of
these unlikely errors will be found in the final design.

! Remove the BADPOLY=0 rule from your rule set if you have
used it.

! Be sure that the NO_WARN_ACUTE or WARN_ACUTE=0
rules are not used in your final rule set.

! Remove the QUICK_SPACING and QUICK_PASS options
from the DRC command line.

! If you have used the DO option on the DRC command line,
remove it.

! If your layout contains shapes on dummy (non-design) layers
that affect how the layout is interpreted by the DRC, remove
then, regenerate them, or verify them again in the final design.

! If you have separated some rules into different rule sets (perhaps
to reduce the border size), be sure to run all rule sets on the final
design.



How the DRC Works: Optimizing DRC Runs

170 DRC User Manual



DRC Rules Syntax

DRC User Manual 171

DRC Rules Syntax



DRC Rules Syntax: General Syntax Restrictions

172 DRC User Manual

General Syntax Restrictions

The syntax restrictions for DRC rule statements vary greatly from rule to rule.
You must read the rule statement descriptions to determine the syntax of each
rule.  However, there are some general syntax restrictions which all rules have in
common.  We will cover these syntax issues here so we don't have to repeat them
too often.

The underscore character '_', used in many keywords, is optional and can be
omitted.  The underscore is included for readability only and is stripped from
keywords during preprocessing.  However, this is done only to DRC keywords.
Layer names are not preprocessed by the DRC in this manner and should be
typed exactly the same way every time they are used in a rule set.

Example: IS_BOX
ISBOX

Both of these ways of typing the IS_BOX keyword are equally valid.

You can use blank spaces or tabs freely between keywords and parameters in
DRC rules.  All extra whitespace characters are stripped by the rules compiler.

Example: A =  B      AND NOT     C
A=B AND NOT C;

These two ways of writing the AND rule are exactly equivalent.  The semicolon
at the end of the second rule is optional.

DRC rules are case-insensitive.  This means that you can type the rule set in
upper case, lower case, or any combination of the two.  All text is transformed
into upper case as it read by the rules compiler.

Most rules are usually typed on one line.  However, when the rule is more easily
read when split over several lines you can use the '&' continuation character.
The '&' must be the last non-comment non-blank character on the line, and there
must be at least one blank before the '&'.



DRC Rules Syntax: General Syntax Restrictions

DRC User Manual 173

Example: ERR2 = MIN_SPACING ( &
A/OUT, &
B/CAP=90, &
1.1 &
/~CROSS )

The MIN_SPACING rule is usually written on a single line.  However, when '&'s
are used as in the multiline example above, the DRC reads the rule as if it were
written on a single line like the line below:

ERR2 = MIN_SPACING ( A/OUT, B/CAP=90, 1.1 /~CROSS )

There are several rules that allow rules to span lines without the use of '&'s.  This
special syntax will be indicated in the rule descriptions.  Most rules that may be
typed over several lines use curly brackets '{}' to enclose the text on the extra
lines.  When in doubt, it is valid to use the '&'  in any rule.

You can add comments on lines of their own, or at the end of any line.  The
comment indicator is the exclamation mark '!'.  Any text encountered after the
exclamation mark, up to the end of the line, is ignored by the rules compiler.
This means that comments can be used after the '&' continuation character.

Example: INPUT LAYER  1 INCELL *PF C_DIFF & !Capacitor diffusion
INCELL *NH I_DIFF & !Inductor diffusion
NOT DIFF !All other diffusion

Manual Notation

The syntax of individual DRC rules is described in this manual using the
notation described in the ICED™ Reference Manual with one exception.  Since
parentheses are used so frequently in DRC rules, we will not use them to
indicate a choice between keywords.  Instead, where a choice between keywords
or parameters is allowed, we will indicate this with smaller text listing the
choices near the rule syntax heading.



DRC Rules Syntax: General Syntax Restrictions

174 DRC User Manual

The syntax headings use the following notation:

KEYWORD Bold type in the syntax section will be used to indicate the
required rule name keyword.

parameter value Lower case italic type will be used to indicate where a value
should be entered in a rule statement.  The value could be a
number or a string.  The valid values for the parameter will be
indicated in the description.

CONST  const_name =  const_value

The above line is used to indicate the syntax for the CONST
rule on page 203.  This rule is used to assign a value to a
named constant that can be used in other rules instead of
typing in the parameter value.  When you type a CONST rule,
substitute a string for const_name and a number for
const_value as shown below.

CONST  MY_VAL  =  2.45

[ KEYWORD ] Square brackets indicate that the keyword or parameter is
optional.  Do not type the brackets in the rule.

result_layer = [NOT] layer1 AND [NOT]  layer2

This is the syntax description for the AND rule.  The NOT
keywords are optional.  The parameters result_layer, layer1
and layer2 should all be replaced with layer names when the
rule is typed.  If the second optional NOT keyword is used, as
in the following rule:

SRC_DRN = DIFF  AND  NOT  POLY

the inverse of layer POLY will be used in the Boolean AND
operation rather than layer POLY itself.



DRC Rules Syntax: General Syntax Restrictions

DRC User Manual 175

... Three dots at the end of a line of sample code, or in the syntax
section, indicate that the line is continued on the next line.
Three dots will also precede the continuation on the next line.
When you type the rule, type it all on one line without the dots
or use '&'s to allow the rule to span more than one line.

Three dots in the middle of a line in a syntax description mean
that several additional parameters are allowed but are not
explicitly specified in the syntax description.

IS_BOX ( layer1,  size1 [, size2 [..., sizen] ] )

This is part of the syntax description for the IS_BOX rule.
You may specify up to ten sizen parameters, but it would be
rather verbose to list all ten parameters.  The dots take the
place of the missing parameters.



DRC Rules Syntax: 2_ONLY

176 DRC User Manual

2_ONLY DRC version control

2_ONLY   [TOEND]

If you use the same rules set with both version 2.xx and version 3.xx of the DRC,
you can use this rule to identify rules that should be executed only by version
2.xx of the DRC.

Example: 2_ONLY
NOT_RECT_A = RECTANGLES ( A, ( 0:100, 0:100) )

3_ONLY
NOT_RECT_A = NOT  IS_BOX ( A, ( 0:100, 0:100) )

The RECTANGLES rule is an obsolete version of the IS_BOX rule.  The
IS_BOX rule is supported by version 3.xx of the DRC, but not version 2.xx.
When the example above is compiled with the rules compiler for version 2.xx,
only the RECTANGLES rule is executed when the compiled rule set is used by
version 2.xx of the DRC.  The IS_BOX rule will be ignored.

When the same rule set is compiled then executed by version 3.xx of the DRC,
only the IS_BOX rule is executed.

Note that the 2_ONLY rule applies only to the next single rule in the rule set.

To identify a block of rules, add the TOEND keyword to the 2_ONLY rule.
When you use the TOEND keyword, you must add an END2 rule at the end of
the block of rules.



DRC Rules Syntax: 2_ONLY

DRC User Manual 177

Example: 2ONLY TOEND
NOT_RECT_A = RECTANGLES ( A, ( 0:100, 0:100) )
RECT_A = A  AND  NOT  NOT_RECT_A
END2

3ONLY TOEND
RECT_A = ISBOX ( A, ( 0:100, 0:100) ) NOT=NOT_RECT_A
END3

When the above example is executed by version 2.xx of the DRC, the RECT_A
layer will be generated as a result of the RECTANGLES rule and the AND rule.
Version 3.xx of the DRC will ignore both of these rules and use the IS_BOX rule
instead.

Note that the underscore is optional in the 2_ONLY, 3_ONLY and IS_BOX
rules.   The underscore is used for readability only.  It is stripped from the
keywords by the rules compiler preprocessor.



DRC Rules Syntax: 286_ONLY

178 DRC User Manual

286_ONLY DRC version control

286_ONLY   [TOEND]

If you use the same rules set with different versions of the DRC, you can use this
rule to identify rules that should be executed only by version 1.xx of the DRC.

The syntax is the same as the 2_ONLY rule. The TOEND keyword is used to
mark blocks of rules.  When this keyword is not used, the 286_ONLY rule
applies only to the next single rule. See the 2_ONLY rule on page 176 for more
details and examples.



DRC Rules Syntax: 3_ONLY

DRC User Manual 179

3_ONLY DRC version control

3_ONLY   [TOEND]

If you use the same rules set with different versions of the DRC, you can use this
rule to identify rules that should be executed only by version 3.xx of the DRC.

The syntax is the same as the 2_ONLY rule. The TOEND keyword is used to
mark blocks of rules.  When this keyword is not used, the 3_ONLY rule applies
only to the next single rule. See the 2_ONLY rule on page 176 for more details
and examples.



DRC Rules Syntax: ALL_DANGER

180 DRC User Manual

ALL_DANGER Prevent cell flattening for dangerous operations

ALL_DANGER

When this rule is present anywhere in your rule set, the DRC will avoid
flattening any cells before performing dangerous operations.  This may increase
or decrease DRC processing time. Dangerous operations may incorrectly process
some layers.  You will be warned in the DRC log file when a layer has been
incorrectly processed.

You may want to use this rule when you are using the DRC to generate
hierarchical output.

There are no optional parameters for this rule.

This rule is incompatible with the ALL_SAFE, SAFE_CELL, and
DANGER_CELL rules.  The SAFE_LAYER rule can be used in combination
with the ALL_DANGER rule to override dangerous processing for certain
layers.

You should
read
Hierarchical
Checking and
Hierarchical
Output on page
134 to learn
about dangerous
operations and
hierarchical
processing.



DRC Rules Syntax: ALL_SAFE

DRC User Manual 181

ALL_SAFE Force cell flattening for dangerous operations

ALL_SAFE

When this rule is present anywhere in your rule set, the DRC will postpone
processing all dangerous operations until it is processing the flattened main cell.
This may increase or decrease DRC processing time.  More disk space is
consumed by the scratch file when this rule is used instead of ALL_DANGER,
but it will prevent the DRC from incorrectly processing some dangerous
operations.

If disk space is not an issue, and you are not generating hierarchical output, we
recommend that you use this rule in each rule set.

When this rule is used, all shapes generated by dangerous operations will be
generated in the main cell.

The SAFE_CELL rule can be used instead to specify that only certain cells will
be flattened while all others will not flattened.  See also the ALL_DANGER and
DANGER_CELL rules.

The DANGER_LAYER rule can override the ALL_SAFE specification for
certain layers.

You should
read
Hierarchical
Checking and
Hierarchical
Output on page
134 to learn
about dangerous
operations and
hierarchical
processing.



DRC Rules Syntax: ALLOW_QUICK

182 DRC User Manual

ALLOW_QUICK Avoid warning prompt for QUICK_PASS processing

ALLOW_QUICK

The QUICK_PASS option on the DRC.EXE command line results in a much
quicker execution at the cost of not processing some types of rules.  This can
result in missing real errors.

When you add the QUICK_PASS option to the command line and the rule set
contains rules that cannot be processed by this faster method, by default you will
be warned with a prompt before the DRC continues execution.  You must reply
to this prompt before the DRC can proceed.

However, if the ALLOW_QUICK rule is added to the rule set, the DRC assumes
that you know what you are doing and will not issue the warning prompt.  This
can be especially useful in batch files where you want to avoid any user
interaction at run time.

The DRC command line option ALLOW_QUICK performs exactly the same
function as this rule in a rule set.

Read about the
QUICK_PASS
option on pages
164 and 337.



DRC Rules Syntax: AND

DRC User Manual 183

AND Boolean AND of two layers

result_layer = [NOT] layer1  AND  [NOT] layer2

This rule will create on result_layer the intersection of all shapes on layers
layer1 and layer2.

Example: C = A  AND  B

The optional NOT keyword will perform the operation with the inverse of the
layer.

Example: C = A  AND  NOT B

This rule will perform a Boolean AND of the
inverse of layer B with layer A.  In other
words, layer B is used to etch layer A.

To add shapes
created by this
rule to the error
count, add the
ERROR
keyword to the
OUTPUT
LAYER rule
that defines
result_layer.

Figure 126: Polygons on layers
A and B

Figure 127: C = A AND B

Figure 128: C = A AND NOT
B

See page 312
for an example
where AND
NOT is not
sufficient to
verify
enclosure.



DRC Rules Syntax: ASPECT_RATIO

184 DRC User Manual

ASPECT_RATIO Classify shapes by relative dimensions

result_layer = [NOT]6 ASPECT_RATIO (layer1, max_size,
ratio_1 [,ratio_2 [...,ratio_n]]
)[NOT = result_layer2]6

This rule is used to classify polygons on layer1 based on their aspect ratios.  An
aspect ratio is the ratio of the dimensions of the bounding box.  For example, if
you have a bounding box 10 units wide (in the x-direction) and 5 units high (in
the y-direction), it would have an aspect ratio of:

5 1
10  = 2

 or 2 to 1.

The ratio_n parameters are specified in the same manner as the IS_BOX and
BOUNDS rules.  You can enter up to ten ratio_n parameters.  You must enter at
least one.  The syntax of each ratio_n parameter is:

( xmin  [: xmax],  ymin  [: ymax] )

To specify a simple ratio, supply a pair of real numbers separated by a comma.
The first number of the pair is the relative dimension in the x-direction while the
second is the relative dimension in the y-direction.   The units of each dimension
are the user units in the ICED™ cell.

(2,1)

This is the correct syntax to specify the 2 to 1 ratio mentioned above.  This
specification will find all shapes that have bounding boxes exactly twice as wide
in the x-direction as they are high in the y-direction.

                                                     
6 Only one optional NOT keyword is allowed in a single rule.

A bounding box
is the smallest
rectangle,
square with the
axes, which
encloses the
shape.  See
Figure 137 on
page 194 for
examples.



DRC Rules Syntax: ASPECT_RATIO

DRC User Manual 185

You use colons (':') to specify ranges of valid ratios.  We will cover this by
example further on.

The required max_size parameter is used specify the maximum size of a
bounding box guaranteed to be classified correctly.  This relates to the problem
of panels and panel borders.  The DRC verifies large designs one panel at a time.
Shapes which cross the edge of a panel must lie within a border around the panel
to be verified correctly with a rule.  Usually the border is determined by
calculating the reach of each rule.  The reach is the minimum border required for
a rule to guarantee it will process shapes which cross the border properly.  Since
no maximum dimension is included in this rule (only the ratio of dimensions)
there is no way for the rules compiler to calculate the reach.  You must specify
the reach explicitly with max_size.

Specifying too large a value for max_size may slow processing.  However, you
should be aware that shapes with a bounding box dimension larger than max_size
may be classified incorrectly when the DRC uses panel processing.

Example: B = ASPECT_RATIO ( A, 20, ( 10, 1 ) )

This rule will collect on layer B all shapes on layer A which have bounding
boxes with an aspect ratio of exactly 10 to 1.  (10 in the x-direction to 1 in the y-
direction.)  Shapes with a bounding box dimension larger than 20 user units may
be incorrectly classified.

To expand the above rule to include shapes which have the same ratio, but which
are longer in the y-direction, you need to add a ratio_2 parameter that specifies a
1 to 10 aspect ratio.

Example: B = ASPECT_RATIO ( A, 20, ( 10, 1 ), ( 1, 10 ) )

Note that parentheses are required around each separate ratio_n parameter.

You can specify up to 10 ratio_n parameters.  You may specify a range instead
of an exact ratio for each ratio_n.  You specify a range of valid ratio values in
the form min:max.

See page 118
for a thorough
explanation of
panels and
borders.



DRC Rules Syntax: ASPECT_RATIO

186 DRC User Manual

Either NOT keyword is used to collect all shapes on layer1 which do not meet
the aspect ratio criteria.

Example: B = ASPECT_RATIO ( A, 20, ( 5:6, 1 ), ( 7, 1:2 ) ) NOT = C

Layer B will consist of all polygons on layer A whose bounding boxes have
aspect ratios between 5 to 1 and 6 to 1 or between 7 to 1 and 7 to 2.  Layer C will
consist of all shapes on layer A that do not meet the criteria.

You can spread the ASPECT_RATIO rule across several lines by breaking a line
after a comma.  If the final NOT option is used, it must be on the same line as the
closing ')'.  The '&' continuation character is not required in this case.

The following example is identical to the example above.

Example: B = ASPECT_RATIO ( A, 20,
( 5:6, 1 ),
( 7, 1:2 )
) NOT = C



DRC Rules Syntax: Assignment Rule

DRC User Manual 187

The Assignment Rule Copy layer or inverse of layer

 result_layer = [NOT]  layer1

This rule is used to copy a layer or to create the inverse of a layer.

Example: M1 = M1_IN

This rule will copy all polygons on layer M1_IN to layer M1.  This can be useful
if M1_IN is an input layer that cannot be modified.  The new layer, M1, can be
modified as required.

The optional NOT keyword will create a layer which is the inverse of layer1.

Example: NWELL = NOT  PWELL

This version of
the assignment
rule is exactly
the same as the
NOT rule
described on
page 281.

Figure 129: Layer PWELL Figure 130: Layer NWELL = NOT
PWELL



DRC Rules Syntax: Assignment Rule

188 DRC User Manual

The rule above will create the inverse of the PWELL layer.  The outer boundary
of the inverse layer is slightly larger than the bounding box of your design.
When the NWELL layer is used by other rules in the DRC, it will remain one
large polygon with holes in it.  If the NWELL layer is an output layer, before the
DRC can output the layer as ICED™ components, the shape must be divided into
several polygons.  Polygons with holes not connected to the outer boundary are
not valid components in ICED™.  The somewhat arbitrary cut lines (where the
NWELL shape is cut to create valid polygon shapes) will have no effect on
processing in the DRC.

The CUT_RESOLUTION rule is used to define the grid for cut lines when a
shape with holes is cut into valid polygon shapes.

The bounding
box is the
smallest
rectangle,
square with the
axes, which
encloses the
design.



DRC Rules Syntax: BAD_POLY

DRC User Manual 189

BAD_POLY Assign layer number for bad polygons

BAD_POLY  [=] layer_number

This rule allows you to change the layer number used to collect bad polygons.
These are polygons that are likely to cause problems for other programs that use
layout data, such as mask-processing software.

When no BAD_POLY rule is present in your rule set, the default layer number
for bad polygon output is 99.

Example: BADPOLY = 0

This rule will suppress bad polygon output.  This may save space and time for
preliminary checks on large input files.  Warning messages for all bad polygons
will still be listed in the DRC log file.

The DRC will mark bad polygons found on all input layers unless you add the
NO_CHECK_INPUT rule to your rule set.  When the NO_CHECK_INPUT rule
is used, the DRC will ignore bad polygons found on layers that are defined but
not used in the rule set.

When the bad polygon layer number is non-zero, bad polygons will result in
shapes on that layer number in the subcell error command files.  See page 375
for details on subcell error command files.

See page 74 for
more details on
bad polygons.

Subcell error
command file
names are
always created
using a .ERR
file extension.



DRC Rules Syntax: BLOAT

190 DRC User Manual

BLOAT Expand shapes

result_layer = BLOAT  ( layer1,  offset_val )

Use the BLOAT rule to expand polygons
on layer1 and store them on result_layer.
All sides of the polygons will be shifted
outwards in a parallel manner by
offset_val.  offset_val must be a positive
real number in ICED™ user units.

Example: A = BLOAT ( B, 1.2 )

Note that the parentheses and comma are
required in the BLOAT rule.

Bloating can remove features of
complex polygons.  Notches or holes
can disappear.

If you are using BLOAT on polygons
with acute angles, you should refer to
the BLOAT_ANGLE rule on the next
page for important information on the
side effects of bloating sharp angles.

To shrink
polygons see
the SHRINK
rule on page
302.

Figure 131: A = BLOAT (B, 1.2)

See an example
of using a pair
of SHRINK and
BLOAT rules to
classify shapes
by size on page
64.

Figure 132: Note that the notch in
layer B disappears after bloating.



DRC Rules Syntax: BLOAT_ANGLE

DRC User Manual 191

BLOAT_ANGLE Define angle for BLOAT rule

BLOAT_ANGLE = bloat_angle

This rule is important only if your layout contains polygons with sharp points or
notches.  It controls how shapes with sharp angles are bloated or shrunk.  Points
with angles more acute than bloat_angle will be blunted before they are bloated.
The bloat_angle parameter must be a real number in the range 1:179.   When the

BLOAT_ANGLE rule is not used,
the DRC uses a default of 44.9°
for the bloat angle.

To see why bloating sharp points
can be a problem, see Figure 133.
The inner triangle has a sharp
point with an acute angle of 30°.
If this bloat is not constrained, the
bottom dimension of the polygon
will more than double when it is
bloated by an offset_val of 2.

To avoid this type of expansion for
relatively small bloats, the DRC defaults
to constraining bloats on any angle less
than 45°.  The bloated shape is cut by a
line perpendicular to the line that bisects
the acute angle.  The cut will be made at a
distance equal to the bloat offset_val along
the bisecting line.  It is as though the point
at the acute angle is blunted by an
infinitesimal line segment before the bloat.

If you do not
have acute
angles in your
design, you
should not use
the BLOAT-
_ANGLE rule.
The default of
44.9° will
prevent
excessive run
times. 30°

Figure 133: Unconstrained bloat of a 30°
angle.

15°

2

Figure 134: Constrained bloat of
a 30° angle.



DRC Rules Syntax: BLOAT_ANGLE

192 DRC User Manual

If this is not how you want your acute angles bloated, you must use the
BLOAT_ANGLE rule in your rule set.  Set bloat_angle to a small enough angle
to remove the constraint for critical polygons.  However, you should be aware
that as the bloat angle gets smaller, the DRC run time gets longer.  This is due to
panel processing and borders which is a subject not covered here. To understand
how the bloat angle affects run times, see page 126.

The bloat angle affects the SHRINK rule as well, since a shrink is really
processed as a bloat of the inverse of a layer.

You can use the BLOAT_ANGLE rule more than once in a rule set.

Example: B = BLOAT ( A, 2 )
BLOAT_ANGLE = 10
C = BLOAT ( A, 2 )
BLOAT_ANGLE = 44.9
D = BLOAT ( A, 5.1 )

In the example above, the default bloat angle of 44.9° will constrain the bloats
that create layers B and D.  A bloat angle of 10° will constrain the bloats that
create layer C.  However, since one of the layers uses such a small bloat angle,
the run time will be much longer than if all layers used the default.

Figure 135: Unconstrained
SHRINK of polygon with
acute angle notch.

Figure 136: Constrained
SHRINK of same polygon.

You can see the
bloat angle used
for each
BLOAT rule in
the rules
compiler log.



DRC Rules Syntax: BORDER

DRC User Manual 193

BORDER Explicitly define panel overlap

BORDER [=] border_dimension

Use this rule to override the panel border calculations that the DRC performs and
set the panel border directly.  This rule should be used only when you need to set
the panel border to a smaller dimension than that calculated by the DRC.  Make
sure that you know what you are doing before you use this rule.

It is dangerous to set the panel border to a value smaller than the value calculated
by the DRC.  You can cause real errors to be missed since the reach of some
layers will now be greater than the border.

The BORDER option on the DRC command line (see page 348) overrides this
rule.

It is very
important to
read Panel
Processing on
page 118 before
using this rule.



DRC Rules Syntax: BOUNDS

194 DRC User Manual

BOUNDS Classify shapes by the size of their bounding box

result_layer = [NOT]7 BOUNDS ( layer1,  size1 [, size2 [..., sizen] ]
) [NOT=result_layer2]7

This rule is very similar to
IS_BOX, except that the
size criteria applies to the
bounding box of any
shape rather than only to
the dimensions of rec-
tangles.  The bounding
box of a shape is the
smallest rectangle, square
with the axes, which will enclose the shape.  The bounding box of a rectangle
square with the axes has the same dimensions as the rectangle itself.

The syntax of the sizen parameters, and the use of the optional NOT keywords, is
exactly the same as the IS_BOX rule.  See that rule (starting on page 222) for
more examples.  You can enter up to ten sizen parameters.  You must enter at
least one.  The syntax of each sizen parameter is:

( xmin  [: xmax],  ymin  [: ymax] )

When you supply a simple pair of real numbers separated by a comma, the first
number of each pair is the dimension in the x-direction while the second is the
dimension in the y-direction.  When the maximum values are not included, they
are assumed to be equal to the minimum. The units of each dimension are the
user units in the ICED™ cell.

                                                     
7 Only one optional NOT keyword is allowed in a single rule.

Figure 137: Bounding boxes of non-rectangular
shapes.

The ASPECT-
_RATIO rule
classifies shapes
by the ratio of
bounding box
dimensions.



DRC Rules Syntax: BOUNDS

DRC User Manual 195

Example: B = BOUNDS ( A, ( 10,5 ) )

This rule will collect on layer B all shapes on layer A which have bounding
boxes 10 units wide in the x-direction and 5 units high in the y-direction.

The BOUNDS rule can be used to filter out large or small shapes on a layer
rather than collect shapes of an exact size.  Use the ratio form of the sizen
parameters.  You must enter two sizen parameters with an upper bound on the x
and y larger than the largest dimension of a shape on layer1.

Example: B = NOT BOUNDS ( A, (0:4,0:10000),  (0:10000,0:4) )

This example will create on layer B all shapes on layer A which have both
bounding box dimensions greater than 4 units.  Any shapes with either bounding
box dimension less than or equal to 4 units will not be copied to layer B.  This
example assumes that no shape on layer A will have a dimension larger than
10,000 units.

Example: B = NOT BOUNDS ( A, (0:4,0:4) )

This example will create on layer B all shapes on layer A which have either
bounding box dimension greater than 4 units.

You can spread the BOUNDS rule across several lines by breaking a line after a
comma.  If the final NOT option is used, it must be on the same line as the
closing ')'.  The '&' continuation character is not required in this case.

Example: SMALL_A = BOUNDS ( A,
(0:4,0:10000),
(0:10000,0:4)
)  NOT = LARGE_A

The example above will copy to the SMALL_A layer all shapes on layer A that
have either bounding box dimension less than or equal to 4 units.  All shapes that
have both bounding box dimensions greater than 4 units will be copied to the
LARGE_A layer instead.



DRC Rules Syntax: BRIDGE

196 DRC User Manual

BRIDGE Recognize air bridges

BRIDGE  {
BRIDGE = bridge_layer
POSTS = post_layer
LENGTH = min_length [: max_length ]
WIDTH = min_width [: max_width ]

IS_BRIDGE = result_layer
NOT_BRIDGE = result_layer_2

[ L/W =min_ratio [: max_ratio] ]
[ POINT_TOLERANCE = tolerance_1 ]
[ POST_TOLERANCE = tolerance_2 ]

}

The BRIDGE rule is used to find air bridges.  If you don't know what an air
bridge is, it is unlikely that you will ever need this rule.  It is of interest primarily
to users of the Gallium Arsenide technology.

The BRIDGE, POSTS, LENGTH, and WIDTH keywords are required.  At least
one of the IS_BRIDGE or NOT_BRIDGE keywords must be used.  You can use
both. The other parameters are optional conditions that must be met for the
shapes on bridge_layer to be considered air bridges.

To be a valid air bridge, a polygon must meet the following three conditions:

1) The polygon on bridge_layer must be rectangular.  The rectangle does
not need be square with the axes.

2) The polygon on bridge_layer must share opposite end-sides with
polygons on post_layer, one at each end.  Each end-side of the air
bridge must be coincident with a side of the post.  The post may be
wider than the bridge, but the entire end-side of the bridge must touch
the post.

must use one,
can use both

Shapes created
on the result
layers of this
rule are not
automatically
counted as
errors unless
you add the
ERROR
keyword to the
OUTPUT
LAYER rules
that define the
layers.



DRC Rules Syntax: BRIDGE

DRC User Manual 197

3) The bridge must fall within a certain range of lengths, widths, and
aspect ratios (length/width).  The length is the distance between end-
sides shared with a post.   The width is the distance between the other
two sides.

When the IS_BRIDGE keyword is used, the result_layer will contain all shapes
on bridge_layer that meet the air bridge criteria.  When NOT_BRIDGE is used,
result_layer_2 will contain all shapes on bridge_layer that are not air bridges.

When entering the LENGTH and WIDTH parameters, you can enter either a
single size or a range.  To enter a range, use a colon (':') to separate the maximum
value from the minimum value.

Example: INPUT LAYER  5  METAL;  6 POST
OUTPUT LAYER 38 BRIDGE_OUT
SCRATCH LAYER  BRIDGE_IN

BRIDGE_IN = METAL AND NOT POST
BRIDGE {

BRIDGE = BRIDGE_IN
POSTS = POST
WIDTH = 2
LENGTH = 5:20
IS_BRIDGE = BRIDGE_OUT

}

This set of rules will recognize bridges
from 5 to 20 units long where layer
METAL is crossed by shapes on layer
POST.  Since the BRIDGE rule requires
bridge shapes to share sides with the post
shapes, we have added the AND rule to
etch the METAL layer with the POST
layer.  The layer BRIDGE_OUT will
contain rectangles for bridges 1 and 2 as
shown in Figure 138.

1

2

3

METAL

POST

Figure 138: 3 Air bridges.



DRC Rules Syntax: BRIDGE

198 DRC User Manual

Candidate 3 in Figure 138 is a special case since it is not square with the axes.
You cannot predict the exact length or width of air bridges that are not square
with the axes due to vertex approximations.  Unless all air bridges are horizontal
or vertical, enter a range of lengths and widths.  To modify the above rule to
recognize candidate 3 as a valid air bridge, change the WIDTH parameter to:

WIDTH = 1.99 : 2.01

Use the L/W=min_ratio [: max_ratio] option to add an additional length to width
ratio constraint.  You can enter a single ratio by using only min_ratio, or specify
a range by using max_ratio as well.  Either ratio can be entered in fraction form
(e.g. "5/3") or as a single number in decimal form (e.g. "1.6667").

Example: L/W = 5/1 : 6/1

Add this parameter to the BRIDGE rule to restrict valid bridges to those with
aspect ratios between 5 to 1 and 6 to 1.  Adding this parameter to the BRIDGE
example above will result in only bridge 1 (see Figure 138) on the
BRIDGE_OUT layer.

The POINT_TOLERANCE = tolerance_1 option defines the spacing tolerance
for the corners of the air bridge.  This accounts for small round-off errors in air
bridge corners where the air bridge is not square with the axes.  Each corner of
the bridge must be within tolerance_1 units in both the X and Y directions of
where it would be if the bridge were exactly a rectangle.

Use the POST_TOLERANCE = tolerance_2 option to allow a small overlap or
misalignment between the post sides and the bridge layer sides.  The point at one
end of a bridge_layer side must be within tolerance_2 units in both the X and Y
directions of the equivalent point on the post edge.  However, if the bridge shape
does not touch the post shape, the bridge shape will not be considered a bridge.
The touching criterion (i.e. the bridge shape must touch 2 shapes on the post
layer) must be met before the BRIDGE rule will examine the other criteria to
determine if the shape is a bridge.



DRC Rules Syntax: BRIDGE

DRC User Manual 199

Both of these tolerances default to small non-zero numbers (usually .001 user
units, but they may increase slightly for very large designs).  The default
tolerances are usually sufficient to recognize air bridges when the geometry
varies slightly due to resolution grid rounding of the coordinates.

You can enter more than one parameter on a line if you separate the parameters
with commas.

You can get a
report in the DRC
log file on the
default tolerance
used for both
specifications by
adding
SHOW_SCALES
to the DRC
command line.  It
is listed as
"Smooth-
_tolerance"



DRC Rules Syntax: CONNECT

200 DRC User Manual

CONNECT Electrically connect layers

CONNECT layer1  layer2  [ BY layer3 ]

The CONNECT rule will form electrical connections between touching shapes
on the given layers.  All shapes that are electrically connected will be considered
the same node and will be assigned the same node number.

In the DRC, the electrical connections defined by this rule are only used by the
MIN_SPACING rule when the  /CONN or /~CONN options are used.

The touching criterion for the CONNECT rule is
the same as that used for the TOUCHING rule.
Two shapes are considered touching if they share
a finite area or if their edges share a finite length.
Shapes that touch only at a point are not
considered electrically connected.

When the BY keyword is not used, shapes on
layer1 which touch shapes on layer_2 are
considered to be electrically connected.

Example: CONNECT M1  M2

When this CONNECT rule is used, any shape on
M1 which overlaps or shares a finite portion of
an edge with a shape on M2 will be considered
electrically connected to the shape on M2.  If this
rule was executed on the shapes in Figure 139,
the shape on M2 and the top two wires on M1
would all be electrically connected and stamped
with the same node number.  The bottom wire on M1, which touches M2 only at
a point, would be a separate node.

See the STAMP
rule to form
electrical
connections to
layers that are
poor
conductors.

See Electrical
Connections on
page 110 for
more important
information and
examples of
electrical
connections.

M2

M1

Figure 139: The top two
M1 wires will be
electrically connected to
the M2 wire.

CONNECT
rules are not
processed when
the
QUICK_PASS
option is
included on the
DRC command
line.



DRC Rules Syntax: CONNECT

DRC User Manual 201

The BY keyword is used to simulate
connections between layers that are formed by
vias or other contact layers.  When the BY
keyword is used, the touching criterion
changes. For a shape on layer1 to be
electrically connected to a shape on layer2, the
shape on layer1, the shape on layer2, and a
shape on layer3 must all share a common area.

Mere touching or overlapping of these layers is
not enough to connect the shapes.

Example: CONNECT M1 M2 BY VIA

When the above rule is used to connect the M1
and M2 layers shown in Figure 140, only the
M1 wire with the label "THREE" will be
connected to the vertical M2 wire.  Wire
"ONE" overlaps the M2 wire, and both touch
the via shape, but the via shape does not
overlap the common area where the metal
layers overlap.  Wire "TWO" fails to connect
for the same reason even though the via
overlaps both wires.  Wire "FOUR" does not overlap the M2 wire at all, so it
does not connect to it even though the via shape overlaps both.

You combine layer generation rules with CONNECT rules to simulate the
fabrication process and electrical connectivity.  You may need to process
conductive layers carefully before adding the CONNECT rules.

You cannot modify a layer after it is used in a CONNECT rule.  This restriction
is enforced by the rules compiler.  If a layer could be modified after being used
in a CONNECT rule, there would be no way to guarantee that the electrical
connections made by the CONNECT rule would be valid by the time the
MIN_SPACING checks are run.

VIAM2

M1

Figure 140: Only M1 wire
THREE is connected to the
vertical M2 wire.

See an example
that includes
CONNECT
rules on page
402.



DRC Rules Syntax: CONNECT

202 DRC User Manual

The fact that polygons cross panel boundaries requires the DRC to add
CONNECT rules to your rule set to connect shapes that cross panel boundaries.
These rules are added automatically by the rules compiler.  In the rule compiler
log, they are indicated by the keyword "Generated" instead of the source line
number.  (See page 128 for more information.)



DRC Rules Syntax: CONST

DRC User Manual 203

CONST Define constant value

CONST const_name =  const_value

or

CONST {
const1_name =  const1_value

...
constn_name =  constn_value

}

You can use a CONST rule to define a certain number as a constant that you can
refer to by name in other rules rather than typing the number itself.  The
const_value must be a real number. You may not use exponential notation (e.g.
1.478E-9) when typing const_value. You may not use layer names or other
strings for const_value.

Example: CONST  M1_EXPANSION_VALUE =  .246
M1 = BLOAT  (M1_IN, M1_ EXPANSION_VALUE)

The CONST rule above defines the string "M1_EXPANSION_VALUE" as a
constant with the value .246.  When this constant is used in the BLOAT rule, the
rules compiler will substitute ".246" for the string
"M1_EXPANSION_VALUE".

You can have many CONST rules in your rule set.  This allows you to define
technology dependent parameters together in one place where they are easy to
find and edit.  When the CONST rule is not used, it will be difficult to update an
old rule set with new values since they will be scattered through the rule set.



DRC Rules Syntax: CONST

204 DRC User Manual

If you have multiple constants to define, you can use the multiple line syntax to
define all of them with a single CONST rule.  Place each constant definition on
it's own line, or separate definitions on the same line with semicolons.  Surround
the lines with curly brackets.

Example: CONST {
M1_EXPAND = .246
M2_EXPAND = .246
MIN_M1_W = 1.9
MIN_M2_W = 2.1

}

Example: CONST {
M1_EXPAND = .246; M2_EXPAND = .246
MIN_M1_W = 1.9; MIN_M2_W = 2.1

}

Both of these constant definitions are equivalent.



DRC Rules Syntax: CUT_RESOLUTION

DRC User Manual 205

CUT_RESOLUTION Place cut lines on specific grid

CUT_RESOLUTION = grid_resolution

At the end of the DRC run, when the DRC creates the shapes on output layers
for reading into an ICED™ cell, some shapes may need to be cut at arbitrary
locations.  (See examples on page 77.)  This occurs in the following cases:

a shape is cut by a panel boundary,

a shape contains a hole,

a shape has more than 199 vertices,

or

a shape has been generated from the inverse of a layer.

This rule allows you to force the cut lines to lie on a grid of your own choosing.

If you are not generating output layers for use as mask layers, but using the DRC
to only check for errors, this rule is not important.  If you are generating layers
that will be used as design data, add this rule to your rule set with a
grid_resolution at least as large as the resolution grid of your ICED™ cells.
Express grid_resolution as a real number of user units.

Example: CUT_RESOLUTION = .1

When this rule is present in your rule set, shapes that are cut for the reasons
above will be cut on a .1 user unit grid.

The default resolution for the cuts mentioned above, when the
CUT_RESOLUTION rule is not used, is zero.  This means that the shapes that
are cut may have vertices that will be rounded by some post processing software.

See page 79 for
more
information on
how output
shapes are
affected by the
different
resolution grids
in ICED™ and
the DRC.



DRC Rules Syntax: CUT_RESOLUTION

206 DRC User Manual

This rule does not affect the vertices of shapes during the execution of the DRC
rule set, or the vertices of shapes created by bloats, shrinks, or intersections of
slanting lines.  Use the SNAP or SNAP45 rules to control the resolution grid for
the results of these operations.



DRC Rules Syntax: DANGER_CELL

DRC User Manual 207

DANGER_CELL Prevent cell flattening for dangerous operations

DANGER_CELL  cell_name [cell_name_2 […cell_name_n] ]

This rule specifies certain cells that the DRC should not flatten when performing
dangerous operations.  When this rule is used, all cells not listed as danger cells
will be flattened by the DRC for dangerous operations.

This rule is used primarily when you are generating design layers for hierarchical
output data.

Example: DANGER_CELL SUBCELL

This rule will prevent the DRC from flattening the cell SUBCELL for dangerous
operations.  All other cells will be flattened for dangerous operations.

You can supply more than one DANGER_CELL rule.  You can also specify
more than one cell in the DANGER_CELL rule.  Simply list all required cell
names without commas on the same line.  If you prefer, you can use curly braces
to allow more than one line of cell specifications in a single rule.

Example: DANGER_CELL  XCELL  YCELL
DANGER_CELL  ZCELL

DANGER_CELL  XCELL  YCELL  ZCELL

DANGER_CELL {
XCELL  YCELL
ZCELL

}

All three of these danger cell specifications are equivalent.

You should
read the
information
beginning on
page 134 to
learn about
dangerous
operations.



DRC Rules Syntax: DANGER_CELL

208 DRC User Manual

The cell_name parameters can contain wildcard characters ('*').  When an
asterisk is present, the DRC will handle as a danger cell any cell with a name
that matches the given string with one or more characters replacing the asterisk.

This rule is incompatible with the rules ALL_DANGER, ALL_SAFE, and
SAFE_CELL.  When DANGER_CELL is used in combination with
SAFE_LAYER or DANGER_LAYER rules, the SAFE_LAYER or
DANGER_LAYER rules take precedence.

See an example
of wildcard
syntax on page
297.



DRC Rules Syntax: DANGER_LAYER

DRC User Manual 209

DANGER_LAYER Override cell flattening for certain layers

DANGER_LAYER  layer1  [ layer2  [ …layern ] ]

Use this rule to specify layers that should be created hierarchically (i.e. nested in
subcells) rather than as flattened layers in the main level cell.  This rule
overrides the default specification for all cells defined by the ALL_SAFE,
SAFE_CELL, or DANGER_CELL rules.

Specify the names of layers that should be generated dangerously.  You cannot
specify input layers in this rule.  Only the layer(s) specified in this rule will be
processed dangerously.  Other layers in cells that contain the indicated layers
will not be affected.

You may want to use this rule rather than ALL_DANGER or DANGER_CELL
when you have only a small area of a large cell you need to be handled
dangerously.   You can add a small shape on a dummy layer that isolates the
problem shapes on a new layer that you specify in a DANGER_LAYER rule.
See an example on page 142.

You can supply more than one DANGER_LAYER rule.  You can also specify
more than one layer in the DANGER_LAYER rule.  Simply list all required
layer names on the same line.  If you prefer, you can use curly braces to allow
more than one line of layer specifications in a single rule.

Example: DANGER_LAYER  A  B
DANGER_LAYER  C

DANGER_LAYER  A  B  C

DANGER_LAYER {
A  B
C

}
All three of these danger layer specifications are equivalent.

You should
read
Hierarchical
Checking and
Hierarchical
Output on page
134 to learn
about dangerous
operations and
hierarchical
processing.



DRC Rules Syntax: DETAIL

210 DRC User Manual

DETAIL Turn detailed logging on or off

DETAIL ON and DETAIL OFF

Use these rules to specify whether or not the DRC should add detailed error
messages to the log file for each error found by the MIN_NOTCH,
MIN_WIDTH, and MIN_SPACING rules.  (These are the only rules that
produce detailed error messages in the log file.)  These error messages can use
up considerable disk space for large designs.

The detailed logging mode is off by default until you turn it on in a specific rule
or by using DETAIL ON.

The detailed logging of error messages can be turned on and off several times
during a rule set.  We suggest that you turn logging on only for small designs, or
only for small subsets of rules when you cannot determine the exact errors from
the error wires in ICED™.

Example: DETAIL ON
RESULT1 = MINSPACING (A, A, 20)
DETAIL OFF
RESULT2 = MINSPACING (A, B, 5)
RESULT3 = MINSPACING (A, C, 2 /DET)

When this set of rules executes, error messages with coordinate data will be
printed in the log file for each violation of the rules that create layers RESULT1
and RESULT3.

(If you have a /LENGTH=length option in a MIN_SPACING rule, and detailed
logging is enabled, the log file will contain details on error wires that have been
discarded due to the length restriction.)

The /DET or
/~DET options
in the
MIN_NOTCH,
MIN_WIDTH,
and
MIN_SPACING
rules override
the logging
mode set with
this rule.

See page 50 for
an example of
detailed error
messages.



DRC Rules Syntax: HOLE_AREA_FRACTION

DRC User Manual 211

HOLE_AREA_FRACTION Classify polygons with holes

result_layer = [NOT]8 HOLE_AREA_FRACTION ( …
… layer1, min_fraction, max_fraction  …
… [/BORDER=max_size]  …
… ) [NOT = result_layer_2]8

Use this rule to classify polygons on layer1 by the fraction of their outline area
that is removed by enclosed holes.  (The outline area is the total area of the
polygon including the area covered by holes.)  Specify the minimum and
maximum fraction of the outline area that can be covered by holes as positive
real numbers between 0.0 and 1.0.

Remember that the DRC merges touching polygons as a preprocessing step, so
ICED™ polygons that merge to form a shape with an enclosed hole are treated in
exactly the same way as polygons drawn with an enclosed hole.

Example: RESULT = HOLE_AREA_FRACTION (A, 0.25, 1)

This rule will copy to the RESULT layer all
polygons on layer A that contain holes that re-
move at least ¼ or 25% of the total outline
area.

If the rule above was executed on the shapes in
Figure 141, the two shapes on the left will be
copied to RESULT (including the shape
formed by two polygons that merge to form a
single polygon with a hole that is exactly ¼ of
the merged outline area).  The shape without a
hole is not copied, and neither is the shape
with the hole that covers less than ¼ of the
total outline area.
                                                     
8 Only one optional NOT keyword is allowed in a single rule.

To simply find
all holes in a
layer, see the
ISLANDS rule.

Figure 141: Two shapes on
the left are copied to
RESULT.



DRC Rules Syntax: HOLE_AREA_FRACTION

212 DRC User Manual

Example: A_MED_HOLES = HOLE_AREA_FRACTION (A, 0.25, 0.49999)
A_BIG_HOLES = HOLE_AREA_FRACTION (A, 0.5, 1)

These two rules will classify polygons on layer A and create 2 new layers.
A_MED_HOLES will contain copies of shapes on the A layer that have holes
that cover at least ¼, but less than ½, of the total outline area.  A_BIG_HOLES
will contain copies of shapes on the A layer that have holes that cover at least ½
of the total outline area.

Using a minimum fraction of 0 will add shapes without holes to the shapes on
the result_layer.  To find all shapes with holes on a given layer, use a rule
similar to the following with a very small but non-zero min_fraction.

Example: A_H= HOLE_AREA_FRACTION (A, 0.00001, 1)

Using the NOT Keywords

Use either NOT keyword to copy all shapes on layer1 that do not meet the hole
fraction criteria to a result layer. Only one NOT keyword is allowed in a single
rule.

Example: A_H = HOLE_AREA_FRACTION (A, 0.00001, 1)  NOT = A_NO_H

Adding "NOT = A_NO_H" to the previous example results in all shapes with no
holes being copied to the A_NO_H layer.

If you need to collect only shapes that do not meet the hole criteria, use the first
NOT before the HOLE_AREA_FRACTION keyword as in the example below.

Example: A_NO_BIG_HOLES = NOT  HOLE_AREA_FRACTION (A, 0.5, 1)

This example copies to the A_NO_BIG_HOLES layer all shapes on layer A that
do not have holes that cover at least ½ of the total outline area.



DRC Rules Syntax: HOLE_AREA_FRACTION

DRC User Manual 213

The /BORDER Keyword

The optional /BORDER keyword is used to specify the longest dimension of any
polygon on layer1.  Shapes longer than this maximum dimension can be
misclassified at panel boundaries.  The /BORDER keyword is used to determine
the how all of the shapes in the design are processed in panels by the DRC.  So
do not use an arbitrarily large number since this will slow processing
considerably.  Too small a number may result in misclassified polygons.  The
default is /BORDER=0 which will prevent any polygons from being
misclassified at the cost of executing the DRC in multiple passes through the
data.

Whether or not /BORDER=0 is faster than /BORDER=big_number depends on
your data and the other rules in your rule set.  If other rules require a large
border, try /BORDER=big_number.  If you use CONNECT rules (required for
electrical connection tests) or TOUCHING rules in your rule set, then the DRC
must already process the data in multiple passes, and the default of /BORDER=0
will probably be faster.

Example: RESULT = HOLE_AREA_FRACTION (A, 0.25, 1 /BORDER=50)

This rule above will add a minimum border of 50 user units to the DRC panel
processing.  Shapes that have at least one side longer than 50 user units may be
misclassified due to being sliced by a panel boundary during processing.
However, this rule may execute more quickly than the default if the rest of the
rule set can be executed in a single pass.

Counting Shapes as Errors

The result_layer is not automatically considered an error layer, so shapes found
by this rule will not automatically be counted as errors.  You can process shapes
on result_layer in the same manner as any output or scratch layer.  However, if
you define result_layer as an error layer (as shown on the next page), then
shapes on the layer are counted as errors and will be reflected in the error count.

Read the
information
beginning on
page 118 to
learn more
about panels
and borders.

Refer to the
OUTPUT
LAYER rule to
learn more
about error
layers.



DRC Rules Syntax: HOLE_AREA_FRACTION

214 DRC User Manual

Example: OUTPUT ERROR LAYER  41  A_WITH_BIG_HOLES
A_WITH_BIG_HOLES = HOLE_AREA_FRACTION (A, 0.25, 1)



DRC Rules Syntax: IN_CELL

DRC User Manual 215

IN_CELL Classify shapes in certain cells

result_layer = layer1  IN_CELL  cell_name

This rule will classify shapes on a layer by whether or not they are contained in
specific cells.  It works in a similar manner to the IN_CELL parameter of the
INPUT LAYER rule, however this rule processes the data differently in two
ways:

layer1 can be any layer in the DRC database, not just an input layer

and

layer1 shapes in subcells of the specified cells will be included on
result_layer.

Example: A_IN_MYCELL = A   INCELL    MYCELL

The rule above will copy to the A_IN_MYCELL layer all shapes on layer A in
cell MYCELL and it's subcells.  Layer A in the database remains unchanged.

There are no optional NOT keywords in this rule.  You can process the
result_layer with an AND NOT rule if desired.

Example: A_IN_CAP = A   INCELL    *PF
OTHER_A = A  AND NOT A_IN_CAP

This pair of rules classifies shapes on layer A by whether or not they are
contained in cells that end with the string "PF" or subcells of those cells.

For more examples of cell_name specifications, including using wildcards, see
page 219.

The INCELL
keyword of the
INPUT LAYER
rule will not
include shapes
in subcells of
the specified
cells.



DRC Rules Syntax: INCLUDE

216 DRC User Manual

INCLUDE Allow rules file nesting

INCLUDE  [dir_path\]file_name

This rule allows you to nest rules files. An INCLUDE rule in one rules file will
result in another rules file being inserted at that point.  The file_name parameter
is used to specify the name of the file.  The file extension (if any) must be
included in file_name.

Example: INCLUDE  MOSCONST.RUL

This rule will cause the text in the file MOSCONST.RUL to be added to the
current rules file at the point where the INCLUDE rule is found.  Since no
dir_path parameter is used, the file MOSCONST.RUL must exist in the current
directory.

You may optionally supply a directory path with the file name.  You should fully
qualify the directory.   You can place quotes around the file name if the DRC
rules preprocessor may have any problems parsing the file name.  This will be
the case if the file name contains blanks as in the example below.

Example: INCLUDE "C:\ICED\MOS 123.RUL"

You cannot use the INCLUDE rule in the middle of another rule.  You may nest
rules files up to 10 deep with the INCLUDE rule.



DRC Rules Syntax: INPUT LAYER

DRC User Manual 217

INPUT LAYER Define input layers

INPUT  LAYER  iced_layer_number_1  ...
... [ + iced_layer_number_2 [... + iced_layer_number_5 ] ] ...
... [ [NOT]9 INCELL cell_name ]10 ...
... drc_layer_name ...
... [NOT drc_not_incell_layer_name]9

All layers in the input data that will be used in your DRC rule set must be
defined in an INPUT LAYER rule.  The only required parameters for the INPUT
LAYER rule are iced_layer_number_1 and drc_layer_name.  The
iced_layer_number parameters correspond to the layer numbers in the ICED™
cell.  (The layer names used in the ICED™ cell are ignored by the DRC.)  A
specific iced_layer_number can be referred to only once in your set of INPUT
LAYER rules.

The shapes on DRC layers created with the INPUT LAYER rule cannot be
modified by other rules.  If you need to modify an input layer, you can use the
assignment rule (page 187) to copy the layer to a scratch or output layer. Use a
MODIFY LAYER rule instead of INPUT LAYER to define a layer used as both
an input layer and an output layer.

The drc_layer_name is the label used to specify the layer in other DRC rules.
The name does not need to be identical to the layer name in the ICED™ cell.  A
specific drc_layer_name can appear only once in your set of INPUT LAYER
rules.

                                                     
9 Only one optional NOT keyword is allowed in a single rule.
10 More than 1 INCELL cell_name drc_layer_name pair is allowed.  See page 220.

See an overview
of layer
definition rules
on page 55.

You can specify
a layer number
at run time with
the LAYERS
option on the
DRC command
line.  See page
346.



DRC Rules Syntax: INPUT LAYER

218 DRC User Manual

Example: INPUT LAYER 2    M1

When this rule is used, all components on layer 2 in the ICED™ main cell, and all
subcells, will be copied to layer M1 in the DRC database.  Use the name M1 to
refer to this layer in succeeding DRC rules.

If you want to combine shapes on several ICED™ layers into one DRC layer,
specify several iced_layer_number parameters separated with plus signs ('+').
You can combine up to five ICED™ layers into one DRC layer.

Example: INPUT LAYER  2 + 12 + 22    M1

This rule will combine the ICED™ layers 2, 12, and 22 into the DRC layer M1.

When you need to define many input layers, you can list several input layers in
one INPUT LAYER rule.  Separate the layers with semicolons (';').

Example: INPUT LAYER   1 A;  2 B ;  3 C

When an input layer definition is split over more than one line, you can surround
the layer definition with curly braces {}.  If you type one layer definition on each
line, semicolons are not required.

Example: INPUT LAYER {
1 A
2 B
3 C
}

Note that the '&' continuation character is not required to split this example
across several lines.

All input layers
are checked for
bad polygons by
default.  For this
reason, it is a
good idea to
define all mask
layers as input
layers, even if
they are not
verified by any
rules.



DRC Rules Syntax: INPUT LAYER

DRC User Manual 219

Restricting Input Layers by Subcell

The INCELL options, [ [NOT] INCELL cell_name ] and [NOT
drc_not_incell_layer_name], are used to classify components on an input layer
by whether or not they are stored in specific subcells.

Example: INPUT LAYER  2  INCELL  INDUCTOR_CELL  INDUCTOR_M1

This rule will copy all components on layer 2 contained in instances of cell
INDUCTOR_CELL (but not its subcells) to DRC layer INDUCTOR_M1.

The cell_name in the INCELL parameter can contain wildcard characters ('*').
A vertical bar, '|' can be used as well to indicate a list of valid cell names.  More
than one '|' delimiter can be used.  Do not use any blanks when entering the
cell_name parameter.

Example: INPUT LAYER    2 INCELL IND*|*NH IND_M1

This input layer specification will copy to layer IND_M1 all components on
layer 2 contained in cells which begin with the string "IND", or which end in the
string "NH".

You can refer to the main cell (the highest-level cell) of your input data with the
special name "@MAIN".  This allows you to use the same rule set for different
designs that use different names for the main cell.

Example: INPUT LAYER  1 INCELL @MAIN LAY1_MAIN

In this example, shapes on layer 1 that are contained in the main cell, but not its
subcells, will be copied to DRC layer LAY1_MAIN.  The actual name of the
main cell is irrelevant.

The NOT keywords are used to indicate that the layer contains only shapes on
layer iced_layer_number which are not contained in the specified cells.  Only
one NOT keyword is allowed.

You would use the first optional NOT keyword to restrict the new layer to
shapes that are not contained in the cell(s) indicated after the INCELL keyword.

The IN_CELL
rule, which also
classifies shapes
by cell, will
include shapes
in subcells of
the specified
cells.



DRC Rules Syntax: INPUT LAYER

220 DRC User Manual

Example: INPUT LAYER  3    NOT INCELL *PF* DIFF

This rule will create the DIFF layer with all shapes on layer number 3 that are
not contained in cells that contain the string "PF".

You would use the second optional NOT keyword when you need to classify
shapes on the indicated layer number into different DRC layers: one DRC layer
for shapes in the cell(s), and another DRC layer for those shapes which are not
in the cell(s).  When the second optional NOT keyword is used, drc_layer_name
is restricted to shapes which are contained in the cells indicated after the
INCELL keyword, and layer drc_not_incell_layer_name will contain shapes
which are not in the indicated cells.

Example: INPUT LAYER  2 INCELL INDUCTOR_CELL IND_M1
INPUT LAYER  2  NOT INCELL INDUCTOR_CELL M1          !Error

These 2 statements together would cause a compiler error since each
iced_layer_number can occur in only one INPUT LAYER rule.  You can
achieve the desired result with the following single statement:

Example: INPUT LAYER  2  INCELL INDUCTOR_CELL  IND_M1  NOT M1

When you need to classify a single layer number into several different DRC
layers, you can use more than one INCELL specification in a single rule.  You
can specify up to 50 INCELL cell_name drc_layer_name pairs in a single
INPUT LAYER rule.

Example: INPUT LAYER  1 INCELL CAP12PF CAP12_DIFF &
INCELL CAP104PF CAP104_DIFF &
INCELL CAP1200PF CAP1200_DIFF &
NOT DIFF

The example above separates layer number 1 in the input data into 4 different
DRC layers.  Shapes on layer 1 in cells with the name CAP12PF will go into
DRC layer CAP12_DIFF, etc.  Shapes on layer 1 that are not contained in cells
with the names CAP12PF, CAP104PF, or CAP1200PF will be placed in DRC
layer DIFF.



DRC Rules Syntax: INPUT LAYER

DRC User Manual 221

Note that the '&' continuation character is required to split this example above
over several lines.

Restricting Input Layers by Subcell Boundaries

Layer 0 in an ICED™ cell is used to store subcell bounding boxes.  Ordinary
shapes are never stored on that layer.  In an INPUT LAYER statement, layer 0
can be used to store a rectangle that covers a subcell.  This may be useful in
some types of layer processing.

Example: INPUT LAYER 0  INCELL INDUCTOR_CELL  IND_MASK
INPUT LAYER 2  M1_IN
M1 = M1_IN  AND  NOT IND_MASK
IND_M1 = M1_IN  AND IND_MASK

When this set of statements is used to classify layer M1 instead of the example
on page 220, you must be careful with an important side effect.  In this example,
the processing on M1 is performed after the cell is flattened hierarchically.
Shapes on M1 in subcells of INDUCTOR_CELL (or in the main cell, or any
other cell) which happen to be located within the bounding box of
INDUCTOR_CELL will also be classified as IND_M1.  This can be desirable or
not, depending on how your design is organized.

See page 172 to
get more details
on using '&' to
split a rule over
several lines.



DRC Rules Syntax: IS_BOX

222 DRC User Manual

IS_BOX Classify rectangles by size

result_layer = [NOT]11 IS_BOX ( layer1,  size1 [, size2 [..., sizen] ]
) [NOT=result_layer2]11

This rule is used to classify polygons on layer1 based on whether or not they are
rectangles in a range of sizes.  To be recognized by this rule, rectangles must be
square with the axes (i.e. the sides must be vertical and horizontal).

(Remember that all shapes on the same layer are merged by the DRC.
Rectangles that touch another shape on the same layer will be merged during
preprocessing.  When a rectangle is merged with touching shapes, the resulting
shape may no longer be rectangular.)

The result_layer generated by this rule is not automatically an error layer.
Shapes placed on result_layer will not be counted as errors unless you define the
layer using the ERROR keyword in the OUTPUT LAYER rule.

The syntax of each sizen parameter is:

( xmin  [: xmax],  ymin  [: ymax] )

To allow the dimensions of the rectangles to be in a range, specify both the
minimum dimension and the maximum dimension separated by a colon (':').  To
specify an exact dimension, type only the minimum value.  When the maximum
value is not included, it is assumed to be equal to the minimum.  Each dimension
must be a positive real number.  The units of each dimension are the user units in
the ICED™ cell.

You can enter up to ten sizen parameters.  You must enter at least one.

                                                     
11 Only one optional NOT keyword is allowed in a single rule.

See the
BOUNDS rule
for a similar
rule for non-
rectangular
shapes.



DRC Rules Syntax: IS_BOX

DRC User Manual 223

Example: B = IS_BOX ( A, ( 10, 5 ) )

This rule will collect on layer B all rectangles on layer A which are 10 units
wide in the x-direction and 5 units high in the y-direction.  The commas and
parentheses are required.

Note that orientation is important.  To collect non-square rectangles which may
be in either orientation you must specify two sizes.  The DRC recognizes
dimensions in the x and y directions separately due to the fact that in some
technologies (e.g. the Gallium Arsenide technology) the orientation is important.

Example: B = IS_BOX ( A, ( 10,5 ), ( 5,10 ))

This rule will collect on layer B all rectangles on layer A which are 10 units
wide by 5 units high in either orientation.

Example: B = ISBOX ( A, ( 10:12, 5:7 ) )

Here, layer B will consist of all rectangles on layer A which are from 10 to 12
units wide in the x-direction and from 5 to 7 units high in the y-direction.

(Note that the underscore in the IS_BOX keyword is optional.  The underscore
character is simply ignored when it is present.  This is true of all keywords.)

Example: B = IS_BOX ( A, ( 10:12, 6.4 ) )

This rule will collect on layer B all rectangles on layer A which are from 10 to
12 units wide in the x-direction and exactly 6.4 units high in the y-direction.

The optional NOT keywords are used to restrict the output layer to all shapes
that do not meet the size criteria.  Only one optional NOT keyword is allowed.

Example: C = NOT  IS_BOX ( A, ( 10, 2 ), ( 11, 3 ))

This above rule will collect on layer C all shapes on layer A which are not
rectangles 10 units wide and 2 high or 11 units wide and 3 high.



DRC Rules Syntax: IS_BOX

224 DRC User Manual

When typing this rule, you may start a new line between sizes.  You cannot split
a single sizen parameter between lines.  (The final optional NOT keyword must
be on the same line as the closing parentheses.)

Example: B =  IS_BOX ( A,
( 10, 2 ), ( 2, 10 ),
( 5, 1 ),   ( 1, 5))  NOT = C

The rule above will collect on layer B all shapes on layer A which are rectangles
10 units wide and 2 high or 5 units wide and 1 high in either orientation.  Layer
C will consist of all other shapes on layer A, including all non-rectangular
shapes.



DRC Rules Syntax: IS_CIRCLE

DRC User Manual 225

IS_CIRCLE Classify polygons with circular shape

result_layer = [NOT]12 IS_CIRCLE ( layer1,  …
…  R= min_radius: max_radius[,] …
…  N= min_sides [ : max_sides ][,] …
…  EPS=tolerance[,] …
… [POLY_INSIDE] [POLY_OUTSIDE][,] …
… )  [NOT = result_layer_2]12

This rule is used to classify polygons on layer1 based on whether or not they
approximate circles that meet certain criteria.

(Remember that all shapes on the same layer are merged by the DRC.  Circular
polygons that touch another shape on the same layer will be merged during
preprocessing.  When a circular shape is merged with touching shapes, the
resulting shape may no longer be circular.)

The specifications for minimum radius, maximum radius, minimum number of
sides, and the EPS tolerance are all required.

The EPS tolerance is a spacing tolerance that allows the vertices of a polygon to
be slightly displaced from where they would be in a perfect circle.  This
tolerance is required to find circular polygons since their vertex coordinates
always vary from ideal coordinates due to the resolution grid.

Example: B = IS_CIRCLE ( A, R = 1 : 5, N = 8, EPS = 0.01)

This rule will collect on layer B all polygons on layer A that approximate circles
with radii in the range 1.0 to 5.0 user units.  The polygons must have at least 8
sides.  This EPS value is typical for polygons in this size range.

                                                     
12 Only one optional NOT keyword is allowed in a single rule.

Learn more
about the
resolution grid
on page 79.



DRC Rules Syntax: IS_CIRCLE

226 DRC User Manual

Specifying Radii

It is a good idea to broaden the size range slightly to improve your chances at
finding all polygons that are close to your size criteria.   The true radius of a
circular polygon is likely to vary slightly from the equivalent ideal circle.

Example: B = IS_CIRCLE ( A, R = 4.99 : 5.01, N = 8, EPS = 0.01)

This rule will find all polygons that approximate circles with a radius of 5 user
units. Restricting the size criteria to a single number (e.g. R = 5.0 : 5.0) is likely
to prevent the DRC from finding any polygons.

Specifying the Number of Sides

If you want to refine the search to find only polygons that are more circular than
octagons, increase the minimum number of sides indicated after the 'N' keyword.

Example: B = IS_CIRCLE ( A, R = 4.99 : 5.01, N = 16, EPS = 0.01)

This rule will find all polygons that approximate circles with a radius of 5 user
units and have at least 16 sides.

The minimum and optional maximum number of sides must be expressed as
positive integers.  When the maximum number of sides is not provided, it
defaults to a very large number (over 2 billion).

Example: B = IS_CIRCLE ( A, R = 4.99 : 5.01, N = 3:5, EPS = 0.01)
C = IS_CIRCLE ( A, R = 4.99 : 5.01, N = 6, EPS = 0.01)

This pair of rules will find circular polygons with a radius of 5 user units on the
A layer.  Layer B will include only polygons with from 3 to 5 sides (i.e.
equilateral triangles, squares, and pentagons).  Layer C will include only
polygons that have at least 6 sides.



DRC Rules Syntax: IS_CIRCLE

DRC User Manual 227

The Optional POLY_INSIDE and POLY_OUTSIDE Keywords

These mutually exclusive keywords determine which mode is used to determine
how the ideal circle relates to the approximating polygon.  The
POLY_OUTSIDE keyword is used by default when the POLY_INSIDE keyword
is not used.  When the POLY_OUTSIDE mode is used, the polygon is
understood to be drawn
outside of the ideal
circle.  This is the
method used by the
ICED™ layout editor
when it creates a
circular polygon.

The POLY_INSIDE
keyword will change
the radii criteria to
search for circular
polygons where the
polygon is smaller than the ideal circle.

Example: B = IS_CIRCLE ( A, R = 3.99 : 5.01, N = 16, EPS = 0.01, POLY_INSIDE)

The rule above will search for circular polygons adjusting the radius criteria so
that polygons drawn inside ideal circles of radii from 4 to 5 will be copied to the
B layer.  The polygons must have at least 16 sides.

Using the NOT Keywords

The optional NOT keywords are used to collect all polygons on layer1 that do
not meet the circle criteria.  Only one NOT keyword is allowed in a single rule.

POLY_OUTSIDE POLY_INSIDE

Figure 142



DRC Rules Syntax: IS_CIRCLE

228 DRC User Manual

Example: B = IS_CIRCLE ( A, R = 4.99 : 5.01, N = 8, EPS = 0.01) NOT = C

This rule will copy to layer B all shapes on layer A that meet the circle criteria.
All other shapes on layer A (including all non-circular shapes) will be copied to
layer C.

If you need to collect only shapes that do not meet the circle criteria, use the first
NOT before the IS_CIRCLE keyword as in the example below.

Example: C = NOT IS_CIRCLE ( A, R = 4.99 : 5.01, N = 8, EPS = 0.01)

To improve readability, you can split this rule across several lines.  Begin a new
line after any of the commas.  The only restriction is that if the second NOT is
used on the last line by itself, the closing parentheses must be included in that
last line.

Example: B = IS_CIRCLE ( A,
R = 4.99 : 5.01
N = 8
EPS = 0.01
) NOT = C

Note that the commas are optional and can be omitted (except for the first
comma after the layer name).

Counting Shapes as Errors

The result_layer is not automatically considered an error layer, so shapes found
by this rule will not automatically be counted as errors.  You can process shapes
on result_layer in the same manner as any output or scratch layer.

If you define result_layer as an error layer (as shown in the next example), then
shapes on the layer are counted as errors and will be reflected in the error count.

Refer to the
OUTPUT
LAYER rule to
learn more
about error
layers.



DRC Rules Syntax: IS_CIRCLE

DRC User Manual 229

Example: OUTPUT ERROR LAYER  53  CIRCLE_ERR
CIRCLE_ERR = IS_CIRCLE ( A, R = .1 : 999, N = 6, EPS = 0.01)

A rule similar the one above will find all circular components.  All of the shapes
copied to the CIRCLE_ERR layer will be counted as errors since the
result_layer is defined as an error layer.



DRC Rules Syntax: ISLANDS

230 DRC User Manual

ISLANDS Find Holes

result_layer = ISLANDS  ( layer1 )

This rule is used to find holes or unconnected polygons on a specific layer.  All
shapes on layer1 that are not connected to the upper left polygon on layer1 will
be copied to result_layer.  By connected, we do not mean electrical connections
through use of the CONNECT rule.  For this rule, connected means shapes on
one layer which touch other shapes on the same layer.

The result_layer is not automatically an error layer.  Shapes generated on the
result_layer will not count as errors unless you add the ERROR keyword to the
OUTPUT LAYER rule that defines the layer.

To find holes in a layer, you use this rule to find islands in the inverse of the
layer.

Example: NOT_A = NOT A
B = ISLANDS  (NOT_A)

This pair of rules will result in polygons on layer B created for all holes in layer
A.   Note that the parentheses are required in the ISLANDS rule.

Also see the
HOLE_AREA_
FRACTION
rule to find
polygons with
holes.



DRC Rules Syntax: MAX_ANGLE

DRC User Manual 231

MAX_ANGLE Find sharp points in notches

error_layer = MAX_ANGLE  ( layer1, angle)

This rule is used to find acute angle notches
in polygons.  The angle measured is the
interior angle.

Look at Figure 143.  The angle of the notch is
36.9º.  The interior angle of the polygon is
323.1º.

Example: ERR1=MAXANGLE (A, 315)

The rule above will find all polygons with
interior angles greater than 315º.  This means
notches with angles less than:

360º – 315º = 45º

If this rule is executed on the polygon shown
in Figure 143, the angle will be marked with
error wires on layer B, since it is less than
45º.  The error wires will look similar to
Figure 144.

36.9º

323.1º

Figure 143: Polygon with
acute angle notch.

See the
MIN_ANGLE
rule to find
acute angle
protrusions.

Figure 144: Error wires
marking notch.



DRC Rules Syntax: MAX_ANGLE

232 DRC User Manual

You usually want the angle parameter to be at
least 270º.  If angle is less than 270º, then all 90º
bends like the one shown in Figure 145 will be
marked as errors.  To find only acute angle
notches, use values for angle in the following
range:

360º > angle > 270º

This will find notches with angles less than:

0º < notch_angle < 90º

To be found by this rule, notches must be formed from two connected sides that
meet at an angle.  If the notch is blunted by
another line segment, this rule will not find it.
Refer to Figure 146.  Since the angular notch is
blunted by the vertical segment, neither angle is
greater than 315º.  See the MIN_NOTCH rule to
find notches like these.

If you want to find acute angle protrusions on a
specific layer, see the MIN_ANGLE rule.  If you
want to find all acute angles (protrusions and
notches) on all output layers, see the information
in the WARN_ACUTE rule description.

All shapes created on error_layer by this rule are
counted as errors.  They will automatically be
included in the DRC error count.

90º

270º

Figure 145: Polygon with
270º interior angle.

270º

233.1

Figure 146: Notch that will
not be marked by the
MAX_ANGLE(A,315)
rule.

All acute angles
on output layers
are marked with
warnings on
layer 99 by
default.



DRC Rules Syntax: MAX_COUNT

DRC User Manual 233

MAX_COUNT Change maximum number of errors found before warning

MAX_COUNT = error_count

The DRC will warn you by posting a message on the screen when a maximum
error count is reached. When you do not include the MAX_COUNT rule in your
rule set, the default maximum error count is 1000.  Use this rule to change this
maximum error count.

To understand why the DRC warns you when a maximum error count is reached,
imagine a chip with 10,000 copies of a cell.  If a small change to this cell causes
a single error, there will be at least 10,000 error marks created for what you
would consider a single error.  Other error marks will be easily overlooked.   The
error would be caught just as well if you halted the DRC with the <Esc> key
after finding the first 1000 errors, and the run time and output files would be
much smaller.  It is much more efficient to find and fix the single error in a
shorter run, and then other errors will be easily seen in your next run.

Example: MAX_COUNT = 3000

This rule will cause the DRC to post a warning message similar to the following
as soon as it has found 3000 errors.

******WARNING*********WARNING*********WARNING*******
****Error count = nnnn*****************************************
You may stop this run by pressing <Esc>.  There will be a delay.  Pressing
<Ctrl><C> or <Ctrl><Alt><Del> will lose data already generated.

You can ignore the message and allow the DRC to run to completion.  The
message will be updated from time to time with the current raw error count.

If you want to stop the run, you should press the <Esc> key.  The current pass
will be completed, the log file will be generated, and any scratch file(s) will be
deleted before the DRC comes to a halt. This may take a few minutes.  If you

Add the
STOP_ON_-
MAX_COUNT
rule to the rule
set if you prefer
to have the
DRC halt when
the error count
reaches the
maximum.



DRC Rules Syntax: MAX_COUNT

234 DRC User Manual

press <Ctrl><C>, the DRC will halt immediately, but files will not be closed
properly and the scratch file(s) will need to be deleted manually.

A MAX_COUNT larger than the default will allow you to find many more errors
than the default without re-executing the DRC.

However, do not set error_count to a large number like 3000 for an early DRC
run using a new rule set.   If many errors are caused by mistakes in your rule set,
it will take you much longer to realize this, when a shorter run would have been
adequate to debug your rule set.

The DRC keeps track of a raw error count as it encounters errors during the run.
In many cases, several errors get added to the raw error count are combined
during later processing into a single error.  Therefore, if an error count warning
is generated by the DRC, but you allow the DRC to keep running, you may see
that the final error count is lower than the raw running total posted in the
warning message.



DRC Rules Syntax: MAX_SPACING

DRC User Manual 235

MAX_SPACING Classify shapes by distance

result_layer = [NOT]13 MAX_SPACING ( from_layer [/IN] [/OUT] [/CAP=angle1],  …
… to_layer [/IN] [/OUT] [/CAP=angle2],  …
… distance  …
… [/[~]CROSS] …
… [/[~]PERP] …
… [/[~]T]  …
… [/[~]OVER]  …
… [/[~]END]  …
… [/[~]INTER]  …
… [/[~]CONN]  …
… ) [NOT = result_layer_2]13

This rule will classify shapes on the from_layer by whether or not they are more
than distance away from sides of shapes on the to_layer.  Set distance to a
positive real number of user units.

Example: RESULT = MAX_SPACING (A, B, 2)

This rule will copy to layer RESULT all shapes on layer A that have all vertices
more than 2 user units away from sides of shapes on layer B.

One quirk of this rule is that overlapping shapes can be classified as being
more than distance away even though they share a common area.  A shape
on the from_layer can be copied to the result_layer as long as all vertices of the
shape are further than distance away from sides of shapes on the to_layer.

                                                     
13 Only one optional NOT keyword is allowed in a single rule.

The shapes
found by this
rule are not
considered
errors.  If you
want to mark
them as errors,
see the example
at the end of
this description.



DRC Rules Syntax: MAX_SPACING

236 DRC User Manual

Look at the 3 small rectangles in
Figure 147 that all represent shapes on
layer A.  If the rule above is executed
on these shapes, both shapes 1 and 2
will be copied to RESULT.

Shape 1 will be copied to RESULT
since all of its vertices are more than 2
user units away from the B shape.

All of the vertices of shape 2 are also
more than 2 units away from a side of
the shape on layer B.  So shape 2 is
also copied to RESULT, even though
it is covered by the shape on layer B.

Since shape 3 has vertices that are exactly 2 user units away, it is not copied to
layer RESULT.

If overlapping shapes are special cases, use Boolean rules to modify the shapes
on the from_layer, the to_layer, or the result_layer.  For example, if you want to
remove overlapping shapes like shape 2 in the example above, use rules similar
to the following:

Example: A_NOT_B = A  AND NOT  B
RESULT = MAX_SPACING (A_NOT_B, B, 2)

When this pair of rules is used on the shapes in Figure 147, only shape 1 will be
copied to the RESULT layer.

If you need to find shapes on a single layer that are more than distance apart, the
to_layer can be the same as the from_layer as in the following rule:

Example: RESULT = MAXSPACING (A, A, 1.5)

All layer A shapes that are more than 1.5 user units away from other all other
layer A shapes are copied to RESULT.  Note that the underscore ('_') is optional
in the MAX_SPACING keyword (and all DRC keywords).

A B

Figure 147: Both layer A shapes 1
and 2 are more than 2 units away
from the sides of the layer B shape.



DRC Rules Syntax: MAX_SPACING

DRC User Manual 237

Using the NOT Keywords

Use either NOT keyword to copy all shapes on the from_layer that do not meet
the spacing criteria to a result layer. Only one NOT keyword is allowed in a
single rule.

Example: RESULT = MAX_SPACING (A, A, 1.5) NOT=RESULT2

Adding "NOT = RESULT2" to the previous example will copy all layer A
shapes that are 1.5 user units or less away from another layer A shape to the
RESULT2 layer.

If you need to collect only shapes that do not meet the spacing criteria, use the
first NOT before the MAX_SPACING keyword as in the example below:

Example: RESULT2 = NOT  MAX_SPACING (A, A, 1.5)

Using this MAX_SPACING rule with a NOT keyword is very similar to using
the equivalent MIN_SPACING rule below:

ERR = MIN_SPACING (A, A, 1.5)

The three differences are:
•  The result_layer shapes are not counted as errors by the MAX_-

SPACING rule.
•  The entire shape on the from_layer is copied to the result layer by the

MAX_SPACING rule so you can manipulate it just like any other shape.
MIN_SPACING produces error wires that cannot be used for other
processing.

•  Shapes that are exactly distance apart are treated differently.
" MIN_SPACING finds shapes that are less than distance.
" MAX_SPACING finds shapes that are more than distance.
" NOT MAX_SPACING finds shapes that are less than or equal to distance.



DRC Rules Syntax: MAX_SPACING

238 DRC User Manual

Directional Spacing Checks, End Caps, and Orientation Options

The /IN, /OUT, and /CAP options for the input layers and the orientation options
/CROSS, /PERP, /T, /OVER, /END, and /INTER are very rarely used.  They
usually increase the number of shapes that are copied to the result_layer.  For
example, when the /IN or /OUT options are added to the from_layer or to_layer
in a MAX_SPACING rule, this allows shapes that are closer than distance to be
added to the result_layer by restricting the spacing criteria to those shapes found
by looking toward the inside or toward the outside of shapes on indicated layer.

These options are included for completeness since they are included in the
MIN_SPACING rule.  The algorithms for the MAX_SPACING rule are based
on those used for the MIN_SPACING rule.  Basically, shapes that have no sides
that violate the equivalent MIN_SPACING rule are copied to result_layer.  For
example, if we restrict the equivalent MIN_SPACING rule with /IN or /OUT,
less shapes fail the MIN_SPACING test.   So more shapes pass the equivalent
MAX_SPACING rule.

There is one important thing to keep in mind if you are using these
MIN_SPACING options in a MAX_SPACING rule. Shapes on the from_layer
that are exactly distance away from a shape on the to_layer at their closest point
are not copied to the result_layer even though they would not violate the
equivalent MIN_SPACING rule.

Read the relevant section in the MIN_SPACING rule if you need to understand
these options.  Unless you are writing a simple MAX_SPACING rule, you
should be familiar how the equivalent MIN_SPACING rule operates.

One final word on this subject for those who understand MIN_SPACING well
enough to be dangerous: none of these options will prevent overlapping polygons
from being copied to result_layer.  Use the Boolean method shown on page 236
to prevent overlapping shapes from being copied to the result_layer.

See the
MIN_SPACING
rule and Spacing
Verification
beginning on
page 84 to learn
more about how
the DRC
performs spacing
verification.



DRC Rules Syntax: MAX_SPACING

DRC User Manual 239

Electrical Connections

Add the /CONN option to the MAX_SPACING rule if you want to copy to the
result_layer all shapes on the from_layer that are more than distance away from
shapes on the to_layer to which they are electrically connected.  The /~CONN
option will copy shapes that are more than distance away from shapes that are
not electrically connected.  The default is to check both connected and
unconnected pairs of shapes.

For MAX_SPACING rules to accurately recognize what shapes are electrically
connected, you must define how electrical connections are made.  You use
CONNECT and STAMP rules to define electrical connectivity.  See page 110
for a complete explanation.

Example: CONNECT A B
RESULT = MAXSPACING (A, A, 2.0 /CONN)

The CONNECT rule above indicates that touching
shapes on layers A and B are electrically connected.
Since the MAX_SPACING rule includes the /CONN
option, any given shape on layer A will be copied to
RESULT if it is more than 2 user units away from all
other shapes on layer A to which it is electrically
connected.

Look at Figure 148.  All squares represent shapes on
layer A.  Shapes 1, 2, 3, and 4 are all electrically
connected by the vertical rectangle on layer B. Shapes
1 and 2 are not copied to RESULT since they are
electrically connected and closer than 2 units.  Shape
3 is also not copied to RESULT since it is exactly 2
units away from an electrically connected layer A
shape.  All other shapes will be copied to RESULT
since they are more than 2 user units away from other
electrically connected layer A shapes.

When the rules
compiler or
DRC lists a
MAX_SPACING
rule with the
default connec-
tion restriction
"/+~CONN", this
means both con-
nected and un-
connected pairs
of shapes will be
checked.

1

2

3

4

5 9

8

7

6

Figure 148



DRC Rules Syntax: MAX_SPACING

240 DRC User Manual

For the next example, suppose that you need to find all layer A shapes that are
within 2 user units of another shape on layer A that is on a different electrical
net.  Use the /~CONN option and collect only shapes that fail to meet the
MAX_SPACING criteria.

Example: RESULT2 = NOT MAXSPACING (A, A, 2.0 /~CONN)

Now shapes on layer A that are 2 units or closer to
shapes that are not electrically connected are copied
to RESULT2.  Shapes 1 and 2 are copied because
they are too close to shapes 6 and 7 respectively.
Note that shapes that are exactly 2 units away from
shapes that are not electrically connected are copied
to RESULT2.  When the NOT keyword is used,
shapes that are exactly distance away or closer are
collected on the result layer.

NOTE: The restrictions imposed by the /CONN or
/~CONN options will be ignored when you specify
the QUICK_PASS option on the DRC command
line.  You should use the SLOW command line
option to enable the /CONN or /~CONN options.

Counting Shapes as Errors

The result_layer is not automatically considered an error layer, so shapes found
by this rule will not automatically be counted as errors.  You can process shapes
on result_layer in the same manner as any output or scratch layer.  If you define
result_layer as an error layer (as shown below), then shapes on the layer are
counted as errors and will be reflected in the error count.

1

2

3

4

5

9

8

7

6

Figure 149:
MAXSPACING (A, A,
2.0 /~CONN)

See page 129
for more
information on
the
QUICKPASS
option.

Refer to the
OUTPUT
LAYER rule to
learn more
about error
layers.



DRC Rules Syntax: MAX_SPACING

DRC User Manual 241

Example: OUTPUT ERROR LAYER  91  A_TOO_FAR_AWAY
A_TOO_FAR_AWAY = MAXSPACING (A, A, 1.5)

All layer A shapes that are more than 1.5 user units away from other all other
layer A shapes are copied to layer A_TOO_FAR_AWAY. Since this is defined
as an error layer, all shapes on the layer are added to the error count.



DRC Rules Syntax: MIN_ANGLE

242 DRC User Manual

MIN_ANGLE Find sharp points

error_layer = MIN_ANGLE  ( layer1, angle)

This rule is used to find acute angles in
polygons.  The angle measured is the interior
angle.

Example: ERR1=MIN_ANGLE (A, 45)

This rule will find all polygons with angles
less than 45º.

If this rule is executed on the polygon shown
in Figure 150, the angle will be marked with
error wires on layer B, since it is less than
45º.  The error wires will look similar to
Figure 151.

You usually want to restrict angle to be in
the following range:

0º < angle < 90º

If you specify angle to be greater than 90º, all right angle corners of all polygons
on layer1 will be marked.

36.9º

Figure 150: Polygon with acute
angle.

See the
WARN_ACUTE
rule to learn how
the DRC will
find acute angles
on all output
layers.

Figure 151: Error wires
marking acute angle.

See the
MAX_ANGLE
rule to find
acute angle
notches on
polygons.



DRC Rules Syntax: MIN_AREA

DRC User Manual 243

MIN_AREA Find small shapes

error_layer = MIN_AREA  ( layer1, area,  /BORDER= [+] max_size )

This rule will copy to the error_layer (and count as errors) all polygons on
layer1 with an area less than area.

The required /BORDER keyword is used to modify the panel border. It is used
to avoid false errors for shapes that fail to pass the test because they are formed
by touching shapes that travel across panel boundaries.

There are three ways you can specify the border:

/BORDER=max_size sets the panel border to a minimum of max_size.

/BORDER=+max_size14adds max_size to the border value required by
other rules.

/BORDER=0 forces the DRC to use multiple passes which
prevents false error messages entirely.

In no case will any of these choices prevent real violations from being found.
However, a small border can fail to prevent false errors, and a large one can
result in longer run times for the entire DRC run.

Generally, the /BORDER=0 option is the most efficient.  If your rule set contains
other verification rules for layer1, and the rules compiler has generated a
"CONNECT layer1" rule (look in the rule compiler log file), then this option
will not result in a longer run time.  The DRC will already execute in multiple
passes.

                                                     
14 This special syntax to modify the border is unique to the MIN_AREA rule.

See page 118 to
learn more
about panels
and borders.

The SHOW
command in the
ICED™ layout
editor will
report the area
of selected
shapes.

See page 66 for
an example of
using this rule
to filter small
shapes without
counting them
as errors.



DRC Rules Syntax: MIN_AREA

244 DRC User Manual

However, if you have a rule set that contains no other rules that force the
compiler to generate the CONNECT rule above, using the /BORDER=max_size
option may be faster than the /BORDER=0 option.

We suggest using a small value for max_size unless you are seeing too many
false errors.  If many false errors are a problem, a good value for max_size is:

        area
minimum_width

where area is the minimum area set in the rule, and minimum_width is the
minimum dimension allowed for layer1 in your technology.

Look at the shapes in Figure 152.  The
upper shape has an area of 8.  If the
touching shapes at the bottom are
merged, they have a combined area of
exactly 10.  The merged shapes should
pass the minimum area check.

Example: PANELX = 5
B=MIN_AREA (A, 10 /BORDER=1)

When these rules are run on the shapes
in Figure 152, the indicated panel
boundary may prevent all 4 shapes on
the bottom from being considered as the
same shape. In this case the DRC will mark false errors for these shapes as
shown in Figure 153.  (The shapes on layer B are cut at the panel border.  The
log file will include all 6 shapes on layer B in the count of errors.)

Example: PANELX = 5
B=MIN_AREA (A, 10 /BORDER=20)

When we increase the border to 20, only
the upper shape will be copied to layer
B.  All of the lower shapes are now
considered one shape with an area of
exactly 10, so they pass this minimum area rule.

Add the
SHOW-
_BORDER
option to the
DRC command
line to see how
the panel border
is calculated in
the log file.

Panel boundary

Figure 152: Shapes on layer A.

Figure 153: All shapes marked with
errors on layer B.

Figure 154: Only upper shape is
marked when larger border is used.



DRC Rules Syntax: MIN_FILL

DRC User Manual 245

MIN_FILL Verify layer coverage of design area

error_layer = MIN_FILL { layer1, min_fraction, …
… [MARGIN=mdistance]…

… [ LEFT_MARGIN=ldistance[,] …
… RIGHT_MARGIN=rdistance [,] …
… TOP_MARGIN=tdistance [,] …
… BOTTOM_MARGIN=bdistance ]…

}

The MIN_FILL rule checks that a minimum fraction of the total design area is
covered by shapes on layer1.  The total area of all shapes on layer1 within the
design area is calculated and divided by that design area.  If the resulting number
is less than min_fraction, then the DRC will post an error message in the log file
and create a text component on error_layer.  The error_layer text component is
created at the lower left corner of the design.  A larger warning message text
component is created at the top of the design on error_layer to alert you to the
specific warning text in the lower left corner.

To pass this rule, the following equation must be true:

The bounding box of the design sets the default total area of the design.  The
bounding box is the smallest rectangle, square with the axes, which encloses
all shapes on all layers in the design. (This includes layers not used in your
rule set.)

Total area of shapes on layer1

Total area of design
≥ min fraction



DRC Rules Syntax: MIN_FILL

246 DRC User Manual

Example: ERR = MIN_FILL  {C  .5 }

The rule above will verify that shapes on the C layer cover at least ½ of the area
of the entire design.  The bounding box of all shapes on all layers determines the
boundary of the entire design.  If layer C covers at least half of this area, no
errors are generated.  If the total area of all shapes on layer C is less than half of
the design area, then a text message stating this, along with exact
recommendations to fix this problem, is created in a text component in the output
command file at the lower left corner of the design on layer ERR.  This will be
counted as an error in the error count.

If you want to define the total design area as an area slightly larger than the
bounding box of the entire design, you can use either one of the following
options:

•  MARGIN=mdistance
•  All four of the boundary options:

LEFT_MARGIN=ldistance,
RIGHT_MARGIN=rdistance,
TOP_MARGIN=tdistance,
BOTTOM_MARGIN=bdistance,

If you want to add the same
margin distance to all sides of the
bounding box of the design to
specify the total design area, add
the MARGIN=mdistance option to
the rule.  mdistance will be
subtracted from the left and
bottom boundary coordinates and
added to the right and top
coordinates.  Specify mdistance as
a positive real number of user
units.

Layout
Bounding Box

mdistance

mdistance

m
distance

m
distance

Design Area
Boundary

Figure 155: Using MARGIN=mdistance



DRC Rules Syntax: MIN_FILL

DRC User Manual 247

Example: ERR = MIN_FILL  {C  .25  MARGIN=50}

The rule above will check that shapes on layer C cover at least ¼ of the design
area.  The design area in this case is considered to be 100 user units wider and
100 user units taller than the bounding box of the design data.

If you want to add different
margin distances to all sides of
the bounding box of the design to
specify the total design area, add
all four of the
LEFT_MARGIN=ldistance,
RIGHT_MARGIN=rdistance,
TOP_MARGIN=tdistance, and
BOTTOM_MARGIN=bdistance
options to the rule. Specify all
xdistance parameters as positive
real numbers of user units.
Using an xdistance of 0 for any
of the margin parameters is
acceptable.

Example: ERR = MIN_FILL  {C  .25
LEFT_MARGIN= 50
RIGHT_MARGIN= 30
TOP_MARGIN= 30
BOTTOM_MARGIN=0
}

The rule above will check that shapes on layer C cover at least ¼ of the design
area.  The design area in this case is considered to start 50 user units to the left of
the left design boundary, 30 user units to the right of the right design boundary,
30 user units above the top design boundary, and right at the bottom design
boundary.

Layout
Bounding Box

tdistance=30

rdistance =30

ldistance =50

Design Area
Boundary

bdistance=0

Figure 156: Using 4 margin parameters



DRC Rules Syntax: MIN_NOTCH

248 DRC User Manual

MIN_NOTCH Find small notches

error_layer = MIN_NOTCH  ( layer1, min_width, [ /LENGTH=length]  [/[~]DET] )

When this rule is used, notches
less than min_width in shapes
on layer1 will be marked with
error wires on layer
error_layer.

Example: B=MIN_NOTCH (A, 2)

This rule will find all notches
less than 2 units wide and mark
them with error wires on layer
B.  When this rule is run on the
shape in Figure 157, the top
two notches will be marked
with error wires.  The bottom
notch, which is exactly 2 units wide, will not be marked
as an error.

To be recognized as a notch, opposite
sides of the notch must not meet.
Angular notches like the one shown in
Figure 159 will not be found by this
rule.  You can use the MAX_ANGLE
rule to find notches like these.  However,
the sides of the notch do not need to be
horizontal or vertical.  The portion of the
notch shown in Figure 160 that is
narrower than 2 units will be marked as
an error.

See page 106
for more
information on
how the DRC
defines a notch.

width

length

Figure 157: Shape
on layer A with 3
notches.

Figure 158:
Notches less than 2
units wide marked
with error wires.

Figure 159:
Angular notch
will not be found.

Figure 160:
Error will be
found.



DRC Rules Syntax: MIN_NOTCH

DRC User Manual 249

The MIN_NOTCH rule can be a very important addition
to a MIN_SPACING rule when you need to find spacing
errors between shapes on the same layer.  Consider
Figure 161.  The long wire folds back on itself and two
sides are very close each other.  This is a notch in a single
shape rather than a spacing error between shapes.

A MIN_SPACING rule will not mark this as an error.  If
your design rules consider this an error, you should add a
MIN_NOTCH rule to find such errors.

Remember that all touching shapes on a single layer are
merged during DRC preprocessing.  So even if a spacing problem like the one in
Figure 161 is caused by two separate wires on the same layer, to the DRC it will
be a single shape with a notch rather than a MIN_SPACING error.

The optional /LENGTH=length parameter is used to restrict the errors found to
those at least as long as length.   Notches less than this length will not be marked
with error wires on layer1.

Example: C=MIN_NOTCH (A, 2 /LENGTH=3)

When the /LENGTH keyword is added to the rule above,
notches less than 3 units long will not be considered
errors.

The optional /DET keyword is used to add a detailed
error message to the log file for each notch that fails the
test.  The coordinates of pairs of sides that fail the test
will be listed.  For large designs, these messages may
make the log file unreasonably long.

Notches that have been discarded due to a /LENGTH
restriction will be listed in these detailed messages.

Figure 161: Notch,
not
MIN_SPACING
error.

See an example
that
demonstrates
this idea in
NOTCHSP.RUL
and
WIRECEL.CEL.

Figure 162: The
notch shorter than
3 units is not
marked.

See page 50 to
learn more
about detailed
error message in
the log file.



DRC Rules Syntax: MIN_NOTCH

250 DRC User Manual

Add the /~DET option to the rule when detailed error messages have been
enabled, but you want to disable them for only this rule.



DRC Rules Syntax: MIN_SIDE

DRC User Manual 251

MIN_SIDE Find shapes with at least one small side

error_layer = MIN_SIDE  ( layer1, min_length)

This rule will create error wires on all polygon sides less than min_length.  Only
the polygons on layer1 will be tested.  The error wires are created on
error_layer.

Example: B=MIN_SIDE (A, 2)

All sides of polygons on layer A that are less than 2 units long will be marked
with error wires on layer B.  When this rule is run on the polygon in Figure 163,
error wires will be created on layer B as shown in Figure 164.

Figure 163: Polygon on
layer A.

Figure 164: Error wires
on layer B for all sides less
than 2 units long.



DRC Rules Syntax: MIN_SPACING

252 DRC User Manual

MIN_SPACING Find spacing errors

error_layer = MIN_SPACING ( …
… from_layer [/IN] [/OUT] [/AWAY=a_angle1[/SIDES_BACK=n1]]15 [/CAP=c_angle1], …
… to_layer [/IN] [/OUT] [/AWAY=a_angle2[/SIDES_BACK=n2]]15 [/CAP=c_angle2], …
… distance  …
… [/[~]CROSS] …
… [/[~]PERP] …
… [/[~]T]  …
… [/[~]OVER]  …
… [/[~]END]  …
… [/[~]INTER] …
… [/[~]CONN]  …
… [/LENGTH=length]  …
… [/[~]DET] )

This rule will find sides of shapes on the from_layer that are too close to sides
of shapes on the to_layer.  Set the minimum valid distance for the spacing check
as a positive real number of user units.

This is easily the most complicated DRC rule and it is easy to write too simple a
rule that will not find all of the errors you think it will.  You must read "Spacing
Verification" beginning on page 84 to learn how to write MIN_SPACING rules
that catch all possible errors.

One common problem that is often overlooked by writers of DRC rule sets is
that overlapping shapes are not automatically considered errors.  Errors will
be found only when a vertex of a shape on one layer is closer than distance to a
side of a shape on the other layer.   If overlaps are always errors, use the AND or
TOUCHING rules to find them.

                                                     
15 The AWAY option is available in beta test versions only.  See page 256.

See the table on
page 26 for a list
of cell and rule
files included in
the installation
that demonstrate
the
MIN_SPACING
rule.

Crossing Enclosure Notch

Figure 165: Configurations like these
are not automatically considered
MINSPACING errors.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 253

One other class of potential errors that the MIN_SPACING rule will not mark
are spacing violations between parts of a single shape, or between two shapes on
a single layer that have been merged during preprocessing.  You will need to add
a MIN_NOTCH rule to find these types of problems.  See the information on
page 87 and the example covered in the files NOTCHSP.RUL and
WIRECEL.CEL.

Example: ERR = MINSPACING (A, A, 2)

In this rule, the from_layer is the same
as the to_layer.  When this rule is
executed on the shapes in Figure 166,
error wires are created on layer ERR
wherever a side of a shape on layer A is
less than two units away from a side of
another shape on the same layer.  Note
that no error is indicated for the bottom
shape since it is exactly two units
distant.

The error wires wrap around the corners
of the upper two shapes.  When the
error extends around connected sides,
the DRC will create one continuous
error wire.

Note that the underscore ('_') is optional in the MIN_SPACING keyword.

Directional Spacing Checks

The /IN and /OUT specifications are mutually exclusive for each layer.  If you
follow a layer name with the /IN keyword, the DRC will look only toward the
inside of a shape when looking for spacing violations of the other layer.  If you
instead add the /OUT keyword after the layer name, the DRC will look only
toward the outside of the shape for spacing violations.

To classify
shapes by
distance rather
than find errors,
see the MAX-
_SPACING
rule.

A ERR

Figure 166: Error wires created for
layer A shapes closer than 2 units.



DRC Rules Syntax: MIN_SPACING

254 DRC User Manual

When you use neither keyword, shapes on both sides of each edge of the polygon
will be verified for spacing violations.  We refer to this type of rule as a simple
spacing check.

When you do use /IN or /OUT after one or both layer names, the rule is a
directional spacing check.

Example: ERR=MINSPACING(A, B/IN, 1)

When this MIN_SPACING rule is
run the shapes shown in Figure
167, error wires are created as
shown.  The DRC will look only
toward the inside of the shape on
layer B from each side when
searching for sides of shapes on
layer A that may be too close.
Shapes 1 and 2 will not be found.
For shape 3, only the side that is
toward the inside of the side of the
shape on B is indicated as an error.
Each error wire for the layer A
sides is paired with an error wire on
the sides of the B shape.

Note that shapes 3 and 4 have perpendicular sides that are also in violation, but
are not marked.   The default behavior for checking perpendicular or crossing
sides changes when you add the /IN or /OUT keywords.   We cover this subject
later when we cover the orientation keywords.

Shape 5 is a special case.  The horizontal sides of shape 5 are too close to the B
shape, however, no vertex of the B shape is too close to these sides.  Also, no
vertex of shape 5 is too close to the B shape.  If you consider shape 5 to be an
error, you must find it with a different method.  (See the examples on page 85.)

A B ERR

3

1 2

4

5

Figure 167: Error wires created from
B/IN directional spacing check.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 255

Example: ERR=MINSPACING(A, B/OUT, 1)

When we replace the /IN keyword in
the previous example with the /OUT
keyword, only sides of shapes on A
that are found looking towards the
outside of layer B shapes will be
found.  Note that the violation of
shape 2 is found even though the
space between the sides is exactly 0.

The violation of shape 2 is unusual
for another reason.  Since the error
wires for each side of the violation
overlap, the DRC will merge them
and create only one error wire rather
than a pair.

You must be careful when writing a
directional spacing check if you want to find
shapes with coincident sides.  Coincident or
overlapping sides are a special case for
directional spacing.  Ordinarily, the
MIN_SPACING rule is concerned only about
side-side relationships, but when directional
criteria are applied, the area of the polygons is
also important.   Adding the /OUT keyword to a
layer specification means that area on the other
layer must be present outside a shape for possible
errors to be considered.

Example: ERR=MINSPACING(A/OUT, B/IN, 2)

When testing for possible violations on the lower
shape on layer A in Figure 169, the overlapping
edge is not marked.  When looking to the outside
of edge 3 on the lower shape, the DRC sees no
material on layer B.

A B ERR

3

1 2

4

5

Figure 168: Error wires created from
B/OUT directional spacing check.

To get the exact
coordinates for
each side of a
pair of sides in
violation, add
the /DET option
to the rule.  See
page 269.

A B

1

2
3

Figure 169: When A/OUT
specification is used, lower
shape is not marked with
errors.

See several
examples of
how to test
coincident
edges beginning
on page 85.



DRC Rules Syntax: MIN_SPACING

256 DRC User Manual

AWAY Option to test side-side angle – Beta test only!

New with beta version 113.65 of the DRC is the AWAY option of the
MIN_SPACING rule.  The AWAY option restricts errors to non-overlapping
pairs of sides that are less than a certain angle apart.

The AWAY option should be added to only one layer specification.  We will call
this layer the away_layer in this discussion.

Side-side pairs that are within distance of each other will be not be marked as
errors when both of the following conditions are met:

1) The side on the away_layer is within the specified number of sides
away from the intersecting side on the other layer that is too close.

2) The angle between the sides is greater than the specified angle.

Let us consider the example shown
in Figure 170.  (This geometry is
stored in the AWAY.CEL file
supplied with the beta version
update.)  Let us assume that we need
to find sides of layer B that are
within 20 user units of sides of layer
A shapes.  However, we consider
only parallel sides within this
distance as true errors.  We want to
mark only sides 3 and 4.
Perpendicular side pairs and sides at
a 45º angle are permitted and should
not be marked as errors.

The perpendicular sides 5 and 6
could be prevented from being
marked as errors by adding the /~P
option to the rule.  You could
prevent marking the crossing sides

A
B

1
2

43

5

6

Figure 170: AWAY.CEL



DRC Rules Syntax: MIN_SPACING

DRC User Manual 257

with the /~CROSS option.  The layer B sides within the layer A shape can be
prevented from being considered as errors by adding the /OUT option to the
layer A specification in the MIN_SPACING rule.

Without the AWAY option, there is no way to prevent sides 1 and 2 from being
marked as errors.  However, when we write the MIN_SPACING rule as follows
(as shown in the AWAY.RUL file distributed with the beta version update) the
DRC will mark only sides 3 and 4.

ERR= MIN_SPACING(A, B/AWAY=44.9, 20);

Since the SIDES_BACK option is not included in this example, the default of
SIDES_BACK=1 will be used.  This means that only sides of layer B shapes that
share a vertex with a side that intersects a layer A side will have the AWAY test
applied to them.

Sides that pass the SIDES_BACK test
will have their angle to the side on the
other layer tested.  Side-side pairs will
not be marked as errors if the angle
between the side is greater than 44.9º.

Even when you want to exclude sides
with angles that are exactly 45º, you
should specify the AWAY angle
slightly less than that number.  Floating
point calculations that determine the
angle in the layout may result in a
number slightly less than the exact
angle.

45º

Figure 171: Angle between layer B
side 2 and layer A side.



DRC Rules Syntax: MIN_SPACING

258 DRC User Manual

AWAY Automatic Extra Options

Whenever you use the AWAY option, the /OUT option is added to the other
layer specification.  This means that only sides of the away_layer that are found
looking out from the other layer will be considered as potential errors.  You
cannot add the /IN option to the other layer specification when the AWAY
option is used.

The /~P/~CROSS/~T options are also added automatically to any
MIN_SPACING rule with an AWAY option.  This means that perpendicular
sides and intersecting sides are excluded as errors by default when the AWAY
option is used.  You can override these defaults by adding /P, /CROSS, and/or /T
options to the MIN_SPACING rule.

Beta Test Warning

The new algorithms required to implement the AWAY option required changes
to the MIN_SPACING algorithms.  You should verify the results of all
MIN_SPACING rules tested with this beta version.  This includes the results of
MIN_SPACING rules that do not use the AWAY option.  Verify all
MIN_SPACING results produced by this beta version against the results of the
released version.

If the results of any MIN_SPACING rules are different between the versions,
please contact IC Editors.

We do run a test suite comparing the new and old versions before we post a beta
version.  But just because our cases worked, that doesn't mean yours will.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 259

End Caps

The /CAP=angle parameters are used to
exclude from the spacing check all or part of
the end cap of each edge.  The angle
parameter(s) must be between 90º and 180º.
When you do not add the /CAP keyword to a
layer, the entire end cap will be checked.

Example: ERR=MINSPACING ( A/CAP=90, B, 2.5 )

When this rule is run on the shapes in Figure
172, the end caps of the shape on layer A
will not be checked.  Even though the shape
on layer B is closer than 2.5 units, it is not in
the region checked.  No violations will be
marked.

Orientation Options

The following optional keywords are used to prevent side-side pairs in certain
orientations from being considered errors.  Only pairs of sides that are error
candidates after the directional criteria (/IN, /OUT, and /CAP) are applied are
considered.  Then, the orientation criteria are applied to error candidates.  Only
pairs of sides that are in the special orientation are affected by the restrictions.

When you add a tilda ('~') in front of the option, the DRC will not consider a pair
of sides to be in error when they have the indicated relationship.  Options with a
'~' override conflicting options.

Each of these orientation options is set for every MIN_SPACING rule.  When
you do not specify the setting in the rule, the default is used. The primary
purpose of specifying orientation options is to prevent false errors from being
marked.  However, you may need to override the defaults in some
MINSPACING rules to prevent the DRC default behavior from preventing real
errors from being found.

90º

90º

Regions
checked

A B

Figure 172: The end caps of the
shape on layer A will not be
checked.

Refer to page 95
for a more
complete
explanation of
end caps.

See page 97 for
more details on
the orientation
options.



DRC Rules Syntax: MIN_SPACING

260 DRC User Manual

The orientation options in effect for each MIN_SPACING rule are always listed
in the rules compiler log.  If you add the LIST_RULES option to the DRC
command line (see page 350), this information will also be listed in the DRC log
file.

When typing a MINSPACING rule, you can use the first letter of any orientation
option keyword instead of typing the entire keyword.

/CROSS and /~CROSS

The /CROSS keyword is used to consider as errors spacing violations that
involve crossing sides.  This is the default behavior when the rule is a simple
spacing check.  The /~CROSS keyword prevents violations between crossing
sides from being considered errors.  /~CROSS is the default when the rule is a
directional spacing check.

Let us say that you need to find all parallel
wires that are too close together, but
crossing wires are acceptable.

Example: ERR=MINSPACING(A, B ,1.1 /~CROSS)

When this rule is run on the shapes shown in
Figure 174, violations between sides that
cross will not be marked.  Only the parallel
sides that are closer than 1.1 units will be
marked with error wires on layer ERR.

Crossing Perpendicular T-intersection Overlapping End-to-end

Simple spacing /CROSS /PERP /OVER /END

Directional spacing /~CROSS /~PERP

Same as
crossing option

/OVER /END

Figure 173: Default orientation options.

Remember that
the vertices of
crossing sides
must be closer
than distance
for the DRC to
find the
violation.

Figure 174: Only violations
between sides that do not
intersect are marked when
/~CROSS is in effect.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 261

Example: ERR = MINSPACING (A,  B/IN,  1.5)

The /IN keyword after the layer B
specification makes this rule a directional
spacing check.  The default for directional
spacing checks is /~CROSS.  Note that
side B3 in Figure 175 crosses side A1 and
violates the 1.5 spacing check.  However,
since the default is /~CROSS, side B3 is
not marked as an error.

Side A2 is marked even though it is a
crossing side.  This side is marked because
it violates the spacing rule with side B2,
not the crossing side B1.  Crossing sides
will still be marked if they are too close to
other sides.

When you have a side marked as an error,
and the side is surrounded by other error
marks, it can be difficult to determine why
it violates the spacing rule.  To list the
specific pairs of sides that violate a
spacing rule, add the /DET option
(covered later) to the spacing rule.

Example: ERR = MINSPACING (A, B/IN ,1.5 /C)

In this example, the /CROSS option
(abbreviated to /C) has been added to the
MINSPACING rule above.   Now, side B3
will be marked as an error since crossing
sides are now considered errors.

B1

B2

B3 A1

A2

A B

Figure 175: Crossing side B3 is
not considered an error when the
default /~CROSS option is used
in the directional spacing check.

B1

B2

B3 A1

A2

A B

Figure 176: Crossing side B3 is
marked as an error when the /C
option is added to the rule.



DRC Rules Syntax: MIN_SPACING

262 DRC User Manual

You can always look at the rules compiler log file to how each of the orientation
options is set for a particular rule.  For example, the following is an excerpt from
a compiler log file for the MINSPACING rule above.

ERR[3] = MIN_SPACING(A[1], B[2]/In, 1.5
     /+~CONN/~P/OVER/CROSS/T/END/~DET)

/T and /~T

Use the /T keyword when you want sides that form a T-intersection to be
considered errors.  The T-intersection does not need to be perpendicular.  The
DRC defines a T-intersection as an intersection where a single vertex of a side is
on the other side, and the sides do not overlap.  Use /~T when you want to
prevent sides that touch with a T-intersection from being indicated as errors.

The T-intersection options are most useful when combined with other orientation
options.  See the example on page 267.

The default used by the DRC for T-intersections
is /T if the /CROSS option is in effect.  If
/~CROSS is in effect, then the default option is
/~T.  When you override the default, the
specification with the '~' overrides a conflicting
option.  Combining /~CROSS with /T means
that crossing T-intersections will not be
considered errors.  Only side-side pairs where
the end points meet but the sides do not overlap or meet end-to-end will be
marked.

/PERP and /~PERP

These options control perpendicular orientations.  When you use the /PERP
option, spacing violations of sides that are perpendicular will be considered
errors.  This is the default for simple spacing checks. When you use /~PERP,
these violations are not considered errors.  /~PERP is the default for directional
spacing checks.

Figure 177: T-intersections
without crossing sides.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 263

Example: ERR = MINSPACING (A, B/IN, 1 /PERP)

In this example, we have
overridden the default /~PERP
option used for directional spacing
checks.  The shapes are the same
as those used for the example on
page 254.  Note that the
perpendicular sides of shape 4 are
now marked as well.  However,
the perpendicular sides of shape 3
are not marked, since they also
cross the sides of the B shape.
Remember that the default for
directional spacing checks is
/~CROSS.

Side-side pairs that have more
than one orientation relation-
ship will be marked as errors only if none of those relationships are disabled
with a '~' in front of the option.

Note that unlike the other orientation options, the perpendicular option also
regulates spacing violations of sides that do not touch.

/OVER and /~OVER

The /OVER option is used to consider spacing violations of overlapping sides as
errors.  This is the default for all MIN_SPACING rules.  Use the /~OVER option
to prevent overlapping sides from being considered errors.

For the next example, look at Figure 179.  Let us say that shapes on layer A that
are covered by layer B must be at least 1 unit away from an edge of a shape on
layer B.  However, layer A shapes that are coincident with an inside edge of a
shape on B are valid.   Shapes that have a gap larger than 0 but less than 1, are in
error.  Shapes on layer A are not allowed cross edges of shapes on layer B.  We
want to find errors like shapes 2, 4 and 5.

A B ERR

3

1 2

4

5

Figure 178: Error wires created from
B/IN 1 /P directional spacing check.

Adding /OVER
to a rule has no
effect since this
is always the
default
behavior.



DRC Rules Syntax: MIN_SPACING

264 DRC User Manual

Example: ERR=MINSPACING(A, B/IN, 1 )

When the DRC executes the above rule on the shapes in Figure 179, the error
wires shown in Figure 180 are generated.  Shape 3 is marked with an error since
it violates the 1 unit spacing rule.  When you want to exclude sides that overlap
as errors, you must add the /~OVER option to the rule.

Example: ERR=MINSPACING(A, B/IN, 1 /~OVER )

When the /~OVER option is added to the rule, the DRC marks only shapes 2 and
4 as shown in Figure 181.

Note that no crossing or perpendicular sides are marked by either rule.  This is
because the default for directional spacing checks is /~CROSS/~PERP.

Shape 5 is not marked by either rule.  This is because no vertices of shape 5 are
within 1 unit of a side of the B shape.  Adding /CROSS or /PERP to the rule will
not solve this problem.  This shape should be found with a different method.
(See page 85.)

See several
examples of
how to test
coincident
edges beginning
on page 85.

1

3

4

5

2

A B

Figure 179: Only
shapes 1 and 3 are
valid.

1

3

4

5

2

A B

Figure 180: Shapes
2, 3, and 4 are
marked with
errors.

1

3

4

5

2

A B

Figure 181: Only
shapes 2 and 4 are
marked when
/~OVER is added.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 265

/END and /~END

The /END option allows end-to-end sides to be
considered errors.   The sides must share a vertex and
meet at 180º.  /END is always the default.  Add /~END
to the rule if you do not consider sides that meet end-
to-end as errors.  Most combinations of shapes that
have sides with an end-to-end relationship also have
side-side pairs that have other relationships.  This is why /~END is usually used
in combination with other options.  See the example on page 267.

/INTER and /~INTER

These options control intersections.  They are used as a quicker way to set the
/CROSS and /OVER options.  The /INTER (or /I) option is shorthand for the
option combination /CROSS/OVER.  The option /~INTER (or /~I) will set the
/~CROSS and /~OVER options.

Figure 182: End-to-
end intersection.



DRC Rules Syntax: MIN_SPACING

266 DRC User Manual

Combining Orientation Options

Let us cover a few examples of combining orientation restrictions in a
MIN_SPACING rule.

Example: ERR=MINSPACING(A, B/IN, 1 /C/P)

When we add both the /C and /P
keywords to this MIN_SPACING rule,
the horizontal sides of shape 3 in the
example used previously are marked.
We need to add both keywords to this
directional spacing check to find
perpendicular sides that cross.   This is
because the default for directional
spacing checks is /~CROSS/~PERP.
Both defaults must be overridden.

Example: ERR=MINSPACING(A, B, 1 /~O)

When this rule is run on the shapes in
Figure 184, portions of sides where the
only relationship between them is an
overlap are not considered errors.
However, portions that have a T-
intersection relationship are still marked
as errors.

For example, side 1 on the B shape and
side 2 on the A shape are marked as
errors since /T is the default for simple
spacing checks.

A B ERR

3

1 2

4

5

Figure 183: Error wires created
from /C/P directional spacing check.

A B

1

2

Figure 184: Errors found when
/~O used.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 267

Example: ERR=MINSPACING(A, B, 1 /~O/~T)

When we add the /~T option to the same
rule, this class of errors will no longer be
marked.  See Figure 185.  However, note
that some errors are still marked.  These
errors are indicated where sides on each
layer meet end-to-end.  If you want to
avoid marking sides with this
relationship as errors, add the /~E option
(shorthand for /~END).

Example: ERR=MINSPACING(A, B, 1 /~O/~T/~E)

When we add the /~E option to the rule used above, no errors are marked when
the rule is executed on the shapes in Figure 184.

Electrical Connections

Add the /CONN option to the MIN_SPACING rule if you want to restrict the
spacing violations to those between electrically connected shapes.   The
/~CONN option will consider as errors only spacing violations between shapes
that are not electrically connected.  The default is always to check both
connected and unconnected pairs of shapes.

For MIN_SPACING rules to accurately recognize what shapes are electrically
connected, you must define how electrical connections are made.  You use
CONNECT and STAMP rules to define electrical connectivity.  See page 110
for a complete explanation.

Example: CONNECT A B BY C
ERR=MINSPACING(A, B, 2 /~CONN)

The CONNECT rule above indicates that shapes on layers A and B are
electrically connected by shapes on layer C.  Since the /~CONN option is used,

A B

Figure 185: Errors found when
/~O/~T used.

When the rules
compiler or
DRC lists a
MIN_SPACING
rule with the
default connec-
tion restriction
"/+~CONN", this
means both con-
nected and un-
connected pairs
of shapes will be
checked.



DRC Rules Syntax: MIN_SPACING

268 DRC User Manual

only spacing violations between shapes on A and B that are not electrically
connected will be considered errors.

Example: ERR=MINSPACING(A, B, 2 /CONN )

When the /CONN option is instead, it changes the rule so that only spacing
violations between shapes that are on the same electrical net will be marked.

NOTE: The restrictions imposed by the /CONN or /~CONN options will be
ignored when you specify the QUICK_PASS option on the DRC command line.
You should use the SLOW command line option to enable the /CONN or
/~CONN options.  See page 129 for more details.

Other Options

/LENGTH=length

Add this option to the MIN_SPACING rule when you want to restrict the error
wires on layer error_layer to those at least length units long.

The /LENGTH option can result in unpaired error wires.  It may be difficult to
determine which shape caused a spacing error when you can see only one
unpaired error wire.

See an example
of setting up
electrical
connections for
this option on
page 402.



DRC Rules Syntax: MIN_SPACING

DRC User Manual 269

Example: ERR = MINSPACING (A, B/IN, 1  /LENGTH=3)

When the /LENGTH=3 option is
added to the MIN_SPACING rule
used in the example on page 254,
error wires less than three units
long will not be created on layer
ERR.  When the rule is run on the
same shapes as those in Figure 167,
only the error wire shown in Figure
186 will be created.   The other
error wire of the pair (the one on
the A shape) is missing.

You will not be warned if spacing
errors have been ignored due to a
/LENGTH restriction.

Using this option can prevent the
DRC from automatically using the faster quick_spacing algorithm.  This may
result in longer run times.  If you force this algorithm to be used by specifying
the QUICK_SPACING option on the DRC command line, you may prevent the
DRC from finding real errors.  The log file will include a warning about this.
See page 100.

/DET and ~DET

Add the /DET option to your MIN_SPACING rule to create detailed error
messages in the log file for each pair of sides in violation.  Detailed logging can
result in very large log files.

Example: ERR = MINSPACING(A,  B/IN,  1.5  /DET)

When we add the /DET option to the rule in the example on page 261, the DRC
log file will contain the following text that clearly indicates each pair of sides in
error.  This makes it clear that side A2 in Figure 175 is in violation with side B2,
not the crossing side B1.

A B ERR

Figure 186: Error wires created from
B/IN directional spacing check.

See page 50 for
more
information on
detailed
logging.



DRC Rules Syntax: MIN_SPACING

270 DRC User Manual

   3. RESULT1[50] = MIN_SPACING(A[1], B[2]/In, 1.5
     /+~CONN/~P/OVER/~CROSS/~T/END/DET)

1: 1 (178,10)-(178,7) <-> 1 (179,8)-(179,5)

2: 1 (175,7)-(178,7) <-> 1 (176,8)-(179,8)

Figure 187: Example of detailed logging for a MINSPACING rule.

Add the /~DET option to a rule if detailed logging is enabled in your rule set, but
you want to disable it for only that rule.

If you have a /LENGTH=length option in your MIN_SPACING rule, and
detailed logging is enabled, the log file will contain details on error wires that
have been discarded due to the length restriction.



DRC Rules Syntax: MIN_WIDTH

DRC User Manual 271

MIN_WIDTH Find shapes with small width

error_layer = MIN_WIDTH  ( layer1, min_distance, [ /LENGTH=length]  [/[~]DET] )

This rule will mark as errors any
sides of a polygon that are less
than min_distance away from
another side of the same
polygon.  Sides that touch are not
considered errors.  Only shapes
on layer1 are tested.  The error
wires will be created on layer
error_layer.

Example: B=MIN_WIDTH (A, 2)

This rule will find sides of shapes on layer A that are closer than 2 units from
other sides of the same shapes and mark them with error wires on layer B.  When
this rule is run on the shapes in Figure 188, each pair of sides in violation of the
rule is marked with error wires on layer B as shown in Figure 189.

The optional /LENGTH=length parameter is used to
restrict the errors found to those at least as long as length.
Violations less than this length will not be flagged as
errors.

Example: C=MIN_WIDTH (A, 2 /LENGTH=3)

When the /LENGTH keyword is added to the rule above,
violations less than 3 units long will not be considered
errors.

See page 103
for more
information on
how the DRC
defines width.

Figure 188: Shapes
on layer A.

Figure 189: Sides
that are closer than
2 units are marked
with error wires on
layer B.

Figure 190: The
width violation
shorter than 3
units is not
marked.



DRC Rules Syntax: MIN_WIDTH

272 DRC User Manual

This rule will not locate notches.  The min_distance is measured only across the
interior of polygons.  See the MIN_NOTCH rule to locate notches.

The optional /DET keyword is used to add a detailed error message to the log
file for each pair of sides that fails the test.  For large designs, these messages
may make the log file unreasonably long.

Add the /~DET option to the rule when detailed error messages have been
enabled, but you want to disable them for only this rule.

See page 50 to
learn more
about detailed
error message in
the log file.



DRC Rules Syntax: MODIFY LAYER

DRC User Manual 273

MODIFY LAYER Define layer used as both an input and output layer

MODIFY LAYER     iced_layer_number  drc_layer_name

Use this rule to define layers that can be used as both input and output layers.
Modify layers are useful when you are using the DRC to modify layers in a cell.
Use INPUT LAYER and OUTPUT LAYER definitions instead when you are
using the DRC to check for errors.

Use caution with layers defined with this rule.  If you use the DRC generated
command file to read shapes on modify layers into your original cell(s), you will
alter existing layers.  Read this entire description before using the rule.

The iced_layer_number parameter indicates the number of the layer in the
ICED™ cell(s).   The drc_layer_name parameter defines the name of the layer
used in the rest of the DRC rule set.

Example: MODIFY LAYER   1 A

This rule is roughly equivalent to the following pair of rules.

INPUT LAYER  1 A
OUTPUT LAYER 1 RESULT

In either case, the shapes on layer 1 in the input data will be used as layer A in
the DRC run, and shapes will be created on layer 1 in the command file the DRC
generates at the end of the run.  (This command file can be used for input into
the ICED™ layout editor.)

The primary difference between the two definitions is that when MODIFY
LAYER is used, you refer to layer 1 throughout the rule set as layer A, while the
pair of INPUT LAYER and OUTPUT LAYER rules allow you to refer to layer 1
by two different names during the rule set.

See an overview
of layer
definition rules
on page 55.



DRC Rules Syntax: MODIFY LAYER

274 DRC User Manual

If you import the output shapes into your original cells, layer 1 may be corrupted
because you now have both the old shapes on layer1 and the new ones created by
the DRC run.  You must be very careful to either remove the old shapes on
layer 1 before adding the new shapes to your cell, or to use the output data
to create new cells.

Since this is a hazardous operation, the DRC rules compiler will warn you when
you have used the same iced_layer_number in both and INPUT LAYER rule and
an OUTPUT layer rule.  However, when you use MODIFY LAYER, the DRC
rules compiler will assume that you know what you are doing and will not issue
a warning.

Let us say that you have library of cells and you need to shrink the size of all
metal wires in these cells.  You want to create new copies of all cells in the
library with this change made.  You can perform this function easily with the
DRC.

Example: ALL_SAFE
MODIFY LAYER   1 M1; 2 M2; 3 POLY; 4 DIFF;
MODIFY LAYER   5 CONT; 6 VIA; 7 WELL; 

M1 = SHRINK(M1, .2)
M2 = SHRINK(M2, .2)

The command file created when you run this set of rules on a cell will include
the data on all seven layers listed in the MODIFY LAYER rules, even though
five of those layers are unchanged by the rule set.  You can create a new, empty
cell with the ICED™ layout editor and run the command file to create the shapes
for the new cell.

There are a few things you should be aware of when you use a process like this.
All wires will be converted to polygons in the output data.  All text and line
components will be ignored.



DRC Rules Syntax: MODIFY LAYER

DRC User Manual 275

If you add all original cells to a main cell and create the data for the DRC from
this main cell, you can use the HIERARCHICAL command line option to
process all cells with one DRC run.  In this case, you will want to change
ALL_SAFE in the rule set above to ALL_DANGER.

The syntax for defining multiple layers is the same as that used for the INPUT
LAYER rule.  See page 221 for examples.

Refer to page
134 for details
on the
relationship
between
hierarchical
output and
dangerous
processing
options.



DRC Rules Syntax: NO_CHECK_INPUT

276 DRC User Manual

NO_CHECK_INPUT Prevent some bad polygons from being marked

NO_CHECK_INPUT

By default, the DRC will search for bad polygons on all layers defined with
INPUT LAYER or MODIFY LAYER rules.  This is true even when some of
those layers are not used in any processing rules.  If you prefer to have the DRC
ignore bad polygons on layers that are not actually used in the rule set, add this
rule anywhere in your rule set.

Example: NOCHECKINPUT

Note that the underscores are optional when typing this rule.  This is true of all
rules.

When this rule is not present in your rule set, bad polygons on input layers or
modify layers that are not used by any rules in your rule set will be still be
copied to an error layer and reported in the log file.

Even when you do add this rule to your rule set, bad polygons on input layers or
modify layers that are used by other rules will be copied to an error layer and
reported in the log file.

See page 74 to
learn more
about bad
polygons.



DRC Rules Syntax: NO_HIER_WARNING

DRC User Manual 277

NO_HIER_WARNING Prevent warning during hierarchical output

NO_HIER_WARNING

This rule is useful only when you are creating hierarchical output through the use
of the HIERARCHICAL command line option.

Whenever you are creating hierarchical output, and the ALL_DANGER rule is
not used, safe processing may force some of the shapes to be created higher up
in the hierarchy than you would expect.  In this case, the DRC creates the
following warning in the log file and posts it to the console.  You must reply to
the warning prompt for the run to proceed.

*****WARNING*** You specified hierarchical output.
     Because the rules file does not allow at least
some operations to be done dangerously, some output
may not be hierarchical.   This can be avoided with
ALL_DANGER in the rules file.  If this results in
wrong answers, there will be a message on your log
file.

     You can avoid this warning message by placing
NO_HIER_WARNING in your rules file or on the command
line.

To avoid the warning prompt, you can add the NO_HIER_WARNING rule to
the rule set.  When this is the case, no warning message will be created.

See page 146 to
see an overview
on hierarchical
output.

See page 354
for details on
the
HIERARCHI-
CAL command
line option



DRC Rules Syntax: NO_PANELS

278 DRC User Manual

NO_PANELS Execute DRC on entire design at once

NO_PANELS

If your layouts are small and simple you may want to execute the DRC on the
entire design at once instead of dividing it into panels with the default DRC
panel settings or the PANELX and PANELY rules.  Add the NO_PANELS rule
to specify a single panel that covers the entire design area.

Do not use this option on larger designs, e.g. entire chips.

To understand
how panels are
used, you
should read
Panel
Processing on
page 118.



DRC Rules Syntax: NO_RUL

DRC User Manual 279

NO_RUL Prevent warning when source rules file is missing

NO_RUL

The DRC rules compiler stores the location and time/date stamp of the source
rules file in the compiled rules file.  When you run the DRC, one of the first
tasks performed by the program is to check the time/date stamp stored in the
compiled rules file against the source rules file.  The DRC will post a warning
and wait for you to respond if the source rules file is different from the one used
to create the compiled file, or if the source rules file can't be found.  This is to
avoid a wasted run when you modify the source rules file, but forget to compile
it before running the DRC.

If you prefer to avoid the warning prompt when the source rules file will not be
available, add this rule to your rule set.  This can be especially useful when you
intend to distribute a compiled rule set to others.  Since the source rules set will
be missing when those users use your compiled rules, they will receive the
warning prompt unless you add this rule to the rule set.  (The warning prompt
can also be suppressed with the NO_RUL option on the DRC command line.)

This rule will not prevent the DRC from issuing the warning prompt when the
source rules file is found by the DRC and it has a different time/date stamp than
the compiled rules file.

This rule in the
rule set has the
same effect as
adding the
NO_RUL
option to the
DRC command
line.



DRC Rules Syntax: NO_WARN_ACUTE

280 DRC User Manual

NO_WARN_ACUTE Prevent marking acute angles

NO_WARN_ACUTE

Acute angles can cause problems to mask-processing software.  So the DRC will
by default alert you to all acute angles on output layers.  All acute angles on
output layers will be marked with wire shapes on a special output layer and
reported in the log file. (This is a departure from earlier versions of the DRC.)

Acute angles on output layers receive this special handling due to the fact that
the DRC can create shapes with acute angles in special cases.  If you use the
DRC to generate mask layers, you should fix these shapes by hand in the layout
editor before sending the data to your foundry.

However, if acute angles are not a problem for your design, or if you are
generating output layers that will not be used as mask layers, you can add this
rule to your rule set to prevent both the reporting of these acute angles and the
generation of the wire shapes on the special layer to mark all acute angles.

Alternately, if you want to only suppress the generation of the wire shapes, while
still reporting the acute angles in the log file, use the WARN_ACUTE=0 rule
instead of this rule.

Use the
WARN_ACUTE
rule to change the
special layer
number.  It is
layer 99 by
default.



DRC Rules Syntax: NOT

DRC User Manual 281

NOT Copy inverse of layer

 result_layer = NOT  layer1

This rule is used to create the inverse of a layer.  It is simply a form of the
assignment rule (already covered on page 187) with the optional NOT included.

Example: NWELL = NOT  PWELL

The rule above will create the inverse of the PWELL layer.  The outer boundary
of the inverse layer is slightly larger than the bounding box of your design.
When the NWELL layer is used by other rules in the DRC, it will remain one
large polygon with holes in it.  If the NWELL layer is an output layer, before the
DRC can output the layer as ICED™ components the shape must be divided into
several polygons.  Polygons with holes not connected to the outer boundary are
not valid components in ICED™.  The somewhat arbitrary cut lines (where the
NWELL shape is cut to create valid polygon shapes) will have no effect on
processing in the DRC.

The CUT_RESOLUTION rule is used to define the grid for cut lines when a
shape with holes is cut into valid polygon shapes.

Figure 191: Layer PWELL Figure 192: Layer NWELL = NOT
PWELL

The bounding
box is the
smallest
rectangle,
square with the
axes, which
encloses the
design.



DRC Rules Syntax: OFF_GRID

282 DRC User Manual

OFF_GRID Find vertices that are not on resolution grid

error_layer = OFF_GRID  ( layer1, grid_resolution )

Use this rule to find polygons on layer1 containing vertices that are not on the
indicated grid.   Polygons with at least one vertex with a coordinate that cannot
be expressed as a multiple of grid_resolution will be copied to error_layer and
counted as errors in the log file.

The grid_resolution is expressed as a positive real number of user units.

Example: B=OFF_GRID (A, 1)

This rule will copy to layer B polygons on layer A that have at least one vertex
with a non-integer coordinate.

Example: C=OFF_GRID (A, .1)

Polygons on layer A with a vertex not on a grid with .1 spacing will be copied to
layer C and included in the error count.

Note On Touching Shapes

Remember that the DRC merges all touching shapes before verifying the
geometry.  If two shapes on layer1 share an edge on an off-grid coordinate, but
the merged shape has no edges with off-grid coordinates, the shapes will not be
marked as errors.  See the overview on page 79 for details.

Preventing Off-Grid Coordinates

See the CUT_RESOLUTION rule to prevent off grid coordinates from being
created by the DRC on generated layers at panel boundaries.

Refer to page 79
for an overview
of grid
resolution
issues.

Resolve off-grid
problems with
the SNAP and
SNAP45 rules.



DRC Rules Syntax: OR

DRC User Manual 283

OR Boolean OR of two layers

result_layer = [NOT]  layer1  OR  [NOT]  layer2

This rule will create the union of all shapes on layers layer1 and layer2.

Example: C = A  OR  B

The optional NOT keywords will perform the operation with the inverse of the
layer instead of the original layer.

Figure 193: Polygons on layers
A and B

Figure 194: C = A OR B



DRC Rules Syntax: OUTPUT LAYER

284 DRC User Manual

OUTPUT LAYER Define layer for output

OUTPUT [ERROR] [WIRE] [POLYGON] LAYER  iced_layer_number   drc_layer_name

Output layers will be included in the command file generated by the DRC.  This
file can be used to create shapes in ICED™ cells.  Only layers defined with
OUTPUT LAYER rules (or MODIFY LAYER rules) can be imported into the
ICED™ layout editor.  Be sure that all layers used to locate errors are defined
with this rule.  Use SCRATCH LAYER rules to define all other layers the DRC
will create or modify.

The only required parameters for the OUTPUT LAYER rule are the
iced_layer_number and the drc_layer_name.  The iced_layer_number will be
the number of the layer created in the ICED™ cell when you execute the
command file created by the DRC.

The drc_layer_name is the name of the layer used in the other DRC rules.  The
name will not be used in the ICED™ cell.  Only the layer number is preserved as
you import the shapes into ICED™.   The data is created after all rules are
executed at the conclusion of the DRC run.

Example: OUTPUT LAYER  101 GATE

This example defines the layer GATE.  Since GATE is an output layer, at the
end of the DRC run all shapes on that layer will be included in a command file
which can be used to create the shapes in an ICED™ layout editor session.  The
layer number in the ICED™ cell will be 101.  (The layer in the ICED™ cell will
not automatically have the name GATE.  Whatever name was assigned in the
cell to this layer number, if any, will remain the name of the layer.)

You can use the same iced_layer_number for both an input layer and an output
layer, but you will receive a warning from the compiler.  To avoid the warning,
use MODIFY LAYER instead.  (See page 273.)

Refer to page 55
to learn more
about how
layers are used
by the DRC.

Refer to page
70 if you using
output layers to
generate mask
layers.

To see how to
import these
layers into the
ICED™ layout
editor, see page
365.

You can specify
layer numbers at
run time with
the LAYERS
option on the
DRC command
line.  See page
346.



DRC Rules Syntax: OUTPUT LAYER

DRC User Manual 285

You can output more than one drc_layer_name to one iced_layer_number.  In
this case, shapes from several DRC layers will all be created on one ICED™
layer.

Example: OUTPUT LAYER  10  POLY
OUTPUT LAYER  10  RESISTOR_POLY

This pair of rules defines two output layers with the same iced_layer_number.
All shapes on both DRC layers POLY and RESISTOR_POLY at the conclusion
of the DRC run will result in shapes on layer 10 in the command file.  The layers
are processed separately during the DRC run.

You can use semicolons and curly braces to allow more than one layer definition
in one OUTPUT LAYER rule.  The syntax is the same as that used in the INPUT
LAYER rule.  See page 221 for more details.

Example: OUTPUT LAYER {
11 DIFF ! diffusion layer
12 DEV ! device layer

}

Defining an Error Layer

The optional ERROR keyword will cause the layer to be treated as an error
layer.   If shapes on the indicated layer exist at the end of the DRC run, they will
be included in the error count.   The number of shapes on each error layer is
reported in the "Error Layer Outputs" section of the log file.

Any rule that uses the term error_layer on the left side of the '=' in the syntax
statement automatically classifies the layer as an error layer.  Refer to page 62
to see which rules automatically classify their result layers as error layers.  You
do not need to add the ERROR keyword to the OUTPUT LAYER rule for the
layers created by any of these rules.

To assign a
name to a layer
in the ICED™
layout editor,
use the LAYER
command.

Set the width of
all error wires
with the
WIRE_WIDTH
rule.



DRC Rules Syntax: OUTPUT LAYER

286 DRC User Manual

However, if you generate a layer you consider an error layer, but it is created by
a rule that does not classify the result layer as an error layer (e.g. any of the
Boolean rules: AND, OR, etc.), you should add the ERROR keyword to the
OUTPUT LAYER rule so that shapes on this layer are counted as errors by the
DRC.

Example: OUTPUT  ERROR  LAYER  11  RESULT
RESULT = A  AND  B

This pair of rules will cause the DRC to create on layer RESULT the intersection
of layers A and B.  Since the ERROR keyword is present in the OUTPUT
LAYER rule, all shapes on this layer will be included in the error count.   If the
ERROR keyword is not included, shapes on layer RESULT would not be
counted as errors.

The WIRE and POLYGON Keywords

The WIRE and POLYGON keywords are mutually exclusive.  The WIRE
keyword will force the creation of wires instead of polygons.  The wires will
form the outline of polygons on the layer.   The conversion takes place only
when the shapes are output at the end of the DRC run.

The WIRE option will not transform polygons that were originally wires on an
input layer back into ordinary wires on an output layer.  Once the input pre-
preprocessing has transformed wires in the input data into polygons, there is no
way to transform them back into ordinary wire components for output data.

The POLYGON keyword indicates that the layer should contain only polygons.
If you attempt to use a layer defined with a OUTPUT POLYGON LAYER rule
on the left of the '=' in any rule which creates error wires, you will get an error
message from the rules compiler.  Since rules that do not create error wires
create polygons by default, this keyword is redundant unless you want the
compiler to warn you if you are creating error wires on a layer that you consider
to be a mask layer.

All polygons on
output layers
will be tested
for acute angles.
See the
information in
the WARN-
_ACUTE rule.

The MASK
keyword is an
obsolete, but
still supported,
synonym for the
POLYGON
keyword.
Similarly,
OUTLINE is a
synonym for
WIRE.



DRC Rules Syntax: OUTPUT LAYER

DRC User Manual 287

Defining Temporary Scratch Layers with Layer 0

The iced_layer_number 0 is treated differently than other output layers.
Commands that create shapes on layer 0 will not be included in the output
command file.  Instead, the layer is treated as a scratch layer.  This feature makes
it much easier to debug rule sets.

Let us say that you have an intermediate layer you need to look at occasionally to
diagnose problems with your rule set.  This layer is really a scratch layer and is
not usually output.  However you do want to include it in the output file
occasionally.  You should define this layer as an output layer with layer number
0.  When you do want to see this layer in the output, simply edit the layer
number to a number other than 0 and the layer will be included in the output.
This is much easier than editing the rules file to move the layer back and forth
from an OUTPUT LAYER statement to a SCRATCH LAYER statement.

You can have several output layers assigned to layer number 0 (or any other
layer number) and they will still be handled as separate layers during DRC
processing.

See an example
that uses layer 0
processing on
page 152.

Shapes with
holes will be cut
into multiple
shapes on
output.  See
page 281 for an
example.  The
resolution grid
for the cut lines
is set by the
CUT_RES-
OLUTION rule.



DRC Rules Syntax: OVERLAPPING

288 DRC User Manual

OVERLAPPING Find shapes with common area

result_layer = layer1 [NOT]16 OVERLAPPING [n1 [:n2]] layer2 [NOT=result_layer2]16

This rule is used to classify polygons on layer1 based on whether or not they
overlap polygons on layer2.  Polygons touching only at a point, or sharing only
an edge, are not considered to be overlapping.  All shapes that overlap also
touch.   (See the TOUCHING rule on page 311.)

Example: C = A  OVERLAPPING  B

In this example, layer C will contain all polygons on A which overlap at least
one polygon on layer B

Only one optional NOT keyword can be used in the OVERLAPPING rule.  (The
NOT keywords and the n1 and n2 parameters work in exactly the same manner
as they do in the TOUCHING rule.  See page 311 for more details and more
examples.)

                                                     
16 Only one optional NOT keyword is allowed in a single rule.

Overlapping
and Touching

Overlapping
and Touching

Touching only Not Overlapping
or Touching

Figure 195



DRC Rules Syntax: OVERLAPPING

DRC User Manual 289

Example: C = A  OVERLAPPING   2  B  NOT=D

This example will collect on layer C all layer A shapes that overlap exactly 2
layer B shapes.  All other shapes on layer A will be copied to layer D.



DRC Rules Syntax: PANEL_VERTICES

290 DRC User Manual

PANEL_VERTICES Control number of vertices per panel

PANEL_VERTICES  [=]  panel_spec

The DRC divides large layout databases into panels.  This allows the DRC to
process entire chips with the memory available on personal computers.  The
DRC attempts to calculate optimal panel size based on design size, density, and
available memory.  (Previous versions always defaulted to processing the data as
a single panel unless the PANELX and/or PANELY rules were used.)  Most
designs may complete with acceptable run times with this default behavior.

If the default panel sizes do not seem to be optimal given your design and
memory constraints, one option is to “tweak” the automatic panel calculations
with the PANEL_VERTICES rule.

The PANEL_VERTICES rule controls panel size by restricting the number of
vertices in a single panel, rather than by specifying exact dimension as in the
PANELX and PANELY rules.  This makes PANEL_VERTICES more flexible
than the PANELX and PANELY rules for use in different designs and systems.

panel_spec is specified as the maximum number of relevant input layer vertices
per panel per Megabyte of main memory available to the DRC, or:

By default, panel_spec is set to 5000.  This provides a roughly optimum number
of vertices in a panel for most designs.

To understand
how panels are
used, you
should read
Panel
Processing on
page 118.

DRC memory is
divided between
main memory
and data storage
memory.  See
details on page
161.

Max # Vertices in a Panel
          Megabytes_Main_Memory = panel_spec

The default
panel size is
provided in
your log file.



DRC Rules Syntax: PANEL_VERTICES

DRC User Manual 291

If you have 50 Megabytes of main memory available to the DRC, the default
value for panel_spec results in the following equation:

or

If the total number of vertices in your design was 25 million, then the design
would be divided into approximately 100 equal size panels.

Since there is a trade off between extra processing required for panel processing
and time saved due the smaller amount of data stored in flattened form at any
given time, time may be saved by increasing the default panel size or by
decreasing it.

•  If a run with the default number of panels completes successfully, you can
see if a different number of panels leads to faster run times by specifying
different PANEL_VERTICES values.  The DRC log file lists the amount of
time spent by each phase of the processing near the bottom of the file.  If the
log file indicates that the DRC is spending significant time swapping data to
disk, try adding a PANEL_VERTICES rule in your rule set with a number
smaller than 5000.  If the log file indicates that little or no time is spent
swapping data to disk, try increasing the panel size by with a
PANEL_VERTICES rule using a value larger than 5000.

•  On the other hand if the DRC crashes with a message that indicates a
memory or panel size problem, or if disk swaps are slowing your run,
try a number smaller than 5000 in the PANEL_VERTICES rule.

You can significantly decrease the amount of time the DRC takes to complete a
run by optimizing panel processing.  Try various values for PANEL_VERTICES
until you come up with an optimal value for your computer and design.  Set
panel_spec to a positive real number.

# Vertices
# Panels * 50 = 5000

# Vertices/Panel = 250,000

The PANELX
and PANELY
rules instead set
an explicit
maximum panel
size.



DRC Rules Syntax: PANEL_VERTICES

292 DRC User Manual

Example: PANEL_VERTICES = 3000

You can try this value for PANEL_VERTICES if the DRC was unable to
complete with the default and you have a very limited amount of memory on
your system.  If you are running a Multitasking operating system such as
Microsoft Windows and you have only 32 Megabytes on your system, the DRC
may have as little as 10 Megabytes of main memory available.  In this case:

or

# Vertices
# Panels * 10 = 3000

# Vertices/Panel = 30,000



DRC Rules Syntax: PANELX and PANELY

DRC User Manual 293

PANELX and PANELY Define maximum panel size

PANELX  [=]  panel_x_dimension

and

PANELY  [=]  panel_y_dimension

As of version 3.14, the DRC attempts to calculate optimal panel size based on
design size, density, and available memory.  (Previous versions always defaulted
to processing the data as a single panel unless the PANELX and/or PANELY
rules were used.)  This automates the panel size selection process, and some
designs will complete with acceptable run times with this default behavior.

The default panel size is reported in the log file.  This default panel size may not
be optimal for your design.  You may want to optimize panel size to get faster
run times by using the PANELX and PANELY rules.  These rules explicitly set
the maximum panel size the DRC will use.  You may see improved run times
with either a smaller or larger panel size than the default.

(The PANEL_VERTICES rule sets panel size according to the number of
vertices and memory available rather then an explicit size.  This rule is more
versatile when your rule set deals with various design sizes or densities.)

The DRC reports the amount of time spent disk swapping near the end of the log
file.  If the DRC is spending a majority of the processing time in disk swapping,
you should try reducing run time by using the PANELX and PANELY rules to
force the DRC to process your design in smaller portions.

Both panel dimensions should be positive real numbers in user units.  Since the
DRC will divide your design into roughly equal panels, the actual size of your
panels will probably be somewhat smaller than the values you set with these
rules.

To understand
how panels are
used, you
should read
Panel
Processing on
page 118.

See the
NO_PANELS
rule to specify a
single panel that
covers the entire
design area.



DRC Rules Syntax: PANELX and PANELY

294 DRC User Manual

Example: PANELX = 300
PANELY = 300

Let us say that your design is 720 user units in the x-direction and 580 user units
in the y-direction.  When the above rules are used to set the panel size, the design
will be divided into six 240 by 290 panels.



DRC Rules Syntax: RULE_SET

DRC User Manual 295

RULE_SET Define sets of rules to control execution

RULE_SET  set_name_1 [, set_name_2 […, set_name_10] ]

Use this rule to define sets of rules that can be run selectively when the DRC is
run.  You specify which rule subsets are run using the DO parameter on the DRC
command line at run time.

Example: INPUT LAYER 1 M1; 2 M2; 3 DIFF; 4 POLY
OUTPUT LAYER {

11 M1_ERROR
12 M2_ERROR
13 SMALL_GATE
14 SMALL_GATE_SIDE

}
SCRATCH LAYER GATE

RULE_SET   DEVICE_RULES  WIRE_SPACING_RULES

GATE = DIFF AND POLY

DEVICE_RULES ON  ! Start of rule set
SMALL_GATE = MIN_AREA (GATE, 4 /BORDER=4)
SMALL_GATE_SIDE = MIN_SIDE (GATE, 1.5)

DEVICE_RULES OFF  ! End of rule set

WIRE_SPACING_RULES ON  ! Start of rule set
M1_ERROR = MIN_SPACING (M1, M1, 2)
M2_ERROR = MIN_SPACING (M2, M2, 2.5)

WIRE_SPACING_RULES OFF ! End of rule set

Refer to the DO
command line
parameter on
page 347.



DRC Rules Syntax: RULE_SET

296 DRC User Manual

The set of rules above defines two rule subsets: DEVICE_RULES and
WIRE_SPACING_RULES.  You can direct the DRC to execute only the
WIRE_SPACING_RULES subset by adding the following option to the DRC
command line option:

DO=(WIRE_SPACING_RULES)

In this case, the rules that create the SMALL_GATE and SMALL_GATE_SIDE
layers will not be executed.  Since the GATE layer is no longer used in the
remaining rules, the DRC will automatically skip executing the AND rule which
generates it.

Since the DRC will determine which layer processing rules are required to
execute the rules in a rule set, it is best to include only the final result rules (e.g.
verification rules or output layer generation rules) in a rule set.  All layer
processing rules can be created earlier in the rules file, outside of any named rule
set.  Then create the final rules in named rule sets to be able to selectively
execute them.  Only the required layer processing rules for the selected rule sets
will be executed and the rest will be ignored.

You can turn a rule set on and off more than once in a rules file.  You can also
define more than one rule subset in a single file, up to 10 rule subsets.  The rule
subsets may overlap, in other words a specific rule may be in more than 1 subset.

Example: RULE_SET   DEVICE_RULES  FET_RULES

GATE = DIFF AND POLY
RES_POLY = POLY AND RES_MASK

DEVICE_RULES ON  ! Start of rule set
FET_RULES ON  ! Start of rule set

SMALL_GATE = MIN_AREA (GATE, 4 /BORDER=4) 
SMALL_GATE_SIDE = MIN_SIDE (GATE, 1.5)

FET_RULES OFF  ! End of rule set
RES_ERROR = MIN_WIDTH(RES_POLY,1.5)

DEVICE_RULES OFF  ! End of rule set

The rules that create the SMALL_GATE and SMALL_GATE_SIDE layers are
contained in both rule sets.

The DO
command line
option can also
specify rules by
number even
when you have
not defined any
rule sets.

See page 151
for more details
on how the
DRC optimizes
a rule set.



DRC Rules Syntax: SAFE_CELL

DRC User Manual 297

SAFE_CELL Flatten only certain cells for dangerous operations

SAFE_CELL cell_name [cell_name_2 […cell_name_n] ]

This rule specifies certain cells that the DRC should flatten before performing
dangerous operations.  When this rule is used, all cells not identified as safe cells
will be handled in a dangerous manner (i.e. they will not be flattened).

Example: SAFE_CELL SUBCELL

This rule will force the DRC to flatten the cell SUBCELL for dangerous
operations.  All other cells will not be flattened for dangerous operations.

You can supply more than one SAFE_CELL rule.  You can also specify more
than one cell in the SAFE_CELL rule.  Simply list all required cell names on the
same line.  If you prefer, you can use curly braces to allow more than one line of
cell specifications in a single rule.  The syntax for this is the same as that used
for the DANGER_CELL rule.  See page 207 for examples.

The cell_name parameters can contain wildcard characters ('*').  When an
asterisk is present, the DRC will handle as a safe cell any cell with a name that
matches the given string with one or more characters replacing the asterisk.    A
vertical bar, '|' can be used as well to indicate a list of valid cell names.  More
than one '|' delimiter can be used.

Example: SAFE_CELL   AND*|*INV|*12K*

When this rule is used, all cells that begin with the string "AND" and those that
end in the string "INV" will be handled safely.  So will all cells that contain the
string "12K" anywhere in the cell name.  All other cells will be handled
dangerously.

You should
refer to page
136 to learn
about dangerous
operations.



DRC Rules Syntax: SAFE_CELL

298 DRC User Manual

This rule is incompatible with the rules ALL_DANGER, ALL_SAFE, and
DANGER_CELL.  When SAFE_CELL is used in combination with
SAFE_LAYER or DANGER_LAYER rules, the SAFE_LAYER or
DANGER_LAYER rules take precedence.  See page 142 for an example.



DRC Rules Syntax: SAFE_LAYER

DRC User Manual 299

SAFE_LAYER Force cell flattening for critical layers

SAFE_LAYER layer1  [ layer2  [ …layern ] ]

Use this rule to specify layers that should be handled safely by the DRC for
dangerous operations regardless of the default specification for all cells defined
by the ALL_DANGER, DANGER_CELL, or SAFE_CELL rules.

Specify the names of layers that should be generated safely.  You cannot specify
input layers in this rule.  Only the layer(s) specified in this rule will be processed
safely.  Other layers in cells that contain the indicated layers will not be affected.

You may want to use this rule rather than ALL_SAFE or SAFE_CELL when you
have only a small area of a large cell you need to be handled safely.   You can
add a small shape on a dummy layer that isolates the problem shapes on a new
layer that you specify in a SAFE_LAYER rule.  See the example on page 142.

You can supply more than one SAFE_LAYER rule.  You can also specify more
than one layer in a single SAFE_LAYER rule.  Simply list all required layer
names on the same line.  If you prefer, you can use curly braces to allow more
than one line of layer specifications in a single rule.  The syntax is the same as
that used in the DANGER_LAYER rule.  See page 209 for examples.

You should
refer to page
136 to learn
about dangerous
operations and
hierarchical
processing.



DRC Rules Syntax: SCRATCH LAYER

300 DRC User Manual

SCRATCH LAYER Define temporary layer

SCRATCH  LAYER  drc_layer_name

All layers used in the rules file must be defined before they are used in a rule.
This rule is used to define intermediate layers that are neither input layers or
output layers.  If a layer used in the rules set is not defined with the INPUT
LAYER, MODIFY LAYER, or OUTPUT LAYER rules, you must define it as a
scratch layer using this rule.

The use of semicolons and curly braces to allow more than one layer definition
in one statement is the same as their use in the INPUT LAYER rule.

Examples: SCRATCH LAYER  SRC_DRN;  GATE;  POLY_WIRE;

SCRATCH LAYER  {
SRC_DRN;
GATE;
POLY_WIRE;

}

SCRATCH LAYER  {
SRC_DRN
GATE
POLY_WIRE

}

All three of these examples are exactly equivalent.  The semicolons are not
required when one layer is defined on each line.



DRC Rules Syntax: SCRATCH LAYER

DRC User Manual 301

If you use a layer defined with the SCRATCH LAYER rule as the error_layer
for any of the rules that automatically generate polygon shapes on an error layer,
the shapes created will not count as errors and will not be included in the output.
(This includes the MIN_AREA, OFF_GRID, and STAMP rules.  See the entire
list on page 62.  If you do not use the layer in other succeeding rules, you will
receive a warning from the rules compiler.)

For, example, let us say that shapes on layer A with a small area are not always
errors.  You want to classify shapes on layer A by area using a MIN_AREA rule,
but you do not want to count all shapes created by the rule as errors.   Since the
SMALL_A layer is defined as a scratch layer rather than as an output layer,
shapes on SMALL_A are not counted as errors.   However, shapes on
SMALL_A_NO_B will be counted as errors since SMALL_A_NO_B is an
output error layer.

Example: INPUT LAYER 1 A; 2 B;
SCRATCH LAYER SMALL_A;
OUTPUT ERROR LAYER  90  SMALL_A_NO_B

SMALL_A = MIN_AREA  (A, 6 /BORDER = 6)
SMALL_A_NO_B = SMALL_A AND NOT B

You can use this method of suppressing errors for a rule that usually creates
error shapes only for rules that create polygons, not error wires.

Another way to specify scratch layers is to use an OUTPUT LAYER rule with a
layer number of 0. No shapes on layer 0 will be included in the output.  This
method is often more convenient than using SCRATCH LAYER rules since you
can easily change any layer from a scratch layer to an output layer by editing the
layer number to a non-zero number.  This requires less editing than changing a
layer definition from a SCRATCH LAYER statement to an OUTPUT LAYER
statement.  See page 287.  You may often need to look at scratch layers when
debugging a rule set.

See an example
that uses layer 0
processing on
page 152.



DRC Rules Syntax: SHRINK

302 DRC User Manual

SHRINK Shrink shapes uniformly

result_layer = SHRINK  ( layer1,  offset_val )

Use the SHRINK rule to store on result_layer
polygons on layer1 which have been shrunk
by offset_val.  All sides of the polygons will
be shifted inwards in a parallel manner by
offset_val.  offset_val must be a positive real
number of user units.

Example: B = SHRINK ( A, 1.2 )

Note that the parentheses and comma are
required in the SHRINK rule.

Polygons can change shape significantly
when being shrunk.  Thin sections that
become a width of zero or less will simply
disappear.  Small polygons with either
dimension less than twice offset_val will
disappear entirely.

The DRC processes a SHRINK operation as
a BLOAT of the inverse of a layer.  When
you shrink a shape with an acute angle notch,
you are really bloating a shape with an acute
angle.  The bloat of an acute angle can result
in significant distortion of your shape.  This
is why the default behavior of the DRC
blunts angles less than 45° before shrinking
or bloating.

Figure 196: B = SHRINK (A,
1.2)

Figure 197: A single polygon
on layer A becomes two
polygons on layer B after
shrinking.

See the BLOAT
rule.



DRC Rules Syntax: SHRINK

DRC User Manual 303

If you are using SHRINK on polygons with angular notches, you should refer to
the BLOAT_ANGLE rule on page 191 for important information on the effects
that acute angles can have on this rule.

One common use of the SHRINK rule is to combine it with a BLOAT rule to
remove all small polygons on a given layer.  This can be used to classify
irregular shapes, like wires, by size.

Example: M1_SHRINK = SHRINK (M1_IN, 2.5)
M1_OVER_5 = BLOAT (M1_SHRINK, 2.5)
M1_OTHER = M1_IN  AND  NOT  M1_OVER_5

This set of rules will create shapes on M1_OVER_5 for all shapes on M1_IN
that are wider than 5 units.  All other shapes on M1_IN will be copied to layer
M1_OTHER.  This operation can have unfortunate side effects.  Polygons of
varying width can be distorted.  Also, the shrink operation can distort the slope
of sides that are not at 90º or 45º because the vertices of such sides after the
shrink are often not on grid.  The bloat operation then magnifies the problem.
Look carefully at the layers created before you rely on them for design rules
checking.

If the M1_IN layer contains acute angles, you should add pair of
BLOAT_ANGLE rules around the BLOAT rule to prevent the acute angles from
being cut by that rule.  See page 191.

The shrink and bloat operations can also be relatively expensive in terms of
processing time due to panel processing.  If the layer you need to classify by size
contains only rectangles or simple polygons, we suggest that you look at the
BOUNDS or IS_BOX rules instead.

When the DRC is processing the result layer dangerously, the shrink rule may
process shapes somewhat differently than you would expect.  See page 135 for
an example.

See a more
complete
example of this
process on page
65.



DRC Rules Syntax: SNAP

304 DRC User Manual

SNAP Relocate vertices on resolution grid

result_layer = SNAP ( layer1, grid_resolution )

This rule is used to reposition the vertices of all polygons on layer1 so that they
lie on the grid defined by grid_resolution.   Vertices that are already on this grid
are copied to result_layer unchanged.  Off-grid vertices that this rule modifies
will not be counted as errors.   Shapes collapsed to zero width or height are
eliminated without warning.

Define grid_resolution as a positive real number of units of the ICED™ cell.

Example: B = SNAP (A, 1)

This rule will copy all
polygons from layer A to layer
B and relocate all vertices so
that all coordinates lie on an
integer grid.  When this rule is
executed on the shape on layer
A in Figure 198, the shape
shown on layer B is created.
Note that the slope of the
shape on layer A has not
been preserved.  Shapes with
sides at skewed angles will
often be distorted when their
vertices are relocated on grid.

Refer to page 79
for more details
on vertex
resolution.

A B

Figure 198: Polygon on A with off-grid
vertices and polygon on B snapped to grid.

To preserve the
slope of 45
sides, you can
use the SNAP45
rule.



DRC Rules Syntax: SNAP

DRC User Manual 305

If layer1 is not defined as an input layer, result_layer can be the same layer as
layer1.  This will replace layer1 with polygons with on-grid vertices.

Example: A = SNAP (A, .05)

In this example, layer A will be replaced with polygons with all vertices snapped
to a grid with a .05 user unit resolution.

Note On Touching Shapes

Remember that the DRC merges all touching shapes before verifying whether or
not coordinates need to be snapped to grid.  If two shapes on layer1 share an
edge on an off-grid coordinate, but the merged shape has no edges with off-grid
coordinates, the shapes will not have their coordinates snapped to grid.  See the
overview of grid resolution issues on page 79 for details.

Preventing Off-Grid Coordinates

See the CUT_RESOLUTION rule to prevent off grid coordinates from being
created by the DRC on generated layers at panel boundaries.

Also see the
SNAP45 and
OFF_GRID
rules.



DRC Rules Syntax: SNAP45

306 DRC User Manual

SNAP45 Relocate vertices on resolution grid preserving slope of 45º angles

result_layer = SNAP45 ( layer1, grid_resolution )

This rule is used to reposition the vertices of
all polygons on layer1 so that they lie on the
grid defined by grid_resolution.  Specify
grid_resolution as a positive real number of
user units of the ICED™ cell.  This rule differs
from the SNAP rule in that the slope of sides
at a 45º angle will be preserved.

When a side with an off-grid vertex is at 45º,
the lower vertex will be shifted in a manner
that preserves the 45º slope.  This may
introduce a new vertex that adds a ledge or
cuts off a corner.

Example: C =  A  AND  B
D = SNAP(C, 1)
D45 = SNAP45(C, 1)

B

A

C

Off-grid
vertex

Figure 199: Intersection
causes off-grid vertex.

Refer to page 79
for more details
on vertex
resolution.

D

C

Figure 200: SNAP rule causes
side to change slope.

D45

C

Figure 201: SNAP45 rule
preserves 45º slope by adding
ledge.



DRC Rules Syntax: SNAP45

DRC User Manual 307

When the above set of rules is run on the shapes in Figure 199, the intersection
causes the shape on layer C to have an off-grid vertex.  When the SNAP rule is
used to force the vertex onto an integer grid, the slope of one skewed side is no
longer 45º.  When the SNAP45 rule is used instead, a new vertex is added which
maintains the 45º slope by adding a small ledge to the polygon.

Vertices that are already on the new grid are copied to result_layer unchanged.
Off-grid vertices that this rule modifies will not be counted as errors. Shapes
collapsed to zero width or height are eliminated without warning.

There are some extreme cases where the SNAP45 rule is unable to snap a vertex
to the required grid and preserve the 45º slope.  When this happens, the DRC
will snap the vertex to a point on a grid_resolution/2 grid and issue a warning
message in the log file.

Note On Touching Shapes

Remember that the DRC merges all touching shapes before verifying whether or
not coordinates need to be snapped to grid.  If two shapes on layer1 share an
edge on an off-grid coordinate, but the merged shape has no edges with off-grid
coordinates, the shapes will not have their coordinates snapped to grid.  See the
overview of grid resolution issues on page 79 for details.

Preventing Off-Grid Coordinates

See the CUT_RESOLUTION rule to prevent off grid coordinates from being
created by the DRC on generated layers at panel boundaries.

Also see the
SNAP and
OFF_GRID
rules.



DRC Rules Syntax: STAMP

308 DRC User Manual

STAMP Electrically connect poor conductors

STAMP  layer1  BY  stamping_layer  MULTI = error_layer1  [ NONE = error_layer2 ]

The STAMP rule is used to form electrical connections to layers that are poor
conductors. Shapes on layer1 that touch a shape on stamping_layer will be
assigned the node number of the shape on stamping_layer. However, even when
the shape on layer1 touches other nodes on the stamping_layer, the DRC will
not assign the node number of the layer1 shape to shapes on the stamping_layer.

In other words, layer1 is treated as a non-conductive material which can be
"stamped" with a node number, but it cannot "stamp" any conductive layers.
Electrical connections on the stamping_layer do not pass through layer1.

Opens that were not found because poor conductors were used as ordinary
conductive layers by circuit recognition programs have caused chips to fail. This
class of error is easily overlooked, but easy to verify with the DRC.  In addition,
you can verify that every well in your design is connected before beginning the
circuit recognition process.

The STAMP rule can be used to verify that every shape on layer1 is electrically
connected to exactly one node. Any shapes on layer1, which touch more than
one node on the stamping_layer will be copied to error_layer1.  All shapes on
layer1 that do not connect to any nodes on stamping_layer can be copied to
error_layer2 by using the optional NONE keyword.  Shapes on both layers are
added to the error count automatically.

The DRC uses
the electrical
connections
defined by this
rule and the
CONNECT rule
to determine if
shapes are
electrically
connected when
executing some
MIN_SPACING
rules.

The Advanced
Tutorial covers
the use of the
STAMP rule.
See page 411.



DRC Rules Syntax: STAMP

DRC User Manual 309

Example: OUTPUT ERROR LAYER   112    OVER_STAMPED_WELL
STAMP  WELL  BY  PDIFF  MULTI= OVER_STAMPED_WELL

We can demonstrate the importance of
verifying well connections with Figure
202.  Let us assume that the GND wire
on the right connects to the metal GND
bus and from there to a pad on the chip.
However, the GND wire on the left does
not connect to the bus.  You meant to
connect these two wires, but a gap exists
by accident.

When the STAMP rule above is
executed on the shapes in Figure 202,
the WELL shape will be copied to the OVER_STAMPED_WELL since it will
be stamped by two different nodes on layer PDIFF.   

CONTACTS

PDIFF

M1

WELL

Figure 202: Open on GND node
that connects only through WELL
layer.

See page 116
for a more
detailed
explanation of
this example.

You must use
CONNECT
rules to form
electrical nets
from good
conductors to
verify a poor
conductor layer
with this rule.



DRC Rules Syntax: STOP_ON_MAX_COUNT

310 DRC User Manual

STOP_ON_MAX_COUNT Halt DRC on maximum number of errors

STOP_ON_MAX_COUNT

By default, the DRC will warn you by posting a message on the screen when a
maximum error count is reached. The default maximum error count is 1000.  If
you prefer that the DRC halt execution rather than just post a warning message,
add the STOP_ON_MAX_COUNT rule to the rule set.

Before the DRC completes, it will close files properly allowing you to use the
log and command files to troubleshoot the errors already found.  The log file will
contain a warning similar to the following near the end before the error summary
information.:

**WARNING*****WARNING*****WARNING*****WARNING
**Error count=1000 any further errors not reported. **

To understand why the DRC warns you when a maximum error count is reached,
imagine a chip with 10,000 copies of a cell.  If a small change to this cell causes
a single error, there will be at least 10,000 error marks created for what you
would consider a single error.  Other error marks will be easily overlooked.   The
error would be caught just as well if the DRC stopped after the first 1000 errors,
and the run time and output files would be much smaller.  It is much more
efficient to find and fix the single error in a shorter run, and then other errors
will be easily seen in your next run.

Use the
MAX_COUNT
rule to change
the maximum
error count.



DRC Rules Syntax: TOUCHING

DRC User Manual 311

TOUCHING Find touching shapes on different layers

result_layer = layer1 [NOT]17 TOUCHING [n1 [:n2] ]  layer2  [NOT = result_layer2]17

This rule is used to classify polygons on layer1 based on whether or not they
touch polygons on layer2 along a finite line or area.  Polygons touching only at a
point, as shown in Figure 203, are not considered to be touching.

Example: C = A  TOUCHING  B

In this example, layer C will contain all polygons on A which touch at least one
polygon on layer B

Only one optional NOT keyword can be used in the TOUCHING rule.

Example: D = A  NOT  TOUCHING  B

In this case, layer D will contain all polygons on layer A which do not touch any
polygons on layer B.
                                                     
17 Only one optional NOT keyword is allowed in a single rule.

See also the
OVERLAPPING
rule.

Overlapping
and Touching

Overlapping
and Touching

Touching only Not Overlapping
or Touching

Figure 203: Differences between the OVERLAPPING and
TOUCHING rules.

For shapes on
result_layer to
be considered
errors, add the
ERROR
keyword to the
OUTPUT
LAYER rule
that defines it.



DRC Rules Syntax: TOUCHING

312 DRC User Manual

Example: C = A  TOUCHING  B  NOT = D

Layer C will contain all polygons on layer A that touch at least one polygon on
layer B.  Layer D will contain all remaining shapes on layer A, i.e. all shapes not
touching layer B.

This rule can be very useful to find shapes that are not completely covered by
another layer.  For example, if all shapes on layer A should be completely
covered by shapes on layer B you may be tempted to write a simple Boolean rule
to test for violations as in the following rule.

Example: ERR = A AND NOT B   

However, the rule above will not mark problems
like the one shown in Figure 204.  If shapes on
layer A must be completely enclosed by layer
B, use a touching rule similar the following
example to find violations.

Example: NOT_B = NOT B
ERR = A TOUCHING NOT B

The optional n1 and n2 parameters can be used to specify how many polygons on
layer2 the polygons on layer1 must touch.  Use n1 alone to specify an exact
number.  Use both n1 and n2 to specify a range.

Example: C = A  TOUCHING  2  B

In this case, layer C will contain all polygons on layer A that touch exactly two
polygons on layer B.

Example: C = A  TOUCHING  2:4  B

When you use this rule, layer C will contain all polygons on layer A which touch
exactly two, three, or four polygons on layer B.

Figure 204: Incomplete
enclosure.



DRC Rules Syntax: WARN_ACUTE

DRC User Manual 313

WARN_ACUTE Assign layer number for acute angle warning marks

WARN_ACUTE = layer_number

The DRC can create shapes with acute angles when sides at an angle cross a
panel boundary, or when shapes with holes or more than 199 vertices are output.
Acute angles are frequently a problem for mask processing software.  Whenever
you create mask layers with the DRC, you should identify possible problems
with specific shapes that should be fixed in the layout editor.  See page 76.

Since this is so important, the DRC now automatically identifies acute angles
(angles sharper than 90º) on all polygon output layers, marks the angles with
error wires on a special output layer (layer number 99 by default), and lists them
in the log file.  Both acute angle protrusions and acute angle notches will be
marked.

A warning will be added to the log file for each acute angle, however they will
not be added to the main error count.  The summary in the console messages and
log file near the main error count will mention the acute angles.

If you want to change the layer number used to mark acute angles, add this rule
to your rule set.  The acute angles will be marked with wire shapes on
layer_number in the main DRC command file.

Example: WARN_ACUTE=101

When this rule is present anywhere in your rule set, at the end of the DRC run
sides of shapes on all output layers that meet at an acute angle will be marked
with wires on layer number 101 rather than the default layer number 99.
Warnings will be printed in the log file for each acute angle similar to:

An acute angle was formed on output at (55, 15)

See the
MIN_ANGLE
and
MAX_ANGLE
rules to find
acute angles on
a specific layer.

If you want to
suppress the
identification of
acute angles
entirely, use the
NO_WARN-
_ACUTE rule
instead of this
rule.



DRC Rules Syntax: WARN_ACUTE

314 DRC User Manual

If you want to suppress the creation of the wire shapes, but still want to count the
acute angles and print the log file warnings, use this rule with a layer number of
0.

Example: WARN_ACUTE=0

Whenever you use layer number 0 as an output layer in a DRC rule, no output
shapes are actually created in the command file.  The use of layer 0 in this
WARN_ACUTE rule means that a warning will still be printed in the log file for
each acute angle, but no wires will be created to mark each angle in the
command file.

If you want to suppress the identification of acute angles entirely, use the
NO_WARN_ACUTE rule instead of this rule.

A non-zero layer_number defined with this rule is automatically added to the list
of output layers.   You do not need to define it with an OUTPUT LAYER rule.

See examples of
fixing acute
angles on pages
77 and 423.



DRC Rules Syntax: WIRE_WIDTH

DRC User Manual 315

WIRE_WIDTH Set error wire width for all error layers

WIRE_WIDTH = error_wire_width

Use this rule to set the width used for all error wires created on all error layers.

When this rule is not used, or if you
use the rule WIRE_WIDTH=0, when
the DRC command file creates the
error wires in the cell, they will be
created using the default width of each
error layer.  These default widths are
set in the ICED™ cell using the layout
editor’s LAYER command.

If you do not customize the width of
error layers in the cell before
executing the DRC command file, then
the error wires can be difficult to see
because they are often as wide as the
shapes whose edges they are supposed
to mark.

When you use this rule to set a non-
zero width, all error wires are created
with the specified width.  Specify a
width of around 10% to 20% of the
average width of shapes in your layout.
This will clearly mark edges of shapes.

Example: WIRE_WIDTH=.2

Adding this rule to the rule set will create all error wires with a width of .2.

Figure 205: Confusing error wires of
width=2.

The
WIRE_WIDTH
option on the
DRC command
line will
override any
value set with
this option.  See
page 355.

Figure 206: More distinct error
wires of width=0.2.



DRC Rules Syntax: XOR

316 DRC User Manual

XOR Boolean exclusive OR

result_layer = [NOT]  layer1  XOR  [NOT]  layer2

XOR stands for "exclusive or".  Use the XOR rule to create the union of the two
layers and then subtract their intersection.

Example: C = A  XOR  B

The optional NOT keywords work in exactly the same manner as they do in the
AND rule.

Figure 207: Polygons on layers
A and B

Figure 208: C = A XOR B



Running the DRC

DRC User Manual 317

Running the DRC



Running the DRC

318 DRC User Manual

Running the DRC involves several steps.

Write the DRC rules that define layer manipulation and design
rule verification in any ASCII text editor.

Compile the rule set with the DRC rules compiler, D3RUL-
NT.EXE18.

Create the binary layout data file for the DRC from your ICED™
cell by using the DRC command in the ICED™ layout editor.

Execute DRC3-NT.EXE19 using the compiled rules file and the
binary layout data file.

Look at the results in the ICED™ layout editor by importing the
shapes in the command file created by DRC3-NT.EXE.

The DRC command for the ICED™ layout editor is completely described in the
layout editor reference manual.  To export your entire design, you can simply
type "DRC" on the command line.  The binary layout data file will be created as
"cell_name.POK".

We have already covered how to write the rule set.  Next, we will describe how
to run the rules compiler and finally how to run the DRC program.  Tips on how
to execute the command file to import the results are covered last.

                                                     
18 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versions is named D3RU-NTX.EXE.
19 The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.

See page 12 for
a graphical
representation
of these steps.

A few hints on
using the DRC
command in the
layout editor are
provided on
page 16.



Running the DRC: Rules Compilation

DRC User Manual 319

DRC Rules Compilation

Rules Compiler Command Line Syntax

[prog_path\]D3RUL-NT20 [rule_path\]rule_file_name  ...
... [ BB_FILE=output_file_spec ] ...
... [ HOG=mem_megabytes ] ...
... [ USE=mem_kilobytes ] ...
... [PAUSE=(ALWAYS | CRASH | NEVER)] ...
... [ SCRATCH_DIR=scratch_path1 [; ... scratch_path5 ] ]

The rule_file_name parameter is the only required parameter on the rules
compiler command line.  It is the name of the ASCII file containing your rule set.
A file extension of  ".RUL" will be added to the file name if you do not supply
the file extension in rule_file_name.

The DRC installation defaults to placing all executable files in the same
directory as the ICED.EXE file.  This directory is added to the PATH
environment variable in the console window opened by the ICED icon on your
desktop.  When you use this console window to execute the DRC programs, you
do not need to supply prog_path on the command line.

                                                     
20 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versions is named  D3RU-NTX.EXE.

Type the
compiler
command line
in the console
window opened
by the ICED
icon on your
desktop.



Running the DRC: Rules Compilation

320 DRC User Manual

Example: CD RULEDIR
D3RUL-NT  MYRULES

The CD DOS command changes the current directory.  The next command line
will execute D3RUL-NT.EXE on the file MYRULES.RUL.  Since no rule_path
is supplied, this rules file must exist in the current directory, RULESDIR.  The
executable file D3RUL-NT.EXE must be in a directory defined in the DOS
environment variable PATH.  This search path is initialized correctly for you by
the ICED icon.

By default, the compiler will create the compiled rule file with the same name as
the input rule set except that the file extension will be ".BB".  By default, this
file will be created in the same directory as the input rule file.  In the example
above, the compiled rules file will have the name MYRULES.BB.  It will be
created in the current directory.

Output Redirection

You can use the BB_FILE=output_file_spec option to specify a different name
and/or directory location for the compiled rules file.  If you specify a new
directory location, the directory must already exist.

If output_file_spec ends in a ‘\’, then the rules compiler assumes that you are
specifying only a directory location.  The rules file will use the default name as
described above, but it will be stored in the directory specified.

Example: D3RUL-NT  MYRULES.RUL  BB_FILE=\XDIR\

The compiler command line above will compile the file MYRULES.RUL in the
current directory and store MYRULES.BB in the XDIR directory at the root of
the current drive.  The MYRULES.RLO file (the compiler log file) will remain
in the same directory as the source rules file MYRULES.RUL.

To see a list of
the current DOS
environment
variables, use
the DOS
command SET.



Running the DRC: Rules Compilation

DRC User Manual 321

Example: D3RUL-NT  MYRULES.RUL  BB_FILE=SUBDIR\

The compiler command line above will create MYRULES.BB in the SUBDIR
subdirectory of the current directory.

Example: D3RUL-NT  MYRULES.RUL  BB_FILE=E:\XDIR\NEWNAME

The compiler command line above will store the compiled rules in the file
NEWNAME.BB in the E:\XDIR directory.

Example: D3RUL-NT  MYRULES.RUL  BB_FILE= NEWNAME

The compiler command line above will store the compiled rules in the file
NEWNAME.BB in the current directory.

Memory Options

The optional [ USE=mem_kilobytes ] or [ HOG=mem_megabytes ] parameter is
used to restrict the amount of memory the rules compiler will use.  Use only one
or the other since they are mutually exclusive.  When neither keyword is used in
the command line, the rules compiler will use 10 Megabytes (approximately
10,000 Kilobytes) of memory. The rules compiler does not usually require a
larger amount of memory, so you can usually avoid the use of either keyword.
(Either keyword can be used on the DRC program command line, where they are
more useful.)

If you notice a long delay when you execute the rules compiler, the problem may
be that the rules compiler is initializing much more memory than it needs.  Try
using USE=2000 to prevent the compiler from initializing too much memory on
your system.

You can create
a DOS batch
file containing
the rules
compiler
command line
so that you do
not need to type
it each time.
See page 359.



Running the DRC: Rules Compilation

322 DRC User Manual

Example: D3RUL-NT  SUBDIR\MYRULES.RUL  USE=2000

This compiler command line will limit the program to approximately 2
Megabytes of memory.  If you have a short rule set, this will be plenty of
memory.  This rule file specification means that the compiler will use the
MYRULES.RUL file in the SUBDIR subdirectory of the current directory.  The
compiled rules file, MYRULES.BB, will be created in this directory as well as
the compiler log file, MYRULES.RLO.

Batch Console Window Control

The following option is useful only when executing the compiler from a batch
file.  When you execute the compiler from a batch file without opening a console
window explicitly, the compiler executes in a temporary console window.  In
this case, the console window may close automatically without giving the user
time to see the final messages posted as the compiler terminates.  Once the
console window is closed, the console messages are gone forever.  If the DRC
crashes, it is very important to review these console messages to avoid repeating
a wasted run.

Some users create a batch file with the DOS PAUSE command after the
compiler command line to ensure that the console messages remain on the screen
until they can be viewed.  With this version of the DRC, the extra PAUSE
command can be omitted.  If you prefer to hold the window open until the
<Return> key is pressed, simply add a PAUSE option to the compiler command
line.

If your
operating
system is pre-
parsing the
command line
and replacing
the '=' with a
blank, use '#'
instead.  See
page 333.

The console
window will not
close
automatically
when you type
the command
line in an open
console
window.



Running the DRC: Rules Compilation

DRC User Manual 323

PAUSE=ALWAYS This will always pause after termination until the
<Return> key is pressed.

PAUSE=CRASH This option pauses the compiler after termination only
when the program crashes.   If the program terminates
normally, no PAUSE is executed and no keystroke is
required to close the console window.

PAUSE=NEVER (This is the default if no PAUSE option is used on the
command line.) The window closes without an extra
keystroke.  If the console window will not close
automatically when the DRC terminates, this is the
best option.

Scratch Directories

If the SCRATCH_DIR keyword is not used, a single scratch file,
$D3RVIRT.000, will be created in the current directory.  If the compiler
completes successfully, this file will be deleted.

There are two cases where it is important to use the SCRATCH_DIR option to
set the scratch directory explicitly.

If you running the DRC rules compiler on a network, several users can
use the program at the same time.  If they share a scratch directory, they
will corrupt each other's scratch files.  When on a network, each user
should have his\her own scratch directory.

If the current drive or partition has limited space, you should specify at
least one scratch directory on a drive with plenty of free space.

The scratch file for the rules compiler is usually very small, so the second reason
above is rarely a concern.  However, the scratch file for the DRC program can
grow very large.  The SCRATCH_DIR command line option is covered in more
detail in the discussion of the DRC command line options.  See page 341.



Running the DRC: Rules Compilation

324 DRC User Manual

Example: D3RUL-NT D:\ICED\VERIF.RUL  SCR=E:\DRCTMP

This command line will compile the rules in the file D:\ICED\VERIF.RUL.
Note that the SCRATCH_DIR keyword can be abbreviated to SCR.  The
DRCTMP directory on the E: drive will be used to store the temporary scratch
file.  This directory must already exist or the rules compiler will fail with an
error message.

Terminating the Rules Compiler

There are two ways to force the rules compiler to terminate before it completes
normally.

<Esc> Pressing this key will halt the rules compiler after it
completes the current operation.  The compiler will then
close all open files and delete the scratch file(s).  This may
take a few moments, so you should be patient and wait for
the compiler to complete these tasks.

<Ctrl><C> Pressing both of these keys simultaneously will bring the
rules compiler to an immediate halt.  Files will not be closed
properly and the scratch file(s) will not be deleted.

If you use <Ctrl><C> to terminate the compiler, or if the compiler crashes, you
should delete the scratch file(s) yourself.  The scratch file is created with the
name $D3RVIRT.000.  You may also want to run the DOS utility SCANDISK
(or equivalent programs available from other vendors) to find lost chains on the
disk which may be left behind because files were not closed properly.



Running the DRC: Rules Compilation

DRC User Manual 325

Rules Compiler Output Files

By default, the rules compiler will create the compiled rules file with the name
rule_file_name.BB.  If a file with the name rule_file_name.BB already exists, it
will be overwritten.  This file will be created by default in the same directory as
the source rules file.  (The BB_FILE option can be used to change the name
and/or location of the compiled rules file.)  This compiled rules file will be used
by the DRC program.

You should leave the source rules file in its original location after you have
compiled it.  The location and time/date stamp of the source rules file is stored in
the compiled rules file.  The DRC will search for the source rules file to insure
that the current source rules file has the same time/date stamp as the one used to
create the compiled rules file.  This prevents a wasted DRC run when you edit
the rules file but then forget to compile it.  If the DRC cannot locate the source
rules file, it will issue a warning prompt and you must reply to proceed.

The rules compiler will create a log file with the name rule_file_name.RLO.
This file will always be created in the same directory as the source rules file.  If a
file with the name rule_file_name.RLO already exists, it will be renamed to
rule_file_name.RL1.

The rules compiler log file begins with a block of comments that include the
version number of the compiler.  An echo of the source rules file comes next.
Any warnings or errors listed in the console messages about the rule set will be
listed here as well.

If the compiler finds a syntax error as it parses the source rules file, it will stop
reading the file and print an error message after the line with the error.  The
parameter or keyword with the problem will be indicated with carats ("< >").
Only one error will be found per compilation.

Warnings may be scattered through the log.  All warnings will be prefixed with
the string "**WARNING".  Some of the warnings you may see are listed below.

To suppress the
warning prompt
when the source
rules file is not
present, add the
NO_RUL
keyword to the
DRC command
line.  See page
349.

The
rule_file_name.
TAG file
generated by the
rules compiler
is intended for
use by the
interactive DRC
features of
ICED™.



Running the DRC: Rules Compilation

326 DRC User Manual

Figure 209: Two of the DRC rules compiler warnings

If the source rules file contains no syntax errors, the log file will continue with a
summary of the layers used in the file.  The DRC layer name, ICED™ layer
number, the rules file line number that defined the layer, and the layer type
(INPUT, OUTPUT, or SCRATCH) will be listed for each layer.

Layers that are defined, but are not used in the rule set, will not be listed in this
list of layers.  They are removed automatically from the rule set by the compiler.

Next, the rules log will list all constants created by the CONST rule.  (See page
203.)

Message Cause

Scratch layer xxx,
set on line n, is
never used.  Action
will be deleted: ...

This warning occurs when you have included a rule that creates shapes
on a scratch layer, but no succeeding rule uses that layer.  The
processing to create the scratch layer is unnecessary, so the rules
compiler deletes the rule entirely.  This situation may occur when you
modify a rule set by removing a rule that used the scratch layer.  The
DRC will then optimize your rule set by removing the rules that create
the layer.  In this case you can choose to ignore the warnings, or go back
and comment out the indicated rule(s).

However, if you wanted to look at the shapes on that scratch layer, you
should change the line that defined the layer to an OUTPUT LAYER
rule instead of a SCRATCH LAYER rule.

Layer number n is
also an input layer.

When this message is issued, you have used the same layer number as
both an input layer and an output layer.  If you add shapes on the output
layer to your design cell you will be modifying a design layer.

You can define the layer with a MODIFY LAYER rule to avoid the
warning.

Unused input
layers are still
checked for bad
polygons unless
the
NO_CHECK-
_INPUT rule is
used.



Running the DRC: Rules Compilation

DRC User Manual 327

The log will then list the rules exactly as they will be executed by the DRC.  The
operation number (or action number) for each rule is listed first.  The rules are
grouped together in passes.  Each pass requires each shape in the DRC database
to be interrogated by the DRC.  The more passes, the longer the DRC run.

The order in which rules are executed may not be the order in which the rules are
written.  The rules compiler may change the order to minimize the number of
DRC passes.  No change made by the compiler should affect how the layers are
processed.

Each DRC layer name which is an input or output layer will be followed by the
ICED™ layer number enclosed in square brackets ("[ ]").  The line number in the
source rules file is indicated on the line after the rule enclosed in parentheses
("( )").  If the compiler has generated the rule, the word "Generated" will be used
instead of the line number.   Some additional information may be provided with
the rule, such as the bloat angle in effect for BLOAT or SHRINK rules.

If you have defined electrical connections through the use of CONNECT rules,
some details on these electrical connections are listed next.  The number of
groups formed from the electrical connections, and the layers in each group, will
be listed.  If your log indicates more than one group, you may have omitted a
CONNECT rule from your rule set.   See page 110 for more details.

Layers in the rule set that are not electrically connected to any other layer are
listed under the heading "Unconnected layers".  This list may contain
intermediate layers, or layers that are never used.  However, you may want to
browse this list to insure that none of the layers that you assume are electrically
connected are included in the list.

The final line in the log file from a successful compilation will always be the
word "Done".

The
LIST_RULES
option on the
DRC command
line will add a
listing of rules
to the DRC log
file.

One example of
a rule generated
by the compiler,
is a CONNECT
rule added to
insure that
shapes that
cross panel
boundaries will
be handled
correctly.



Running the DRC: Rules Compilation

328 DRC User Manual



Running the DRC: Command Line Syntax

DRC User Manual 329

Running the DRC

DRC Command Line Syntax

[prog_path\]DRC3-NT21 [rule_path\]rule_file_name ...
... [layout_path\]layout_file_name ...
... [output_path\]output_file_base_name ...
... [SECOND_CELL=layout_file_name2] …

... [@opt_file] ...

... [QUICK_PASS] ...

... [ALLOW_QUICK] ...

... [SLOW] ...

... [QUICK_SPACING] ...

... [USE=mem_kilobytes] ...

... [HOG=mem_megabytes] ...

... [NO_VIRTUAL_MEMORY] ...

... [MAIN_MEMORY=main/total_ratio] ...

... [MAIN_USE=main_kilobytes] ...

... [MAIN_HOG=main_megabytes] ...

... [SCRATCH_DIR=scratch_path1 [; ... scratch_path5 ]] ...

... [FILESIZE=scratch_megabytes] ...

... [SHORTRUN] ...

... [LONGCASE] ...

... [DISPLAY_OPERATIONS=min_refresh_seconds] ...

... [NO_FLASH_PANELS=flash_limit] ...

... [PAUSE=(ALWAYS | CRASH | NEVER)] ...

(continued on next page)

                                                     
21 DRC3-NT.EXE is the name used for released Windows versions of the program.  Other
versions use different names.  See page 331.

File Parameters
Page 334

Input Redirection
Page 334

Algorithm
Options
Page 337

Memory Options
Page 339

Screen Display
Options
Page 343



Running the DRC: Command Line Syntax

330 DRC User Manual

... [LAYERS=(layer_number1  […,layer_numbern] ) ] ...

... [DO=(rule_spec1 […,rule_specn]  ) ] ...

... [SHOW_BORDER] ...

... [BORDER=border_dimension ] ...

... [NO_RUL] ...

... [LIST_RULES] ...

... [SHOW_SCALES] ...

... [LEFT=left_x_coordinate] ...

... [RIGHT = right_x_coordinate] ...

... [TOP=top_y_coordinate] ...

... [BOTTOM=bottom_y_coordinate] ...

... [FLATTEN] ...

... [NO_FLATTEN] ...

... [CFLATTEN=component_count] ...

... [NFLATTEN=use_count] ...

... [HIERARCHICAL="suffix_string"] ...

... [WIRE_WIDTH=error_wire_width ] ...

... [START_CMD="st_cmdstring"] ...

... [END_CMD="end_cmdstring"] ...

... [OBSOLETE] ...

... [MACROS=NONE] ...

... [PANEL_X=panel_x_dimension] ...

... [PANEL_Y=panel_y_dimension] ...

... [PANEL_A= panel_area] ...

... [PANEL_X_BY_Y=panel_ratio] ...

The DRC command line is typed at the DOS prompt, or in a batch file, outside of
the ICED™ layout editor.   The first two input files, rule_file_name and
layout_file_name, must already be prepared before you execute the program.  All
three required file parameters and each optional parameter are described in detail
on the following pages.

The command
line used to
execute the
program is
reported in the
DRC log file.

Rules File and
Log File Options
Page 346

Design Area
Options
Page 351

Cell Hierarchy
Options
Page 352

Command File
Options
Page 356

Panel Size
Options
Page 358



Running the DRC: Command Line Syntax

DRC User Manual 331

If the directory where DRC3-NT.EXE is installed is included in the DOS
environment variable PATH, or if this directory is the current directory, the
prog_path parameter is not required. (The console window opened by the ICED
icon on your desktop adds the main installation directory to PATH
automatically.)

Name of the Program

The name of the program is different for different versions of the DRC.  The
different versions have different file names, so you can keep more than one
version on your machine without risking overwriting what you are currently
using.

DRC3-NT.EXE is the name of the released Windows executable file.  In this
manual, all examples use this version name in the command line.  (DRC3-
NT.EXE is shortened to DRC3-NT in the example command lines since the
operating system will translate the name of the executable file to DRC3-
NT.EXE.)

If you use the DOS version of the program, or a beta version, replace the string
“DRC3-NT” in the example command lines with the appropriate entry from the
“Command Line String” column in the table below.

Version Executable file Command Line String
DOS released versions DRC3.EXE. DRC3

Windows released versions DRC3-NT.EXE. DRC3-NT

Windows beta versions DRC3-NTX.EXE. DRC3-NTX

Beta test versions of the DRC are frequently available on the IC Editors, Inc.
web site.  (www.iceditors.com).  You can download a beta test version to your
Q:\ICED directory to test new features without risking overwriting the version
you are currently using in production. New features are tested in beta versions
before they are reflected in the released versions.  Remember that while a beta
version may have more features, we call it beta testing for a reason.

Type the DRC
command line
in the console
window opened
by the ICED
icon on your
desktop, or use
a batch file.



Running the DRC: Command Line Syntax

332 DRC User Manual

You must use the equivalent version of the rules compiler to recompile the rules
file before using a new version of the DRC.

Terminating the DRC

There are two ways to force the DRC to terminate before it completes normally.
(These are the same methods used with the DRC rules compiler.)

<Esc> Pressing this key will halt the DRC after it completes the
current operation.  The DRC will then close all open files
and delete the scratch file(s).  This may take a few moments,
so you should be patient and wait for the DRC to complete
these tasks.

<Ctrl><C> Pressing both of these keys simultaneously will bring the
DRC to an immediate halt.  Files will not be closed properly
and the scratch file(s) will not be deleted.

If you use <Ctrl><C> to terminate the DRC, or if the DRC crashes, you should
delete the scratch file(s) yourself.  The scratch file(s) are created with the name
$D3VIRT.000.  You may also want to run the DOS utility SCANDISK (or
equivalent programs available from other vendors) to find lost chains on the disk
left behind because files were not closed properly.

Simultaneous DRC Runs

When using the DRC on networks or multitasking operating systems, do not
launch multiple runs of the DRC program from the same directory.  Scratch files
or other temporary files in the current directory may collide.  Simultaneous runs
of the DRC should have no problems as long as they are started from different
directories and use different scratch directories.  (See the SCRATCH_DIR
option on page 341.)

Read more
about the
scratch files on
page 341.



Running the DRC: Command Line Syntax

DRC User Manual 333

Command Line Options

The parameters on the DRC command line are read from left to right.  If two
conflicting parameters are encountered, the one on the right will be used without
warning.  Use blanks or commas to separate command line parameters.  The
underscores, '_', used in several of the optional keywords are included for
readability only.  You can type the keywords with or without the underscores.

The keywords can be abbreviated as long as you provide enough characters to
make the keyword unambiguous.  To abbreviate a keyword, drop characters from
the end. Do not skip letters in the middle of the keyword.  For example,
DISPLAY_OPERATIONS can be abbreviated as DISP, but DISP_OP will cause
a syntax error.

Using '#' in Place of '=' in Command Line Options

There are times when DRC command line options are parsed by the operating
system in a way that replaces all '=' with a blank space.  This will result in syntax
errors by the time the DRC gets the command line.  If you see syntax errors
caused by this type of "pre-parsing", use the '#' character instead of '=' when
typing the command line options.  The '#' is never replaced by any operating
system command line parser, and the DRC will translate it to an '=' when it
parses the command line.

Example: DRC3-NT MYRULES MYPOK DRCOUT USE#2000



Running the DRC: Command Line Syntax

334 DRC User Manual

File Parameters

The rule_file_name, layout_file_name, and output_file_base_name parameters
are the only required parameters on the DRC command line.  (In some cases the
QUICK_PASS or SLOW option is required.  More on this later.)

The [rule_path\]rule_file_name parameter supplies the name of the compiled
rules file.  This file must already have been created by the DRC rules compiler
described beginning on page 319.  If no file extension is supplied in
rule_file_name, a file extension of .BB will be added to the file name before the
DRC searches for the file.

If you specify rule_path\ with the name of the rules file, the DRC will search for
the rules file only in that directory.  When rule_path\ is not specified, the
following directory paths will be searched in the order shown:

1) the current directory,
2) the directories in the environment variable DRC_PATH.

The [layout_path\]layout_file_name parameter must be the name of the binary
layout file created by the DRC command in the ICED™ layout editor.  A file
extension of .POK will be added to the file name when you do not supply it on
the command line.  When you do not specify layout_path, the layout file must be
in the current directory.  The DRC will not search for layout files in directories
set with the DRC_PATH environment variable.

When you change the layout, ALWAYS recreate the layout
data file with the DRC command in the layout editor
BEFORE executing the DRC program.  If you forget to
recreate the file, the DRC will use the old layout data
without warning!

The [output_path\]output_file_base_name parameter supplies the base file name
for most output files.  The file extensions of the output files will vary.   The
extensions and file contents are described beginning on page 361.

Environment
variables are set
at the console
prompt or in a
batch file (e.g.
AUTOEXEC-
.BAT) with the
DOS command
SET.

See an example
of creating a
layout data file
on page 16.



Running the DRC: Command Line Syntax

DRC User Manual 335

Example: DRC3-NT  MYRULES  XCHIP  XCHIPOUT

This command line will run the DRC with the input files MYRULES.BB and
XCHIP.POK.  The output command file and the log file will begin with the
string "XCHIPOUT" in the current directory.

 [SECOND_CELL=layout_file_name2]

When you use this optional parameter, the DRC can compare two layouts.  The
layer numbers in layout_file_name2 will be shifted by 1000 so that the rule set
can distinguish between layers in the first layout file and the second.

Example: DRC3-NT  CMPM1  XCHIP  COMP  SECONDCELL=BACKUP\XCHIP

For this example, let us assume that you have backed up the layout for the
previous version of your design in the BACKUP subdirectory of the current
directory.  Now you want to compare the M1 layer in the two versions.  The
layer M1 in your design is layer number 1.  The rule set for this comparison,
CMPM1.RUL, would be similar to the one below.

ALL_SAFE
INPUT LAYER 1 M1;   1001 M1_OLD;
OUTPUT LAYER 50 NOT_THE_SAME

NOT_THE_SAME = M1 XOR M1_OLD

When this rule set is compiled and used by the DRC with the command line
given above, it will compare layer 1 in the two layouts and create all differences
in the two layouts on layer 50 in the command file COMP.CMD.

The
HIERARCHICAL
command line
option is
incompatible
with this option.



Running the DRC: Command Line Syntax

336 DRC User Manual

Input Redirection

 [@opt_file]

The DRC has many optional parameters and the command line can get very
lengthy.  Since DOS commands are limited to 128 characters, you may not be
able to add all of the options you need on the command line.  To solve this
problem, or just to save you from repetitive typing every time you run the DRC,
you can use the @opt_file parameter to refer to a file which contains command
line options, rather than typing all options at the DOS prompt.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  @DRCOPT.TXT  SLOW

This DRC command line will cause the
DRC to read the command line parameters
in the file DRCOPT.TXT and execute
them as though they were typed at the
command line.  Note that you can add
other command line options after the
@opt_file parameter.  Options typed last
on the command line override options in
the options file.

The options file can be created with any ASCII text editor.  Any end-of-line
character is interpreted as a blank space.  So you can type each command line
option on it's own line rather than typing all options on a single line.

Comments in the options file are acceptable and will be ignored by the DRC.  A
comment is created as an exclamation mark ('!') followed by text.  All text from
the exclamation mark to the end of the line is ignored.

You can use another @opt_file command line option in an option file.  Option
files may be nested up to ten levels deep.

Another way to
avoid repetitive
typing of the
DRC command
line is to use a
batch file to
execute the
program.  See
page 359.

!DRC options for xchip
LEFT=348.8
RIGHT=1098.3
TOP=736.0
BOTTOM=-390.0
QUICK_PASS

Figure 210:
DRCOPT.TXT



Running the DRC: Command Line Syntax

DRC User Manual 337

Algorithm Options

 [QUICK_PASS] or [SLOW]

The QUICK_PASS and SLOW keywords are not truly optional.  Unless the rule
set executes in a single pass, one of these options must be chosen.  They are
mutually exclusive options.

If you use the HIERARCHICAL keyword in the command line (used to force the
DRC to produce hierarchical output), the SLOW option is automatically
invoked.   If the rule set is multi-pass, and the HIERARCHICAL keyword is not
used, you must specify one of these keywords on the command line.  You will
receive an immediate warning from the DRC if the algorithm choice has not
been made.

The QUICK_PASS option will execute your rule set much more quickly at the
expense of ignoring some of the more time-consuming operations.  This option
is intended to allow you to get DRC results faster on repeat runs when you have
made minimal changes to the layout since verifying the design with the SLOW
option on the DRC command line.

The QUICK_PASS algorithm will execute your rule set differently in the
following ways:

Electrical connection rules and the /CONN or /~CONN options in
MIN_SPACING rules are ignored.  The CONNECT and STAMP rules
in the rule set are not executed.

All BRIDGE, ISLANDS, MAX_SPACING, TOUCHING, and OVER-
LAPPING rules are skipped.  Rules using layers generated by these rules
are also skipped.

Shapes crossing panel borders are processed differently and may be mis-
interpreted in rare cases.  (See page 129 for a more complete
explanation.)

The number of
passes for the
rule set is
shown in the
rules compiler
log file.  See
page 327.

The
QUICK_PASS
option my result
in a warning
prompt.  To
avoid the
prompt, see the
ALLOW_QUICK
option covered
on the next page.



Running the DRC: Command Line Syntax

338 DRC User Manual

 [ALLOW_QUICK]

When the QUICK_PASS option is used, some rules may be skipped.  When
rules will be skipped, by default the user is warned before execution with a
warning prompt.  The user will need to respond by typing a <Y> to proceed.

If you want to avoid the warning prompt and the user interaction at run time, add
ALLOW_QUICK to the command line or add the ALLOW_QUICK rule to the
rule set.  Either method results in the suppression of the warning prompt.

[QUICK_SPACING]

The DRC has two algorithms for executing MIN_SPACING rules.  This option
is provided to force the DRC to use the quicker algorithm.  The DRC will
automatically use this algorithm if you are verifying the entire cell and your rule
set does not contain MIN_SPACING rules using the /LENGTH keyword to force
the DRC to discard errors shorter than a minimum length.

If you have used the design area options (LEFT=left_x_coordinate, etc.) on the
DRC program command line, or if your rule set contains MIN_SPACING rules
that use the /LENGTH option, adding the QUICK_SPACING keyword to the
command line may cause errors to be missed.  Do not use the
QUICK_SPACING keyword on the final tests of your design.

See also the
ALLOW_QUICK
rule on page 182.

See page 100
for more details
on the effects of
this option.



Running the DRC: Command Line Syntax

DRC User Manual 339

Memory Options

 [USE=mem_kilobytes] or [HOG=mem_megabytes]

You can use one of these parameters to define  the maximum amount of memory
the DRC is allowed to use.  They are intended primarily for use on multitasking
operating systems like Microsoft Windows.   If you are running the DRC on a
computer without a multitasking operating system, it is best to use the default
memory parameters by not adding either option to the command line.

When these parameters are not used, the DRC will allocate all available physical
memory.

The USE and HOG options perform exactly the same function.  The only
difference is that the USE option specifies the amount of memory in Kilobytes,
while HOG specifies the number in Megabytes.  Use whichever option is more
convenient.

If you see a long delay before the first DRC pass is executed, even for small
designs, the DRC may be initializing much more memory than it needs.  You can
use a command line similar to the following to limit the amount of memory the
DRC will initialize.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  USE=20000
DRC3-NT  MYRULES   XCHIP   XCHIPOUT  HOG=20

Either equivalent DRC command line will limit the DRC to around 20,000
Kilobytes (or about 20 Megabytes) of memory.  This should be sufficient for
small chips.  If you have plenty of memory on your machine, and the other
system demands are light, higher numbers for mem_kilobytes will allow the DRC
to run faster.

You can set USE or HOG to a number higher than the amount of physical
memory on your system.  However, this means that the DRC will use your
system's swap file for main memory and this may slow the DRC considerably.

The default
memory
management
refined with
these options is
incompatible
with QEMM.
See the
NO_VIRTUAL-
_MEMORY
option if you
use QEMM.

If the DRC is
failing to run to
completion with
the memory
available, try
smaller panels.
See page 118.



Running the DRC: Command Line Syntax

340 DRC User Manual

 [NO_VIRTUAL_MEMORY]

This command line option reverts the program to the older memory management
method used in previous versions of the DRC.

The only situation we know of that requires this option is if you are using the
QEMM memory manager in the Windows operating system.  If you discover
another situation that requires this option, please contact IC Editors.

[MAIN_MEMORY= main/total_ratio]
[MAIN_USE= main_kilobytes]
[MAIN_HOG= main_megabytes]

The DRC divides the total memory available to it into two portions: main
memory (used for computations) and data storage (easier to swap to disk).  By
default, the DRC will divide the memory equally up to a limit of 128 Megabytes
of main memory.  (In other words, if you have 256 Megabytes or less available,
half will be used for main memory, half will be used for data.  If you have more
than 256 Megabytes available, 128 Megabytes will be used for main memory,
and the remainder will be used for data.)

If you want to change the division between main memory and data memory, you
can use one of the three options below:  (If you provide conflicting options, the
least amount of main memory indicated will be allocated.)

MAIN_MEMORY Specify ratio of main memory to total memory.
MAIN_USE Specify main memory in Kilobytes
MAIN_HOG Specify main memory in Megabytes

Example: DRC3-NT MYRULES MYPOK DRCOUT HOG=10 MAIN_MEM=.6

The HOG option limits the total amount of memory the DRC can use to 10
Megabytes.  The DRC will allocate 6 Megabytes for main memory since the
MAIN_MEMORY option (abbreviated to MAIN_MEM) is set to .6 rather than
the default of .5.



Running the DRC: Command Line Syntax

DRC User Manual 341

The command line below will limit main memory to 6 Megabytes no matter what
amount of memory is available on the system.

Example: DRC3-NT MYRULES MYPOK DRCOUT  MAIN_HOG=6

The MAIN_USE option performs exactly the same function as the MAIN_HOG
option except that you express the amount of memory in Kilobytes.  The next
example is almost identical to the previous example (give or take a few
kilobytes).

Example: DRC3-NT MYRULES MYPOK DRCOUT  MAIN_USE=6000

[SCRATCH_DIR=scratch_path1 [; ... scratch_path5 ] ]

This parameter specifies the directory (or directories) for the DRC scratch file
(or files).  It is critical that a scratch directory is not shared between
simultaneous executions of the DRC.  This could be a problem if two or
more users are executing the DRC over a network.

If you do not use the SCRATCH_DIR command line option, the DRC will create
a single scratch file with the name $D3VIRT.000 in the current directory.  This
file can grow very large (more than 1 Gigabyte for large chips), so make sure
that there is plenty of free space on the current drive.

You may want to use this option if you have limited space on the current drive
and you want to make use of the space on other drives for scratch files.  If you
specify multiple directory paths, the DRC will create scratch files in all specified
directories at the start of the run.  Then if the DRC runs out of disk space while
using the scratch file in the first directory, it will use the additional scratch files.

You can specify up to five directories.  Each scratch_path directory should
already exist.  The maximum number of characters in all directory paths is 2047.
The additional scratch file directories should usually be on other disk drives or
partitions.

Set the
maximum size
of all scratch
files added
together with
the FILESIZE
command line
option (covered
next).

See the next
page to use this
option to get
around the 2
Gigabyte file
size operating
system limit for
the scratch file.



Running the DRC: Command Line Syntax

342 DRC User Manual

When you want to allow the DRC to use space on more than one drive, specify
directories on different drives.

Example: DRC3-NT MYRULES XCHIP XCHIP SCR=E:\DRCTEMP;D:\DRCTEMP

This command line will result in scratch files created on the E: and D: drives in
directories with the name DRCTEMP.  Note that the SCRATCH_DIR keyword
can be abbreviated to SCR.  The directory paths are separated with semicolons.
If the DRC completes successfully, all temporary scratch files will be deleted
automatically at the end of the run.

Operating systems limit the maximum size of a single file to 2 Gigabytes, even
on FAT32 partitions.  If you have a single partition with more than 2 Gigabytes
available and you expect to require a scratch file larger than 2 Gigabytes, you
can get around the file size limit by specifying more than one directory on a
single drive or partition.  When the DRC has used 2 Gigabytes of scratch space
in the first directory, it will begin using a second swap file in the next directory.

[FILESIZE=scratch_megabytes]

This optional parameter is used only when conserving memory is very important.
It allows you to override the maximum size of all scratch files combined.  The
default is 2048 Megabytes multiplied by the number of directories in the
SCRATCH_DIR option (covered above).  If the default scratch directory is used,
or if you have specified a single directory with the SCRATCH_DIR option, the
default limit is approximately 2 Gigabytes.

Setting scratch_megabytes to a value smaller than 2048 will conserve memory.
This is due to the fact that the DRC creates a virtual array page table in memory.
The larger the maximum size of the scratch files, the larger this table must be.

There is no point to setting scratch_megabytes to a value larger than 2048.  If
you want to increase the scratch file size, modify the SCRATCH_DIR option
(covered above) to use multiple directories and the default value of
scratch_megabytes will increase automatically.

Refer to page
166 for other
information
related to
executing the
DRC on very
large designs.



Running the DRC: Command Line Syntax

DRC User Manual 343

If you use too small a value for scratch_megabytes, the DRC will crash with a
message explaining the problem.  However if you crash due a small scratch file
during a preliminary DRC run on your design, you may want to try smaller
panels before using a larger value for scratch_megabytes.  This will conserve run
time as well as memory.

Screen Display Options

None of these options affect how the DRC processes data or creates the output
files.  These options affect only the messages posted to the display to update the
user on the progress of the DRC run.

[SHORTRUN] and [LONGCASE]

These optional keywords are used to choose the format of the console messages
displayed while the DRC is executing.  The SHORTRUN option optimizes the
on-screen messages for short runs.  It is intended for small designs that complete
in a few minutes.  This is the default behavior.

If your DRC run will take longer than a few minutes, you should add the
LONGCASE keyword to the DRC command line.  This optimizes the display
when you will occasionally check on the progress of the run, rather than sit and
wait for the DRC to finish.

Since SHORTRUN is the default, use that keyword on the command line only
when you want to override the LONGCASE keyword (e.g. when the
LONGCASE keyword is in an options file.)

See page 118 to
learn how to
optimize the
panel size.

See an example
of an options
file on page
336.



Running the DRC: Command Line Syntax

344 DRC User Manual

[DISPLAY_OPERATIONS=min_refresh_seconds]

This option and the following NO_FLASH_PANELS option are rarely used
options to control the frequency of progress reports during the run.

By default, progress reports posted to the display during long runs are
suppressed if it has been less than 2 seconds since the last progress report, even
if the DRC has moved onto a new operation.  Since the posting of these progress
reports can take a significant amount of time for a long DRC run, you may want
to increase this suppression interval for long runs.  This option is especially
useful if you do not intend to check the progress very often.

Example: DISPLAY_OP=60

Adding the option above to the DRC command line will suppress progress
reports so that the display is updated no more often than once a minute.

If you prefer to have no suppression of the progress reports (the default behavior
of previous versions of the DRC), add the following option to the DRC
command line:

Example: DISPLAY_OP=0

This use of DISPLAY_OPERATIONS will force the DRC to operate as in
previous versions.  The progress display is more or less continuously updated.
This option will also cause the NO_FLASH_PANELS limit (covered next) to be
ignored.

[NO_FLASH_PANELS=flash_limit]

The DRC roughly estimates at the beginning of a run whether or not the run is
likely to take a long time.   The estimate is based on the number of panels and
the number of rules.  If this estimate is smaller than a default flash limit, then
progress reports will flash on the screen more or less continuously.  These
updates to the display can increase the run time on the order of 15 minutes for a
7 hour DRC run.



Running the DRC: Command Line Syntax

DRC User Manual 345

(The actual progress update rate is controlled by the DISPLAY_OPERATIONS
option described above.  The default is to suppress updates to be no more often
than every 2 seconds.)

The run time indicator estimate is calculated with the following equation:

Number_of_panels * number_of_rules_in_rule_set

If the result of the calculation is less than the flash limit, then progress reports
will be suppressed only by the interval limit defined with the
DISPLAY_OPERATIONS option. If this estimate is larger than the flash limit,
then most progress reports are suppressed entirely and the interval defined by the
DISPLAY_OPERATIONS option is ignored entirely.  The default flash limit is
100,000 or DOS versions, 10,000 for Windows versions.

You can set the flash limit directly by using the NO_FLASH_PANELS option
on the DRC command line.  If you prefer to suppress progress reports for even
relatively short runs, decrease the flash limit to a smaller number.  If you do not
want any progress reports suppressed, then use the following command line
option instead of a NO_FLASH_PANELS option:

Example: DISPLAY_OPERATIONS=0

[PAUSE=(ALWAYS | CRASH | NEVER)]

The following option is useful only when executing the DRC from a batch file.
When you execute the DRC, without opening a console window explicitly, the
program executes in a temporary console window.  In this case, the console
window may close automatically without giving the user time to see the final
messages posted as the program terminates.  Once the console window is closed,
the console messages are gone forever.  If the DRC crashes, it is very important
to review these console messages to avoid repeating a wasted run.

Some users create a batch file with the DOS PAUSE command after the DRC
command line to ensure that the console messages remain on the screen until

See 118 to learn
more about
panels.

The console
window will not
close
automatically
when you type
the command
line in an open
console
window.



Running the DRC: Command Line Syntax

346 DRC User Manual

they can be viewed.  With this version of the DRC, the extra PAUSE command
can be omitted. If you prefer to hold the window open until the <Return> key is
pressed, simply add a PAUSE option to the DRC command line.

PAUSE=ALWAYS This will always pause the DRC after
termination until the <Return> key is pressed.

PAUSE=CRASH This option pauses the DRC after termination
only when the program crashes.   If the program
terminates normally, no PAUSE is executed and
no keystroke is required to close the program
console.

PAUSE=NEVER (This is the default if no PAUSE option is
included on the DRC command line.) The DRC
closes without an extra keystroke.  If the console
window will not close automatically when the
DRC terminates, this is the best option.

Rules File Options

The following DRC command line options affect how the DRC rules file is
processed and reported in the DRC log.

 [LAYERS=(layer_number1 [,layer_number2 […,layer_numbern] ] ) ]

You can write your rules file with variables for the ICED™ layer numbers rather
than specifying the layer numbers explicitly.   If your rules file uses this feature,
you must supply the layer numbers at run time using this command line option.
The layer number supplied for layer_number1 will replace the %1 parameter
wherever it is used in the rule set.  layer_number2 will replace %2, and so on.
This allows you to create "canned" rule sets that you can run on any required
layers at a later date.



Running the DRC: Command Line Syntax

DRC User Manual 347

Example: DRC3-NT  BLOAT10   XCHIP   XCHIPOUT  LAYERS=(3,10)

Note that the parentheses are required.

If the rules file BLOAT10.RUL contains the following rules:

INPUT LAYER   %1 IN
OUTPUT LAYER %2 OUT
OUT = BLOAT ( IN, .10 )

and the DRC command line is that shown above, the DRC will execute the rules
as though they had been written as:

INPUT LAYER  3 IN ;
OUTPUT LAYER 10 OUT
OUT = BLOAT ( IN, .10 )

[DO=(rule_spec1 [,rule_spec2 […,rule_specn] ] ) ]

The DO keyword allows you to execute only specific rules from the rule set.
You do not need the edit your rule set to execute only subsets of rules.

Each rule_specn parameter can be either the name of a rule set defined with the
RULE_SET rule or a rule number.  If you wish to execute all rules except for the
specified rule number or set, place a dash in front of the specification.

Example: DRC3-NT  MYRULES   XCHIP   XCHIP  SLOW DO=(FET_RULES)

When this DRC command line is used with the RULE_SET example shown on
page 296, the DRC will execute only the rules in the rule set FET_RULES, and
any rules which generate the layers used in those rules.

You can combine rule set names and rule numbers after the DO keyword.

A more
complete
explanation of
rule sets is
provided on
page 152.



Running the DRC: Command Line Syntax

348 DRC User Manual

Example: DRC3-NT  MYRULES   XCHIP   XCHIP  SLOW DO=(FET_RULES, 8)

This command line will execute the rules in the FET_RULES rule set, rule
number 8, and all rules required to generate the layers specified in those rules.

When rule set names are specified, you must surround rule specification with
parentheses.  When specifying only rule numbers the parentheses are optional.

Example: DRC3-NT  MYRULES   XCHIP   XCHIP  SLOW DO=-8,-10

This command line will execute all rules except for rule numbers 8 and 10.  The
layer generation rules required for only those rules will be skipped as well.

[SHOW_BORDER]

This command line option will add panel border calculations for each pass to the
DRC log file.  This can help you understand how your rule set affects the layer
reach and panel border used by the DRC.  If the panel border is large compared
to the panel size, your DRC run may be very slow.

To learn about panels and borders, read "Panel Processing" beginning on page
118.

[BORDER=border_dimension]

The BORDER keyword is used to override the panel border.

WARNING: This option is intended solely for DRC experts.  Border overrides
can lead to incorrect DRC results.

You must thoroughly understand panels and borders before using this keyword.
See page 124 for a complete explanation.  Setting too small a border can
prevent the DRC from finding errors in your layout.  Setting too large a
border can slow the DRC considerably.

The rule
numbers are
listed in the
rules compiler
log file.



Running the DRC: Command Line Syntax

DRC User Manual 349

Example: DRC3-NT  MYRULES   XCHIP   XCHIP  SLOW BORDER=10

This command line will override the default border calculated by the DRC or the
border specified by any BORDER rule in your rule set.  A panel border of 10
user units will be used by all passes.  If this border is smaller than that calculated
by the DRC, errors may not be found.

[NO_RUL]

The location of the source rules file and its time/date stamp are stored in the
compiled rules file.  If the time/date stamp of the source rules file is different
than the information stored in the compiled rules file, the DRC will warn you,
then ask you with a prompt if you want to proceed.  This is to avoid a wasted run
when you edit the rules file, then forget to compile it, before re-executing the
DRC.

If the source rules file is not found in its original location, you will also receive
an error message and a prompt.  This is due to the fact that the DRC cannot tell if
the source rules file is the same one that was used to create the compiled rules
file.

If you want to suppress this warning message when the source rules file cannot
be found, and avoid the prompt asking you if you want to proceed, add the
NO_RUL keyword to your DRC command line.

This keyword will not prevent an error message and prompt when the source
rules file is present but has a different time/date stamp than that stored in the
compiled rules file.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  SLOW NORUL

Note that the underscore is optional in the NO_RUL keyword.  This is true of all
keywords in the DRC command line.

Adding
NO_RUL to
your rule set has
the same effect
as adding this
option to the
command line.



Running the DRC: Command Line Syntax

350 DRC User Manual

[LIST_RULES]

Add this keyword to your DRC command line to add to the DRC log file a report
of which rules were executed during each pass of the DRC.  Using this keyword
will also add to the DRC log most of the other information related to the rules
file that is reported in the rules compiler log.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  QUICKPASS  LIST

Note that the LIST_RULES keyword can be abbreviated to "LIST".

[SHOW_SCALES]

The DRC calculates a default smoothing tolerance used by the BRIDGE rule.
This tolerance allows the rule to recognize air bridge structures that are slightly
less than perfect due to resolution grid rounding of the vertices.  This default
tolerance is usually .001 user units, but it can change if the design is very large.
To see the actual default tolerance, add the SHOW_SCALES keyword to the
DRC command line and search for "Smooth_tolerance" in the log file.

Design Area Options

The following keywords are used to allow you to verify only a portion of the
layout data.  You do not need to use all four options at the same time.  Any
combination of the following four options can be specified.  If one of the options
is not present, the default is to use the boundary of the design as the boundary of
the area to check.

If your rule set specifies electrical connections for use by the MIN_SPACING
/CONN or /~CONN keywords, these options may result in incorrect results since
electrical connections may be made outside of the area used.

Another method
to limit the
design area is to
add the IN
keyword to the
DRC command
in the layout
editor.



Running the DRC: Command Line Syntax

DRC User Manual 351

When these options are used, the DRC will automatically use the slower
algorithm for spacing checks since vertices of shapes that violate a spacing check
may be outside of the area checked.  To override this slower algorithm, and risk
missing spacing errors, you can also add the QUICK_SPACING option to the
command line.

[LEFT=left_x_coordinate]

Add this option the command line to set the leftmost boundary of the area to be
processed by the DRC.  All shapes to the left of left_x_coordinate will be
ignored.

[RIGHT=right_x_coordinate]

Add this option the command line to set the rightmost boundary of the area to be
processed by the DRC.  All shapes to the right of right_x_coordinate will be
ignored.

[TOP=top_y_coordinate]

This option sets the top boundary of the area to be processed by the DRC.  All
shapes above top_y_coordinate will be ignored.

[BOTTOM=bottom_y_coordinate]

Use this option to set the bottom boundary of the area to be processed by the
DRC.

See page 100
for an example
of the type of
spacing errors
the DRC may
miss when
QUICK-
_SPACING is
used in
combination
with the design
area options.

See page 159 to
learn how these
options can lead
to false errors
being marked.



Running the DRC: Command Line Syntax

352 DRC User Manual

Example: DRC3-NT MYRULES XCHIP XCHIP SLOW  LEFT=410 RIGHT=1000 …
… TOP=2000 BOTTOM=0

This command line will force the DRC to use only the area of the layout file
within a box with corner coordinates (410,0) and (1000,2000).  The order of the
boundary options is not important.

Cell Hierarchy Options

These options control how cells are flattened (i.e. ungrouped) hierarchically.
The FLATTEN, NO_FLATTEN, CFLATTEN, and NFLATTEN options all
control how cells are flattened before the DRC begins processing the data.
When you use none of these parameters, the default DRC behavior is to flatten
cells that are used only once, and those that have five or fewer components.  This
behavior tends to speed the DRC run by minimizing the repeat processing on
small cells.

The HIERARCHICAL option affects only the cell hierarchy of the data created
on output layers.   When you do not add the HIERARCHICAL option to the
command line, the output data will be created flat with no subcell structure.

[FLATTEN]

This option will force the DRC to ungroup all cells into one flat main cell before
any layer processing is performed.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  SLOW  FLATTEN

This DRC command line will cause all cells in the XCHIP.POK file to be
flattened hierarchically before the DRC processes the data.  If the rule set calls
for dangerous processing of cells or layers, this will be ignored since no cell
hierarchy remains.

You should
refer to page
134 to learn
more about how
hierarchical
designs are
processed by
the DRC.

See page 136
for more details
on how the
DRC handles
dangerous
operations.



Running the DRC: Command Line Syntax

DRC User Manual 353

[NO_FLATTEN]

This option on the command line will prevent the DRC from flattening any cells.
By default, all cells that have few shapes, and cells that are used only once, are
ungrouped automatically.  This command line option will prevent this
ungrouping.  The cell hierarchy of the entire design will be preserved.

[CFLATTEN=component_count]

Unless this option (or the NO_FLATTEN option) is used on the command line,
the DRC will automatically ungroup all cells that have five or fewer shapes.
When this option is used, the DRC will flatten cells that have component_count
or fewer shapes.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  SLOW  CFLATTEN=1

When the option CFLATTEN=1 is used, all cells that have only a single
component will be ungrouped by the DRC before layer processing begins.
Other cells will remain hierarchically nested.

[NFLATTEN=use_count]

Unless this option (or the NO_FLATTEN option) is used on the command line,
the DRC will automatically ungroup all cells that occur only once.  When this
option is used, the DRC will ungroup all occurrences of cells that are used
use_count or fewer times.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  SLOW  NFLATTEN=0

When the option NFLATTEN=0 is used, no cells will be ungrouped because
they are used infrequently.  Cells used only once will remain hierarchically
nested.



Running the DRC: Command Line Syntax

354 DRC User Manual

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  SLOW  NFLATTEN=4

This command line will cause the DRC to ungroup all cells that are used 4 or
fewer times.

[HIERARCHICAL="suffix_string"]

When this option is used on the command line, the DRC will create the shapes
on output layers (except for error wires) in hierarchically nested cells.  The cell
structure will be modeled on the cell structure of the input data.  However, cells
that have been flattened with the options above will remain flattened in the
output data. If you want the cell structure of the generated data to match your
input data exactly, use the NO_FLATTEN command line option and the
ALL_DANGER rule in addition to this option.

Output from rules that produce error wires (e.g. MIN_SPACING, see the list on
page 62.) will be created in a flattened main cell.  Only polygon output shapes
are nested in subcells.

The required suffix_string parameter will be added to the end of every cell name
created in the output data.  This prevents the newly created cells from modifying
your original cells when you import the data with the output_file_base-
_name.CMD command file.  You should add quotes around the suffix_string if it
contains characters likely to confuse the DRC command line parser.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  HIERARCHICAL=_OUT

This command line will cause the DRC to create shapes on output layers in
nested cells.  Each nested cell in the DRC database will have a cell created for it
with the suffix "_OUT" added to the cell name.  For example, if a nested cell in
the input data has the name "SUBCELL", a cell will be created in the output
command file with the name "SUBCELL_OUT".  This cell will contain all
shapes on output layers in the cell SUBCELL at the end of the DRC run.

See page 372 to
learn how to
import
hierarchical
output data into
the layout
editor.

Safe handling of
dangerous
operations may
put some shapes
in a higher level
cell than you
would expect.
See page 141.

The SLOW
option is auto-
matically
invoked when
HIERARCHI-
CAL is used.
Do not add the
QUICK_PASS
option to the
command line.



Running the DRC: Command Line Syntax

DRC User Manual 355

You must execute the command file output_file_base_name.CMD to create the
new cells.  You should look at the layout carefully to make sure that it is what
you expected.

Once you have determined that the layout generated by the DRC is exactly what
you wanted, you can add the generated cells to your original data.  The command
file output_file_base_name.ADD can be executed to add each newly created cell
to your original cells.  You must execute this command file while editing a
temporary cell.   You cannot execute it from one of the design cells it will
attempt to edit. (See page 374 for an explanation of the complete process.)

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  HIERARCHICAL=""

This DRC command line is valid, but it can be hazardous.  Since the
suffix_string is "", the commands in XCHIPOUT.CMD will modify the original
cells.  No .ADD file is generated.  If the results were not what you expected, you
must exit the layout editor with the JOURNAL command to avoid saving the
changes.

When the HIERARCHICAL option is not used, the output data will be created
flat (i.e. no cell hierarchy) regardless of the cell structure of the input data.

Command File Options

The following command line options affect the output_file_base_name.CMD
command file created by the DRC to create shapes in the ICED™ layout editor.

 [WIRE_WIDTH=error_wire_width ]

The WIRE_WIDTH rule sets the width used to create all error wires.  If you
need to override a value set with this rule, you can add this option to the
command line.  Alternately, if you do not have a WIRE_WIDTH rule in your
rule set, then you can override the default behavior of creating error wires using

To avoid a
warning prompt
when safe
processing may
create shapes
higher up in the
hierarchy than
you would
expect, use the
NO_HIER-
_WARING rule.

To learn more
about the
command file
created by the
DRC see page
365.

See the
WIRE_WIDTH
rule on page
315.



Running the DRC: Command Line Syntax

356 DRC User Manual

the default width of each error layer.  All error wires created by the command
file will be created using the width specified with this option.

When you set error_wire_width to 0, this removes the effect of any
WIRE_WIDTH rule in the rule set and the DRC command file will create error
wires using the default width of each error layer.

 [START_CMD = "st_cmdstring"]

and

[END_CMD = "end_cmdstring"]

If you add the STARTCMD = "st_cmdstring" option to your DRC command
line, the DRC will add st_cmdstring as the first line of the command file.

The ENDCMD = "end_cmdstring" option will cause the DRC to add
end_cmdstring as the last line in the command file.

Both string parameters should be valid ICED™ layout editor command strings.
You should surround the string parameters with quotes since blanks or '@'
characters (used for the @file_name ICED™ command) would be misunderstood
by the DRC command line parser.

Example: DRC3-NT  XRULES  XCHIP  XOUT  START="EDIT CELL DRCOUT"  ...
... END="EXIT;ADD CELL DRCOUT AT 0,0"

This DRC command line will create a command file with the name
XOUT.CMD.  The DRC will add the following line to the top of the file:

EDIT CELL DRCOUT

When the EDIT CELL command is executed, the ICED™ editor will create a new
cell with the name DRCOUT.  All subsequent commands in the command file
will create shapes in this new cell.



Running the DRC: Command Line Syntax

DRC User Manual 357

The command file will have the following two ICED™ commands added on the
last line:

EXIT;ADD CELL DRCOUT AT 0,0

When these two commands are executed, the ICED™ editor will exit from the cell
it has just created, then add that cell to the current cell at the coordinates 0,0.

The total effect of adding these three commands to the command file is that all
shapes created by the DRC command file will be created in a subcell of the
current cell, rather than as components in the current cell.  This is desirable since
the command file will not then alter your original cells.  Once you are finished
looking at the DRC data, you easily can delete all of it by deleting the single cell
DRCOUT.  (If the DRCOUT.CEL file is saved to disk, you should delete it
before a repeat DRC run.  Otherwise, the next DRCOUT.CMD file will edit the
existing DRCOUT.CEL leaving all of the errors found by the previous run in the
cell.)

[OBSOLETE]

and

[MACROS=NONE]

These options are used to prevent the addition of macros and other special
commands to the command file.  These commands can cause problems to
obsolete versions of ICED™.  If you are importing command files successfully,
you do not need them.

See another
example of the
START and
END options on
page 370.



Running the DRC: Command Line Syntax

358 DRC User Manual

Panel Size Options

Use these options to override the panel size set in the rules file.

 [PANEL_X=panel_x_dimension]
and

[PANEL_Y=panel_y_dimension]

Use these options to specify the panel size by x and y dimensions.  These options
have the same effect as PANELX and PANELY rules in the rules file.

[PANEL_A=panel_area]

You can use this option to specify maximum panel size by area rather than by x
and y dimensions.  Panel area is specified in one of three ways:

PANEL_A=panel_area_in_square_user_units
PANEL_KA=panel_area_in_kilo_square_user_units
PANEL_MA=panel_area_in_mega_square_user_units

[PANEL_X_BY_Y=panel_ratio] 
and

[PANEL_Y_BY_X=panel_ratio]

If you use the previous option to specify panel area, you can optionally specify
the ratio of the x and y dimensions with either of these options.

See the next
option to refine
panel shape
when area is
specified.



Running the DRC: Command Line Syntax

DRC User Manual 359

Batch Files

The recommended way to launch the DRC is to use a batch file.  You use any
text editor to create the command line with all of the desired command line
options, and store it in a file with a .BAT extension.  You then execute the batch
file to execute the DRC command line.  If you use many command line options
this can save you a lot of typing and perhaps prevent wasted runs when you
forget to add a critical command line parameter.

The DOS SET command can be added to the batch file to set the DRC_PATH
environment variable.  This variable determines where the DRC will look for
your rules file if it cannot find the rules file in the current directory.

You can use placeholders on the DRC command line to allow you to type some
parameters on the batch file command line.  DOS batch file placeholders must be
a '%' followed by a number.  For example, the lines below represent a simple
batch file to launch the DRC program.  Let us assume that the name of this file is
DRCBAT.BAT

Example: SET DRC_PATH=E:\ICED\DRCRULES
DRC3-NT %1 %2 DRCOUT SLOW PAUSE=ALWAYS %3 %4  USE=8000

The first two placeholders in the command line mean that you must specify the
name of the rules file and the layout data file on the command line when you
execute the batch file.  The additional placeholders allow you to add other
parameters on the batch command line that will be added to the DRC command
line after the PAUSE option.

Example: DRCBAT  MYRUL  MYPOK  QUICKPASS

When you type this command line at the DOS prompt, the DRC will execute
with the following command line:

DRC3-NT MYRUL MYPOK DRCOUT SLOW PAUSE=ALWAYS…
… QUICKPASS  USE=8000

The QUICKPASS option will override the SLOW option.

Another way to
save DRC
command line
options in a file
is to use
command line
indirection. See
page 336.



Running the DRC: Command Line Syntax

360 DRC User Manual

The PAUSE option in the example above is used primarily when you execute
this batch file without opening a console window explicitly.  If you execute the
batch file with a method like a desktop shortcut, a temporary console window is
opened to display the console messages.  However, once the DRC completes, the
temporary console window will close immediately unless the PAUSE option is
added to the command line.  The PAUSE option will prevent the window opened
for the console from closing until you have a chance to view the console
messages.  Just press <Enter> to close the console window.

Another DOS command you may want to add to your batch file is a CD  (or
CHDIR) command to change the current directory before the DRC begins.   Any
DOS commands you desire can be added to the batch file.

If your
operating
system is pre-
parsing the
command line
and replacing
the '=' with a
blank, use '#'
instead.  See
page 333.



Running the DRC: Output Files

DRC User Manual 361

DRC Output Files

The DRC can generate several output files.  The file name extensions vary from
file to file, but the base part of the file name for most of the files will be the
string provided in the output_file_base_name parameter (the third parameter) on
the DRC command line.

If you do not provide an output_path with the output_file_base_name parameter,
all files will be created in the current directory.

If a previous DRC run has created output files in the same directory, most of
those files will be renamed with a '1' replacing the final character in the file
extension before the new files overwrite them.  This provides a backup of the
results of your last DRC run with no effort on your part.

File extension Contents and use of file

DRC log file .DLO
(previous run backup .DL1)

General information about DRC run
All error and warning messages
Statistics on run time

DRC command
file

.CMD
(previous run backup .CM1)

Command file used to create shapes on
output and error layers in the ICED™
layout editor

Hierarchical cell
command file

.ADD
(previous run backup .AD1)

Command file used to add hierarchical
output to original cells

Subcell error
command files

.ERR (file names are based
on cell names, if possible)
(previous run backups .ER1)

One command file is created for each
input cell that contains errors found in
the subcell (including bad polygons and
dangerous processing warnings).

Figure 211: DRC output files.



Running the DRC: Output Files

362 DRC User Manual

The DRC log file will record the file names used for each of these files.

Two or more temporary files are created by the DRC.  A file with the name
DRC3CMD.$$$ is created in the current directory, then erased as the DRC
begins.  One or more scratch files with the name $D3VIRT.000 are created
depending on the use of the SCRATCH_DIR command line option.  These files
will be deleted automatically by the DRC at the end of a successful run.

Due to the creation of these temporary files, it is unwise to launch multiple runs
of the DRC simultaneously from the same directory.  This could be a problem on
networks or multitasking operating systems.  Simultaneous runs of the DRC
should have no problems as long as they are started from different directories.

DRC Log File

This file is where the DRC will store all error and warning messages.  All of the
information printed on your screen as the DRC is executing (except for the
progress indicators) will be recorded in this file at the same time.  In addition,
many detailed error messages and counts of shapes created on all output and
error layers will be reported.

This file will not contain the coordinates of all errors found in the layout.  The
layout error data is represented in the DRC command file (covered on page 365).
You can enable detailed logging for a few of the verification rules.  This will add
a detailed message about each error found (including coordinates).  See page 50
for a complete description of detailed logging.

If you use the following DRC command:

DRC3-NT  MYRULE  MYCELL  DRCOUT

The name of the DRC log file will be DRCOUT.DLO.

The log file begins with a header that includes the version number of the
program.  The command line used to execute the program is then reported.  This
information is followed by the names of the input and output files.



Running the DRC: Output Files

DRC User Manual 363

To include a complete listing of the rules file at this point in the DRC log, add
the LIST_RULES keyword on the DRC command line.  The information added
will include a complete list of input, output, and scratch layers and the rules
executed in each pass.

The amount of memory available to the DRC program is listed next along with
the date and time of the run.

If the SHOW_SCALES option is included in the DRC command line (see page
350), then the log file at this point lists several scale factors used by the program.

If bad polygons (shapes which may cause problems for mask processing
software) are included in your layout, they will be mentioned next in the log.
Each cell that contains bad polygons will have a command file created for it that
has the bad polygons copied to an error layer.  These files are described in more
detail on page 374.  (The total number of bad polygons is also listed in the
summary information along with the final error count near the end of the log
file.)  The listing and copying of bad polygons on input layers that are not used
in your rule set can be turned off by the NO_CHECK_INPUT rule.  See page
276.

Some details on how the layout was ungrouped (i.e. flattened) are printed next.
If your layout contains cells that are not ungrouped because they are used in an
INCELL rule, or because of cell flattening options or defaults (see pages 144 and
352) this will be reported.

The cut resolution in effect is listed next.  This is set by the
CUT_RESOLUTION rule. (See page 79 for a description of the various
resolution grids.)

The design area coordinates are listed here, as well as the panel size used by the
DRC.

The number of operations and passes required by the rules is listed next.  (See
page 128 for an explanation of passes.)  The DRC algorithm chosen is listed
here, either "Slow method" or "Quick pass" will be listed.  (See page 129 for
details.)

Bad polygons
are defined on
page 74.

See page 118 to
learn more
about panels.



Running the DRC: Output Files

364 DRC User Manual

The string "Flat output" or details on the hierarchical output options will be
reported.  (See page 146.)

Next, the log lists the spacing method used.  This method is determined
automatically by the rule set.  However, the QUICK_SPACING DRC command
line option can overrule the slower spacing method at the risk of missing errors
in certain rare cases.  (See page 100.)  When the QUICK_SPACING option has
overridden the slower method, the log file will print a "**** WARNING"
message about this.

The panel border used for each pass is reported next.  Add the SHOW_BORDER
keyword to the DRC command line to see how the panel borders were
calculated.

The cells checked and their coordinates will all be listed.  (Cells flattened by the
pre-processor are listed above.)

If the NO_WARN_ACUTE rule is not present in your rule set (see page 280), all
acute angles on polygon output layers will be listed here.

At this point in the log file, the DRC will add the following line at the
conclusion of a successful run:

Done.

If bad polygons were reported earlier in the log file, the total number will be
summarized at this point.  A summary of acute angles is listed next.

If no shapes were created by the DRC on error layers (i.e. no errors were found
by verification rules), the DRC will post the following message:

***No errors found.

If errors were found, the total number of error shapes generated by the DRC is
provided and looks similar to:

***Error count=76

See page 313
for details on
acute angle
warnings.



Running the DRC: Output Files

DRC User Manual 365

The DRC will often create a pair of error shapes for a single violation.
Overlapping error shapes on the same layer may be merged.  For these reasons,
the number of error shapes generated is not the same as the number of rule
violations found.

The log file will continue with a summary of shapes created on all output and
error layers.

The log ends with statistics on the scratch file and processing times.  If a large
scratch file was required, you may be able to decrease your run time significantly
by reducing the panel size.  One indicator for DRC efficiency is the percentage
of time the DRC spent on "Disc swaps".  If more than 50% of the run time is
spent swapping information into and out of the scratch file, you should read the
information beginning on page 118 to learn how to optimize panel size.

The time spent processing each rule is presented here as well.  The times are
listed by operation number.  To relate the operation number to the rule, look in
the rules compiler log file or add the LIST_RULES option to the DRC command
line.

DRC Command File

This file will contain ICED™ layout editor commands that create shapes to
indicate the errors the DRC has found and/or to import the results of layer
processing.  The DRC will create this file with the name
output_file_base_name.CMD (where output_file_base_name is the third
parameter on the DRC command line).

If you use the following DRC command line:

DRC3-NT  MYRULE  MYCELL  DRCOUT

then the name of the DRC command file will be DRCOUT.CMD.

Read
"Generating
Output Layers"
on page 70 for
important
information on
using the DRC
to create new
mask layers for
import into your
design.



Running the DRC: Output Files

366 DRC User Manual

Every shape on layers defined with the OUTPUT LAYER rule will have an
ADD command in the file.  These shapes are created from the layer data at the
end of the DRC run.

The ADD commands in this command file (and all command files generated by
the DRC) are written in ASCII.  You can browse this file to see the coordinates
of each error shape if you desire.

The command file will have comments in it to aid you in determining which rule
of your rule file generated the shape.  The comment before a block of ADD
commands will contain the string "TAG=rule_number".  The rule_number
parameter is equal to the number of the rule that created the shapes.  The rule
numbers are listed near the bottom of the rule compiler log.

Before Executing the Command File

You may want to set the layer properties of the layers to which you will be
adding shapes before executing the command file.  You set the name, color, fill
pattern, and default width for each layer number with LAYER commands in the
layout editor.  You set the default wire type for all layers with the USE
command.  It is particularly important to set the default width and wire type of
error wire layers before executing the command file.  It is tricky to change these
properties after the shapes are created.

Always set the default wire type of error wires to type 0.  Type 2 wires can be
very confusing since the wire will extend past the error.

Set the default width of error wire layers to be small compared to the minimum
width of the design layer they will be marking.  This will allow the error wires to
distinctly mark only the edges of shapes that are in error.  If the default width of
an error wire layer is large compared to the width of the shapes, the error wires
will overlap and be difficult to see.

(If you prefer to avoid customizing the wire widths of all error layers in the cell
before you import the shapes in the command file, add a WIRE_WIDTH rule to
the rule set.  When this rule is used, all error wires will be created with the same
specified width.)

The LOCAL
and GLOBAL
commands in
the DRC
generated
command file
create macros
(similar to
variables).
Lean more in
the ICED
Command File
Programmer's
Reference
Manual.

The SHOW
command in the
layout editor
can be used to
report the tag
number of a
selected shape.

Using a
WIRE_WIDTH
rule makes
changing the
layers in the cell
unnecessary.
However, you
should still set
the default wire
type with the
USE command.



Running the DRC: Output Files

DRC User Manual 367

USE  WIRETYPE=0
LAYER  50  NAME=M1_ERROR  WIDTH=.2  COLOR=RED

Executing these two commands in the ICED™ layout editor before executing the
DRC command file will set the default properties of the error wires about to be
created on layer 50.  The default width of .2 user units is a good dimension if the
M1 layer in your design has a minimum width of 1 user unit or more.

To see the
current
properties of a
layer in the
layout editor,
type the
LAYER
command with
the layer
number as the
only parameter.

Figure 212: Confusing error wires
of type=2 and width=2.

Figure 213: More distinct error
wires of type=0 and width=0.2.



Running the DRC: Output Files

368 DRC User Manual

You can create a command file to set the properties of error layers.  Simply
create an ASCII file with the USE and LAYER commands you desire.  If you
create this file with the name ERRWIRE.CMD in the current directory, you
execute it in your cell with the layout editor command:

@ERRWIRE.CMD

Executing the Command File in the Layout Editor

The same @file_name command syntax as that used above is used to execute the
DRC command file.  To add the shapes in the file DRCOUT.CMD to the cell
you are currently editing, type the layout editor command:

@DRCOUT.CMD

However, executing this file in your design cell will modify your design cell.

If your rules output only layer numbers that are not used in your design, it is
relatively easy to delete the DRC generated shapes.  You can delete all shapes
on a given layer number n with the layout editor commands:

UNSELECT  ALL
SELECT  LAYER  n  ALL
DELETE SEL

You can create a command file with a name similar to DELDRC.CMD with all
of the commands necessary to remove all of your DRC layers.  Simply execute
this command file when you are done looking at the DRC shapes, before you
save the cell files.  (You may want to add the command XSELECT=OFF to the
top of this command file.  See the layout editor reference manual.)

You can add the
@ERRWIRE.CMD
command to the
DRC command
file with the
START_CMD
option on the DRC
command line.
(See page 355 and
the examples
below.)

Unless you have
used the
HIERARCHICAL
keyword on the
DRC command
line, there will be
no cell structure
in the generated
DRC shapes.

See page 372
learn about
important
differences in the
command file
when the
HIERARCHICAL
keyword is used
on the DRC
command line.



Running the DRC: Output Files

DRC User Manual 369

Isolating the DRC Shapes from the Original Layout Data

If you prefer to isolate the shapes generated by the DRC from your design cells,
there are methods that allow you to view the DRC generated shapes without
affecting your original design cells.

One simple way is to create a new cell with the ICED™ layout editor, then
execute the @DRCOUT.CMD command in this new cell.  You can then add the
new cell to your top-level cell, or add both the new cell and your top-level design
cell to a different new cell.  Usually, the best method is to add your top-level
design cell to the new cell containing the DRC generated shapes.  This will allow
you to turn the display of your design shapes on and off as you view the DRC
shapes.

Launch the ICED™ layout editor to create a new cell with a name like
NEWCELL

Add the DRC shapes with the ICED™ command:

@DRCOUT

(The file extension of .CMD is added automatically to the command file name
by the @file_name command when no file extension is provided.)

You can then add your design cell to the new cell with a command similar to the
following ICED™ command:

ADD  CELL  MYCELL  AT  0,0

The VIEW OFF
and LOG
SCREEN OFF
commands in
the DRC
generated
command file
are present to
speed up
execution.
Learn more in
the layout editor
reference
manual.



Running the DRC: Output Files

370 DRC User Manual

You can use the START_CMD and END_CMD options on the DRC command
line to make this type of processing automatic.  These options add layout editor
commands to the DRC command file.

You can create the two command files shown above with any ASCII text editor.
Then execute these command files automatically whenever you execute the DRC
generated command file when you add the following options to your DRC
command line:

START="@DRCSTART"  END="@DRCEND"

The command @DRCSTART will be added to the DRC command file so that
the commands in DRCSTART.CMD are executed before the ADD commands
generated by the DRC program.  The commands in DRCEND.CMD will be
executed after the last ADD command generated by the DRC.  You can modify
the DRCSTART.CMD and DRCEND.CMD files as you develop your own
methods for viewing the DRC output.

!DRCSTART.CMD
!Initializes defaults for error wire layers
USE  WIRETYPE=0
LAYER  50 NAME=M1_ERROR WIDTH=.2 COLOR=RED PAT=7
LAYER  51 NAME=M2_ERROR WIDTH=.2 COLOR=BLUE PAT=12
LAYER  52 NAME=P1_ERROR WIDTH=.1 COLOR=GREEN PAT=14

Figure 214: Command file DRCSTART.CMD

!DRCEND.CMD
!Add top-level design cell to temporary cell with DRC output
ADD CELL MYCELL AT 0,0

Figure 215: Command file DRCEND.CMD

See a another
example of
using START
and END on
page 356.



Running the DRC: Output Files

DRC User Manual 371

Making the DRC Shapes More Visible

Sometimes the shapes the DRC creates are difficult to see since they are copies
of shapes in your design cell which are right on top the original shapes.  There
are several ways to make the shapes easier to see.

One way is to temporarily turn off the display of your design cell with the
command:

BLANK  CELL  LAYERS  0:255

You can turn display of your design cell back on with the command:

UNBLANK  ALL

You can use color to highlight shapes on the DRC layers with the ICED™
LAYER command.  A good color to use for the DRC layers is the HI color.  This
color will always have priority on your screen so that shapes drawn with that
color are not hidden behind other colors.  To assign the color HI to a layer
generated by the DRC command file, use the command:

LAYER n COLOR=HI

where n is replaced with the layer number in the DRC command file.

You can then make this color strobe on and off with the command:

BLINK

Another way to locate shapes on one of the DRC layers is to select only the
shapes on that layer with the commands:

UNSELECT  ALL
SELECT  LAYER  n  ALL

You can then resize the view screen to see all selected shapes with the command:

VIEW SELECT



Running the DRC: Output Files

372 DRC User Manual

Determining Which Rule Generated a Shape

If you see an error shape on your screen, and you don't know which DRC rule
generated the error, you can use the SHOW command in the layout editor to
report the TAG number.  Select the shape, then type:

SHOW *

The SHOW command will report the TAG number of the selected shape.
Remember that the TAG number is the number of the rule that generated the
shape.

Fixing the Errors

Once you have located a DRC generated shape which points out an error in your
design cell, you can edit the cell which contains the original design shape,
without exiting the editor, by using any of the ICED™ edit commands: EDIT,
PEDIT, or TEDIT.

The easiest edit command to use is usually the PEDIT NEAR command.  After
typing this command, place your cursor on an edge of the design shape you need
to modify to correct the problem, then click the left mouse button.  You are now
editing the cell that contains the design shape, even if it is nested several levels
down.  The shapes in other cells will remain on the screen but you will not be
able to edit them.  If you prefer that shapes in other cells are not displayed while
you edit the cell with the problem, use the TEDIT NEAR command instead of
PEDIT NEAR.

Hierarchical Output

Unless you have used the HIERARCHICAL keyword on the DRC command
line, the DRC command file will create all shapes in whatever cell you execute it
from.  There will be no cell structure in the generated data.

Rule numbers
are reported in
the rules
compiler log
file.



Running the DRC: Output Files

DRC User Manual 373

When you do use HIERARCHICAL=suffix_string on the command line, the
DRC command file will create all shapes in cells which match the cell structure
of your original data.   The cell names will all have the suffix_string added to the
end of the original cell names.

Example: DRC3-NT  MYRULES   XCHIP   XCHIPOUT  HIERARCHICAL=_OUT

When this DRC command line is used, the command file XCHIPOUT.CMD will
generate output layer shapes (except for error wires) in separate cells by using
the layout editor's EDIT command.  If a cell with the name SUBCELL is
included in the original data, a cell with the name SUBCELL_OUT will be
created in XCHIPOUT.CMD with commands similar to those shown below:

EDIT CELL SUBCELL_OUT
ADD BOX LAYER=20 AT (0,0.6) (1.8,5.9)
ADD BOX LAYER=20 AT (4.2,0) (6.9,5.6)
ADD BOX LAYER=20 AT (9.8,0.5) (12.4,5.6)
EXIT

When these lines from the command file are executed in the layout editor, a new
cell with the name SUBCELL_OUT is created.

Shapes on error wire layers will be created in the highest-level cell, the cell with
the name based on the name of your top-level cell.  If the name of your top-level
cell is MAIN, the error wires will all be created in a new cell with the name
MAIN_OUT.  Errors that are indicated with polygons rather than wires will be
created in the cell corresponding to the cell with the error.  (See the chart on
page 62 to see which rules create wires.)

Executing the XCHIPOUT.CMD file will create the new cells, however, it
will not add them to your original cells.  In fact, after you have executed the
command file, you will see no new data in the layout editor.  The cells have been
created, but none of them are added to the cell you are currently editing in the
layout editor.  To look at one of the new cells, you will have to edit it with the
EDIT command in the layout editor, or EXIT and then re-launch the editor to
edit the new cell.

If you use the null string "" as the suffix_string in the HIERARCHICAL
specification, the DRC command file will edit the original cells.  In this case,

Refer to page
146 for an
important
overview of
how
hierarchical
output is
handled by the
DRC.



Running the DRC: Output Files

374 DRC User Manual

executing the XCHIPOUT.CMD file will modify your design cells.  This can be
very dangerous if you do not know exactly what you are doing!  Make sure
you have your design backed up before attempting to use this feature.  You will
be modifying your design cells before verifying that the DRC has generated
exactly the data you intended.

When the suffix_string is "", you will have to execute the command file while
editing a temporary cell.  An EDIT command in the command file will fail if you
attempt to execute it while already editing the cell.

To add the new cells to your original design cells, you execute another file
created by the DRC, the hierarchical cell command file with the name
output_file_base_name.ADD.  We will now describe how to use this file.

Hierarchical Cell Command File

This file is used to add cells created by the HIERARCHICAL=suffix_string
command line option.  It is created only when you have used the
HIERARCHICAL option.  It is a command file of ICED™ layout editor
commands to add each cell created by the DRC to your original cells.

The name of this file will be output_file_base_name.ADD.  You must execute it
in the ICED™ layout editor while editing a new temporary cell.  This is due to the
fact that the command file uses the EDIT command to open each of your design
cells.  The command file will fail if it attempts to EDIT a cell that is already
open in the layout editor.

Your original cells will be modified by this operation.  Be sure that the data
in the new cells is what you expect before executing the .ADD file.

Example: DRC3-NT  MYRULES   XCHIP   DRCOUT  HIERARCHICAL="NEW"

If you have used this DRC command line, and your design contains a cell with
the name "SUBCELL", the DRC command file DRCOUT.CMD will create a
cell with the name SUBCELLNEW.  Once you execute the .CMD file, the cell is

Read an
overview of
hierarchical
output on page
146.

We strongly
recommend that
you read
example in the
Advanced
Tutorial on page
433 before
attempting this
in a real design.



Running the DRC: Output Files

DRC User Manual 375

created, however this new cell has not yet been added to your design.   You
should look at the contents of this new cell (and any other new cells) before
executing the DRCOUT.ADD file.  The .ADD file will contain layout editor
commands that add the cell SUBCELLNEW to cell SUBCELL.

You must open a temporary cell with the ICED™ layout editor to execute this file.
The temporary cell should contain appropriate environment settings since the
environment settings (e.g. layer colors and patterns) in effect will replace the
environment settings in all cells modified by the command file. In the editor,
type the following string:

@DRCOUT.ADD

Always execute the .CMD file before executing the .ADD file.

The cells created by the .CMD command file and then added by the hierarchical
command file can be time consuming to remove again once the command files
are executed and the cell files saved to disk.  If you realize that the added cells
are incorrect, terminate the ICED™ layout editor with the JOURNAL command
to avoid saving cell files.

If you have added cells from a previous DRC run and need to create a new set
that is slightly different, be sure to not only delete each DRC generated cell from
each original design cell, but also delete the previous run's cell files before
executing the new command file.  Otherwise, the new command file will add
new shapes to the previous cell files rather than creating new cell files.

Subcell Error Command Files

There are several types of errors that the DRC can mark at the subcell level.
These types of errors are found by the DRC while the cells remain hierarchically
nested.  Since the errors should be fixed in the subcells, the DRC places the error
shapes in command files that you should execute within the subcells.

Use the
TEMPLATE
command in the
layout editor to
export
environment
settings from a
design cell.
However, if
your startup
command file is
set up correctly,
all new cells are
created with an
appropriate
environment
automatically.

The log file will
tell you if
shapes have
been created in
these files.



Running the DRC: Output Files

376 DRC User Manual

The following types of errors will produce shapes in these subcell error
command files:

Bad polygons (See page 74.)

Dangerous processing errors (See page 140.)

When these types of errors are found, you can use these files to add copies of
these problem shapes to your cells on a new layer in a manner similar to the
other DRC command file described on page 365.

One command file is created for each cell that contains these types of errors.
The name of the command file will be cell_name.ERR.

The coordinates used in the ADD commands contained in the subcell error
command files will be in the coordinate system of cell cell_name, not in the
coordinates of the top-level cell.  Run each command file while you are
editing cell cell_name, not the top-level cell.

For example, you run the DRC on your highest level cell, MAINCELL.  The cell
NANDCELL is used 100 times in MAINCELL. NANDCELL contains a single
self-intersecting polygon.  You get only a single warning message about the bad
polygon, not 100 messages.  The DRC will create a command file with the name
NANDCELL.ERR.  This command file will contain a single ADD command that
creates a copy of the bad polygon on the error layer 99.

To see exactly which shape is causing the error message, you can edit the cell
NANDCELL with the ICED™ layout editor, then run the command file with the
ICED™ command:

@NANDCELL.ERR

This will add the shape on layer 99 to the cell.  Now you can see the exact
problem shape with the commands:

SELECT LAYER 99 ALL
VIEW SELECT

The layer
number for bad
polygons can be
overridden with
the
BAD_POLY
rule.

See page 365 to
learn other ways
to use DRC
generated
command files.



Running the DRC: Output Files

DRC User Manual 377

This will add select marks to the shape(s) just created and resize the view
window so that all shapes on layer 99 are displayed.  Once you see the shape that
is causing the problem, delete the shape(s) on layer 99 and fix the original shape.



Running the DRC: Output Files

378 DRC User Manual



Advanced Tutorial

DRC User Manual 379

Advanced Tutorial



Advanced Tutorial

380 DRC User Manual

This tutorial covers most of the typical activities involved in using the DRC to
verify common technology design rules.  We will cover the steps to compile the
rules and create the layout file for the DRC rather briefly.  To see a tutorial that
covers these steps more completely, see the Quick Tutorial beginning on page
12.

The layout files for this tutorial should be included with the installation.  The
rules files will be created from scratch.

Subject Page

Generating temporary layers for verification 383

Simple spacing check 383

Importing DRC results 387

Directional spacing checks 391

Errors from touching shapes 397

Electrical connections 402

Masking an input layer 403

Well connection verification 411

Export of mask layers 418

Finding/Fixing acute angles 423

Finding/Fixing bad polygons 426

Hierarchical Output 429

Dangerous operations 430

Speeding DRC runs with rule subsets 440

Pad size verification using MIN_WIDTH rule 441

Speeding DRC runs by optimizing panel size 445



Advanced Tutorial: Simple Spacing Check

DRC User Manual 381

Simple Spacing Check

First, let us briefly review the steps to prepare
the input files for the DRC.  We will need to
create a text file with the rules for DRC and
compile this file.  We also need to create the
binary layout data file from the cell files using
the ICED™ layout editor.  We will perform this
step first.

Create a new directory for this tutorial.  The
name is not important, but we will use the
name Q:\ICED\DRCTUTR to refer to this
directory throughout the tutorial.  You need to
copy the tutorial cell files into this new
directory.

Open an appropriate console window by clicking the ICED icon on your
desktop.  Type at the console prompt:

MD DRCTUTR
CD DRCTUTR
COPY Q:\ICED\22SAMPLES\DRC\ADV*.CEL

                                                     
22 Q:\ICED represents the drive letter and path where you have installed the DRC.

DRC Rules File
.RUL

Layout Files
.CEL

ICED 
Layout Editor

DRC Rules
Compiler

Compiled Rules
.BB

Binary
Layout Data

.POK

DRC

Command
File

ICED
Layout Editor

Figure 216: DRC data flow.

Subjects covered below

Basic steps to generate input files

Generating temporary layers for verification

Simple spacing check

Setting default width for error wires

Basic steps for importing DRC results into layout editor

Fixing errors in subcells



Advanced Tutorial: Simple Spacing Check

382 DRC User Manual

Preparing the Binary Layout Data File

Launch the ICED™ layout editor to edit the file ADVTUTR.CEL.  If you use the
Windows version, launch the layout editor with the following command in the
console window:

ICWIN  ADVTUTR

The shapes in this
cell should look
similar to Figure 4.

Once in the editor,
we create the binary
layout data for the
DRC using the DRC
command.  Type the
following on the
command prompt
line:

DRC

This will export the
entire layout con-
tained in the cell to
the ADVTUTR.POK
file.  Then use the
QUIT command to
terminate the editor.
(If you using a
multitasking operating system, you can leave the editor open and return to it
later.)

Layout File
.CEL

ICED™
Layout
Editor

Binary Layout
Data
.POK

Figure 217: ADVTUTR.CEL



Advanced Tutorial: Simple Spacing Check

DRC User Manual 383

Creating the Rules File for a Simple Spacing Check on a Generated Layer

Let us assume that you are working with a
CMOS technology that forms transistor
gates where a layer with the name “poly”
crosses a layer with the name “active”.
You need to verify that every gate is at least
2 microns away from any contact hole
indicated by the cpoly layer.

To create the DRC rule set to check this
spacing rule, we first need to create an
ASCII text file to contain the rules.  Create
the file with any method, but be sure to
store it in the ADVTUTR directory.  If you
use DOS, you can use the following
command:

EDIT ADVTUTR.RUL

Type the lines shown in Figure 219.  Note that all layer names are in lowercase
and all DRC keywords
are in uppercase.  This
is to help you identify
which text represents
layer names.  If you
copy these lines for
another use later on, you
can change the layer
names to any
convenient strings, but
the DRC rule keywords
should remain as typed.
The unbolded text
represents comments.

DRC Rules File
.RUL

DRC Rules
Compiler

Compiled Rules
.BB

Minimum
Spacing
2µm

active

poly

cpoly

Figure 218: Poly contact to gate
spacing  rule.

ALL_SAFE

INPUT LAYER    4 active !Diffusion
INPUT LAYER    8 poly !Poly
INPUT LAYER    9 cpoly !Contact from Metal to Poly

OUTPUT LAYER    0  gate !Transistor gate

OUTPUT LAYER 101 gate_cpoly_sp_err
WIRE_WIDTH=0.3

gate = active AND poly

gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)

Figure 219: Initial contents of the
ADVTUTR.RUL file.



Advanced Tutorial: Simple Spacing Check

384 DRC User Manual

The first rule in a rule set is usually the choice between safe and dangerous
processing.  The “ALL SAFE” rule should be the first rule in any rule set unless
you need dangerous processing that creates shapes hierarchically.

The layer definitions come next.  All layers used in the rule set must be defined,
including the layers used to mark errors.  The WIRE_WIDTH rule sets the size
for all error wires created by the DRC.

The AND rule near the bottom of Figure 219 creates shapes on the scratch layer
“gate” which represents the overlap of the active and poly layers.  This scratch
layer must also be defined before it is used.  This scratch layer is defined with
the rule “OUTPUT LAYER 0 gate”.  It is a good idea to create scratch layers as
output layers with a layer number of 0.  This allows you change the layer to an
output layer in a later run by changing only the layer number in the OUTPUT
LAYER rule.  You may need to look at the shapes on a scratch layer to diagnose
problems with the rule set.  Any output layer with the layer number 0 will not
create shapes in the output.

The final rule in our rule set is the “gate_cpoly_sp_err = MIN_SPACING (gate,
cpoly, 2)” rule.  This is the rule that tests the spacing between the gate layer and
the cpoly contact layer.  If sides of a shape on the cpoly layer are closer than 2
microns away from sides of a shape on the gate layer, then error marks will be
created on the gate_cpoly_sp_err layer.  This layer is defined above with the
layer number 101.  It is best to use layer numbers not easily confused with
design layer numbers for error or temporary layers.  This allows you to easily
delete all imported shapes on these layers from your layout.

Save the rules file.  If you are using DOS, exit the editor.  (If you are using a
multitasking operating system, you can keep this window open to continue to
make edits to the file as we proceed through the tutorial.)

This rules file must be compiled by the DRC rules compiler.  The compiler
command line can be typed in the console window opened by the ICED desktop
icon, or stored in a batch file.  If you store the command line in a batch file, you
can execute the compiler by executing the batch file.  You can execute the batch
file without explicitly opening a separate console window.

Dangerous
processing
options are
explored on
page 430.



Advanced Tutorial: Simple Spacing Check

DRC User Manual 385

To create a batch file, create another text file containing the command line
below.  Add the PAUSE=ALWAYS option to the end of compiler command line
to keep the temporary console window open long enough to see any compiler
messages.  The console window will remain open until a key is pressed.  Save
the file with a name similar to DRCRULES.BAT.

Type the following command line:

D3RUL-NT23  ADVTUTR

D3RUL-NT.EXE is the name of the compiler program and the rules file is
ADVTUTR.RUL.  This program will create the compiled rules in a file named
ADVTUTR.BB.  We will use this file later when we run the DRC.

The console messages will be very brief.  The version of the compiler, along
with a copyright notice is followed by a report of how much memory is available
to the compiler.  When the compiler finds no errors, the next line is:

Done.

This indicates a successful compile.

If you type a mistake in a rules file, you will get an error message from the
compiler.  For example, if you mistype the layer name in the AND rule and use
“ppoly” instead of “poly”, you will see an error message similar to the following
in the console messages and in the rules compiler log file ADVTUTR.RLO:

Error in file Q:\ICED\ADVTUTR\ADVTUTR.RUL, line 11, column 19:
gate = active AND <ppoly>
Layer name expected.

The item enclosed in <> is the item in error.  Fix any typing errors in your rule
set and recompile until the rules file successfully compiles.

                                                     
23 The executable file for released versions for Windows is D3RUL-NT.EXE.
The executable file for Beta Windows versions is named D3RU-NTX.EXE.

If you do not
use a batch file
for the compiler
command line,
type the
command line
at the prompt in
the console
window opened
by the ICED
icon on your
desktop.



Advanced Tutorial: Simple Spacing Check

386 DRC User Manual

Executing the DRC

Now we are ready to run the DRC.  The DRC command line is:

DRC3-NT24  ADVTUTR  ADVTUTR  DRCOUT  SLOW

The program DRC3-NT.EXE will execute using the ADVTUTR.BB compiled
rules file and the ADVTUTR.POK binary layout data file.  All output file names
will begin with “DRCOUT”.  The SLOW keyword is required to make the
choice between quicker algorithms that may miss errors in some rare cases and
the slower but more accurate algorithms.

The end of the console messages should look similar to:

Done.

100% of chip done.
***No input skipped.
***No bad ICED polygons.
***Error count=8 (raw=20)
***Total output non-error output count=0

0 total figures output to non-error layers.
8 total figures output to error layers.

This indicates that the DRC has generated 8 error marks.  Most spacing errors
generate a pair of error marks.  When error marks on the same layer overlap,
they are merged into single shapes.  A single error in a subcell creates error
marks in the flattened main cell for each instance of the subcell.  After looking at
the error marks, we will see that these 8 error marks represent 2 errors in the
layout.  We will now cover how to locate these errors from the command file
generated by the DRC.

                                                     
24 The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.

Type the DRC
command line
in the console
window opened
by the ICED
desktop icon or
create a batch
file.  Add the
PAUSE
keyword to the
end of the DRC
command line if
you use a batch
file.

If you see an
error message
from the DRC
about “not
enough free
memory to run”,
try adding an
appropriate
HOG option to
the command
line.  See page
339.



Advanced Tutorial: Simple Spacing Check

DRC User Manual 387

Looking at the Output

To view the errors found by the DRC, we will use the ICED™ layout editor.
Launch the layout editor again to edit the ADVTUTR cell.  You can use the
same command we mentioned earlier:

ICWIN  ADVTUTR

To execute a command file generated by the DRC, you use the @file_name
command in the layout editor.  To execute the command file created by our
tutorial, type the following command in the editor:

@DRCOUT

This will execute the DRCOUT.CMD command file generated by the DRC.
(The name of this file was determined by the third parameter on the DRC
command line.)

The 8 error wires are now added to the cell.  Even with a simple layout, it can be
difficult to spot the error marks.  To select the error wires just added to the cell,
use the following editor command:

SELECT LAYER 101 ALL

Hopefully you can now make out where
some of the error wires are present.  Let
us zoom in on one of these spots by
typing the following command (or
selecting it from the menu):

VIEW BOX

Now select view box corners near the
points indicated in Figure 220.

ICED 
Layout Editor

DRC

Command
File

then
here

Click
here

Figure 220: Defining zoom view.



Advanced Tutorial: Simple Spacing Check

388 DRC User Manual

If it is still difficult to see the error marks, you can blank layers Metal1 and
Nwell as we have in Figure 221.

Note that the error wires wrap
around the edges of the shapes in
error.  This is because the indicated
parts of those sides also violate the
2 µm spacing rule.  The error wire
wraps around the edges of the
shape on the gate layer even though
this shape is not present in either
the cell or the data created by the
DRC.

If you did want the gate shapes
created in the cell, you could
change the gate layer number in the rule set to a non-zero number and re-execute
the DRC.  However, that would add extra data that is not required in this case to
see how to fix the spacing error.

At this scale, it is easy to see that the contact is ½µm too close to the edge of the
gate.  Now we need to move it ½µm to the left. However, if you try to select the
just the contact, you will not be successful.  This is because it is contained in a
nested cell.  To edit the cell with the error, the easiest method is to use the
PEDIT command.  Type the following at the command prompt:

PEDIT NEAR

Now click on the edge of the contact where it is not covered by the error wire so
there is no conflict.  You are now editing the nested cell ADVCKT.  Verify this
by noting the “ADVTUTR:ADVCKT” message at the top of the window.

Now you can select the contact with the following command:

SELECT IN

Use the
BLANK
command in the
layout editor to
hide the display
of certain
layers.

cpoly
poly
active

Figure 221: Error wires.



Advanced Tutorial: Simple Spacing Check

DRC User Manual 389

Using the cursor, define a box that intersects
an edge of the contact (as shown in Figure
222) and then make sure that only one
component is selected.  The message on the
prompt line should end with “Sel=1”.  Now
move the component and unselect it with the
commands:

MOVE  -.5,  0
UNSEL ALL

Now go back to the main cell, while saving
your change to the subcell, with the following
command:

EXIT

Now that you are back at the main cell, type (or select from the menu) the VIEW
ALL command to see the entire cell.  By zooming in on the other selected error
marks with the VIEW BOX command, you can see that editing the ADVCKT
cell has fixed 3 of the 4 errors marked on layer 101.

The cell on the lower right is a different cell and needs to be fixed separately.
Follow the same steps beginning on the previous page to fix the error in the
lower right cell, ADVCKTP.   

Once back at the main cell, you can delete the error marks.  If the same 8 error
wires are still selected, simply type the DELETE command.  If other shapes were
selected, or if you unselected the error wires, type the following commands:

UNSELECT ALL
SELECT LAYER 101 ALL
DELETE

Now export the design again for DRC checking with the following command:

DRC

cpoly
poly
active

then
here

Click
here

Figure 222: Selecting contact.

The
UNSELECT
ALL command
is used to insure
that no
components are
selected.



Advanced Tutorial: Simple Spacing Check

390 DRC User Manual

You can exit the layout editor session at this point.  Execute the DRC again with
the command line shown on page 386.  The end of the console messages should
now look similar to:

Done.

100% of chip done.
***No input skipped.
***No bad ICED polygons.
***No errors found
***Total output non-error output count=0

0 total figures output to non-error layers.
0 total figures output to error layers.

This indicates that no other violations of the contact to gate spacing design rule
are present in the layout.

Next we move on to a spacing rule that could be difficult to check without
generating a lot of false errors.



Advanced Tutorial: Directional Spacing Check

DRC User Manual 391

Directional Spacing Check

Subjects covered below

Avoiding false MINSPACING errors for overlap extension spacing

Refining MINSPACING rule with directional keywords

Reminder when modified rule set is not recompiled

Many spacing design rules
need a more complex check
than just a simple spacing
check from all shapes on
one layer to all shapes on
another layer.  Take the
case of a minimum spacing
check from a gate device
(all overlaps of active and
poly) to the edge of the
extension on the poly layer.

You need to prevent false
errors that will arise from a
simple spacing check.  You
do not want to mark
coincident edges of poly
and gate, perpendicular
edges, or edges of separate
poly shapes.

poly

active

Minimum
spacing 2µm

Figure 223: Minimum spacing rule for poly
extensions beyond gates.



Advanced Tutorial: Directional Spacing Check

392 DRC User Manual

A simple spacing check
will mark false errors for all
edges of all gate shapes
since all have edges that are
coincident with and per-
pendicular to poly shapes.
These false errors are
indicated in Figure 224.

A better test is to look only
outward from the gate shapes for edges of poly shapes.  This is accomplished by
adding the /OUT keyword after the gate layer name in the rule.  This will prevent
coincident edges from being marked.  Perpendicular edges will also not be
marked since the /OUT keyword automatically invokes the /~PERP option.

However, this type of test
can still mark a class of
false errors.  Unrelated
poly shapes that are too
close may be marked.
However, if you see no
false errors of the type in
Figure 225, simply adding
the /OUT keyword to the
rule as shown may be your
best solution to this type of
problem rule.

A better test is to add the
/IN keyword after the poly
layer to restrict potential
errors to those seen look-
ing in from the edge of
poly shapes.  This will
avoid the type of false er-
rors seen in Figure 225.
When both /OUT and /IN
are used, only the real error shown in Figure 226 is marked.

False perpendicular
error ≤ 2µm

Real error
≤ 2µm

False coincidental
error

Figure 224: MIN_SPACING (gate, poly, 2)

False error
≤ 2µm

Real error
≤ 2µm

Figure 225: MIN_SPACING (gate/OUT, poly, 2)

Gates with 0
poly extension
will not be
marked as errors
by either rule
with the /OUT
keyword.  We
cover how to
add this test on
page 397.

Figure 226:
MIN_SPACING (gate/OUT, poly/IN, 2)



Advanced Tutorial: Directional Spacing Check

DRC User Manual 393

Modifying the Rule Set

We need to add two lines to our rule set to add the poly extension rule.  The
actual spacing check is created by adding the following line to the end of the rule
set:

gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

where “gate_overlap_err” is the name of the layer where the error marks will be
created.  We need to define this layer at the end of the layer definition lines with
the following line:

OUTPUT LAYER  102  gate_overlap_err

Error marks will now be created on layer number 102 when the output from the
DRC is imported into your cell.

You rule set
should now look
like Figure 227.
Save the file.

Now let’s see
what happens if
you forget to re-
compile the rule
set before exe-
cuting the DRC.
Execute the DRC
now as shown on
page 386.

ALL_SAFE

INPUT LAYER    4 active !Diffusion
INPUT LAYER    8 poly !Poly
INPUT LAYER    9 cpoly !Contact from Metal to Poly

OUTPUT LAYER   0 gate !Transistor gate

OUTPUT LAYER  101 gate_cpoly_sp_err
OUTPUT LAYER  102 gate_overlap_err
WIRE_WIDTH=0.3

gate = active AND poly

gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)

gate_overlap_err =   MIN_SPACING (gate/OUT, poly/IN, 2)

Figure 227: New contents of the ADVTUTR.RUL file.



Advanced Tutorial: Directional Spacing Check

394 DRC User Manual

The console messages should end with something like the following:

Q:\ICED\ADVTUTR\ADVTUTR.BB was not made with the current
version of the file Q:\ICED\ADVTUTR\ADVTUTR.RUL.

Q:\ICED\ADVTUTR\ADVTUTR.RUL was created 1 Jan, 2001,
09:00:00

Q:\ICED\ADVTUTR\ADVTUTR.BB was generated with input file
Q:\ICED\ADVTUTR\ADVTUTR.RUL created 1 Jan 2001, 08:00:00

Do you want to proceed anyway<Y/[N]>?

You must reply to this prompt to proceed.  The square brackets around the N
imply that simply pressing <Enter> will indicate that you have chosen the default
reply of “NO”.  Press <Enter> now to terminate the DRC.

To run the modified rules, we first need to recompile the rule set.  Use the same
method used on page 385.

The DRC will remind you to recompile the rules when you forget, but it cannot
remind you when you have forgotten to recreate the binary layout data file.  Any
cell file may be have changed.  Checking the date stamp of the main cell is not
enough to insure that the layout has not changed.  You must be sure to always
recreate the binary layout data file with the DRC command from the main cell in
the layout editor any time you change the layout.

Now execute the DRC as shown on page 386. The end of the console messages
should now look similar to the following:

Done.

100% of chip done.
***No input skipped.
***No bad ICED polygons.
***No acute angles were output
***Error count=2 (raw=3)
***Total output non-error output count=0

0 total figures output to non-error layers.
2 total figures output to error layers.



Advanced Tutorial: Directional Spacing Check

DRC User Manual 395

Open the layout editor.  Import the DRC generated shapes with the following
command on the editor command prompt line:

@DRCOUT

To select the error shapes and see them clearly, type the following commands:

UNSELECT ALL
SELECT LAYER 102 ALL
VIEW SEL
VIEW OUT 6

You should now see two error marks
indicating an error as shown in Figure
228.

Once again, the error is contained in a
nested cell.  To edit the cell with the
error, use the PEDIT command.  Type
the following at the editor command
prompt:

PEDIT NEAR

Now click on an edge of the poly shape in error as shown in Figure 228.

Now you are editing the subcell ADVCKTP.  You need to select only one side of
the poly shape to stretch it rather than shift the entire shape.  Select the only the
end side by using the following command and selecting the correct side as shown
in Figure 229 on the next page.  The error wire will not interfere with selecting
the side since the error wires are contained in the main cell, not the cell you are
currently editing.

SELECT SIDE IN

Figure 228: Selecting shape in cell

If your error
wires extend
past the edges,
execute the
USE
WIRETYPE=0
command
before
importing the
DRC shapes.



Advanced Tutorial: Directional Spacing Check

396 DRC User Manual

You should see a single selection mark on the one side.  Now you can stretch the
poly shape by using the MOVE command.  First make sure that only one
component is selected.  The message on the prompt line should end with
“Sel=1”.  Now move the component and unselect it with the commands:

MOVE  .5,  0
UNSEL ALL

Now save your change to the subcell
and return to the main cell with the
following command:

EXIT

Now that you are back at the main cell,
delete the error marks.  If the same 2
error wires are still selected, simply
type the DELETE command.  If other
shapes were selected, or if you
unselected the error wires, type the
following commands:

UNSELECT ALL
SELECT LAYER 102 ALL
DELETE

Now export the design again for DRC checking with the following command:

DRC

Run the DRC as shown on page 386.  The console messages should now report
that no errors were found.

then
here

Click
here

Figure 229: Selecting end of poly
shape.



Advanced Tutorial: Directional Spacing Check

DRC User Manual 397

Finding Errors Involving Touching Shapes

Subjects covered below

Finding coincident edge errors not found by MINSPACING rule

TOUCHING rule

Counting shapes as errors that would not ordinarily be counted as errors

When you need to add
directional keywords to a
spacing rule as we did in
the last example, there is
an important side effect
of which you should be
aware.  Coincident edges
are excluded from con-
sideration when direc-
tional keywords are
added to a MINSPAC-
ING rule.

This is usually desirable.
However it can prevent
real spacing errors
formed by a 0 overlap
from being marked.

In the previous example
that tested the minimum spacing of poly extensions beyond gate shapes, you may
have noticed that one gate had no poly extension.  See Figure 230.  However this
gate was not marked as an error.  If all coincident poly-gate edges had been
marked, many false errors would have been marked.  How do we add a rule so
that only errors like the one above are found?

0 poly
extension
beyond
gate

Figure 230: Coincident poly-gate edge that does
form an error.



Advanced Tutorial: Directional Spacing Check

398 DRC User Manual

Several solutions are possible for this
particular example, including remov-
ing the directional keywords from the
MINSPACING rule, and then
filtering the error shapes to get rid of
the false errors.  However the best
solution is to find all gate shape edges
that do not have extensions of either
poly or active on every side.  This
way we also find gate shapes with no
active extension as shown in Figure
231.

The only way to test that every side of each gate shape has a non-zero
overlapping shape of either poly or active is a TOUCHING test.  We need to test
that no gate shape touches a layer formed by the inverse of the union of the poly
and active layers.

First let us add the lines that will create this inverse layer.  Add these lines to the
end of the rules file.

gate_overlaps = poly OR active
not_gate_overlaps = NOT gate_overlaps

Now add a TOUCHING rule to find gates that touch this inverse layer and copy
them to an error layer.  Add the following line to end of the rules file.

gate_no_overlap_err = gate TOUCHING not_gate_overlaps

Note that we stated above that the shapes should be copied to an error layer.  The
results of the TOUCHING rule are not automatically counted as errors.  If we do
not define the gate_no_overlap_err layer as an error layer, the shapes created on
it would not be added to the error count and could easily be missed.

We need to define the layer with the ERROR keyword in the OUTPUT LAYER
rule.

OUTPUT ERROR LAYER  103 gate_no_overlap_err

0 active
extension
beyond
gate

Figure 231: Coincident active-gate
edge that does form an error.



Advanced Tutorial: Directional Spacing Check

DRC User Manual 399

Our other error layers are the result of MINSPAING rules, and the result layers
of MINSPACING rules are automatically considered error layers.  You do not
need to add the ERROR keyword to these rules.  However the layers created by
TOUCHING rules have other uses than finding errors, so the DRC does not
automatically consider these layers as error layers.  Any layer may be defined as
an error layer, including the results of Boolean processing or size/shape rules
such as ASPECT_RATIO or IS_BOX.

The scratch layers also need to be defined.  Add the following lines:

OUTPUT LAYER 0 gate_overlaps
OUTPUT LAYER 0 not_gate_overlaps

ALL_SAFE

INPUT LAYER    4 active !Diffusion
INPUT LAYER    8 poly !Poly
INPUT LAYER    9 cpoly !Contact from Metal to Poly

OUTPUT LAYER   0 gate !Transistor gate
OUTPUT LAYER   0 gate_overlaps
OUTPUT LAYER   0 not_gate_overlaps

OUTPUT LAYER 101 gate_cpoly_sp_err
OUTPUT LAYER 102 gate_overlap_err
OUTPUT ERROR LAYER 103 gate_no_overlap_err
WIRE_WIDTH=0.3

gate = active AND poly

gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)

gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate_overlaps = poly OR active
not_gate_overlaps = NOT gate_overlaps
gate_no_overlap_err = gate TOUCHING not_gate_overlaps

Figure 232: New contents of the ADVTUTR.RUL file.



Advanced Tutorial: Directional Spacing Check

400 DRC User Manual

Save the rules file and compile it. Run the DRC.  The console messages should
indicate that 1 shape was created on an error layer.

Open the layout editor.  Import the DRC results once the editor is open.

@DRCOUT

To select the error shapes and see them clearly, type the following commands:

UNSELECT ALL
SELECT LAYER 103 ALL
VIEW SEL
VIEW OUT 6

You should now see the gate shown in Figure 230 on page 397 has been copied
to the error layer 103.  Delete the shape on layer 103 with the following
command:

DELETE

This time the shapes that form the transistor are not nested in a subcell.  You can
select the correct side of the poly shape with the following command:

SELECT LAYER POLY SIDE IN

You must specify the poly layer in the above
selection rule otherwise the shape on active would be
selected at the same time. Now move the poly edge to
the correct minimum overlap distance with the
command:

MOVE  2,  0

Now recreate the layout file for the next exercise with the DRC command and
exit the editor.  Rerun the DRC if you desire to see that the design is now error-
free.

then
here

Click
here

Figure 233: Selecting
end of poly shape.



Advanced Tutorial: Directional Spacing Check

DRC User Manual 401

Our rule set now contains
an adequate check for
minimum poly shape
extension beyond gate
shapes.  You may wonder
about the case where a poly
shape does not even extend
to the edge of the active
shape as shown in Figure
234.

While this type of error
will not be found by this DRC rule set, it will still be found.  Any program that
recognizes devices and circuits to compare the layout to a schematic will short
the source of the gate to the drain and will report the error.

However, such circuit discrepancies can be difficult to locate.  If you prefer to
find these types of errors with the DRC, you can add the following rules (and the
appropriate layer definitions) to the rule set.

source_drain = active AND NOT poly
bad_gate = gate NOT TOUCHING 2 source_drain

This will copy to the bad_gate layer all gate shapes that do not touch two
separate source/drain shapes.  Be sure to define the bad_gate layer as an error
layer.

Figure 234: Invalid gate



Advanced Tutorial: Electrical Connections

402 DRC User Manual

Tests That Involve Electrical Connections

Subjects covered below

Defining electrical connections

Masking input layers into 2 different layers with the TOUCHING rule

Adding /~CONN to MINSPACING rules

Verifying wells with the STAMP rule

Many spacing rules involve electrical connections.  For example, let us suppose
that metal2 shapes that are part of a pad construct must be at least 30 µm away
from unconnected shapes on the same layer.  (In this case, unconnected indicates
an absence of an electrical connection.)

If we tested that all metal2
shapes must be at least 30
µm apart, probably most
of the metal2 shapes in a
typical chip would be
marked as false errors.
We must identify the
metal2 shapes that are in
pad constructs and treat
them differently from the
rest of the layer.  We must
also avoid marking as
false errors metal2 shapes
that are close to the pad,
but are electrically con-
nected.

Metal1

Metal2 in

Via

Real
spacing
error

False
error

Glass
layer

Figure 235: Pad and metal wiring



Advanced Tutorial: Electrical Connections

DRC User Manual 403

Masking the Metal2 Layer

We can use various methods to differentiate the metal2_in layer.  If your pad
constructs are contained in separate cells you could use the INCELL keyword in
the INPUT LAYER rule to separate the metal2_in layer.  However, let us assume
that the pad shapes are either in the main cell, or in cells with many different
names.  Then the easiest method to find pad metal is to use proximity to the
overglass layer.

We could use a simple Boolean rule such as the following, but if the glass layer
has a different outline than the metal layer, the entire metal2 shape that forms the
pad will not be moved to the pad_metal2 layer, only that portion that is covered
by the glass layer.  (See Figure 235.)  The spacing rules will measure to this
boundary rather than the larger metal2 shape that really represents the pad.

pad_metal2 = metal2_in AND glass  !will identify only parts of pad

A better method is to consider all metal2 that touches a glass shape as
pad_metal2.  For this we need a TOUCHING rule.  Add the following rules
before the first MIN_SPACING rule.

pad_metal2 = metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

Now the metal2_in layer will be separated into two non-overlapping layers:
metal2 and pad_metal2.  The entire metal2_in shape that comprises the pad
construct will be moved to layer pad_metal2.

We will need to define the input layers for this processing.  Add the following
lines to the end of the INPUT LAYER rules:

INPUT LAYER 11 metal1 !First Metal
INPUT LAYER 12 via !Contact from Metal1 to Metal2
INPUT LAYER 13 metal2_in !Second Metal
INPUT LAYER 16 glass !Pad OverGlass layer

The IS_BOX
rule with exact
dimensions
could also be
used to find pad
metal.  However
touching shapes
on the same
layer are
merged by the
DRC during
preprocessing,
so some pads
may not be truly
rectangular and
will not be
collected by the
IS_BOX rule.



Advanced Tutorial: Electrical Connections

404 DRC User Manual

We also need to define the new scratch layers and the new error layer.  Add the
following lines to appropriate places:

OUTPUT LAYER 0 metal2
OUTPUT LAYER 0 pad_metal2

OUTPUT ERROR LAYER  104 m2_pad_spacing_err

Adding Electrical Connection Rules

Electrical connections are defined with the CONNECT rule.  This rule can
connect two layers by a contact or via layer, or directly connect two layers.  We
need both forms to implement the electrical connections for this test.

CONNECT metal2 metal1 BY via
CONNECT pad_metal2 metal1 BY via
CONNECT metal2 pad_metal2

The last 2 CONNECT rules are important.  Whenever you mask a layer into two
separate layers, you must remember to account for both new layers in the
CONNECT rules.  Duplicate the CONNECT rules involving contacts or vias.
Add a CONNECT rule to connect the two layers together.

The placement of CONNECT rules is
important.  They must occur after the
layer manipulation rules, because layer
manipulation may invalidate the
previous electrical connections.  The
CONNECT rules must occur before
any MINSPACING rules since the
electrical connections may invalidate
the results of previous spacing rules
that checked connectivity.  This rule order is enforced by the compiler.  The
error messages can vary based on the contents of the rule set, so just be sure to
divide your rule set as shown in Figure 236.

In our case, add the CONNECT rules just before the first MIN_SPACING rule.

If you use the
NLE program to
extract the
circuit data
from the layout,
you can create
the CONNECT
rules in a
separate file and
include the file
in both the DRC
and NLE rule
sets with the
INCLUDE rule.
This insures that
the circuit
recognition
rules are
identical and up
to date for both
programs.

Safe processing directive
Layer definition rules
Layer manipulation
Electrical connections
Spacing and other verification rules

Figure 236: Rule set order



Advanced Tutorial: Electrical Connections

DRC User Manual 405

Finally, we need to add the MIN_SPACING rule that tests the pad spacing.  Add
the following rule directly after the CONNECT rules:

m2_pad_spacing_err = MINSPACING(metal2, pad_metal2, 30 /~CONN)

The /~CONN option will prevent the DRC from marking errors on shapes that
are electrically connected even if they are closer than 30 microns.  All
unconnected shapes will be marked as errors if they are too close.

The entire rule set now should look like Figure 237 on the next page.

You will probably have other spacing rules that involve the M2 layer.  Be careful
to test both the metal2 and pad_metal2 layers for each of these rules, just as you
had to add CONNECT rules for both layers.

For example, a test for metal2 overlap of the via layer should test both metal2
layers.

m2_via_overlaperr = MINSPACING(via/OUT, metal2/IN, 1)
padm2_via_overlaperr = MINSPACING(via/OUT, pad_metal2/IN, 1)

However, in this case, since no electrical connections are involved, you can test
both layers with the original undifferentiated layer.

m2_via_overlaperr = MINSPACING(via/OUT, metal2_in/IN, 1)

If electrical connections were involved, you would have to test both layers
individually since electrical connections are not defined for the metal2_in layer.
No shapes on metal2_in are electrically connected to any other shape.



Advanced Tutorial: Electrical Connections

406 DRC User Manual

ALL_SAFE

INPUT LAYER    4 active !Diffusion
INPUT LAYER    8 poly !Poly
INPUT LAYER    9 cpoly !Contact from Metal to Poly
INPUT LAYER   11 metal1 !First Metal
INPUT LAYER   12 via !Contact from Metal 1 to Metal 2
INPUT LAYER   13 metal2_in !Second Metal
INPUT LAYER   16 glass !Pad OverGlass layer

OUTPUT LAYER   0 gate !Transistor gate
OUTPUT LAYER   0 gate_overlaps
OUTPUT LAYER   0 not_gate_overlaps
OUTPUT LAYER   0 metal2
OUTPUT LAYER   0 pad_metal2

OUTPUT LAYER 101 gate_cpoly_sp_err
OUTPUT LAYER 102 gate_overlap_err
OUTPUT ERROR LAYER  103 gate_no_overlap_err
OUTPUT ERROR LAYER  104 m2_pad_spacing_err
WIRE_WIDTH=0.3

gate = active AND poly

pad_metal2 =metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metal1 BY via
CONNECT pad_metal2 metal1 BY via
CONNECT metal2 pad_metal2

m2_pad_spacing_err = MIN_SPACING(metal2, pad_metal2, 30 /~CONN)
gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)
gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate_overlaps = poly OR active
not_gate_overlaps = NOT gate_overlaps
gate_no_overlap_err = gate TOUCHING not_gate_overlaps

Figure 237: New contents of the ADVTUTR.RUL file.



Advanced Tutorial: Electrical Connections

DRC User Manual 407

Looking at the Pad Spacing Error

Save the rules file and compile it.  We do not need to regenerate the layout file
since the layout has not changed.  Run the DRC.  The console messages should
indicate that 2 shapes were created on an error layer.

Open the layout editor and import the DRC results.

@DRCOUT

The error marks should
look similar to Figure 238.
Note that the DRC marked
only the true error where
the metal2 that forms the
ground wire comes too
close to the pad.  The false
error of the connected
metal2 wire on the right
did not get marked.

Select the end of the
metal2 ground wire in error
where it is marked with the
error shape.  This wire is in
the main cell.  Now shift the end of the wire above the extent of the error marks.
Delete the error marks on layer 104, and regenerate the layout file with the DRC
command.  Exit the cell to save your changes.

Adding the Rest of the Good Conductor Electrical Connection Rules

Let us assume that we have many rules that depend on electrical connections.
We need to define the electrical connections for all conductive layers on the
chip.  In addition, we need to define the connectivity for poor conductor layers,
such as wells.  We will do a poor conductor layer in a separate step beginning on
page 411.

Figure 238: Error marks for pad rule

See page 400 to
learn how to
select a shape
on a certain
layer even when
it overlaps
shapes on other
layers.



Advanced Tutorial: Electrical Connections

408 DRC User Manual

The entire active layer is not a conductive layer.  We must mask it and create the
source/drain layer by removing the transistor gates before we can use it in the
connect rules.  Add the following rule directly below the “gate = active AND
poly” rule.

srcdrn =   active AND NOT poly

We need to define this new scratch layer with the following rule:

OUTPUT LAYER 0 srcdrn !Source/Drain layer with gates removed

We need to add a new input layer that forms the connections between the active
layer and the metal1 layer.

INPUT LAYER 10 cactive !Contact from Metal 1 to Diffusion

Now we are ready for the additional CONNECT rules.

CONNECT srcdrn metal1 BY cactive
CONNECT poly metal1 BY cpoly

The entire rule set now should look like Figure 239 on the next page.



Advanced Tutorial: Electrical Connections

DRC User Manual 409

ALL_SAFE

INPUT LAYER    4 active !Diffusion
INPUT LAYER    8 poly !Poly
INPUT LAYER    9 cpoly !Contact from Metal to Poly
INPUT LAYER   10 cactive !Contact from Metal to Diffusion
INPUT LAYER   11 metal1 !First Metal
INPUT LAYER   12 via !Contact from Metal 1 to Metal 2
INPUT LAYER   13 metal2_in !Second Metal
INPUT LAYER   16 glass !Pad OverGlass layer

OUTPUT LAYER   0 gate !Transistor gate
OUTPUT LAYER   0 srcdrn !Source/Drain layer with gates removed
OUTPUT LAYER   0 gate_overlaps
OUTPUT LAYER   0 not_gate_overlaps
OUTPUT LAYER   0 metal2
OUTPUT LAYER   0 pad_metal2

OUTPUT LAYER 101 gate_cpoly_sp_err
OUTPUT LAYER 102 gate_overlap_err
OUTPUT ERROR LAYER  103 gate_no_overlap_err
OUTPUT ERROR LAYER  104 m2_pad_spacing_err
WIRE_WIDTH=0.3

gate = active AND poly
srcdrn = active AND NOT poly

pad_metal2 =metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metal1 BY via
CONNECT pad_metal2 metal1 BY via
CONNECT metal2 pad_metal2
CONNECT srcdrn metal1 BY cactive
CONNECT poly metal1 BY cpoly

m2_pad_spacing_err = MIN_SPACING(metal2, pad_metal2, 30 /~CONN)
gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)
gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate_overlaps = poly OR active
not_gate_overlaps = NOT gate_overlaps
gate_no_overlap_err = gate TOUCHING not_gate_overlaps

Figure 239: New contents of the ADVTUTR.RUL file.



Advanced Tutorial: Electrical Connections

410 DRC User Manual

Now we can add other verification rules that involve connectivity.  Let us
assume that the minimum distance from a poly contact to an unconnected poly
shape is 4 microns.  (See Figure 240.)  If we tested the spacing between all
contacts and the poly layer, almost every contact would be marked as a false
error since all are covered by poly.  We need to add the /~CONN option to the
MIN_SPACING rule to avoid all of these false errors.  Add the following with
the other spacing rules:

poly_unconn_contact_err = MINSPACING(poly, cpoly, 4 /~CONN)

We also need to define this new error layer with the other error layers.

OUTPUT ERROR LAYER  105 poly_unconn_contact_err

Now save the file and compile it.  Note that at the end of the console messages,
the following comment is present:

Connected layers form
one group

This message is important.  If you see a
different message stating that 2 or more
separate groups have been formed,
check the log file (DRCOUT.DLO in
our case) to see details on each group to
help figure out if a CONNECT rule is
missing or mistyped.

Run the DRC.  The console messages
should report that 2 error marks have
been created.  When you open the
layout editor and import the DRC
results, you should see that only the top
contact shown in Figure 240 has been
marked.  Move the top contact (in the
main cell) up 0.5 units to fix the error.

metal1

poly
cpoly

active

Real
spacing
error

False
error

Figure 240: Poly contacts

See an example
of an
incomplete rule
set that creates 2
groups on 413.



Advanced Tutorial: Electrical Connections

DRC User Manual 411

The bottom contacts are not in error since they are connected electrically to the
near pieces of poly wire.

NWELL Connections and Verification

Let us suppose that some of your verification rules involve testing the spacing
between unconnected NWELL shapes.  To test this, we need to extend the
definition of electrical connections to include wells.

Well layers represent poor conductors, rather than good conductor layers such as
metal or poly.  Good conductors can connect to them, but connections should not
pass through them.  We can demonstrate the importance of verifying well
connections with Figure 241.  Let us
assume that the GND wire on the right
connects to the metal GND bus and
from there to a pad on the chip.
However, the GND wire on the left does
not connect to the bus.  You meant to
connect these two wires, but a gap exists
by accident.  The ground wire on the left
is not really electrically connected to the
wire on the right.  If you used only
CONNECT rules to define electrical
connections to wells, then the problem
would not be found.

This is mainly a circuit recognition problem, but if you use CONNECT rules to
define the electrical connections for well shapes, you may prevent real spacing
verification errors involving electrical connections from being found.  False
errors may be generated.  It is best to find electrical shorts or opens to well
shapes early in the design process, rather than waiting for circuit recognition and
comparison (LVS) tests.

The STAMP rule is the best method for defining electrical connections to poor
conductor layers.  The STAMP rule allows connections to poor conductors, but
does not allow connections to pass through them to other nodes.  The well in

CONTACTS

PDIFF

M1

WELL

Figure 241: Open on GND node
that connects only through WELL
layer.



Advanced Tutorial: Electrical Connections

412 DRC User Manual

Figure 241 would be marked as an overstamped well, i.e. a poor conductor that
connects to two different electrical nodes.

Let us assume that the connections to
the nwell layer in our example are
formed as follows:

A shape on the active layer that
is covered by a shape on the
nselect layer and a shape on the
nwell layer forms a shape on the
nplus layer.  The nplus layer
connects the nwell shape to the
active shape.

To generate the nplus layer, add the
following lines just below the “scrdrn =
active AND NOT poly” rule:

welldiff = srcdrn AND nwell
nplus = welldiff AND nselect

These new input layers and scratch layers must be defined as shown below:

INPUT LAYER    3 nwell_in !As-drawn Nwell
INPUT LAYER    7 nselect !N-select

OUTPUT LAYER   0 nplus !N+
OUTPUT LAYER   0 welldiff !Nwell diffusion
OUTPUT LAYER   0 nwell !Generated Nwell

In a later lesson, we will be generating the nwell layer for export based on the as-
drawn nwell layer and some other layer interaction.  For now, we can test these
rules using the nwell layer as it is drawn.  So add the following line just after the
layer definition rules, above all other layer processing rules:

nwell = nwell_in !temporary nwell layer generation

nselect

nwell

active

Figure 242: Nwell contact



Advanced Tutorial: Electrical Connections

DRC User Manual 413

The rule to form the electrical connections follows.  Add this rule just after the
CONNECT rules:

STAMP nwell BY nplus MULTI=nwell_shorts NONE=nwell_opens

This STAMP rule can create shapes on two new error layers: nwell_shorts and
nwell_opens.  Define these new error layers near the other error layer
definitions.

OUTPUT ERROR LAYER  106 nwell_shorts
OUTPUT ERROR LAYER  107 nwell_opens

The nwell_shorts layer will contain copies of all nwell shapes that connect to
two or more separate electrical nodes.  The nwell_opens layer will contain
copies of all nwell shapes that have no connection to any other electrical node,
i.e. unconnected wells.

If we saved the rules and compiled them at this point, we would have a problem.
The rules compiler would post the following message to the console:

*******WARNING**Connected layers form 2 groups.

To determine the source of this problem, we would need to look at the rules
compiler log file.  It would contain the following lines near the end of the file:

*******WARNING**Connected layers form 2 groups.
Connection group 1:
    POLY[8]
    CPOLY[9]
    CACTIVE[10]
    METAL1[11]
    VIA[12]
    SRCDRN
    METAL2
    PAD_METAL2

Connection group 2:
    NPLUS
    NWELL



Advanced Tutorial: Electrical Connections

414 DRC User Manual

Looking at the two lists above, it is easy to see that we forgot to connect the
nplus layer to the rest of the connected layers.  The nplus layer connects to
srcdrn layer.  It can be easy to forget that even though one layer is generated
from another, the electrical connections are not inherited in any fashion.

The compiler message is just a warning.  We could go ahead and run the DRC
with the compiled rules that generated the warning.  If we did, every nwell shape
would be copied to the nwell_opens layer.

To solve the problem, we need one more CONNECT rule.  Add the following
rule just above the STAMP rule:

CONNECT srcdrn nplus

Now we can add a rule to test the spacing of unconnected well shapes.  Let us
assume that well shapes that are not electrically connected to each other must be
at least 10 microns apart.  The following rule will test this without marking false
errors for well shapes that are electrically connected.

nwell_sp_err = MINSPACING(nwell, nwell, 10 /~CONN)

The layer definition rule for this new error layer must be included.

OUTPUT ERROR LAYER  108 nwell_sp_err

Now the entire rule set looks as follows:



Advanced Tutorial: Electrical Connections

DRC User Manual 415

ALL_SAFE

INPUT LAYER    3 nwell_in !As-drawn Nwell
INPUT LAYER    4 active !Diffusion
INPUT LAYER    7 nselect !N-select
INPUT LAYER    8 poly !Poly
INPUT LAYER    9 cpoly !Contact from Metal to Poly
INPUT LAYER   10 cactive !Contact from Metal to Diffusion
INPUT LAYER   11 metal1 !First Metal
INPUT LAYER   12 via !Contact from Metal 1 to Metal 2
INPUT LAYER   13 metal2_in !Second Metal
INPUT LAYER   16 glass !Pad OverGlass layer

OUTPUT LAYER   0 gate !Transistor gate
OUTPUT LAYER   0 srcdrn !Source/Drain layer with gates removed
OUTPUT LAYER   0 gate_overlaps
OUTPUT LAYER   0 not_gate_overlaps
OUTPUT LAYER   0 metal2
OUTPUT LAYER   0 pad_metal2
OUTPUT LAYER   0 nplus !N+
OUTPUT LAYER   0 welldiff !Nwell diffusion
OUTPUT LAYER   0 nwell !Generated Nwell

OUTPUT LAYER 101 gate_cpoly_sp_err
OUTPUT LAYER 102 gate_overlap_err
OUTPUT ERROR LAYER  103 gate_no_overlap_err
OUTPUT ERROR LAYER  104 m2_pad_spacing_err
OUTPUT ERROR LAYER  105 poly_unconn_contact_err
OUTPUT ERROR LAYER  106 nwell_shorts
OUTPUT ERROR LAYER  107 nwell_opens
OUTPUT ERROR LAYER  108 nwell_sp_err
WIRE_WIDTH=0.3



Advanced Tutorial: Electrical Connections

416 DRC User Manual

nwell = nwell_in

gate = active AND poly
srcdrn = active AND NOT poly
welldiff = srcdrn AND nwell
nplus = welldiff AND nselect

pad_metal2 = metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metal1 BY via
CONNECT pad_metal2 metal1 BY via
CONNECT metal2 pad_metal2
CONNECT srcdrn metal1 BY cactive
CONNECT poly metal1 BY cpoly
CONNECT srcdrn nplus
STAMP      nwell BY nplus MULTI=nwell_shorts NONE=nwell_opens

m2_pad_spacing_err = MINSPACING(metal2, pad_metal2, 30 /~CONN)

nwell_sp_err = MINSPACING(nwell, nwell, 10 /~CONN)
gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)
poly_unconn_contact_err = MIN_SPACING(poly, cpoly, 4 /~CONN)
gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate_overlaps = poly OR active
not_gate_overlaps = NOT gate_overlaps
gate_no_overlap_err = gate TOUCHING not_gate_overlaps

Figure 243: New contents of the ADVTUTR.RUL file.

Compile the rule set and run the DRC.  The DRC should report that 4 error
shapes have been created.  If you open the log file you can see what layers these
error marks were created on:

1 figures output to layer NWELL_OPENS[107]
3 figures output to layer NWELL_SP_ERR[108]
4 total figures output to error layers.



Advanced Tutorial: Electrical Connections

DRC User Manual 417

Open the layout editor.  When you
import the results of the DRC with the
@DRCOUT command, the results
should look similar to Figure 244.  Note
that the 3 shapes on layer 108 mark two
pairs of unconnected wells that are
closer than 10 microns.  At first glance
you may think that the top pair of wells
is marked in error.  However, once you
see that the well on the left has been
marked on layer 107 as an unconnected
well, you can see that the two wells are
really unconnected.  No well contact
was added to connect the ground wire to
the well.

This problem must be fixed by adding
shapes on layers active, cact, and nselect
to the upper left of the nwell shape under the ground wire.  You can copy the 3
shapes that form the nwell contact from the guard ring structure below.  Do this
now.

The lower nwell in Figure 244 could be meant to connect to ground as well.  It is
not marked as an unconnected well since the contact is present.  The STAMP
rule tests only that each well is electrically connected to exactly one other node.
It does not test that each well is connected to the right node.  This type of error
needs to be found by the LVS.

Let us assume that the well is meant to connect to a different node.  We will fix
the problem by shifting both lower cells further away from the other wells.
Select the two lower cells and shift them down with the MOVE command.

Recreate the binary layout data file with the DRC command and rerun the DRC
to insure that the problems are fixed.

Real nwell
spacing error

False error?

Nwell
marked
on layer
107

Figure 244: Generated nwell shapes
cut at panel boundaries.



Advanced Tutorial: Creation of Shapes for Export

418 DRC User Manual

Creation of Shapes for Export

Subjects covered below

Generation of mask layer for export back into cell

Fixing acute angles in generated layer

Finding bad polygons in input layer

Use of the subcell error command file

Sometimes a required mask layer may be difficult to create by hand in the layout
editor, but easy to create from other layers with a few simple rules in the DRC.
Perhaps a design rule change after much of a chip has been laid out requires
simple but widespread changes to a layer.

The process to generate a layer that represents a real mask layer is the same as
that for any other output layer.  The layer must be defined with a proper layer
number.

If you are generating a layer that will replace an old layer, be careful to use an
output layer number different from the old layer number in the cell. Keep the
layers separate to allow for changes in the layer generation until you have used
the new layer extensively.  You can swap layer numbers later, or change the
Stream or CIF definitions to use the new layer number.

Even if you want to wait until the design is almost finished to import the final
version of the new layer, it is best to create the layer in your regular rule set so
that any design rule problems between it and the other layers are found early on.



Advanced Tutorial: Creation of Shapes for Export

DRC User Manual 419

Nwell Layer Generation

For our tutorial, let us say that you discover that an extension of nwell beyond
active layer shapes improves reliability.  You want to change the nwell layer so
that there is a 2.5µm extension of nwell beyond all active layer shapes.
However, most of your next chip is already laid out.  To fix all nwell shapes by
hand might take a considerable amount of time.

You can accomplish the same task with the DRC in a matter of hours.
Moreover, you can insure that the new layer is created without design errors, or
automatically choose the best option when the optimal design rules cannot be
followed in a particularly dense area.

Let us assume that our design includes pwells in addition to nwells.  It is critical
that the wells do not overlap.  This is more important than the extension of the
nwell layer beyond the active layer.  So we will write the rules to insure that the
new nwell layer never overlaps the pwell layer.

First we need to expand the nwell layer to insure the 2.5µm extension beyond the
active layer.  We do not want to involve any active layer shapes that are not
covered by nwell, such as those covered by pwell.  We want to use only p_active
shapes, those active shapes covered by nwell, for this processing.

Replace the “nwell = nwell_in” rule with the following rules:

p_active = active AND nwell_in
p_active_bloat = BLOAT (p_active, 2.5)
nwell = nwell_in OR p_active_bloat
nwell = nwell AND NOT pwell_in

This is the first time we have used the pwell layer, so we must now define it in
the list of input layers.

INPUT LAYER 2 pwell_in !As-drawn Pwell



Advanced Tutorial: Creation of Shapes for Export

420 DRC User Manual

We need to define the new scratch layers.

OUTPUT LAYER 0 p_active
OUTPUT LAYER 0 p_active_bloat

We also need to change the nwell layer number in the output layer definition to a
non-zero number so that shapes on the layer are created in the output file.  So the
“OUTPUT LAYER 0 nwell” rule gets changed to:

OUTPUT LAYER   61 nwell !Generated Nwell

So far, we have not used panel rules to control how the layout is divided into
chunks for more efficient processing.  These rules are not really necessary in our
testcase because the default processing is usually adequate.  However, a typical
chip will be divided into many panels and we want to force those panel
boundaries to be in a specific place in our testcase to highlight a possible
problem with generated layers.

Add the following lines directly after the ALL_SAFE rule near the top of the
file:

PANELX =50
PANELY =50

The entire rule set should now look like the one shown in Figure 245.



Advanced Tutorial: Creation of Shapes for Export

DRC User Manual 421

ALL_SAFE

PANELX =50
PANELY =50

INPUT LAYER    2 pwell_in !As-drawn Pwell
INPUT LAYER    3 nwell_in !As-drawn Nwell
INPUT LAYER    4 active !Diffusion
INPUT LAYER    7 nselect !N-select
INPUT LAYER    8 poly !Poly
INPUT LAYER    9 cpoly !Contact from Metal to Poly
INPUT LAYER   10 cactive !Contact from Metal to Diffusion
INPUT LAYER   11 metal1 !First Metal
INPUT LAYER   12 via !Contact from Metal 1 to Metal 2
INPUT LAYER   13 metal2_in !Second Metal
INPUT LAYER   16 glass !Pad OverGlass layer

OUTPUT LAYER   0 gate !Transistor gate
OUTPUT LAYER   0 srcdrn !Source/Drain layer with gates removed
OUTPUT LAYER   0 gate_overlaps
OUTPUT LAYER   0 not_gate_overlaps
OUTPUT LAYER   0 metal2
OUTPUT LAYER   0 pad_metal2
OUTPUT LAYER   0 nplus !N+
OUTPUT LAYER   0 welldiff !Nwell diffusion
OUTPUT LAYER   0 p_active
OUTPUT LAYER   0 p_active_bloat
OUTPUT LAYER   61 nwell !Generated Nwell

OUTPUT LAYER        101 gate_cpoly_sp_err
OUTPUT LAYER        102 gate_overlap_err
OUTPUT ERROR LAYER  103 gate_no_overlap_err
OUTPUT ERROR LAYER  104 m2_pad_spacing_err
OUTPUT ERROR LAYER  105 poly_unconn_contact_err
OUTPUT ERROR LAYER  106 nwell_shorts
OUTPUT ERROR LAYER  107 nwell_opens
OUTPUT ERROR LAYER  108 nwell_sp_err
WIRE_WIDTH=0.3



Advanced Tutorial: Creation of Shapes for Export

422 DRC User Manual

p_active = active AND nwell_in
p_active_bloat = BLOAT (p_active, 2.5)
nwell = nwell_in OR p_active_bloat
nwell = nwell AND NOT pwell_in

gate = active AND poly
srcdrn = active AND NOT poly
welldiff = srcdrn AND nwell
nplus = welldiff AND nselect

pad_metal2 = metal2_in TOUCHING glass
metal2 = metal2_in AND NOT pad_metal2

CONNECT metal2 metal1 BY via
CONNECT pad_metal2 metal1 BY via
CONNECT metal2 pad_metal2
CONNECT srcdrn metal1 BY cactive
CONNECT poly metal1 BY cpoly
CONNECT srcdrn nplus
STAMP   nwell BY nplus MULTI=nwell_shorts NONE=nwell_opens

m2_pad_spacing_err = MINSPACING(metal2, pad_metal2, 30 /~CONN)

nwell_sp_err = MINSPACING(nwell, nwell, 10 /~CONN)
gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)
poly_unconn_contact_err = MIN_SPACING(poly, cpoly, 4 /~CONN)
gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate_overlaps = poly OR active
not_gate_overlaps = NOT gate_overlaps
gate_no_overlap_err = gate TOUCHING not_gate_overlaps

Figure 245: New contents of the ADVTUTR.RUL file.

Now save the rule set and compile it.  Run the DRC.



Advanced Tutorial: Creation of Shapes for Export

DRC User Manual 423

The console messages should now look as follows:

1 bad ICED polygon
***2 acute angles were output
***No Errors found
***Total output non-error output count=20

20 total figures output to non-error layers.
0 total figures output to error layers.

We will cover what to do about the bad
polygon later on page 426.  We will
investigate the acute angles below. The
20 non-error output shapes are the
shapes generated for the new nwell
layer.  All of the large nwell shapes
generated on layer 61 have been cut at
panel boundaries as shown in Figure
246.

When you look at the layout, you can
see how the original nwell shapes have
been slightly expanded around the active
layer.  The nwell in the middle has had
some material removed near the upper
right corner to avoid an overlap with the
pwell layer.

Finding the Acute Angles

What causes the acute angle warning when no acute angles were in the input
data?  Since the guard ring nwell shape has been cut at panel boundaries, the
skewed sides near the top have resulted in acute angles in the top two polygons.
These types of problems can happen whenever shapes with skewed sides are in
the input data used to generate a layer.  Sometimes a panel boundary cuts such a
shape and the acute angles arise.

Acute angles are
generated here.

Overlap with
pwell avoided
automatically.

Figure 246: Generated nwell shapes
cut at panel boundaries.



Advanced Tutorial: Creation of Shapes for Export

424 DRC User Manual

Acute angles can be a problem for software that reads mask set data.  This can be
the case even when the acute angle would disappear when touching shapes are
merged.  This type of problem is easily fixed in the layout editor.  If you will be
generating the layer many times as your design progresses, you may choose to
ignore these warnings until you are ready to finalize the design and use the
generated layer as a mask layer.

The log file will by default list a detailed error message for every acute angle on
an output layer.  Look at the log file now with your favorite text editor.  The log
file name is DRCOUT.DLO.

Near the middle of the log file are the following warning messages:

An acute angle was formed on output of ICED
layer 61 at (-66.364, -50)
The acute angle(s) will be marked on layer 99
An acute angle was formed on output of ICED
layer 61 at (-38.636, -50)

The error marks created on layer 99
are included with the other shapes
created by the DRC.  Execute the
DRC command file with the
@DRCOUT command in the layout
editor now.

The acute angles will be marked
with error wires on layer 99 as
shown in Figure 247.  We can
easily merge the shapes generated
on the new nwell layer (layer
number 61) to remove the acute
angles.  However, remember that
the acute angles will be generated
every time the DRC is run and you
replace layer 61.  You may want to wait to fix the acute angles on layer 61 until
the design is complete and you begin using layer 61 as your final nwell layer.

If you want to
suppress these
acute angle
warnings, add
the
NO_WARN-
_ACUTE rule
to your rule set.
Be sure to
remove this rule
from the rule set
used on your
final design.

active
old nwell
new nwell

Wires
created on
layer 99
to mark
acute
angles

Figure 247: Acute angle marks.



Advanced Tutorial: Creation of Shapes for Export

DRC User Manual 425

To fix the acute angle on the right,
type the following commands,
digitizing the select box as shown
in Figure 248 during the SELECT
command:

UNSELECT ALL
SELECT LAYER 61 IN
MERGE POLYGONS

To fix the acute angle on the left,
repeat the same three commands,
digitizing the select box as shown
in Figure 249 during the SELECT
command.

There are now no acute angles.
However, they will be recreated in
the next DRC run unless we
change the design to use layer 61
as the real nwell layer and change the rule set to remove the nwell generation
rules and change the layer number in the nwell layer definition rule.  We will not
do this at this time.

The point at which to import DRC generated layers as the real mask layers is
dependant on the state of your design and your comfort level with the rules that
generate the mask layer.

For now we will continue to generate layer 61 in successive runs.  So we need to
delete this version of the new nwell layer (as well as the acute angle marks on
layer 99) with the following commands:

UNSELECT ALL
SELECT LAYER 61+99 ALL
DELETE

Regenerate the layout file for the next DRC run with the DRC command.  Exit
the layout editor.

then
here

Click
here

Figure 248: Selecting two polygons for
merge.

then
here

Click
here

Figure 249: Selecting other two polygons
for merge.



Advanced Tutorial: Creation of Shapes for Export

426 DRC User Manual

It is best to have mask layer generation rules in a rule set from an early stage to
verify design rules with what will be the real mask layer.  In your own designs
you can choose whether to ignore the acute angle warnings until the design is
complete, or to add the NO_WARN_ACUTE rule to the rule set used for
preliminary checks so that no warnings need to be ignored.  For this tutorial, add
this rule now near the beginning of the rule set.

NO_WARN_ACUTE

Finding the Bad Polygon

Remember that the DRC console messages shown on page 423 warned us about
a bad polygon.  Bad polygons are a particular class of shapes with self-
intersecting sides that can cause problems for mask processing software.  By
default, the DRC will warn you about all bad polygons on all defined input
layers.  Since bad polygons will never be created by DRC rules, only input layers
are checked for bad polygons.  (This is opposite the acute angle test that verifies
output layers since acute angles can be created by the DRC on output layers.)

Since all input layers are tested for bad polygons, why was this warning not
present in earlier runs?  The answer is that the pwell layer was not defined as an
input layer in earlier DRC runs.  Only layers that are defined as input layers in
the rule set are checked for bad polygons.  For this reason, it is a good idea to
define all mask layers in the layout as input layers in the rule set, even if you
have no design rules to test for some layers.

The warning about the bad polygon is expanded in the log file (DRCOUT.DLO
in our case) with the following message:

1 bad polygons in cell ADVCKTP
     1 bad polygons on layer 2
     Bad polygon(s) or wire(s) appear on layer 99
of error file Q:\ICED\DRCTUTR\ADVCKTP.ERR in cell
ADVCKTP coordinates.

Be sure to
remove the
NO_WARN-
_ACUTE rule
from the rule set
used on your
final design.

If you do not
want bad
polygons on
unused layers to
generate
warnings, add
the
NO_CHECK-
_INPUT rule to
the rule set.



Advanced Tutorial: Creation of Shapes for Export

DRC User Manual 427

Since the bad polygons are found before the DRC flattens any data, only one
warning is posted for a bad polygon in a subcell, even when that subcell is used
many times.  Since the error is found in a subcell, the error mark created on layer
99 is created in a command file created specifically for that subcell,
ADVCKTP.ERR instead of the main command file DRCOUT.CMD.  Other
error shapes can be created in subcell error files as well; however, spacing
violations are always marked in the main command file because they are not
found until the layout data is flattened.

Open the layout editor now to edit the ADVCKTP cell (not the main cell
ADVTUTR).  Import the error mark created by the DRC by executing the
subcell error command file with the following command:

@ADVCKTP.ERR

The error mark is a copy on layer 99 of the entire pwell shape.  The misdigitized
coordinates that make the pwell shape a bad polygon may not be obvious until
you zoom in on the lower right hand corner with a VIEW BOX command.

This bad polygon was created by
misdigitizing the final corner of a polygon.
This can happen if you are digitizing the
last corner of a large shape at a scale that is
too large to show you fine detail.  You try
to close the polygon by redigitizing the
starting vertex, but overshoot the vertex
and digitize a point past the starting vertex.
(See Point 1 in Figure 250.)  If you simply
click a few times in the vicinity you may
digitize points similar to those in Figure
250 before redigitizing the starting vertex
to close the polygon.  You may not realize
that you have not digitized the corner
correctly.

Starting vertex
1 2

3
x x

xx

Figure 250: One way to
accidentally create a bad
polygon



Advanced Tutorial: Creation of Shapes for Export

428 DRC User Manual

When you digitize a polygon like this, the sides intersect each other as shown in
Figure 251.  This type of polygon
definition is likely to cause problems for
mask-processing software.

It can be a little tricky to edit a shape with
intersecting sides.  The MOVE SIDE
command will sometimes fail when you try
to uncross intersecting sides.  You must
select both sides of vertex 2 using the
following commands:

UNSELECT ALL
SELECT LAYER PWELL SIDE IN

Then move the vertex to the starting vertex with the following command:

MOVE VERTEX

Once the vertex is moved successfully, delete the shape on layer 99 with the
commands:

UNSELECT ALL
SELECT LAYER 99 ALL
DELETE

Save the cell and terminate the layout editor with the EXIT command.

Now we need to regenerate the layout data for the next DRC run.  Open the
layout editor to edit the ADVTUTR cell and use the DRC command to export
the data.  You can then terminate the editor.

Figure 251: Self-intersecting
sides of a bad polygon



Advanced Tutorial: Hierarchical Output

DRC User Manual 429

Hierarchical Output

Subjects covered below

Dangerous processing options

Hierarchical output – generating shapes for import into nested cells

Replacing hierarchical output

Deleting hierarchical output

Except for the few errors found in subcells (e.g. bad polygons) the shapes
generated by the DRC are usually created flat in one main cell.  The nwell
shapes that we created in the last exercise were all output at the main cell level,
even though the nwell and active shapes used to create the new layer were nested
in subcells.

This is usually the preferred method for creating new layers with the DRC.  All
shapes generated by the DRC are kept separate from the other cells in one cell at
the main cell level where they can be deleted or replaced all at one time.

However, once you are comfortable with the DRC, you can use options to
generate shapes hierarchically.  Shapes created from shapes in subcells will be
nested in separate subcells.  These new subcells can be added automatically to
each of the original subcells.  This can save a significant amount of storage
space.  One new nwell shape stored in a subcell used 20,000 times in a chip takes
much less disk space than 20,000 shapes in the main cell.

Of course, if you want to take your time, you can run the DRC flat on individual
subcells one at a time and import the results into each subcell.  However,
hierarchical options let you perform this same procedure automatically on all
cells in your design with a single DRC run.

You should be
familiar with the
information on
hierarchical
processing
beginning on
page 134 if you
want to use
hierarchical
output for real
designs.



Advanced Tutorial: Hierarchical Output

430 DRC User Manual

In this part of the tutorial we will generate the new nwell layer hierarchically so
that the nwell shapes remain in the subcells rather than being created at the main
cell level.

Dangerous Processing Directives

Dangerous operations generate layers in
subcells that may be invalidated by shapes in a
higher level cell.  The example used earlier in
this manual is shown in Figure 252.  Let us
consider the following  rule

c = a AND NOT b

A shape on layer a is contained in a subcell
and a shape on layer b is in a higher level cell.
When you process layer c “dangerously”, the
entire shape on layer a is copied to layer c
while processing the subcell.  When the DRC
is processing the higher level cell it realizes
that the section of the shape on layer c that is
covered by the layer b shape was generated in
error.  Since there may be other copies of the
subcell not covered by shapes on layer b, the
DRC cannot solve the problem by going back
and changing layer c in the subcell.

When layer c is processed “safely”, the DRC will not create shapes on layer c in
the subcell.  It will wait until it is processing the main cell and create the shapes
correctly.

Throughout this tutorial we have used the ALL_SAFE rule in our rule set.  This
rule directs the DRC to process all dangerous operations in a safe manner. While
this avoids problems like the one shown above, it results in many layers being
generated at the main cell level rather than within subcells.

a b

Figure 252: Layer A in
subcell and layer B in main
cell.

The DRC will
post a warning
message and
generate error
marks when
dangerous
processing
causes errors.



Advanced Tutorial: Hierarchical Output

DRC User Manual 431

Safe processing directives interfere with hierarchical processing since most or all
shapes must be generated at the main cell level.  Only layers that have no
dangerous operations associated with them will be generated at the subcell level.

If we leave the ALL_SAFE directive unmodified, even when we use the
hierarchical command line options all of the nwell shapes will still be generated
at the main cell level.  This is because the nwell generation rules include
dangerous operations (i.e. BLOAT and AND NOT.)

If we used the ALL_DANGER rule instead of ALL_SAFE, we would have a
different problem.  Some of the scratch layers used for verification rules are
generated by dangerous operations.  The not_gate_overlaps layer in particular
will have several processing errors when processed dangerously.  The log
messages would look as follows:

*****DANGER******DANGER******DANGER******DANGER***
*****DANGER******DANGER******DANGER******DANGER***
*****DANGER******DANGER******DANGER******DANGER***

    A logical error was made processing layer
NOT_GATE_OVERLAPS in cell ADVTUTR.  One of ADVTUTR's
subcells contains a section of NOT_GATE_OVERLAPS that was
removed by a logical operation in ADVTUTR.  This means any
further results in ADVTUTR or a cell containing ADVTUTR
involving layer NOT_GATE_OVERLAPS are likely to be wrong.

An outline of the offending area (in cell ADVTUTR
coordinates) appears on layer 99 of error file
E:\ICED\DRC\ADVTUTR\DANGER\ADVTUTR.ERR.  This outline can be
used to locate the offending subcells.

4 layer NOT_GATE_OVERLAPS figures were outlined on layer 99.

What we need to do is restrict the dangerous processing to the generation of the
nwell layer.  We can do this with the DANGER_LAYER rule.  We need to add
the following rule to the rule set:

DANGER_LAYER nwell

See the list of
dangerous
operations on
page 137.



Advanced Tutorial: Hierarchical Output

432 DRC User Manual

However, since the nwell layer is generated from the p_active, and
p_active_bloat layers, they must also be generated dangerously.  If those layers
are generated safely, the shapes used to create the nwell shapes are already at the
main cell level.  So we must add the following lines as well:

DANGER_LAYER p_active
DANGER_LAYER p_active_bloat

When adding the rules above to the rule set, place them after the layer definition
rules.  The danger properties of a layer cannot be set until after the layer is
defined.

Command Line Options for Hierarchical Output

To get hierarchical output from the DRC we must add the HIERARCHICAL
option to the DRC command line.  The syntax of the option for our testcase is as
follows:

HIER=_WELL

The HIERARCHICAL keyword has been abbreviated here to “HIER”.  The
string “_WELL” will be added to the end of every cell name in the hierarchical
output data.  The nwell for cell ADVCKT will be created in a cell with the name
ADVCKT_WELL.  We will demonstrate how this cell is added to the ADVCKT
cell after we run the DRC.

Other command line options should be combined with the HIERARCHICAL
option.

When typing
this option in a
Windows
shortcut, replace
the ‘=’ with a
‘#’ to avoid
misinter-
pretation of the
command line.



Advanced Tutorial: Hierarchical Output

DRC User Manual 433

Since the DRC is processing some layers safely despite the HIERARHICAL
option, the DRC will warn you that some of the output data will not be
hierarchical.  You would need to reply to this warning prompt with a keystroke
to continue with the DRC run.  To avoid this warning prompt, we need to add the
following option to the command line.

NO_HIER_WARNING

The DRC will automatically flatten some cells during preprocessing.  Subcells
containing 5 or fewer shapes will be flattened by default.  So will subcells used
only once.  To prevent this we need to add the following option to the command
line:

NO_FLATTEN

Creating and Importing the Hierarchical Data

Recompile the rule set.  Then execute the DRC.  The entire DRC command line
should now look like the following:

DRC3-NT25 ADVTUTR ADVTUTR  DRCOUT  SLOW …
… HIER=_WELL NO_HIER_WARNING  NO_FLATTEN

The run should end with messages similar to the following

9 total figures output to non-error layers.
0 total figures output to error layers.
*****DANGER******DANGER******DANGER******DANGER***
*****DANGER******DANGER******DANGER******DANGER***
*****DANGER******DANGER******DANGER******DANGER***
This run may have incorrect answers --- Read your log
file Q:\ICED\ADVTUTR\DRCOUT.DLO

This how the DRC alerts you to errors in subcells caused by dangerous
operations.  We will look at the log file and diagnose the problem in a moment.

                                                     
25 The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.

The NO_HIER-
_WARNING
directive can be
specified in the
rule set or on
the command
line.



Advanced Tutorial: Hierarchical Output

434 DRC User Manual

First we need to create a temporary cell from which we will import the results of
the DRC run.  We need a temporary cell since the command file that will add the
newly created cells to the existing design cells must be executed while none of
the design cells are open.

When we perform the import operation in the temporary cell, the procedure will
modify all of the design cells to add the newly created cells.  The temporary
cell’s environment settings (e.g. layer names, color properties, grid definitions)
will be saved in all of these modified cells.  If the temporary cell has different
environment settings than the original design cells, the old environment settings
would be lost.

So, we need to create this temporary cell with the same layer and other
environment settings as our design cells.  If all of your environment settings are
defined in a startup command file so that all new cells have the same properties,
then any temporary cell you create will have the appropriate environment
automatically.  However, we have added unique layer properties in our main cell
for DRC generated layers.  (In the case of real designs, the main cell may be
modified with many layer definitions for DRC generated layers that may include
layer names, patterns, and colors.)  We don’t want to lose these layer definitions
when the environment settings get replaced.

There are several ways to get the environment of our main cell stored in the new
temporary cell, but the easiest way is to create the temporary cell after the layout
editor has been opened to edit the main cell.  Open the layout editor now to edit
the ADVTUTR cell.  Now execute the following commands:

EDIT CELL TEMP
EXIT
QUIT

Now open the layout editor to edit the cell we have just created with the name
“TEMP”.  From this cell we can execute the command files created by the DRC.
First execute the main command file with following editor command:

@DRCOUT.CMD

The
TEMPLATE
command in the
layout editor
can be used to
export all
environment
settings into a
command file.



Advanced Tutorial: Hierarchical Output

DRC User Manual 435

This command file will create all of the new cells generated by the DRC.  All
cell names will end with “_WELL” as we specified in the command line.  The
existing design cells are still unmodified at this point.

Now we need to execute an additional command file generated by the DRC to
actually add the new cells to your design cells.  These procedures are kept
separate because if you repeat this process, you do not want to add additional
copies of the new cells to your design cells.  (We will cover how to replace the
hierarchical DRC output with new results on page 438.)  Execute this additional
command file with the following layout editor command:

@DRCOUT.ADD

Now the new cells are added to each of the design cells.  Now exit the editor to
save all of the cell files.

Fixing a Dangerous Processing Error

Now that we can look at the results, let us diagnose the error reported in the log
file.  The warning in the log file will look similar to the following:

*****DANGER******DANGER******DANGER******DANGER***
*****DANGER******DANGER******DANGER******DANGER***
*****DANGER******DANGER******DANGER******DANGER***
A logical error was made processing layer NWELL[61] in
cell ADVTUTR.  One of ADVTUTR's subcells contains a
section of NWELL[61] that was removed by a logical
operation in ADVTUTR. This means any further results in
ADVTUTR or a cell containing ADVTUTR involving layer
NWELL[61] are likely to be wrong.
    The problem can be corrected by specifying that
layer NWELL[61] or the problem subcells (not ADVTUTR) be
ungrouped.
     An outline of the offending area (in cell ADVTUTR
coordinates) appears on layer 99 of error file
E:\ICED\DRC\ADVTUTR\DANGER\ADVTUTR.ERR.  This outline
can be used to locate the offending subcells.

Let us look at the error mark generated by the DRC.  Open the layout editor to
edit the ADVTUTR cell.



Advanced Tutorial: Hierarchical Output

436 DRC User Manual

Now we need to import the file indicated in the error log message,
ADVTUTR.ERR.  This is a different file than the main DRC command file.
Dangerous processing error marks are stored in a subcell error command file.  It
just happens that in our case the cell where the error is found is the main cell, so
this subcell error file is named for the main cell.  Execute the following
commands in the editor.

@ADVTUTR.ERR
UNSEL ALL
SEL  LAY  99  ALL
VIEW SEL
VIEW OUT 4

At this scale, it is relatively easy to see that the mark on layer 99 (a line
component in this case) is marking the area where the pwell shape overlaps the
new nwell shape.  (See Figure 253.)  The new nwell shape on the left was
created nested inside the cell ADVCKT, and the pwell shape on the right is
nested in the cell ADVCKTP.  When the DRC processed the main cell and
flattened both cells to test for dangerous processing errors, the rule “nwell =
nwell AND NOT pwell_in” rule could not be performed correctly for this area.

Figure 253: Dangerous processing error mark selected



Advanced Tutorial: Hierarchical Output

DRC User Manual 437

You have options on how to solve errors like the one above.  The easiest method
is to move the ADVCKTP cell slightly to the right.  However let us assume that
space is at a premium and that it would be better to shift the side of the active
shape to the left to fix the problem.  Now when the active shape is bloated, it will
not cause the new nwell shape to overlap the pwell shape.  This will require the
recreation of the nwell layer.

We need to delete the error mark on layer 99 and shift the side of the active
shape in cell ADVCKT with the following commands:

UNSEL ALL
SEL  LAY  99  ALL
DELETE
PEDIT NEAR
SEL SIDE NEAR
MOVE -1,0
EXIT

For the “PEDIT NEAR” and “SEL SIDE NEAR” commands, use the cursor to
position the select box as shown in Figure 254.  Note that all copies of the
ADVCKT cell have been changed.

Figure 254: Correct select box for selecting cell ADVCKT and active side



Advanced Tutorial: Hierarchical Output

438 DRC User Manual

Now recreate the DRC data with the DRC command and rerun the DRC with the
same command line shown on page 433.  If any other error messages are posted,
fix the problems before continuing.

Replacing Hierarchical Output

The command files created by the DRC now contain the corrected nwell layer on
layer 61.  However, if we execute the DRCOUT.CMD command file now to add
these new shapes to each _WELL cell, both the old shapes and the new shapes
will be contained in each cell.

If the cell structure has not changed, we can recreate all of the _WELL cells with
DCROUT.CMD, but leave the cell references nested inside all of the original
cells.  The DRCOUT.ADD command file does not need to be executed.

Close the layout editor.  Using your favorite method, delete all of the _WELL
cell files.  In the console window, use the following DOS command:

DEL *_WELL.CEL

Open the layout editor to edit the temporary cell, TEMP.CEL.  Execute
DRCOUT.CMD command file and exit the editor with the following commands:

@DRCOUT
EXIT

This recreates the _WELL cells. The cell files are now saved to disk.

Do not re-execute DRCOUT.ADD since the _WELL cell references are still
included in the original cells.



Advanced Tutorial: Hierarchical Output

DRC User Manual 439

Deleting Hierarchical Output

If you want to delete all of the hierarchical results from the DRC, copy the
DRCOUT.ADD command file to DRCOUT.DEL.  Edit the DRCOUT.DEL file.
For each of the “ADD CELL="xxx_WELL" AT (0.0, 0.0)” commands, replace
the command with the following set of commands:

UNSEL ALL
SEL CELL xxx_WELL ALL
DELETE

Where “xxx_WELL” should be replaced with each appropriate cell name.

Execute the DRCOUT.DEL command file while editing the temporary cell.  This
will remove the hierarchical results from each of the original cells.

The temporary
cell should be
created with the
environment of
a design cell.
See page 434.



Advanced Tutorial: Speeding Long DRC Runs

440 DRC User Manual

Speeding Long DRC Runs

Subjects covered below

Separating long reach and short reach rules into rule subsets

Pad size verification using MIN_WIDTH rule

Optimizing panel size

The most important methods to improve DRC efficiency are to optimize the
panel size and panel border.

The DRC can process only small designs as a single panel.  Larger designs are
divided into panels and processed one panel at a time.  Only one panel is
flattened at a time, allowing the rest of the design to remain hierarchically nested
which saves large amounts of storage space.  This panel processing allows the
verification of entire chips with only the resources of a typical PC.  However, the
overhead of panel processing increases run time, especially when the panel size
is not optimized for a specific design density on a PC with specific storage
capacity.

When you slice a design into panels for verification, spacing rules must look
beyond the boundary of a panel to verify that no shape just outside the boundary
is too close.  In order for shapes near or crossing a panel boundary to be
processed correctly, the DRC must include a border around all sides of each
panel.  The panel border is automatically calculated by the DRC based on the
layer with the maximum reach as determined by the rules.  Reach is defined as
the minimum border distance that insures that no violations will be missed or
marked as false errors.

You may have noticed that the DRC took longer to execute once we began using
a panel size of 50x50.  A large part of this delay is caused by the metal2 spacing
rule that requires a border of 30 microns on each side of each panel.  This wide

Add the
SHOW-
_BORDER
option to the
DRC command
line to see how
the panel border
is calculated by
the DRC.



Advanced Tutorial: Speeding Long DRC Runs

DRC User Manual 441

border forces most shapes to be tested many times due to the overlapping borders
on the panels.

Our artificially small panel size
magnifies this problem, but all long
reach rules will cause this type of
extra processing when the design is
divided into panels.

The extra time involved to process
shapes in a large border is multiplied
by each rule processed in the same
pass, even those rules with a
relatively short reach.  The same
panel border is used by most spacing
rules.

The DRC would be far more
efficient if only the long reach rules
were processed with the large panel
border.  If the shorter reach rules were processed with a small border, far less
processing time would be needed.

Testing Minimum Pad Size

Let us add another long reach rule to our rules file to highlight the problem of
large panel borders.  Let us assume that the minimum dimension of glass shapes
in pad constructs is 50µm x 50µm.  We need to verify this with a MIN_WIDTH
rule. Open the rule set for editing now.  Add the following rule after the
m2_pad_spacing_err rule:

small_glass = MIN_WIDTH(glass, 50)

Panel
boundary

Border
boundary

Figure 255: Neighboring panels with
overlapping long reach borders



Advanced Tutorial: Speeding Long DRC Runs

442 DRC User Manual

We need to define the new error layer even though our design will have no
violations of this rule.  Add the following layer definition rule with the others:

OUTPUT ERROR LAYER  109 small_glass

Separating Long Reach/Short Reach Rules into Rule Subsets

When you use rule subsets to separate long reach rules from short reach rules,
you can speed the DRC considerably.  You can use the log files to find which
rules are causing a large border.  Save the rules file now and compile it.  Then
execute the DRC with the SHOW_BORDER command line option.  The DRC
command line should now be as follows:

DRC3-NT26 ADVTUTR ADVTUTR DRCOUT SLOW SHOW_BORDER

The border calculations are shown in the log file (DRCOUT.DLO in our case.)
Open this file now to see the border calculations.  The following lines should be
near the beginning of the file.

***Deriving border for pass 3
19. SMALL_GLASS[109]= MIN_WIDTH(GLASS[16], 50/~DET)
reach(SMALL_GLASS[109])=50.
...
***Deriving border for pass 7
34. M2_PAD_SPACING_ERR[104] = MIN_SPACING(
        METAL2,
        PAD_METAL2,
        30
        /~CONN/P/OVER/CROSS/T/END/~DET)
reach(M2_PAD_SPACING_ERR[104])=30.

The bolded lines above show us that the rule that creates the small_glass layer
and the rule that creates the m2_pad_spacing_err layer are the rules causing the
longest reaches.

                                                     
26 The executable file name for released versions for Windows is DRC3-NT.EXE.
The executable file name for beta Windows versions is DRC3-NTX.EXE.



Advanced Tutorial: Speeding Long DRC Runs

DRC User Manual 443

If you could test only the long reach rules with the large border, and test all short
reach rules with a smaller border, the short reach rules could be processed much
faster.  We can do this using rule sets without dividing the rules into two files.
The same rules file can be used to test different sets of rules without further
modification of the file.  We specify on the DRC command line which rule
subsets should be executed.

The RULE_SET rule is used to identify subsets of rules that can be executed by
the DRC instead of executing all of the rules in a file.  Add the following rule
near the top of the rules file:

RULE_SET LONG_REACH SHORT_REACH

Now we bracket the verification rules into named subsets.  It is important to
bracket only the verification rules.  Layer processing rules and/or connection
rules that are unnecessary are removed by the DRC automatically.  However the
DRC cannot remove unnecessary rules if they are specified in a rule subset.  The
DRC may crash quickly with a message similar to the following if unnecessary
layer generation or connection rules are contained n the specified rule subset.

You selected rule:
  30. CONNECT METAL2 PAD_METAL2
    In set SHORT_REACH
     which generates a connection never used.
Run canceled.

***CRASH*******CRASH*******CRASH*******CRASH*****

First we bracket only the two rules that result in a long reach.  (The unbolded
lines below should already be present.)

LONG_REACH ON
m2_pad_spacing_err = MINSPACING(metal2, pad_metal2, 30 /~CONN)
small_glass = MIN_WIDTH(glass, 50)
LONG_REACH OFF

Now we bracket the rest of the verification rules in the other rule subset.

See another
example of
testing long
reach rules
efficiently on
page 164.



Advanced Tutorial: Speeding Long DRC Runs

444 DRC User Manual

SHORT_REACH ON
nwell_sp_err = MINSPACING(nwell, nwell, 10 /~CONN)
gate_cpoly_sp_err = MIN_SPACING (gate, cpoly, 2)
poly_unconn_contact_err = MIN_SPACING(poly, cpoly, 4 /~CONN)
gate_overlap_err = MIN_SPACING (gate/OUT, poly/IN, 2)

gate_overlaps = poly OR active
not_gate_overlaps = NOT gate_overlaps
gate_no_overlap_err = gate TOUCHING not_gate_overlaps
SHORT_REACH OFF

To specify that the DRC should verify only the long reach rules, execute the
following command line (the parentheses around the name of the rule subset are
required):

DRC3-NT ADVTUTR ADVTUTR DRCOUT SLOW …
… DO=(LONG_REACH)

The rules in the SHORT_REACH rule subset are not executed; neither are the
layer generation rules that are not necessary to execute the LONG_REACH
rules. If you look at the DRCOUT.DLO log file, you can see that the
unnecessary rules have not been executed, including the generation of the gate
and not_gate_overlaps layers.  This DRC run should have taken less time than
the execution of the entire rule set.  You can then execute only the short reach
rules by specifying the SHORT_REACH rule subset in the command line.

When you divide the rules this way, you can probably run the long reach rule
subset less often.  The long reach rules are typically important mainly in areas of
the chip that do not change that often, e.g. pad constructs.

Using Rule Subsets for Very Long DRC Runs

You do not have to separate long reach rules from short reach rules to use rule
subsets.  You can arbitrarily separate the verification rules into as many subsets
as desired.  Any DRC run that executes only a subset of the rules will execute
more quickly.

When typing
this command
line in a
Windows
shortcut, replace
the ‘=’ with a
‘#’ to avoid
misinter-
pretation of the
command line.



Advanced Tutorial: Speeding Long DRC Runs

DRC User Manual 445

Let us assume that you are verifying a large design with a long rule set.  Divide
the rules into two subsets and execute the DRC on the first subset with the
appropriate DO option.  Then after the first run is finished, run the DRC again
on the second subset.  The total execution time of the two DRC runs will be
longer than if you ran the DRC on the entire rule set, however, you will have
results for the first subset more quickly.  Then you can fix the errors found by
the first subset while the DRC is executing the second subset.

When you want to execute all the rules in a single run, just leave the DO option
off of the DRC command line.  You do not need to remove the rule subset lines
from the rules file.

Optimizing Panel Size

Panel size is directly related to the amount of memory the DRC requires.  A
large design must be divided into panels so that only a small portion of the
layout is flattened and in memory at any given time.

However, panel size also has an important impact on how quickly the DRC will
execute.  Extra processing is involved, especially in testing areas where panel
borders overlap.

Since there is a trade off between extra processing required for panel processing
and storage saved due the smaller amount of data stored in flattened form at any
given time, time may be saved by increasing or decreasing the number of panels.

This lesson will be quite a bit more time consuming than our other exercises
have been.  Your computer will be tied up for some time.  You may want to
spread this lesson over a few lunchtimes.

Our current testcase is too small to adequately explore panel size trade off.  If
you have a large design that you can use as your testcase, you may want to use
that layout instead of the input file we build next.  The error status of the layout
is not important.  We are not fixing errors in this lesson, only optimizing run
time by modifying the panel size.



Advanced Tutorial: Speeding Long DRC Runs

446 DRC User Manual

If you have no layout file suitable for a test of a larger design, expand the size of
the ADVTUTR layout.  Open the layout editor to edit the ADVTUTR cell.  Add
an array of cells to add a large amount of layout data with a single command.
Type the following command:

ADD ARRAY=ADVCKT  N=(100,100)

Once you place the corner of the array with the cursor, you have added 10,000
cells to the design.  Now create the file for the DRC and exit with the
commands:

DRC
EXIT

You can use the same rules file we used in the last lesson, or you can modify it
to use MINSPACING rules that verify similar distances to the rules you will be
using on your real data.  If you edit the file, save and compile it.

You should test various panel sizes in the rules file.  First use the existing panel
size settings added on page 420.

PANELX =50
PANELY =50

This is most likely to small a panel size for a realistic design, but it provides a
suitable minimum panel size.  Now run the DRC and look at the run time
statistics at the end of the log file, DRCOUT.DLO.  The listing should look
similar to the lines below:

Scratch file size=0 bytes.
Information was written to the scratch file 0 times.
Information was read from the scratch file 0 times.
Running time:
3,967,256 total timer on/offs

Total   1:11:03 (1 times)
Disc swaps         0

You can add
these options to
the DRC
command line
or in the rules
file.



Advanced Tutorial: Speeding Long DRC Runs

DRC User Manual 447

The listing above indicates that no disk swapping to a scratch file was necessary
for this run. If any of your runs indicate that the scratch file was used, try smaller
panel sizes if possible.  Disk swaps add to processing time considerably.

The run time for the run above was 1 hour and 11 minutes.  Note the time of
your run and the panel size used.

For the next run, try removing the PANEL rules entirely.  This lets the DRC
attempt to find an optimal panel size.  Try different panel sizes in other runs until
you have optimized run time.  Be sure to save and compile the rules file each
time you change the panel size.

On a sample computer, we ran the DRC on the
entire rule set. We limited the DRC to using
32Megabytes of memory with the “HOG=32”
command line option.  See the results of
various panel sizes in Figure 256.  The run with
no panel size restriction did not end
successfully.  It was cancelled with the <ESC>
key in less than an hour since little progress
was being made.  The log file looked similar to
the thrashing example shown on page 120.

You can see the dramatic effect of optimizing
panel size.

You can cancel any run early by pressing the
<ESC> key if desired.  The log file is still
created, and you can get a good feel for how long the entire run will take by
watching the progress of the first pass with the console messages.

Panel size Run Time
in minutes

50x50 71

150x150 10

250x250 7

500x500 10

No PANELx
rules- default
calculated to
1428x1392

>60

Figure 256: Various run
times for various panel sizes



Advanced Tutorial: Conclusion

448 DRC User Manual

Conclusion

This concludes the tutorial.  We have covered all of the tasks common to most
large scale designs.

Continue to experiment with these files to test aspects of the DRC as needed.
Edit the testcase rules file to test design rules more unique to your designs.
Refer to the reference sections of this manual to learn more about various
additional rules and aspects of the program needed for more advanced testing.

If you run into problems, please consult the trouble-shooting guide on page 27
before contacting technical support.

Good Luck and Enjoy.



Appendix A: Obsolete Syntax

DRC User Manual 449

Appendix A: Obsolete Syntax

Obsolete DRC Rules

The following rules were developed for previous versions of the DRC.  These
rules are still supported by the current version of the DRC to enable users of old
rule sets to use the current version of the program without forcing them to
modify their rule sets.

The correct rule in the current version to use in place of each obsolete rule is
mentioned at the beginning of each description.

If you want to
use these
obsolete rules
only for old
versions of the
DRC, see the
version control
rules 2_ONLY
and
286_ONLY.



Appendix A: Obsolete Syntax: MAX_QUAD

450 DRC User Manual

MAX_QUAD Limited air bridge recognition

error_layer = MAX_QUAD ( layer1,  max_length )

This rule has been replaced by the more thorough air bridge recognition rule
BRIDGE described beginning on page 196.  The main problem with the
MAX_QUAD rule is that missing posts at the end of air bridges will not be
marked as errors.

The MAX_QUAD rule will mark as errors all shapes on layer1 that meet either
of the following conditions:

the shape does not have exactly 4 sides
or

at least one side of the shape is longer than max_length

To use this rule you will need to use the BLOAT rule to expand the layer that
represents the posts so that the expanded post shapes overlap the metal layer of
the bridges.  Next, you need to subtract the expanded post layer from the metal
layer with a rule similar to:

BRIDGE = METAL  AND NOT  BLOATED_POST

The MAX_QUAD rule should be written to verify the new BRIDGE layer.
Bridge corners without posts should be found.  However, bridges with missing
posts at the ends will not be found.  Slanted bridges may or may not be classified
correctly.

Be sure to subtract twice the value used to bloat the post layer from the
maximum bridge length when specifying max_length in the rule.



Appendix A: Obsolete Syntax: RECTANGLES

DRC User Manual 451

RECTANGLES Find shapes that are not rectangles of specific sizes

error_layer = RECTANGLES ( layer1,  size1 [, size2 [..., sizen] ] )

This rule has been replaced by the more robust IS_BOX rule.  (See page 222.)
One main difference between the two rules is that the IS_BOX rule does not
automatically classify the shapes it creates as errors.

The RECTANGLES rule will consider all rectangles that fit the size criteria as
valid shapes.  All other shapes on layer1 will be copied to error_layer and
counted as errors.  To pass the test, rectangles must be square with the axes (i.e.
the sides must be vertical and horizontal).

(Remember that all shapes on the same layer are merged by the DRC.
Rectangles that touch another shape on the same layer will be merged during
preprocessing.  When a rectangle is merged with touching shapes, the resulting
shape may no longer be rectangular.)

You must specify at least one sizen parameter. You may specify up to ten
different sizen parameters.   You can type additional sizen parameters on
different lines for readability, but you cannot start a new line in the middle of a
sizen parameter.

The syntax of each sizen parameter is:

( xmin  [: xmax],  ymin  [: ymax] )

To allow the dimensions of the rectangles to be in a range, specify both the mini-
mum and maximum dimension separated by a colon (':').  To specify an exact
dimension, type only the minimum value.  When the maximum value is not in-
cluded, it is assumed to be equal to the minimum.  Each dimension must be a
positive real number.  The units are the user units in the ICED™ cell.

The syntax of the sizen parameters is exactly the same as the syntax used in the
IS_BOX rule.  See that rule for many examples of sizen parameters.



Appendix A: Obsolete Syntax: SKIPPED_POLY

452 DRC User Manual

SKIPPED_POLY Assign layer number for shapes unknown to DRC

SKIPPED_POLY =  layer_number

In the past, new versions of the ICED™ layout editor have supported shapes that
the DRC was not able to process correctly.  This version of the DRC supports all
shapes that can be created by the current versions of the layout editor.  However,
if the layout editor is enhanced before you receive a new version of the DRC, or
if you are using an older version of the DRC, the DRC will classify shapes it
cannot process correctly as "skipped" and copy them to layer number 99 by
default.

You can add the SKIPPED_POLY rule to change the layer number where the
DRC will store skipped shapes.



Appendix A: Obsolete Syntax: OUTPUT LAYER Keywords

DRC User Manual 453

OUTPUT LAYER Obsolete Keywords

The following keywords of the OUTPUT LAYER rule are considered obsolete.
They all have exact correspondences to syntax documented in the current syntax
of the OUTPUT LAYER rule covered beginning on page 284.

MASK

The MASK keyword is exactly equivalent to the POLYGON keyword.  It
indicates to the DRC that the layers defined with the rule should contain only
polygon shapes suitable for mask generation as opposed to error wires.  If you
attempt to use a layer defined with this keyword as the error_layer for any of the
rules that generate wires (as shown in the table on page 62), you will receive an
error message from the rules compiler.

OUTLINE

The OUTLINE keyword is exactly equivalent to the WIRES keyword.  Shapes
on layers defined with an OUTPUT OUTLINE LAYER rule will be converted to
wires that outline the edges of the shapes during DRC output.  This is useful
primarily to allow all of your error layers to have similar properties.

OUTPUT ERRORS

This syntax is exactly equivalent to:
OUTPUT WIRE LAYER



Appendix A: Obsolete Syntax: OUTPUT LAYER Keyword

454 DRC User Manual

OUTPUT GEOMETRY

This syntax is exactly equivalent to:
OUTPUT POLYGON LAYER



Index

DRC User Manual 455

Index

! Comment character...............................153, 173
#

used to replace = ........................................333
$D3RVIRT.000 ......................................323, 324
$D3VIRT.000.................................332, 341, 362
% variable layer number indicator....................58
% variable layer number indicator .................346
%n batch file parameters ................................359
& continuation character.........................172, 221
( ) not allowed in Boolean layer rules...............64
* wildcard in cell name specifications208, 219, 297
... used to indicate continuation ......................175
; delimiter .......................................................218
; Semicolon characters....................................172
@file_name layout editor command.......368, 369
@MAIN cell name specification ....................219
@opt_file command line option......................336
[ ] used to indicate optional keywords ............174
_ underscore character ............................172, 333
{} used to allow rules to span several lines ....218
| delimiter in cell name specifications.....219, 297
+ used to combine input layers .......................218
=

disappearing from command line ...............333
= use in assignment rule..........................187, 281
2_ONLY rule..................................................176
286_ONLY rule..............................................178
3_ONLY rule..................................................179
Acute angles

bloats ..........................................................126
finding and fixing .......................................423
finding notches on specific layer ................231
finding on all output layers.........................313
finding protrusions on specific layer ..........242
in bloated shapes ........................................191
in mask layers...............................................76

in MIN_ANGLE and MAX_ANGLE rules107
in MIN_NOTCH rule ................................ 106
in MIN_WIDTH rule ................................ 104
listed in log file.......................................... 364
output layer number................................... 313
suppressing check.............................. 280, 314

ADD file extension ................................ 147, 374
ADD layout editor command

example ..................................................... 373
used in DRC command file ....................... 366

Adjacent sides
verifying angles ......................................... 107

Advanced
Tutorial...................................................... 379

ADVTUTR.CEL............................................ 382
Air bridge recognition.................................... 196

obsolete version......................................... 450
Algorithm Options ......................................... 337
ALL_SAFE rule

use in advanced tutorial ............................. 384
ALL_DANGER rule...................................... 180

importance in hierarchical output .............. 148
overriding for specific layer ...................... 299
use in hierarchial output ............................ 277

ALL_SAFE rule............................................. 181
overriding for specific layer ...................... 209
overview.................................................... 141
problems in hierarchical output ................. 431

ALLOW_QUICK command line option........ 338
ALLOW_QUICK rule ................................... 182
AND NOT rule

not sufficient to verify enclosure ............... 312
AND rule ....................................................... 183

example in advanced tutorial..................... 383
simple example............................................ 64
using to find overlap errors ......................... 85



Index

456 DRC User Manual

Angled sides ...................... See also Acute angles
Exceptions to MIN_SPACING violations93, 256
in output shapes..........................................132

Angles
overview of MIN/MAX_ANGLE ..............107

Area
classify shapes by area .................................66
classifying hole coverage ...........................211
design area reported in log file ...................363
finding shapes less than minimum area ......243
limiting design area checked ......................350
overview of MIN_AREA rule ....................107
overview of MIN_FILL rule ......................109
restricting area checked..............................159
verifying layer coverage .............................245

ASPECT_RATIO rule .....................................184
reach...........................................................125

Assignment rule ..............................................187
319

Automating DRC import in the layout editor..370
AWAY option of MIN_SPACING rule ...93, 256
Backups

comparing two designs...............................335
of previous DRC run ..................................361

Bad polygons
coordinates .................................................376
defined..........................................................74
finding and fixing .......................................426
importing error shapes................................375
listed in log file...........................................363
output layer number ...................................189
restricting check to used layers...................276

BAD_POLY rule ............................................189
remove BADPOLY=0 in final run .............169

Base layer in bipolar transistors..............114, 115
BAT file extension..........................................359
Batch file ................................................359, 385

PAUSE command no longer required 322, 345
Batch file

avoiding user interaction ....................182, 279
BB file extension ....................................320, 325
Bent sides .........................................................79

Beta test ........................................... 95, 258, 331
Binary layout data file................ 16, 47, 334, 382
Bipolar transistors

sample layer processing............................. 114
BLANK layout editor command.............. 20, 371
Blank spaces .................................................. 172
BLINK layout editor command ............. 371, 372
Bloat angle

reported in log ........................................... 327
BLOAT rule............................. 68, 164, 190, 419

reach calculations ...................................... 126
using to classify wires.................................. 65

BLOAT_ANGLE rule ............................. 68, 191
reach calculations ...................................... 126

Bloats of acute angles ............................ 126, 191
Boolean operations .......................................... 63

adding to MIN_SPACING tests .................. 85
AND .......................................................... 183
effects of Hierarchical processing ............. 136
example of counting results as errors .......... 85
NOT .................................................. 187, 281
not sufficient to verify enclosure ............... 312
OR ............................................................. 283
TOUCHING rule more robust for verification68
XOR .......................................................... 316

Border................................ See also Panel border
rewriting rules to reduce.................... 163, 441
testing enclosure .......................................... 90

BORDER command line option .................... 348
caution when using .................................... 127

BORDER rule................................................ 193
Borders of panels ........................... 124, 348, 440

overriding border on command line .......... 348
BOTTOM command line option............ 159, 351
Boundary of design area ................................ 350

reported in log file ..................................... 363
Bounding box

of entire design .......................................... 245
of shapes...................................................... 64
storing cell boundary as shape................... 221
using aspect ratio to classify shapes .......... 184
using cell boundary to classify shapes....... 221



Index

DRC User Manual 457

using size to classify polygons ...................194
Bounding box of a cell......................................60
BOUNDS rule ................................................194

reach calculations .......................................126
Bow tie shapes

locating.........................................................74
Boxes..............................................................222
BRIDGE rule ..................................................196

adding tolerances to log file .......................350
ignored if QUICK_PASS used...........131, 337

Bulk layer
verifying poor conductors ..........................116

BY keyword in STAMP rule ..........................308
BY keyword of CONNECT rule ....................201
CAP option of MIN_SPACING rule ..............259
CAP=angle in MINSPACING rule ..................95
Case

in DRC rules...............................................172
Cell boundaries

using to classify layers................................221
Cell flattening .........................See also Hierarchy

preventing in input .....................................352
Cell hierarchy .........................See also Hierarchy

preserving in input......................................352
Cell Hierarchy Options ...................................352
Cell names

in hierarchical output..........................147, 354
recorded in log file .....................................364
using to classify layers........................215, 219

Cell ungrouping ......................See also Hierarchy
preventing in input .....................................352

Cells
bounding box................................................60
classifying shapes by cell .............................59
combining with SECOND_CELL option.....54
creating hierarchical output ........................354
definition ......................................................40
flattening automatic for cells used once .....353
flattening done automatically for small cells353
flattening on input ......................................144
how hierarchical data is generated .............134
isolating DRC shapes from original data....369

overview of hierarchical processing .......... 134
saving DRC data in separate cell............... 356
turning off display of design cell ............... 371

CFLATTEN command line option ........ 145, 353
Checklist for Final Run.................................. 168
Circles.............................................................. 64

using to classify polygons.......................... 225
Classifying Shapes by Distance ....................... 67
Classifying Shapes by Size or Shape ............... 64
Coincident edges.............................................. 93

avoiding marking as MINSPACING errors391
finding ......................................................... 86
finding touching shapes ............................. 397
in MIN_SPACING rule............................... 90

Collector layer in bipolar transistors.............. 114
Combine the data in two cells .......................... 54
Command file ................. See DRC command file

conserving disk space................................ 134
generic overview ......................................... 52
importing DRC results............................... 387

Command File Options .................................. 355
Command line

DRC .......................................................... 329
DRC rules compiler................................... 319
options file................................................. 336

Comments
example in advanced tutorial..................... 383
in DRC rules file........................................ 173
in options file............................................. 336
in rule sets ................................................. 153

Comparing layouts................................... 54, 335
Compiler .................See also DRC rules compiler
Compiler .................... See also D3RUL-NT.EXE
Compiler ........................ See also Rules compiler
Compiler log file............................................ 325
Compiling DRC rules file .............................. 319
Conductive layers .................................. 110, 408

finding opens through poor conductors ..... 116
removing material from............................. 113

CONN option of MINSPACING rule............ 405
CONNECT rule ............................................. 200

added to process touching shapes.............. 129



Index

458 DRC User Manual

always processed safely..............................139
causes multiple passes ................................129
errors due to design area restrictions..........350
examples in advanced tutorial ....................404
ignored if QUICK_PASS used...........131, 337
importance of not using for poor conductors116
listing..........................................................327
MIN_SPACING example ..........................267
overview.....................................................110
problems connecting to wells .....................411

Connected layers.............................................410
Connection groups

diagnosing problems ..................................413
Connections

finding opens through poor conductors......116
in MIN_SPACING rules ..............................99

Console messages ...................................343, 386
progress reports increase run time..............165

Console window ...............................................11
closing ..........................................25, 322, 345

CONST rule....................................153, 174, 203
example in quick tutorial..............................14
report ..........................................................326

Constants ........................................................153
in DRC rules...............................................203
including by file reference..........................216
listing of in compiler log ............................326

Contact layers .........................................201, 408
Contacts

eliminating false errors.................................36
in bipolar processing ..................................114
in CONNECT rule......................................111
overview of enclosure verification ...............37
verifying coverage........................................87

Continuation lines...........................................172
Coordinates

design boundaries listed in log file.............363
in log file ....................................................362
listed by detailed logging .............................50
not normally listed in log file .......................49
of bad polygons ..........................................376
of errors in command file ...........................366

of errors in subcell command file .............. 373
shifted due to grid problems........................ 79

Copy protection ......................................... 10, 28
Copying a layer.............................................. 187
Copying files

sample DOS commands....................... 13, 381
Corners

treating differently in spacing check............ 96
Coverage

verifying layer coverage ............................ 245
Crashes ............................................................ 27

insufficient memory................................... 162
try PANEL_VERTICES rule ............ 123, 291
try smaller panels....................................... 118

Crossing shapes
in MIN_SPACING rule............................... 85

Crossing sides .................................................. 97
handling specially in spacing check........... 260

Ctrl key .................................................. 324, 332
Current directory

sample of DOS command to change.... 13, 381
Current drive

sample of DOS command to change............ 13
CUT layout editor command ........................... 77
CUT_RESOLUTION rule ............................. 205

effect on inverse of layer ........................... 188
number listed in log file............................. 363

D3RULES.EXE
other executable names.............................. 319

D3RUL-NT.EXE........................................... 318
command line ............................................ 319
command line in advanced tutorial............ 385
command line in quick tutorial .................... 14

Danger errors ................................................. 431
fixing ......................................................... 435

DANGER logical error message.................... 140
DANGER_CELL rule.................................... 207

overriding for specific layer ...................... 299
DANGER_LAYER rule ................................ 209
Dangerous operations .................................... 136

ALL_DANGER rule ................................. 180
ALL_SAFE rule ........................................ 181



Index

DRC User Manual 459

DANGER_CELL rule ................................207
DANGER_LAYER rule.............................209
methods of avoiding ...................................141
SAFE_CELL rule.......................................297
SAFE_LAYER rule....................................299

Dangerous processing
cells used once flattened automatically ......353
creating hierarchical output ........................354
importing error shapes................................376
preventing by flattening input data .............352
small cells flattened automatically..............353

Dangerous processing options ........................429
Database ............. See also Binary layout data file

reserving memory for .................................162
Date stamp

cause of  DRC warning ..............................394
listed in DRC log file .................................363

Default panel size ...........................................120
DELDRC.CMD ..............................................368
Deleting DRC shapes......................................389
Deleting results of hierarchical output ....147, 439
Design area

options in DRC command line ...................350
reported in log file......................................363
restricting area checked..............................159
storing bounding box of cell.........................60

Design rules ...................................See also Rules
overview.......................................................39
overview of theory .......................................32

DETAIL ON/OFF rule ...................................210
example in quick tutorial..............................14
overview.......................................................51

Detailed logging .......50, 158, 210, 249, 269, 272
finding cause of unpaired error wires .........100

Device layers
removing from conductive layer.................113

Device recognition........................................8, 68
by containing cell .........................................59
diagnosing problems. .................................284

Device terminals .............................................401
electical connections ..................................112

Device wells

verifying poor conductors.......................... 116
Diagnosing Mysterious Errors ....................... 157
Diagnosing problems with rule sets ......... 56, 168
Diffusion layer ............................................... 112

example of generation ................................. 71
Dimension............................................... See Size
Dimension verification

merged shapes verified ................................ 59
overview...................................................... 34

Dimensions of shapes
using to classify layers................................. 64

Directional minimum spacing ........................ 391
Directional spacing checks ...................... 89, 254
Directory................................................ 319, 325

for output files ........................................... 361
for rules files.............................................. 334
long names causing crash ............................ 27
sample DOS command to change........ 13, 381

Directory creation
sample of DOS command to create ............. 13

Disk space...................................................... 341
effects of ALL_SAFE rule ........................ 181
scratch directories...................................... 341

Disk swapping
caused by ineffective panel size ................ 119
minimizing during DRC run...................... 119

DISPLAY_OPERATIONS cmd line option165, 344
Distance

classifying shapes by ................................... 67
classifying shapes by distance apart .......... 235
notch and width verification ...................... 103
spacing verification overview...................... 84
spacing verification theory overview........... 33
verifying distance apart ............................. 252
verifying side length .................................. 251

Distributing a rule set............................. 203, 279
DO command line option....................... 158, 347

defining rule sets ....................................... 295
importance of removing from final run ..... 169

DOS batch files.............................................. 359
DOS commands

change directory .......................... 13, 360, 381



Index

460 DRC User Manual

change drive .................................................13
copy file................................................13, 381
create directory.....................................13, 381
editor ............................................................15
find unclosed files ......................................324
max line length ...........................................336
PAUSE...............................................322, 345
SET ....................................319, 320, 331, 359

DRC
command line .............................................317
defined............................................................6
diagram of data flow ....................................12
overview.......................................................45
overview of steps to execute ......................318
running inside of layout editor .......................7
tips on testing new rules .............................154
troubleshooting.............................................27

DRC command file .........................................365
adding commands to...................................356
executing in layout editor ...........................368
generic overview ..........................................52
hierarchical output......................................354
importing DRC results................................387
selecting output layers ................................284
suppressing macros ....................................357

DRC command line
= disappearing............................................333
adding commands to command file............356
adding scales to log file..............................350
ALLOW_QUICK option............................338
border calculation report ............................348
creating in batch file...................................359
defined .......................................................329
DO rule subsets ..........................................347
file parameters............................................334
FILESIZE option........................................342
HOG option................................................339
in advanced tutorial ....................................386
in quick tutorial ............................................16
input redirection .........................................336
list rules file................................................350
MAIN_HOG option ...................................340

MAIN_MEMORY option ......................... 340
MAIN_USE option ................................... 340
max length ................................................. 336
NO_VIRTUAL_MEMORY option........... 340
overriding panel border ............................. 348
overriding wire width ................................ 355
PAUSE option................................... 322, 345
QUICK_PASS option ............................... 337
QUICK_SPACING option ........................ 338
reported in log file ..................................... 362
scratch directory ........................................ 341
screen display .................................... 343, 344
screen display refresh ................................ 344
SECOND_CELL option............................ 335
SLOW option ............................................ 337
specifying design area ............................... 351
specifying input hierarchy ................. 352, 353
specifying input hierarchy by num shapes . 353
specifying input hierarchy by use count .... 353
specifying layer numbers........................... 346
specifying output hierarchy ....................... 354
suppressing rule file warning message ...... 349
USE option................................................ 339

DRC layout editor command16, 159, 318, 334, 382
DRC log file................................................... 362

short definition ............................................ 49
DRC output files ............................................ 361
DRC preprocessing.......................................... 58
DRC rules ............................... 69. See also Rules

adding listing to DRC log.......................... 350
compiled rules file ............................. 320, 325
file name.................................................... 319
optimization............................................... 151

DRC rules compiler
command line in tutorial...................... 14, 385
command line syntax ................................. 319
error messages ........................................... 325
log file ....................................................... 325
output files................................................. 325
sample of log file in quick tutorial............... 15

DRC_PATH environment variable........ 334, 359
DRC3CMD.$$$............................................. 362



Index

DRC User Manual 461

DRC3-NT.EXE ......................................318, 331
command line in advanced tutorial.............386
command line in quick tutorial16, 433, 442, 444
executing with batch file ............................359

DRC3xxx.EXE
executable names........................................331

DRCnAUX.EXE ........................................10, 28
Drive letter

sample DOS command to change.................13
Drives

using multiple scratch drives ......................342
Dummy layers...................................................36

important to verify before final run ............169
removing area from conductive layers .......113
testing.........................................................154
to avoid dangerous operations....................142
verification ...................................................68

Edges
finding coincident edges...............................86
Spacing errors mark sides ............................84

EDIT layout editor command .........147, 372, 373
EDIT.COM DOS file editor .............................15
Electrical connection checks...............................8
Electrical connections.............................110, 402

defining ......................................................200
errors due to design area restrictions..........350
finding opens through poor conductors......116
finding shorts through poor conductors......308
ignored if QUICK_PASS used...................337
in  MIN_SPACING rules .............................99
using in MAX_SPACING rule...................239
using in spacing check................................267

Emitter layer in bipolar transistors..................114
ENCLOSUR.RUL ............................................90
Enclosure ..........................................................90

in MIN_SPACING rule................................85
verifying .....................................................312

Enclosure verification
overview.......................................................37

End caps ...................................................95, 259
END_CMD command line option ..................356

example ......................................................370

ENDn keyword of version control rules ........ 176
End-to-end sides .............................................. 97
Environment variables

long strings cause crash ............................... 27
Equilateral triangles ....................................... 226
ERR file extension......................................... 376
Error count

acute angles not added to............................. 77
adding shapes on arbitrary layers to ............ 61
bad polygons not added to........................... 75
forcing shapes to be counted as errors....... 398
including shapes on arbitrary layer............ 285
reported in log file ..................................... 364
terminating when maximum reached ......... 310
warning when maximum reached .............. 233

ERROR keyword in OUTPUT LAYER rule . 285
Error layer........................................................ 61

appearance in layout editor........ 366, 370, 371
defining ..................................................... 285
deleting in layout editor............................. 368
forcing errors to not be counted ................ 301
location of shapes in hierarchical output ... 373
overriding width on command line............ 355
selecting in editor ...................................... 371
setting width in rule set.............................. 315
shape coord in command file..................... 366
shape coord in subcell command file......... 373
shape coord in subcell error command file 376
shape coordinates in command file............ 366
using to force errors........... 213, 228, 240, 308

387
Error marks .................................................... 386

deleting...................................................... 389
example in advanced tutorial..................... 387
example in quick tutorial ............................. 18
generic overview ......................................... 52

387
setting width in rule set.............................. 315

Error messages
preventing console window closing........... 345
stored in log file......................................... 362

Error wires



Index

462 DRC User Manual

appearance in layout editor ........366, 370, 371
cause of unpaired........................................100
finding other wire in pair............................158
location in hierarchical output....................373
overriding width on command line.............355
setting width for all ....................................315

Errors
adding boolean results to error count ...........85
compler syntax warnings ............................385
connection groups ......................................413
coordinates in command file ......................366
coordinates in subcell command file ..........373
coordinates in subcell error command file .376
DANGER logical error message ................140
danger warnings .........................................431
determining which rule generated a shape..372
executing DRC command file ....................365
fixing in layout editor .........................372, 388
forcing shapes to be counted as errors........398
layout editor tips when fixing.......................20
merged shapes are checked ..........................59
messages from rules compiler ....................326
Panel is too small to subdivide further .......127
table of rules that do/don’t generate errors...62
tips for eliminating false errors...................156
tips on diagnosing problems.......................157
use SHOW to find rule that generated shape19
using detailed logging to pinpoint ................50

ERRORS keyword of OUTPUT LAYER rule453
ERRWIRE.CMD............................................368
Escape key..............................................324, 332
EXAMPLE1.RUL ............................................14
Examples

list of rules files in installation .....................26
Exclamation mark...........................................173
Exclusive OR of layers ...................................316
Executable names ...........................................331
Executing command file in the layout editor ..368
Executing the program with a batch file .........359
EXIT layout editor command .........................373
EXIT layout editor command ...........................25
Expanding layers ............................................190

Export
brief overview ............................................. 70
example of mask layer............................... 418
executing command file in layout editor ... 368
generic overview of command file .............. 52
hierarchical output............................. 146, 354
isolating DRC shapes from original data... 369
overview of hierarchical output ................. 134

Exporting layers
overview...................................................... 38

Extension of one layer past another ............... 398
Fabrication process .......................................... 32

accounting for device shrinkage ................ 302
simulating in rules ..................................... 201

False errors
avoiding false errors for letters.................. 157
avoiding for contact layers .......................... 87
avoiding in MIN_AREA rule .................... 108
avoiding in MIN_SPACING rule ........ 89, 392
avoiding with layer manipulation ................ 63
casued by incorrect dummy layer .............. 154
caused by limited area checked ................. 160
diagnosing false shorts .............................. 112
discarding short errors................................. 99
due to disappearing small shapes................. 81
due to resolution grid................................... 80
elimination of .............................................. 35
MIN_AREA violations caused by other cells138
tips for eliminating .................................... 156

FET devices
electrical connections ................................ 112

File editor......................................................... 15
File names

long names causing crash ............................ 27
Files

DRC input files.......................................... 334
DRC output file names .............................. 334
DRC output files........................................ 361
extensions of output files........................... 361
extra commands in command file .............. 356
file names recorded in log file ................... 362
hierarchical output..................................... 354



Index

DRC User Manual 463

inputs for DRC ...........................................330
nesting rules files........................................216
overview of data flow...................................12
rules compiler output files..........................325

FILESIZE command line option.............162, 342
should be removed for very large designs ..167

Fill
verifying layer coverage .............................245

Final checklist.................................................168
Fixing errors ...................................................388

layout editor tips...........................................20
Flat output

reported in log file......................................364
FLATTEN command line option............145, 352
Flattening....................................... See Hierarchy

definition ......................................................40
Flattening cells

ALL_DANGER rule ..................................180
ALL_SAFE rule .........................................181
DANGER_CELL rule ................................207
DANGER_LAYER rule.............................209
SAFE_CELL rule.......................................297
SAFE_LAYER rule....................................299

Flattening of Cells on Input ............................144
Flow of data......................................................12
Fundamentals

Design Rule Verification..............................31
Gallium Arsenide technology

air bridges...................................................196
Gate layer .......................................................112
Gate layer testing ............................................401
Gate overlaps..................................................397
Gates

finding incomplete gates ............................401
Generated CONNECT rules ...........................202
Generated layers .......................................38, 327

effects of panel processing .........................131
hierarchical output......................................134

Generating mask layers.....................................71
Generating of mask layers ..............................418
Generating Output Layers.................................70
Geomerty

using to classify layers................................. 64
Geometric basis ............................................... 66
Geometric basis of a layer ............................... 61
Geometric basis of rules .................................. 62
GEOMETRY keyword of OUTPUT rule ...... 454
Getting Started................................................... 9
Grids ................................................................ 79

finding off-grid vertices............................. 282
resolution of cut lines ................................ 205
snapping vertices to arbtrary grid ...... 304, 306
vertices shifted on output........................... 132

Ground nets
finding opens through poor conductors ..... 116

Groups of layers............................................. 111
HI color.......................................................... 371
Hierarchical cell command file .............. 147, 374
HIERARCHICAL command line option 146, 354

avoiding warning message......................... 277
example in tutorial..................................... 432
importing results........................................ 372
incompatible with QUICK_PASS ............. 337

Hierarchical output
ALL_DANGER rule ................................. 180
ALL_SAFE rule ........................................ 181
command line option ................................. 354
DANGER_CELL rule ............................... 207
DANGER_LAYER rule ............................ 209
deleting results................................... 147, 375
diagnosing problems.................................. 149
example in advanced tutorial..................... 432
importing results........................................ 372
indicated in log file.................................... 364
NO_HIER_WARNING rule ..................... 277
overview.................................................... 146
replacing.................................................... 438
SAFE_CELL rule ...................................... 297
SAFE_LAYER rule................................... 299

Hierarchical processing ......... 134, 180, 181, 209
avoiding danger errors............................... 141
effect of ALL_SAFE ................................. 141
generic overview ......................................... 44
overview.................................................... 134



Index

464 DRC User Manual

Hierarchical verification ...................................41
Hierarchy

adding hierarchical output as subcells ........374
adding hierarchical output to original cells 373
definition ......................................................40
deleting previous hierarchical output .........375
effect on panel processing ..........................118
flattening cells on input ..............................144
input hierarchy listed in log file..................363
preserved according to number of shapes ..353
preserved according to use count ...............353
preserved in output.....................................354
preserving in input......................................352
preserving in input entirely.........................353
preventing in input entirely ........................352

HOG command line option.....................162, 339
for rules compiler .......................................321

HOLE_AREA_FRACTION rule....................211
Holes...........................................................66, 68

classifying polygons ...................................211
finding with ISLANDS rule .......................230
in MIN_NOTCH rule.................................106
locating improperly drawn ...........................74
removed with BLOAT rule ........................190
representation in DRC..................78, 188, 281

ICED desktop icon ...................................11, 384
ICED™ layout editor..... 8. See also layout editor

changing appearance of DRC layers ..366, 370
executing DRC command file ....................365
fixing DRC errors.......................................372
importing DRC layers into .................284, 368
importing hierarchical output .....................372
save DRC data in other cell automatically .357
selecting error layer shapes ........................371
terminating without saving .........................375
turning off display of design cell................371
using to execute DRC command ..........16, 382

ICWIN.BAT...................................................382
Importing DRC layers.....................................274
Importing DRC results....................................387
Importing DRC shapes with layout editor ......368
IN_CELL rule.................................................215

INCELL option of INPUT LAYER rule 219, 403
INCELL processing ......................................... 59

to avoid dangerous operations................... 142
INCELL rule

effect on hierarchy indicated in log file ..... 363
using to identify devices ............................ 113

INCLUDE rule ...................................... 153, 216
Inductors .......................................................... 59
Input files......................................................... 47

flattening cells ........................................... 144
nesting rules files....................................... 153
overview of data flow.................................. 12
preparation of layout data file.............. 16, 382
specifying on DRC command line............. 334

INPUT LAYER rule ...................................... 217
example in advanced tutorial..................... 383
example in quick tutorial ............................. 14

Input layers ...................................................... 56
Input Redirection ........................................... 336
Installation ................................................. 10, 11
Installation directory........................................ 11
Intermediate layers

exporting to diagnose problems................... 56
Interrupting program

DRC .......................................................... 332
rules compiler............................................ 324

Intersecting sides
handling specially in spacing check........... 265

Intersection of layers.............. 183, 288, 311, 316
Introduction ....................................................... 5
Inverse layer .................................................. 398
Inversion of layer ................................... 187, 281
IS_BOX rule .................................................. 222

reach calculations ...................................... 126
IS_CIRCLE rule ............................................ 225
ISLANDS rule ......................................... 68, 230

ignored if QUICK_PASS used.......... 131, 337
JOURNAL layout editor command ............... 375
Key

used for copy protection.............................. 10
Keywords............................................... 174, 333
Large designs



Index

DRC User Manual 465

tips for efficient checking...........................166
Layer 0..............................56, 221, 287, 301, 314

used to store bounding box of cell................60
using to identify devices.............................113
using to suppress output ...............................75

Layer Definition
detailed overview .........................................55

Layer generation
overview.......................................................38

Layer Generation Rules ....................................63
LAYER layout editor command .......18, 367, 370
Layer manipulation

overview.......................................................37
Layer names....................................................172

of DRC output layers..................................284
sample of difference in editor vs. rules.........20
syntax restrictions.........................................55

Layer number 99
acute angles ................................................313
bad polygons ..............................................189

Layer number is also used as input message...326
Layer numbers ..........................................55, 418

defining at run time ......................................57
defining input layers...................................217
defining input/output layers........................273
defining output layers.................................284
listing..........................................................327
specifying on command line.......................346
use care to create unique numbers................70

Layer Processing
detailed overview .........................................55

Layers
adding output layers to cell file ..................366
appearance in editor ...........................366, 371
appearance of error wires ...................366, 370
bloating ......................................................190
changing number of in layout editor.............70
classifying air bridges.................................196
classifying by aspect ratio ..........................184
classifying by cell name .....................215, 219
classifying by circular shape ......................225
classifying by holes ....................................211

classifying by size.............................. 194, 222
classifying by touching other layers .. 288, 311
classifying shapes by cell ............................ 59
classifying shapes by distance apart .......... 235
classifying with subcell bounding boxes ... 221
combing layer numbers on input ............... 218
combining DRC layers into one output layer285
comparing two designs .............................. 335
conductive ................................................. 110
copying...................................................... 187
creating inverse ................................. 187, 281
defining in advanced tutorial ..................... 383
defining input layers .................................. 217
defining input/output layers....................... 273
defining output layers ................................ 284
deleting layer in layout editor.................... 368
DRC input layers ....................................... 217
DRC output layers ..................................... 284
DRC scratch layers.................................... 300
etching ....................................................... 183
exclusive OR ............................................. 316
finding acute angle notches ....................... 231
finding acute angles................................... 242
finding all acute angles.............................. 313
finding holes.............................................. 230
finding notches .......................................... 248
finding shapes less than minimum area ..... 243
finding violations of minimum width ........ 271
flattening hierarchy.................................... 299
generating hierarchical output ................... 354
how hierarchical data is generated............. 134
intersecting ................................................ 183
inverting .................................................... 187
list of unconnected..................................... 327
listing layers used in rules in DRC log ...... 363
manipulation with DRC rules ...................... 63
merging during DRC preprocessing ............ 58
overlap....................................................... 288
overview of DRC internal layers ................. 61
overview of DRC rules................................ 63
poor conductors................................. 110, 116
removing material from............................. 113



Index

466 DRC User Manual

replacing in cell ..........................................273
report on DRC layers in compiler log ........326
resolution of cut lines on output .................205
retaining hierarchy......................................209
setting width for error wires .......................315
shrinking.....................................................302
specifying on command line.......................346
summary of output shapes in log file..........365
union ..........................................................283
unused ........................................................326
verifying area coverage ..............................245
verifying minimum distance apart ..............252
verifying minimum side length...................251
vias and contacts ........................................201

LAYERS command line option ......................346
Layout

comparing two designs...............................335
limiting area checked .................................350

Layout coordinates of errors...........................362
Layout data file...................................16, 47, 334

comparing two designs...............................335
creation of ..................................................318

Layout editor .... 8. See also ICED™layout editor
importing DRC shapes .........................18, 387
running DRC inside of ...................................7
tips when fixing errors..................................20

Layout export to DRC ..............................16, 382
Layout verification

overview.......................................................39
LEFT command line option....................159, 351
Length

using to restrict spacing errors....................268
verifying minimum side length...................251

Length of error shapes
discarding short errors..................................99

Letters on mask layers
avoiding false errors...................................157
common cause of errors ...............................75

Level
definition ......................................................40

Limiting area checked.....................................159
LIST_RULES command line option ......163, 350

Log file
adding border calculations......................... 348
adding rules listing .................................... 350
detailed logging ................................. 210, 249
DRC .......................................................... 362
listing tolerances in file ............................. 350
rules compiler............................................ 325
sample of compiler log file.......................... 15
short definition ............................................ 49

Logical error message.................................... 140
Long reach rules

example ..................................................... 440
LONGCASE command line option ....... 165, 343
LVS utility ......................................................... 8
Macros

suppressing in command file .......... 357
Main cell

definition ..................................................... 40
Main memory................................................. 162
MAIN_HOG command line option ....... 162, 340
MAIN_MEMORY command line option162, 340
MAIN_USE command line option ........ 162, 340
Manipulation of layers ..................................... 63
Manual Organization ......................................... 7
Mask generation issues .................................... 74
MASK keyword of OUTPUT LAYER rule... 453
Mask layer dimensions .................................... 68
Mask layers................................................ 63, 70

creation of.................................................. 284
example of generation ................................. 71
generation check list .................................... 82
modification of NWELL ........................... 418
output layers tested for acute angles.......... 313
problems with .............................................. 74
resolution of cut lines on output ................ 205

Mask layers.........See also Output Layers; Layers
Masking

dividing input layers .................................. 403
Masking layers

using to identify devices ............................ 113
MAX_ANGLE rule ....................................... 231
MAX_COUNT rule ............................... 154, 233



Index

DRC User Manual 467

change warning to automatic termination...310
MAX_QUAD rule ..........................................450
MAX_SPACING rule.....................................235

brief overview ..............................................67
ignored if QUICK_PASS used...........131, 337

Memory
conserving with FILESIZE option .............342
effect of border...........................................127
importance of panel size.............................119
insufficient casuses crash .............................28
limiting for DRC ........................................339
limiting in rules compiler command line....321
main vs. data...............................................340
memory available listed in log file .............363
minimizing use of in DRC..........................118
old virtual memory method ........................340
optimizing panel size..................................445

Memory management .....................................161
Memory problems

solving with smaller panels ........................118
try PANEL_VERTICES rule .............123, 291

Memory requirements.......................................10
MERGE layout editor command ......................77
Merging of geometry during preprocessing......58
MIN_ANGLE rule..........................................242
MIN_AREA rule ............................................243

overview.....................................................107
reach...........................................................125
using to classify shapes ................................66

MIN_FILL rule.......................................109, 245
MIN_NOTCH rule .........................................248

DRC definition of notch.............................106
effect of QUICK_PASS .............................130
finding other error mark in pair ..................158

MIN_SIDE rule ......................................108, 251
MIN_SPACING rule ......................................252

angled side exceptions..........................93, 256
avoiding false errors tutorial ......................391
choosing quicker algorithm........................338
CONN ignored if QUICK_PASS used.......337
defining electrical connections for .....110, 200
detailed logging............................................50

differences from MAX_SPACING rule .... 237
directional checks........................................ 89
effect of QUICK_PASS ............................ 130
example in advanced tutorial..................... 383
example in quick tutorial ............................. 14
finding other error mark in pair ................. 158
important to pair with MIN_NOTCH.. 87, 249
overview...................................................... 84
result in quick tutorial............................ 20, 23
simple examples .......................................... 88
splitting over multiple lines ....................... 173

MIN_WIDTH rule......................................... 271
DRC definition of width ............................ 104
example in quick tutorial ............................. 14
finding other error mark in pair ................. 158
result in quick tutorial.................................. 22

Minimum dimension verification
overview...................................................... 34

Minimum spacing rules
overview...................................................... 84
theory overview........................................... 33

Minimum width rule
overview...................................................... 34

Missing rules file
suppressing warning .................................. 279

MODIFY LAYER rule .................................. 273
Modify layers................................................... 57
MOSFET technology..................................... 112
MOVE layout editor command........................ 21
MULTI keyword in STAMP rule .................. 308
Multitasking operating systems...................... 339

keeping console window open........... 322, 345
Nested

definition ..................................................... 40
Nested cells

automatic flattening on input ..................... 145
Nesting....................................See also Hierarchy
Nesting rules files .......................................... 216
Net or node recognition ................................. 200
Nets

definition ................................................... 110
finding opens through poor conductors ..... 116



Index

468 DRC User Manual

Networks
restrictions for scratch file..................323, 332
users should not share scratch file ..............341

NFLATTEN command line option.................145
NLATTEN command line option ...................353
NLE utility..........................................................8
NO_CHECK_INPUT rule..............................276
NO_FLASH_PANELS cmd line option.165, 344
NO_FLATTEN command line option....145, 353

importance in hierarchical output...............148
NO_HIER_WARNING rule...........................277
NO_PANELS rule ..........................................278
NO_RUL command line option......................349
NO_RUL rule .................................................279
NO_VIRTUAL_MEMORY cmd line option .340
NO_WARN_ACUTE rule........................76, 280

remove in final run .....................................169
Node numbers.................................................129

overview.....................................................110
Nodes

defined........................................................200
Non-design layers ..... 36. See also Dummy layers

important to verify before final run ............169
testing.........................................................154
to avoid dangerous operations....................142

NONE keyword in STAMP rule.....................308
NOT keyword in AND rule ............................183
NOT keyword in IN_CELL rule.....................219
NOT keywords .................................................64

simple example.............................................64
NOT rule ........................................................281
Notation..........................................................174
Notches...........................................................248

DRC definition of notch.............................106
finding acute angle notches ........................107
finding acute angles on specific layer.........231
importance in spacing verification ...............87
removed with BLOAT rule ........................190

NPN transistors
sample layer processing..............................114

Numbers
using constants in rules...............................153

Nwell layer..................................................... 411
Nwell layer generation................................... 419
Obsolete DRC Rules...................................... 449
Octagons ........................................................ 226
OFF keyword

in rule set definition................................... 295
OFF_GRID rule ....................................... 81, 282
Offsetting a layer ................................... 190, 302
ON keyword

in rule set definition................................... 295
Oops condition............................................... 140
Opens

finding opens through poor conductors ..... 116
Operation number .......................................... 163
Optimization of DRC rules ............................ 151
Optimizations

tips on increasing speed............................. 161
Optimizing DRC runs .................................... 151
Optimizing memory usage ............................. 161
Optimizing run time............................... 123, 291

separating long reach rules ........................ 127
Optimizing the DRC

for large amounts of data........................... 166
Optional keywords......................................... 174
Options file .................................................... 336
OR rule .......................................................... 283
Order in rule set ............................................. 404
Orientation options in MIN_SPACING rule ... 97
Outline area.................................................... 211
OUTLINE keyword of OUTPUT LAYER rule453
Output

isolating DRC shapes from original data... 369
save DRC data in other cell automatically. 356

OUTPUT ERROR LAYER........................... 398

387
Output files ...................................................... 49

DRC .......................................................... 361
Hierarchical output .................................... 146
importing DRC output......................... 18, 387

Output layer
using to create mask layer ......................... 418



Index

DRC User Manual 469

OUTPUT LAYER rule...................................284
example in advanced tutorial......................383
example in quick tutorial..............................14
obsolete keywords ......................................453

Output layers ..............................................56, 70
adding DRC layers to cell file ....................366
effects of panel processing .........................131
resolution of cut lines .................................205
suppressing acute angle check............280, 314

output_file_base_name.....................................49
Overlap of one layer past another ...................398
OVERLAPPING rule ...............................68, 288

effect of dangerous processing ...................139
ignored if QUICK_PASS used...................337
ignored if QUICK_PASS used...................131

Overlapping shapes
and MIN_SPACING rule .............................84
directional spacing checks............................89
MIN_SPACING rule does not always find 252

Overlapping sides .............................................97
handling specially in spacing check ...........263

Overlaps
electrical connections .................................111

Overview of data flow ......................................12
Overview of manual............................................7
Overview of steps to execute DRC.................318
Pads

impact of pad rules on speed ......................441
testing minimum spacing of wires from .....402
writing efficient rules to verify...................164

Page table .......................................................342
Panel border............................................124, 440

effect of ASPECT_RATIO rule .................185
effect of HOLE_AREA_FRACTION rule .213
effect of MIN_AREA rule..........................243
example ......................................................442
overriding...................................................193
recorded in log file .....................................364
reducing execution time .............................163

Panel boundaries
affect output shapes..............................78, 131
cause of acute angles ..................................423

Panel is too small to subdivide further........... 127
Panel processing

border calculations .................................... 348
default behavior......................................... 121
generic overview ......................................... 42
overriding border on command line .......... 348
overview.................................................... 118

Panel size ....................................................... 293
listed in log file.......................................... 363
optimization............................................... 445
overriding in DRC command line.............. 358
setting by number of vertices per panel122, 290
setting explicitly ........................................ 123
specifying by maximum area ..................... 358
specifying ratio .......................................... 358

PANEL_VERTICES rule .............................. 290
overview.................................................... 122

Panels
generated CONNECT rules....................... 202

PANELX and PANELY rules ....................... 293
overriding on DRC command line............. 358
overview.................................................... 123
removing from old rule set ........................ 121

Parallel sides.................................................... 98
exceptions in MIN_SPACING rule..... 94, 256

Parameters ..................................................... 174
Pass

defined................................................. 41, 128
Passes............................................................. 151

number listed in log file............................. 363
overview.................................................... 128
reasons for varying border......................... 127

PATH DOS environment variable ................. 331
319

PAUSE command line option................ 322, 345
345

PAUSE option ............................................... 385
PEDIT layout editor command .............. 372, 388
Pentagons....................................................... 226
Perpendicular edges

avoid marking as MINSPACING errors.... 392
Perpendicular sides .......................................... 97



Index

470 DRC User Manual

handling specially in spacing check ...........262
Physical memory ............................................339
POK file

creation of ....................................16, 318, 382
POK file extension..........................................334
Polygon layer....................................................61
Polygons

classifying by aspect ratio ..........................184
classifying by circular shape ......................225
classifying by hole coverage ......................211
classifying by size ..............................194, 222
classifying by touching shapes ...........288, 311
classifying shapes by distance apart ...........235
finding notches ...........................................248
finding off-grid vertices..............................282
finding shapes less than minimum area ......243
finding violations of minimum width .........271
merging during DRC preprocessing .............58
removing small polygons ...........................303
verifying enclosure .....................................312
verifying minimum distance apart ..............252
verifying minimum side length...................251

Poor conductor layers .....................110, 308, 411
finding opens..............................................116

Post-processing of Output Layers.....................78
Preparing the Binary Layout Data File .....16, 382
Preparing the Rules File

in advanced tutorial ....................................383
in quick tutorial ............................................14

Program names ...............................................331
Program Requirements .....................................10
Progress reports ..............................................343

overview of reducing run time with............165
Protrusions

finding acute angle protrusions ..................107
in MIN_WIDTH rule .................................104

P-Select layer
example of generation ..................................71

Q:\ICED
defined..........................................................11

QEMM ...................................................339, 340
Quick Tutorial ..................................................12

QUICK_PASS command line option .... 164, 337
avoiding warning prompt........................... 338
choice listed in log file .............................. 363
eliminates electrical tests ............................. 99
important to remove from final run ........... 169
overview.................................................... 129

QUICK_PASS option
avoiding warning prompt........................... 182
effect on electrical spacing checks ............ 268

QUICK_SPACING command line option100, 164, 338
choice listed in log file .............................. 364
important to remove from final run ........... 169

Reach ............................................................. 348
definition ................................................... 124
rewriting rules to reduce............................ 163
specifying in rule ....................... 185, 213, 243

Rectangles................................................ 64, 222
RECTANGLES rule .............................. 176, 451
Reducing run times ........................................ 161
Redundant DRC rules .................................... 151
Refresh interval of screen display.................. 344
Removing material from a layer .................... 136
Reports

DRC output files........................................ 361
rules compiler output files ......................... 325

Resistors
removing from conductive layer................ 113
verifying dummy layer............................... 154

Resolution grids ............................................... 79
avoiding false errors due to ....................... 158
defining for cut lines.................................. 205
finding off-grid vertices............................. 282
snapping vertices to arbtrary grid ...... 304, 306
vertices shifted on output........................... 132

result_layer...................................................... 63
Results ............................................................. 49
Reusing rule sets ............................................ 203
RIGHT command line option ................ 159, 351
RLO file extension......................................... 325
Rule numbers ................................................. 158

determining which rule generated a shape. 366
example of reported in compiler log............ 15



Index

DRC User Manual 471

executing single rules .................................158
listed in command file ................................366
listed in compiler log..................................327
use SHOW to find rule that generated shape19
using to execute single rules.......................347

Rule set order..................................................404
Rule sets .........................................................295

evolution during testing..............................168
executing subsets........................................347
optimizing for speed...................................163
tips for organizing ......................................153
writing for portability .................................203

Rule subsets ............................................152, 442
Rules

recommended order .........................404
adding listing to DRC log...........................350
automatic optimizations during compilation151
compiled file name .............................320, 325
compiling ...................................................319
determining which rule generated a shape..372
diagnosing problems ....................................56
DRC command line options .......................346
executing single rules .................................158
executing subsets........................................347
execution time per rule ...............................365
file name.....................................................319
generic overview ..........................................39
listing in compiler log ................................327
listing in DRC log file ................................363
nesting files ................................................216
obsolete syntax ...........................................449
order ...................................................201, 327
reach calculations .......................................125
splitting over multiple lines ........................172
syntax errors ...............................................325
syntax overview..........................................172
table of contents ...........................................69
table of geometic and error basis..................62
time to execute reported in log file.............163
tips on testing new sets...............................154

Rules compiler........................................172, 319
automatic optimizations .............................151

command line syntax ................................. 319
delays on execution ................................... 321
diagram of data flow...................................See
syntax error warnings ................................ 385
use in advanced tutorial ............................. 383
use in quick tutorial ..................................... 14

Rules compiler ........See also DRC rules compiler
Rules file.......................................................... 47

adding to DRC log..................................... 350
example in advanced tutorial..................... 383
example in quick tutorial ............................. 14
list of examples in installation ..................... 26
missing source file DRC warning.............. 349
nesting ....................................................... 216
reccommended oder .................................. 404
search path................................................. 334
suppressing warning when missing............ 279

Rules File Options ......................................... 346
Run time

bloats can cause excessive......................... 192
decreasing with QUICK_PASS................. 130
effect of border .......................................... 127
effect of panel size..................................... 119
importance of panel size............................ 445
important to remove shortcuts from final run169
listed in log file.......................................... 365
optimizing rule sets ................................... 163
tips on reducing ......................................... 161

Running the DRC................................... 317, 329
Safe processing .............................................. 137

effect on hierarchical output ...................... 149
options....................................................... 141
preventing hierarchical warning prompt.... 277

SAFE_CELL rule .......................................... 297
overriding for specific layer ...................... 209
overview.................................................... 141

SAFE_LAYER rule ....................................... 299
overview.................................................... 142

Sample rules files
list of examples in installation ..................... 26

Scale factors
listed in log file.......................................... 363



Index

472 DRC User Manual

Scratch file..............................................324, 362
for rules compiler .......................................323
for simultaneous runs .................................332
left on disk..................................................332
maximum size.............................................342
report in log file..........................................365
size ...............................................................10
specifying locations....................................341
tips for large ...............................................167

Scratch layer never used message...................326
SCRATCH LAYER rule ................................300
Scratch layers....................................57, 287, 300

defining in advanced tutorial ......................384
exporting to diagnose problems ...................56

SCRATCH_DIR command line option ..167, 341
SCRATCH_DIR option

for rules compiler command line................323
Screen display.........................................343, 344
Screen Display Options ..................................343
SECOND_CELL command line option..........335
SELECT layout editor command....................371
Selecting error marks in layout editor...............18
Self-intersecting sides

locating.........................................................74
Separation

classifying shapes by distance apart ...........235
verifying minimum distance apart ..............252

SET DOS command .......................................359
Shapes

adding output shapes to cell file .................366
appearance of error wires ...........366, 370, 371
determining which rule generated a shape..372
error coord in subcell error command file..376
error coordinates in command file..............366
error coordinates in subcell command file .373
isolating DRC shapes from original data....369
notch and width verification.......................103
using to classify layers..................................64

Sharp angles....................... See also Acute angles
in mask layers...............................................76

Sharp points
bloats ..........................................................126

Shorting layers
diagnosing ................................................. 112

SHORTRUN command line option ............... 343
SHOW layout editor command.............. 158, 372
SHOW layout editor command........................ 19
SHOW_BORDER command line option....... 348
SHOW_SCALES command line option ........ 350
SHRINK rule ........................................... 68, 302

example ..................................................... 274
Hierarchical example................................. 135
reach calculations ...................................... 126
using to classify wires.................................. 65

Side length
verifying minimum .................................... 251

Sides
finding coincident edges.............................. 86
Spacing errors mark edges........................... 84

Simple spacing checks ................................... 254
Simultaneous execution ......................... 332, 362
Size

finding shapes less than minimum area ..... 243
optimizing DRC for large amounts of data 166
removing small polygons........................... 303
using to classify polygons.......... 184, 194, 222
verifying side length .................................. 251

Size of shapes
using to classify layers................................. 64

Skewed sides.................................................... 79
in output shapes......................................... 132

SKIPPED_POLY rule ................................... 452
Slanted sides

in output shapes......................................... 132
Slivers .............................................................. 81
SLOW command line option ......................... 337
Slow method

algorithm choice listed in log file .............. 363
Small shapes

finding by area........................................... 107
Smooth_tolerance .......................................... 350
SNAP rule.............................................. 158, 304
SNAP45 rule.......................................... 158, 306
Source/Drain layer ................................. 112, 408



Index

DRC User Manual 473

Spacing
classifying shapes by distance apart ...........235
finding violations of minimum width .........271
verifying minimum distance apart ..............252

Spacing method
choice listed in log file ...............................364

Spacing rules
overview.......................................................84
theory overview............................................33

Spacing verification........................................252
overview.......................................................84
verifying serpentine shapes ..........................87

Spanning rules over multiple lines..................172
Speed

fixing slow DRC for small designs.............339
importance of panel size.............................119
important to remove shortcuts from final run169
improving by limiting design area..............350
increasing with QUICK_PASS ..................130
methods of improving ................................440
optimizing for rules compiler .....................321
optimizing rule sets ....................................163
QUICK_PASS option ................................337
QUICK_SPACING algorithm....................338
statistics of run listed in log file .................365
tips on increasing........................................161

Splitting rules over multiple lines ...................172
Squares ...........................................................226
STAMP rule ...........................................116, 308

example in advanced tutorial......................413
ignored if QUICK_PASS used...........131, 337
overview.....................................................110

Stamping node numbers..........................200, 308
START_CMD command line option..............356

example ......................................................370
STOP_ON_MAX_COUNT rule ............154, 310
Storage requirements ........................................10
Strorage problems

solving with smaller panels ........................118
Subcell bounding boxes

storing as shapes.........................................221
Subcell error command files .....................75, 375

bad polygon layer number ......................... 189
Subcells

classifying layers by cell.................... 215, 219
definition ..................................................... 40
flattening hierarchy............................ 181, 297
flattening hierarchy of specific layers........ 299
generating shapes in .................................. 430
how layers are generated ........................... 135
retaining hierarchy............................. 180, 207
retaining hierarchy of specific layers......... 209
terminating run when error used frequently233

Swap files
conserving memory if small ...................... 162
tips for large .............................................. 167

SWAP layout editor command ........................ 70
Syntax

DRC command line ................................... 329
DRC rules.................................................. 172
DRC rules compiler command line ........... 319

Syntax errors.................................................. 385
Rules compiler........................................... 325

Tab characters................................................ 172
TAG............................................................... 366
Tag number.................................................... 158

using to determine rule that generated shape19
Target Audience ................................................ 6
Technical support ............................................ 27

try smaller panels first ............................... 118
TEDIT layout editor command...................... 372
Temporary layers

exporting to diagnose problems................... 56
Terminating program

DRC .......................................................... 332
rules compiler............................................ 324

Termination
automatic when max error count reached .. 310

Testing New Rules......................................... 154
Time

importance of panel size............................ 119
listed in log file.......................................... 365
tips on reducing ......................................... 161

Time stamp



Index

474 DRC User Manual

listed in DRC log file .................................363
T-intersections ..................................................97

handling specially in spacing check ...........262
TOEND keyword of version control rules......176
Tolerances

adding report to log file..............................350
listed in log file...........................................363

TOP command line option......................159, 351
Touching

overview of enclosure verification ...............37
TOUCHING rule ......................................68, 311

adding to MIN_SPACING tests ...................93
effect of dangerous processing ...................139
example in advanced tutorial......................397
example of counting results as errors ...........93
ignored if QUICK_PASS used...........131, 337
using to divide input layer ..........................403
using to find coincident edges ......................86

Touching shapes
and MIN_SPACING rule .............................84
finding shapes that are not connected.........230

Touching vs. overlapping ...............................288
Transistor gates...............................................383
Transistor wells

verifying poor conductors ..........................116
Triangles.........................................................226
TRIVIAL.CEL..................................................16
Troubleshhoting................................................27
Tutorial .............................................................12

Advanced ...................................................379
Unconnected layers.........................................327
Ungouping ..................................... See Hierarchy
Ungrouping

definition ......................................................40
Ungrouping cells on input ..............................145
Ungrouping to prevent danger errors..............140
Union of layers ...............................................283
Unpaired error wires.......................................268
UNSELECT layout editor command ..............371
USE command line option......................162, 339

for rules compiler .......................................321
USE layout editor command...................367, 370

Variable layer numbers............................ 57, 346
Variables........................................ See Constants

using constants in rules.............................. 153
Version

of rules compiler........................................ 325
old versions of the DRC ............................ 449

Version control .............................. 176, 178, 179
Version number of program........................... 362
Versions......................................................... 331

comparing two designs .............................. 335
Vertex shifting

in output shapes......................................... 132
Vertices

shifted due to grid problems........................ 79
snapping to grid................................. 304, 306

Vias.......................................................... 87, 201
in CONNECT rule..................................... 111

VIEW layout editor command ....................... 371
Violations ............................................See Errors
Virtual array page table ................................. 162
Virtual memory...................................... 339, 341

efficiency listed in log file ......................... 365
max size..................................................... 342
old method................................................. 340
optimizing DRC for large amounts of data 166

WARN_ACUTE rule..................................... 313
WARN_ACUTE=0 rule

important to remove from final run ........... 169
Warning messages

default panel size....................................... 121
stored in log file......................................... 362
window closing too soon ................... 322, 345

Warning prompt
avoiding............................................. 338, 349

Warnings
from rules compiler ................................... 326

Well layer ...................................................... 411
verifying poor conductors.......................... 116

Well layer generation..................................... 419
Well shapes

finding shorts through poor conductors..... 308
Whitespace characters ................................... 172



Index

DRC User Manual 475

Width
default for error wires.........................315, 355
DRC definition ...........................................103
finding violations of minimum ...................271
of error wires......................................366, 370
387

Width of wires
classifying by width......................................65

Window
closing console window .....................322, 345

Wire layer .........................................................61
Wire type ................................................366, 370
WIRE_WIDTH command line option............355

WIRE_WIDTH rule ...................................... 315
overriding on command line...................... 355

Wires
appearance in layout editor........ 366, 370, 371
classifying by width..................................... 65
converted to polygons during preprocessing 58
creation in output data ............................... 286
finding spacing errors in serpentine shapes . 87
overriding width on command line............ 355
setting width for error wires ...................... 315

XOR rule ....................................................... 316


	Introduction
	Target Audience
	Manual Organization
	Other Available Programs

	Getting Started
	Program Requirements
	Installation
	Quick Tutorial
	Preparing the Rules File
	Preparing the Binary Layout Data File
	Looking at the Output

	Troubleshooting

	Fundamentals of Design Rule Verification
	What Are Design Rules?
	How Design Rules Are Verified
	Minimum Spacing Rules
	Other Verification Rules
	Eliminating False Errors
	Layer Manipulation Prior to Rule Verification

	Creation of Layers for Import Back Into Design

	How Do Design Rule Checkers Work?
	A Few Definitions
	How Large Amounts of Data Are Processed
	Panel Processing
	Hierarchical Processing



	How the DRC Works
	Generating the Input Files and Running the Program
	Looking at the Results
	The DRC Log File
	Detailed Logging
	The DRC Command File
	Additional Uses of the DRC

	Layer Processing
	Layer Definition
	Input Layers
	Output Layers
	Scratch and Modify Layers
	Variable Layer Numbers

	Preprocessing of Layers
	IN_CELL Processing

	Types of DRC Layers
	Layer Generation Rules
	Boolean Processing
	Classifying Shapes by Size or Shape
	Classifying Shapes by Distance
	Overview of Other Layer Generation Rules

	Generating Output Layers
	Example of Generation of P-Select and Diffusion Mask Layers
	Problem Shapes for Mask Generation
	Post-processing of Output Layers
	Resolution Grids
	Recommended Procedure for Writing Rules to Generate Mask Layers


	Spacing Verification
	Using Rules Other Than MIN_SPACING to Mark Spacing Problems
	Overlaps and enclosed shapes
	Notches in serpentine or fingered shapes

	Simple Spacing Checks
	Optional Keywords to Reduce False Errors
	Directional Spacing
	Side-side angle exceptions– Beta test only!
	We do run a test suite comparing the new and old versions before we post a beta version.  But just because our cases worked, that doesn't mean yours will.
	End Caps
	Orientation Options
	Electrical Connection Criteria
	Error Wire Length Criteria
	QUICK_SPACING Algorithm


	Other Verification Rules
	Width and Notch Verification
	DRC Definition of Width
	DRC Definition of Notch
	Angular Notches and Protrusions

	Minimum Area and Side Length
	MIN_AREA
	MIN_SIDE

	Design Area Coverage by a Layer

	Electrical Connections
	The CONNECT and STAMP Rules
	Building Electrical Connections
	Using the STAMP Rule to Verify Wells

	Panel Processing
	Purpose
	Effect of Panel Size on Memory and Running Time
	New Default Panel Size Calculations
	The New PANEL_VERTICES Rule
	The PANELX and PANELY Rules
	Panel Borders
	Multiple Pass Processing
	Effects of the QUICK_PASS Option
	Effects of Panel Processing on Generated Layers

	Hierarchical Checking and Hierarchical Output
	Hierarchical Processing Algorithm
	Dangerous Operations
	Oops Conditions
	Safe Processing Options
	Automatic Flattening of Cells on Input
	Hierarchical Output
	Quirks of Hierarchical Processing

	Optimizing DRC Runs
	Optimizations in Rule Sets
	Optimizations Performed by the Rules Compiler
	Rule Subsets
	Other Ways to Organize Complicated Rule Sets

	Testing New Rules
	Removing False Errors
	Diagnosing Mysterious Errors
	Limiting Area Checked
	Reducing Run Times
	Memory Management
	Rewriting Rule Sets to Improve Speed
	The QUICK_SPACING and QUICK_PASS Options
	The Progress Report Options

	Using the DRC on Very Large Designs
	Preliminary Checks Vs. Final Checks
	Checklist for Final Run



	DRC Rules Syntax
	General Syntax Restrictions
	Manual Notation

	2_ONLY	DRC version control
	286_ONLY	DRC version control
	3_ONLY	DRC version control
	ALL_DANGER	Prevent cell flattening for dangerous operations
	ALL_SAFE	Force cell flattening for dangerous operations
	ALLOW_QUICK 	Avoid warning prompt for QUICK_PASS processing
	AND	Boolean AND of two layers
	ASPECT_RATIO	Classify shapes by relative dimensions
	The Assignment Rule	Copy layer or inverse of layer
	BAD_POLY	Assign layer number for bad polygons
	BLOAT	Expand shapes
	BLOAT_ANGLE	Define angle for BLOAT rule
	BORDER	Explicitly define panel overlap
	BOUNDS	Classify shapes by the size of their bounding box
	BRIDGE	Recognize air bridges
	CONNECT	Electrically connect layers
	CONST	Define constant value
	CUT_RESOLUTION	Place cut lines on specific grid
	DANGER_CELL	Prevent cell flattening for dangerous operations
	DANGER_LAYER	Override cell flattening for certain layers
	DETAIL	Turn detailed logging on or off
	HOLE_AREA_FRACTION	Classify polygons with holes
	Using the NOT Keywords
	The /BORDER Keyword
	Counting Shapes as Errors

	IN_CELL	Classify shapes in certain cells
	INCLUDE	Allow rules file nesting
	INPUT LAYER	Define input layers
	Restricting Input Layers by Subcell
	Restricting Input Layers by Subcell Boundaries

	IS_BOX	Classify rectangles by size
	IS_CIRCLE	Classify polygons with circular shape
	Specifying Radii
	Specifying the Number of Sides
	The Optional POLY_INSIDE and POLY_OUTSIDE Keywords
	Using the NOT Keywords
	Counting Shapes as Errors

	ISLANDS	Find Holes
	MAX_ANGLE	Find sharp points in notches
	MAX_COUNT	Change maximum number of errors found before warning
	MAX_SPACING	Classify shapes by distance
	Using the NOT Keywords
	Counting Shapes as Errors

	MIN_ANGLE	Find sharp points
	MIN_AREA	Find small shapes
	MIN_FILL	Verify layer coverage of design area
	MIN_NOTCH	Find small notches
	MIN_SIDE	Find shapes with at least one small side
	MIN_SPACING	Find spacing errors
	MIN_WIDTH	Find shapes with small width
	MODIFY LAYER	Define layer used as both an input and output layer
	NO_CHECK_INPUT	Prevent some bad polygons from being marked
	NO_HIER_WARNING	Prevent warning during hierarchical output
	NO_PANELS	Execute DRC on entire design at once
	NO_RUL	Prevent warning when source rules file is missing
	NO_WARN_ACUTE	Prevent marking acute angles
	NOT	Copy inverse of layer
	OFF_GRID	Find vertices that are not on resolution grid
	OR	Boolean OR of two layers
	OUTPUT LAYER	Define layer for output
	Defining an Error Layer
	The WIRE and POLYGON Keywords
	Defining Temporary Scratch Layers with Layer 0

	OVERLAPPING	Find shapes with common area
	PANEL_VERTICES	Control number of vertices per panel
	PANELX and PANELY	Define maximum panel size
	RULE_SET	Define sets of rules to control execution
	SAFE_CELL	Flatten only certain cells for dangerous operations
	SAFE_LAYER	Force cell flattening for critical layers
	SCRATCH LAYER	Define temporary layer
	SHRINK	Shrink shapes uniformly
	SNAP	Relocate vertices on resolution grid
	SNAP45	Relocate vertices on resolution grid preserving slope of 45º angles
	STAMP	Electrically connect poor conductors
	STOP_ON_MAX_COUNT	Halt DRC on maximum number of errors
	TOUCHING	Find touching shapes on different layers
	WARN_ACUTE	Assign layer number for acute angle warning marks
	WIRE_WIDTH	Set error wire width for all error layers
	XOR	Boolean exclusive OR

	Running the DRC
	DRC Rules Compilation
	Rules Compiler Command Line Syntax
	Output Redirection
	Memory Options
	Batch Console Window Control
	Scratch Directories
	Terminating the Rules Compiler
	Rules Compiler Output Files

	Running the DRC
	DRC Command Line Syntax
	Name of the Program
	Terminating the DRC
	Simultaneous DRC Runs
	Command Line Options
	Using '#' in Place of '=' in Command Line Options
	File Parameters
	Input Redirection
	Algorithm Options
	Memory Options
	Screen Display Options
	Rules File Options
	Design Area Options
	Cell Hierarchy Options
	Command File Options
	Panel Size Options
	Batch Files

	DRC Output Files
	DRC Log File
	DRC Command File
	Before Executing the Command File
	Executing the Command File in the Layout Editor
	Isolating the DRC Shapes from the Original Layout Data
	Making the DRC Shapes More Visible
	Determining Which Rule Generated a Shape
	Fixing the Errors
	Hierarchical Output

	Hierarchical Cell Command File
	Subcell Error Command Files


	Advanced Tutorial
	Simple Spacing Check
	Preparing the Binary Layout Data File
	Creating the Rules File for a Simple Spacing Check on a Generated Layer
	Executing the DRC
	Looking at the Output

	Directional Spacing Check
	Modifying the Rule Set

	Finding Errors Involving Touching Shapes
	Tests That Involve Electrical Connections
	Masking the Metal2 Layer
	Adding Electrical Connection Rules
	Looking at the Pad Spacing Error
	Adding the Rest of the Good Conductor Electrical Connection Rules
	NWELL Connections and Verification

	Creation of Shapes for Export
	Nwell Layer Generation
	Finding the Acute Angles
	Finding the Bad Polygon

	Hierarchical Output
	Dangerous Processing Directives
	Command Line Options for Hierarchical Output
	Creating and Importing the Hierarchical Data
	Fixing a Dangerous Processing Error
	Replacing Hierarchical Output
	Deleting Hierarchical Output

	Speeding Long DRC Runs
	Testing Minimum Pad Size
	Separating Long Reach/Short Reach Rules into Rule Subsets
	Using Rule Subsets for Very Long DRC Runs
	Optimizing Panel Size

	Conclusion

	Appendix A: Obsolete Syntax
	Obsolete DRC Rules
	MAX_QUAD	Limited air bridge recognition
	RECTANGLES	Find shapes that are not rectangles of specific sizes
	SKIPPED_POLY	Assign layer number for shapes unknown to DRC
	OUTPUT LAYER Obsolete Keywords
	MASK
	OUTLINE
	OUTPUT ERRORS
	OUTPUT GEOMETRY


	Index

