
Reference Manual

Updated for Version 4.87

IC Editors, Inc.

Command File Programmer's

© 2005 by IC Editors, Inc.
No part of the information contained in this manual may be represented in any form without the prior
written consent of IC Editors, Inc.
Limited Warranty
IC Editors, Inc. warrants that the program will substantially conform to the published specifications and to
the documentation, provided it is used on the computer hardware and with the operating system for which it
is designed. IC Editors, Inc. also warrants the media on which the program is distributed and the
documentation are free from defects in materials and workmanship.
IC Editors, Inc. will replace defective documentation or correct substantial program errors at no charge,
provided you return the item to IC Editors, Inc. within 1 year of the date of delivery. IC Editors, Inc. will
replace defective media at no charge provided you return the item to IC Editors, Inc. within 3 years of the
date of delivery. If IC Editors, Inc. is unable to replace defective media or documentation or correct
substantial program errors, IC Editors, Inc. will refund the purchase payment for the product. These are
your sole remedies for any breach of warranty.
Except as specifically provided above, IC Editors, Inc. makes no warranty or representation, either express
or implied, with respect to this program or documentation, including their quality, performance,
merchantability, or fitness for a particular purpose.
Because programs are inherently complex and may not be completely free of errors, you are advised to
validate your work. In no event will IC Editors, Inc. be liable for direct, indirect, special, incidental, or
consequential damages arising out of the use of or inability to use the program or documentation, even if
advised of the possibility of such damages. Specifically, IC Editors, Inc. is not responsible for any costs
including but not limited to those incurred as a result of lost profits or revenue, loss of use of computer
program, loss of data, the costs of recovering such programs or data, the cost of any substitute program,
claims by third parties, or other similar costs. In no case shall IC Editors, Inc.'s liability exceed the amount
of the purchase payment.
The warranty and remedies set forth above are exclusive and in lieu of all other, oral or written, express or
implied. No IC Editors, Inc. dealer, distributor, agent, or employee is authorized to make any modification
or addition to this warranty. Some states do not allow the exclusion or limitation of implied warranties or
limitation of liability for incidental or consequential damages, so the above limitation or exclusion may not
apply to you.
Software License
The ICED™ software is protected by United States copyright law and international treaty provision.
While the software may be installed on multiple systems, the use of the software is restricted to individual
systems using hardware keys supplied by IC Editors, Inc. Interference with the function of the hardware
keys is prohibited.
The sale or transfer of the software to a third party is prohibited without the prior permission IC Editors,
Inc.
Acknowledgments
The majority of this manual was written or revised by Ference Professional Services in Sonora, CA. We
are also responsible for formatting the text and creating the screen captures that illustrate the examples. The
original ICED-16 manual was written by Mark Stegall. Pieces of this manual can still be found in this
ICED™ manual.
Michael Gentry of MGC, Inc. created the layout that is used on the cover and as a frontispiece. It is a
section of a CMOS simulation of a 74181 4-bit ALU.

Table of Contents

ICED™ Command File Programmer's Reference 1

Table of Contents

INTRODUCTION..5
TABLE OF USEFUL EXAMPLES IN THIS MANUAL...7
CREATING AND EXECUTING A SIMPLE COMMAND FILE ..10

EXECUTING COMMAND FILES ..13
USING THE @FILE_NAME COMMAND..14
COMMAND FILE SEARCH PATH...14

Where to Store Command Files ..15
COMMAND FILE NAMES..16
METHODS OF EXECUTING COMMAND FILES ...17

From a Menu ..17
With a Keystroke...18
Automatic Execution when Editor Opens ...18
Automatic Execution when Editor Closes...20
Automatic Execution when Subcell is Opened or Closed ...21
Automatic Execution when Error is Encountered...21

EXECUTING A COMMAND FILE ON MANY CELLS ..22
BATCH EXECUTION...23

The BATCH Command Line Option ...25

COMMAND FILE SYNTAX ..29
REVIEW OF ICED™ COMMAND SYNTAX...30

Commands, Continuation Lines, and Statements..30
Comments ...31
Line Labels ...32
Delimiters ...33
Underscores..34
Case Insensitivity ..34
Abbreviating Keywords, Layer Names, and Color Names..34
Quotes and Strings..35
% Prompts and Position Prompts...36

INTRODUCTION TO MACROS ...38
String Substitution ..38
Overview of Macro Definition and Assignment..41
Delayed Substitution...46
Overview of System Macros..47

Table of Contents

2 ICED™ Command File Programmer's Reference

EXPRESSION EVALUATION..48
Expressions Should Be Surrounded By {}...48
Mathematical Expressions..50
Boolean Expressions...53
Operator Precedence and Associativity (or, when are () required in an expression?).......................59
Functions ..63
Calculations in Layout Editor...67

SUMMARY OF SPECIAL CHARACTERS ...68
REVIEW OF STATEMENT PARSING...71

OVERVIEW OF PROGRAMMING TECHNIQUES..73
SELECTING COMPONENTS...74

Selection Status at the Beginning of a Command File..74
Embedded Selects and the XSELECT Mode ...75
The UNPROTECT and UNBLANK Commands..76
Selection Criteria..76
Selecting Components from a List ..77
Selecting A Single Component ..78
Allowing User to Use Multiple SELECT Commands..78

ADDING COMPONENTS..79
ADD Commands ...79
Adding Components with ITEM Macros...80
Snapping Coordinates to Resolution Grid..81
Methods that Enable Undoing ADD Commands ..81
Adding Components using SHOW Command File..82

DELETING COMPONENTS ..83
USER INTERACTION ..84
VERIFYING USER INPUT..87
DISPLAYING MESSAGES TO THE USER ..88
CONDITIONAL EXECUTION..90
NESTING COMMAND FILES ...95

Passing Arguments into Command Files..97
OPENING OTHER CELLS ..101

The Edit Commands..101
Opening Cells in VIEW-ONLY Mode ...102
Errors and Interruptions during Nested Edits ..103
The Cell Table and Open Cells...104
Determining if a Cell Exists and is Loaded ..105
Determining if a Cell is Open or Protected ..106
Looping Through All Subcells ..109
Allowing Local Copies of Cells...109
Creating New Cells with an EDIT Command...110

Table of Contents

ICED™ Command File Programmer's Reference 3

SAVING AND RESTORING SETTINGS ..111
Saving the Selection Status of Components ..111
Saving the Editor Settings...113
Saving Macros for Future Sessions ..116

CALLING OTHER PROGRAMS ..119
Shelling Out to a GUI Program..120
Shelling Out to a DOS Command ...121
Using Other Programs to Manipulate Component Data..122

TESTING, ERROR CHECKING, AND RECOVERY FROM ERRORS ..124
Canceling a Command File ..125
Error Handlers ...125
Mysterious Errors ...126
The Journal File ...127
UNDOing Command Files..128
Using the Journal File for Recovery...129
Using UNED.CMD to Undo Command File ..129

CONTROL FILE EFFICIENCY ..130
Disable View Window Update ..130
Disable Command Logging to Screen ..130
Disable Command Logging to Journal File ...131

MACRO DEFINITION ...133
OVERVIEW..134
ITEM MACROS...136
USER MACRO DEFINITION SYNTAX ..136

COMMANDS USED PRIMARILY IN COMMAND FILES ..155
TABLE OF COMMANDS COVERED IN OTHER MANUAL ..157
@FILE_NAME..EXECUTE A COMMAND FILE. ..159
$COMMENT ...ADD COMMENT TO JOURNAL FILE AND SCREEN.161
BACK_TO ..FORCE INTERPRETER TO GO BACK TO A SPECIFIC LINE. ..163
ERROR ...DISPLAY ERROR MESSAGE. ..164
IF, ELSEIF, ELSE...CONDITIONALLY EXECUTE STATEMENTS.......................168

The IF Command ..169
The ELSE Command...170
The ELSEIF Command ...171

ITEM...GET INFORMATION ON SINGLE COMPONENT173
Using the ITEM Macros ...176
Selecting a Single Component ..180
Using the ADD.item_name Macro..180

Table of Contents

4 ICED™ Command File Programmer's Reference

LIST ..SAVE A NAMED LIST OF COMPONENTS.182
Building a Set of Components in a Loop ..184
Macros Created by the LIST Command..186
Functions Related to Lists...188
When Lists Are Removed ..188
Efficiency of Using a List When Looping Through Components ..189

LOG ..SPEED COMMAND FILES WITH LOGGING OPTIONS...........190
Effects of the LOG OFF Command ..191
Showing Progress Messages During LOG OFF...193
Effects of the LOG SCREEN =(ON |OFF) Command..193
Effects of the LOG [LEVEL=(BRIEF | NORMAL | DEBUG)] Command..194

MARK_SUBCELLS INITIALIZE SUBCELL.EDIT SYSTEM MACRO...............197
PAUSE ...CREATE A PAUSE IN A COMMAND FILE.199
PROMPT ..CHANGE PROMPT MESSAGE ON THE COMMAND LINE.201
REMOVE ..DELETE MACROS ...203
RETURN ...TERMINATE COMMAND FILE OR EXIT SHELL STATE........205

Returning from a Shell..206
SHELL ...SUSPEND COMMAND FILE AND GO INTERACTIVE............207
SKIP_TO...FORCE INTERPRETER TO GO TO SPECIFIC LINE................209
VIEW (ON | OFF) ..CONTROL DISPLAY REFRESH DURING COMMAND FILES..210
WHILE ...EXECUTE BLOCK OF STATEMENTS MORE THAN ONCE212
XSELECT ...ENABLE OR DISABLE EMBEDDED SELECTS215

FUNCTIONS ..217
FUNCTIONS SORTED BY PURPOSE ...219
FUNCTIONS ALPHABETICALLY..220

ICED™ SYSTEM MACROS..249
Overview...250
Indexed System Macros ..251
Cell Table Indices ...252

SYSTEM MACROS SORTED BY PURPOSE..252
SYSTEM MACROS ALPHABETICALLY ..255

ADVANCED EXAMPLES..303
_GET_INT.CMDPROMPT USER FOR INTEGER AND VERIFY VALUE...................305
RES.CMD ..CREATE RESISTOR FROM RESISTANCE AND WIDTH................309
SERIAL.CMD AND _CHARN.CMD........ADD SERIAL NUMBERS TO AN ARRAY....................................312
ED.CMD AND UNED.CMDEDIT COMPONENT PROPERTIES (WITH UNDO CAPABILITY)318
DEEPSHOW.CMD..................................ENHANCE SHOW COMMAND FOR NESTED COMPONENTS325
BUSROUTE.CMD...................................REPLACE SINGLE WIDE WIRE WITH ROUTED BUS OF WIRES ...327

Introduction

ICED™ Command File Programmer's Reference 5

Introduction

Introduction

6 ICED™ Command File Programmer's Reference

Command files are files of ICED™ commands that can be executed in the layout
editor with a single command or keystroke. Their primary purpose is to make
repetitive tasks easier, but once you are familiar with command files you can
perform many complicated tasks that you cannot perform with editor commands
alone.

This manual is intended to be a companion manual for the IC Layout Editor
Reference Manual. This other manual covers all commands that can be used
interactively in the editor (e.g. ADD and COPY.) Most commands and other
subjects that are of interest only to writers of command files have been removed
from the main reference manual and are covered here instead. However, many
commands that may interest command file writers are covered only in the main
reference manual. You really need to use both manuals to be an effective
command file programmer.

One of the most useful features added to ICED™ for command files is macro
manipulation. Macros implement string substitution allowing you to use stored
strings as values in commands. Macros store strings that can be interpreted as
text, numbers, or coordinates. Their function is similar to that of variables in
other programming languages. An overview on macros begins on page 38.
Details on macro definition are covered beginning on page 133. System macros
are covered on page 249.

Other features added to ICED™ primarily for use in command files include
program loops (the WHILE command), conditional blocks of code (the IF
command), mathematical functions, shells to the operating system, and many
other features. Advanced tasks can be accomplished with data exported to an
external program.

The creation and support of most of these features in ICED™ has been performed
in response to the needs of users. The commands and other features added to
support macros and command files will continue to develop over time, as users'
needs change. You should be aware that the behavior of these features is not as
fully tested as other features of the program and you should always test your
command files carefully.

The tutorial on
command files
in the Class-
room Tutorials
Manual is a
great way to
become familiar
with command
file program-
ming.

System macros
are macros
created and
updated
automatically
by the layout
editor.

Introduction

ICED™ Command File Programmer's Reference 7

Table of Useful Examples in This Manual

We include the following table for two reasons. First, it demonstrates the types
of tasks you can accomplish with command files. Second, if you are in a hurry
and the task you need to accomplish is similar to one in the table, you may be
able to just cut and paste from the manual to your command file for an instant
solution.

Task category Example Page

Assign ADD TEXT command to function key 151
Select exactly one component 96
Delete all components on a specific scratch layer
despite protection or blank status

84

Prompt user for layer name and delete all
components on the layer despite protection or blank
status

98

Unblank all cell layers then restore original status 274
Blank some layers to make selecting a shape easier 275
Prompt user for cell name and swap all components
in that cell on one layer to new layer

108

Prompt user for string using a default value 146
Prompt user for layer using menu 147
Prompt user for spacing distance using default 279
Prompt for cell name and process cell if loaded 262
Prompt user for integer and verify it is within range 305
Change the width of a wire using ITEM command 180
Select fill pattern from menu and replace with new
pattern

277

Test if vertex is within selection box 292
Edit components by modifying their ADD
commands

318

Crete substring of existing string 223

Enhancing basic
commands

Build position list string for selected polygon 179

Introduction

8 ICED™ Command File Programmer's Reference

Add an array of a component after digitizing a single
copy

271

Make multiple copies of an existing component 272
Create simple spiral of wires 148
Add label to wire automatically after digitizing it 118

272
Add polygon in the shape of the number 0 317
Add serial number polygons to array 312
Create new cell using template cell 110
Create a resistor after prompting the user for
resistance and width

309

Covert vertices if snap angle is non-zero 294
Create displacement intervals on grid 236
Transform a single wide wire into a routed bus 327

Creating components

Remove components added since benchmark 270

Passing values into nested command file 97
Loop prompting user for string and validating it 94
Loop through all layers calling a command file to
process each layer

99

Loop processing all editable cells 264
297

Loop processing all components in cell 269
Loop processing all components in list 284
Measure time to terminate infinite loop 298
Post progress message periodically in long loop 162
Copy a file using a DOS command 121
Copy a file using a DOS command, display error
message upon failure

122

Search for file and open in text editor 265
Create a directory if it does not yet exist 227
Determine if a file has changed since last access 228

Command file
control

Triggering an error handler block of code 166

Introduction

ICED™ Command File Programmer's Reference 9

Save and restore blank status of layers 258
Select all contacts with a minimum area 185
Report component count on a layer in a nested cell 102
Report bounding box for specific cell name 221
Report layers with CIF layer name defined 276
Report layers with Stream layer name defined 280
Get cell information for cell not yet loaded 222
Report cell's library name 262
Select cell and determine if it is in a protected library 263
List all cell libraries 282

283
List layers using a specific color 276
Create sorted list of subcells 260
List layers with default width less than minimum 281
Change view window if necessary to display point 301

Displaying or
collecting
information

Display SHOW information for a component in a
nested cell

325

Figure 1: References to interesting examples of command files

Introduction

10 ICED™ Command File Programmer's Reference

Creating and Executing a Simple Command File

All ICED™ products are designed to be launched from a DOS
console window. The best way to open a DOS window for our
purpose is to use the ICED™ icon. This icon was created on your
desktop during installation and displays the representation of a
silicon wafer. Using the ICED™ icon sets the system's search path.
This ensures that operating system looks in the correct directory for
the program executable files. It also sets the current directory to the
ICED™ directory, Q:\ICWIN1. Double click on the ICED icon now.

We suggest that you use the TUTOR subdirectory to store the cell files and
command files created while you explore this manual. You generally change to
the directory where cell files are stored before launching the layout editor. To
change the current directory, type the following command at the DOS prompt in
the console window:

CD TUTOR <Enter>

ICED™ is usually launched by executing a project batch file that sets several
environment variables and ICED™ command line options. The installation
provides you with a sample batch file, Q:\ICWIN1\ICWIN.BAT. If you use this
batch file, all you have to supply is the name of a cell to begin editing. Use this
batch file to open the layout editor and create a new cell with the name
"MYCELL". At the DOS prompt, type:

ICWIN MYCELL <Enter>

1 Throughout this manual, Q: and \ICWIN are used to represent the drive and directory where you
have installed the ICED™ software. If you have installed the software on your C drive in the
directory \ICED, you should replace Q: with C: and \ICWIN with \ICED.

Figure 2:
ICED
desktop
icon

Introduction

ICED™ Command File Programmer's Reference 11

The simplest way to create a command file is to open the NOTEPAD text editor
(supplied with all Windows installations) to create a new file in the current
directory. You can do this directly from the ICED™ layout editor command line
with the command shown below. (If you prefer, you can modify the command to
open your favorite ASCII text editor.) Type the following command in the
layout editor.

Example: SPAWN –NOTEPAD MYCMD.CMD

If the file MYCMD.CMD contains text from some other use, delete it and save
the file, (File → Save).

Type the following in the MYCMD.CMD text editor window (or cut and paste
into the text editor window if you are reading this with Adobe Acrobat.)

Example: ADD BOX AT (0 0), (10 10)

Now save the file. (File → Save)

In the ICED™ window, type the following command to execute the
MYCMD.CMD command file.

Example: @MYCMD

The command file is executed and the ADD BOX command in it adds the box
component.

You will probably be executing the "SPAWN –NOTEPAD MYCMD.CMD" and
"@MYCMD" commands often as you test examples in this manual. It will save
time if you assign these commands to function keys. Then you can execute each
one with a single keystroke. This will allow you to instantly edit the test
command file from this cell and execute it at any time in the future. The process
described on the next page will assign the commands above to function keys.

See page 15 to
see why it is
important to
store command
files used in real
projects outside
of cell libraries.

The SPAWN
command exe-
cutes an oper-
ating system
command in a
new window.
See page 120.

Introduction

12 ICED™ Command File Programmer's Reference

Close the text editor window. (Use the 'X' button on the upper right corner.)
Now use the <↑> key in the layout editor until the SPAWN command is
displayed again on the command line. Edit the command line to look like the
following (replace "NOTEPAD" with your favorite text editor if desired), then
hit <Enter>.

Example: KEY F11="SPAWN –NOTEPAD MYCMD.CMD"

Now press the <F11> key to open the text editor to edit the test command file
MYCMD.CMD.

To assign the @MYCMD command to the <F12> key, retrieve the command
with the <↑> key and edit it to the following, then hit <Enter>.

Example: KEY F12=@MYCMD

The ARROW
command
controls the
behavior of the
arrow keys.

Executing Command Files

ICED™ Command File Programmer's Reference 13

Executing Command Files

Executing Command Files

14 ICED™ Command File Programmer's Reference

Using the @file_name Command

The simplest way to execute a command file is to type the @file_name
command. As mentioned in the introduction, to execute a command file with the
name MYCMD.CMD in the layout editor, simply type at the command prompt:

Example: @MYCMD

The file extension of .CMD will be added automatically when you do not supply
a file extension in the @file_name command.

You can include other commands on the same line as the @filename command.
These commands will be executed as though they are the first commands in the
command file.

Example: @MYCMD; LOG SCREEN OFF

When the MYCMD.CMD file is executed using this syntax, LOG SCREEN OFF
is executed as if it was the first line of the command file. This LOG command
will prevent commands in the command file from being echoed on the screen.
This can make the command file run faster.

Adding commands on the same line as the @file_name command can be used to
pass parameters into command files. See page 97 for examples.

Command File Search Path

Unless you specify the directory path to the command file in the @file_name
command, a command file must be located in certain directories for the program
to find it.

The complete
description of
the @file_name
command
begins on page
159.

See page 130 to
learn more
about the
implications of
the LOG
SCREEN OFF
command.

Executing Command Files

ICED™ Command File Programmer's Reference 15

The order ICED™ will use when searching for a command file is:
• the current working directory
• directories in the ICED_CMD_PATH environment variable, and finally
• the AUXIL subdirectory(ies) of the ICED_HOME directory(ies)

A command file in the working directory will hide any other command files with
the same name in the other directories.

Where to Store Command Files

As you create and debug new command files, you may find it convenient to
locate the command file in the same working directory as your test cell file. The
editor will always search for a command file in this directory first. However,
once the debug phase is complete, you should relocate the command file to a
directory different from your cell files. This prevents problems when multiple
copies of a command file exist, and you become unsure about which copy is
really being executed. Having command files in your cell file directories can
also cause problems when sharing files with other users.

The Q:\ICWIN2AUXIL directory contains many general-purpose command files
created by the installation. If you create other command files that may be used in
many different projects or technologies, they should be stored in this directory
where they will be found automatically by the layout editor for all projects.

Other command files are technology or project dependent. The most important
example is the startup command file that initializes a variety of technology-
dependent parameters such as layer number-layer name correspondences,
resolution grid definitions, etc. Some sample technology dependent command
files are created in the Q:\ICWIN\TECH\SAMPLES directory by the ICED™
installation.

2 Remember that Q:\ICWIN represents the drive letter and path where you have installed
ICED™.

ICED_CMD-
_PATH and
ICED_HOME
are usually
defined in the
project batch
file used to open
the editor.

Executing Command Files

16 ICED™ Command File Programmer's Reference

Any command file that uses technology dependent values such as layer numbers,
contact size, wire spacing distances, or specific cell names should be located
separately in a directory specific to that technology.

You should never keep technology dependent command files in the AUXIL
subdirectory of the installation directory where they could be accidentally
accessed in other projects that use other technologies. It would be too easy to
execute such a command file in the wrong cell file, and you may not realize your
mistake for a long time. If you realize this type of mistake after fabrication, you
will be particularly displeased.

Once you create a technology directory, you can copy old technology dependent
files to it and modify the important values accordingly. The technology directory
(or directories if you prefer) can then be added to the command file search path
of a particular project in the ICED_CMD_PATH environment variable
definition in the project batch file. See the IC Layout Editor Reference Manual
for more details.

Command File Names

There are few restrictions on the name of a command file.

• The file name can be from 1 to 32 characters long (not including the path or
file extension.)

• Valid characters include all alphanumeric characters and ".", "-", "_", "#",
and "$".

• Names are case-insensitive

• Blanks are valid only when you surround the file name with quotes.

We strongly discourage the use of blanks in command file names due to the
syntax errors that will occur if you forget to surround the file name with quotes.

It is best to use a file extension of ".CMD" for all command files. This is not
required, but only files with this extension will be automatically included in

Executing Command Files

ICED™ Command File Programmer's Reference 17

menu lists. This extension is added automatically to command file names any
time you omit an extension. Using only one extension also makes it easier for
you to search for command files using the operating system.

If you use a "_" prefix in the command file name (e.g. _GET_ANS.CMD), the
command file will not be included in menu lists. These types of command files
are meant to be called as helper files from other command files. They serve no
purpose when executed directly from the command line or a menu.

Methods of Executing Command Files

There are several methods of executing command files other than typing the
@file_name command at the command prompt.

From a Menu

The menu option 3:@%.cmd3 allows you to select a command file from a menu
list. The command files are listed by directory. To move on to the next
directory, select the NextPATH option from the top of the menu list.

You can create custom menus that list your own command files in any order you
like. See the MkMenu utility in the IC Layout Editor Reference Manual. You
may want to use your custom menu as a shell. If so, refer to the SHELL
command on page 207.

3 In menu notation, "3:" indicates the third top-level menu, "@%.cmd" is the menu entry.

The directories
searched for
command files
are described on
page 14.

Executing Command Files

18 ICED™ Command File Programmer's Reference

With a Keystroke

If you have an especially useful command file that you execute often, you can
assign the @filename command to a keystroke combination. Then you can
execute the entire command file by pressing a single key or a combination of
keys. (See page 151 for a more complete explanation).

Example: KEY F12=@BUSROUTE.CMD

Once the definition above is made, pressing the F12 key will execute the
BUSROUTE.CMD command file. The .CMD extension could be omitted if
desired. If it is omitted, it is added automatically by the program before
searching for the file.

Automatic Execution when Editor Opens

There are several options on the ICED.EXE command line to execute a
command file as soon as the editor opens. The most common option is the
STARTUP option that executes a command file when the indicated cell file does
not yet exist. This command file is referred to a startup command file.

Example: Q:\ICWIN\ICED … STARTUP=Q:\ICWIN4\TECH\SAMPLES\NEW …

This is a fragment of the command line used to open the layout editor in the
project batch file supplied with the installation (ICWIN.BAT.) The file name
Q:\ICWIN\TECH\SAMPLES\NEW.CMD is stored as the startup command file
name. It will be executed as soon as the editor opens if the cell name specified
on the command line does not already exist. This sample startup command file
contains layer definitions and other technology-specific commands used to
initialize a new cell.

4 Q:\ICWIN represents the drive letter and path of your first ICED™ home directory,
usually C:\ICWIN.

Key assign-
ments are saved
with a cell file.

The ICED.EXE
command line is
usually stored in
a project batch
file.

The startup
command file is
also executed
when editing a
freshly imported
cell for the first
time.

Executing Command Files

ICED™ Command File Programmer's Reference 19

STARTUP is one of five command line options for executing a command file.
All of these options are described completely in the IC Layout Editor Reference
Manual.

ICED.EXE
command
line option

Use

EXIT Execute command file then close editor with an EXIT command.
This will overwrite the cell file.

LEAVE Execute command file then close with a LEAVE command.
This will overwrite the cell file only if changes have been made to the
geometry of the cell.

QUIT Execute command file then close with a QUIT command.
This will not overwrite the cell file.U

se
 o

nl
y

on
e

of
 th

es
e

ALWAYS Execute command file and leave editor open.
STARTUP Execute command file only for a new cell and leave editor open.

Figure 3: ICED.EXE command line options that automatically execute a command file

You can combine the STARTUP option with one of the others. When
STARTUP is used, the file name is saved in the START.CMD system macro.
When one of the other options is used, the file name is stored in the
ALWAYS.CMD system macro. Unless a corresponding option was defined, the
value stored in both of these system macros is the string "DO_NOTHING".

Example: Q:\ICWIN\ICED MYCELL EXIT=PROCESS_CELL.CMD …
… STARTUP=Q:\ICWIN5\TECH\SAMPLES\NEW …

The fragment of the command line above will open the editor to edit the cell
MYCELL.CEL. If this cell file does not already exist, the indicated startup
command file will be executed. Then the PROCESS_CELL.CMD file will be
executed and the editor will close automatically after saving the cell file.

5 Q:\ICWIN represents the drive letter and path of your first ICED™ home directory,
usually C:\ICWIN.

When the string
"@DO-
_NOTHING" is
executed it has
no effect.

Executing Command Files

20 ICED™ Command File Programmer's Reference

If an error is encountered in the command file specified with one of these
options, the remainder of the command file is unprocessed, an error message is
posted, and the editor is left open. If you prefer to have the editor close
automatically with an error code, add the option BATCH=YES to the ICED.EXE
command line. See an example of using the EXIT and BATCH options on
page 25.

Automatic Execution when Editor Closes

There are several macros that have special significance when they are defined.
You need to define these with macro definition statements before they can be
used. For example, these definitions can be made in your startup command file.
One of these macros is the EXIT.ROOT macro.

When you close the layout editor using an EXIT command (or a LEAVE
command that results in saving the root cell), the editor first checks to see if the
macro EXIT.ROOT exists. If it does, the editor will execute the command string
stored in the macro before terminating the editor.

Example: GLOBAL #EXIT.ROOT="@_EXIT_ROOT.CMD"

When this macro definition has been executed in the current edit session and the
editor closes, before it saves the cell file(s) it will execute the command file
_EXIT_ROOT.CMD.

IF you add the NOW keyword to the EXIT or LEAVE command that terminates
the editor, EXIT.ROOT is ignored.

These macros
are not saved
with the cell
file. See page
116 to learn
how to save and
restore these
macro values
automatically.

See another
example of
EXIT.ROOT on
page 116.

Executing Command Files

ICED™ Command File Programmer's Reference 21

Automatic Execution when Subcell is Opened or Closed

Two other user-defined macros that can force command file execution when they
are defined are:

ENTER.SUBCELL the command string stored in this macro is executed
when a cell is opened with an edit command (EDIT, P_EDIT or
T_EDIT.)

EXIT.SUBCELL the command string stored in this macro is executed
when a cell opened with an edit command is closed with an EXIT or
LEAVE command that indicates that the cell file will be saved when
the editor closes.

For example, suppose the following macro definition has been executed in the
current editor session. This definition might have been made in a startup or
always command file.

Example: GLOBAL #EXIT.SUBCELL="@_LOG_CELL.CMD"

Once the above definition is made, whenever you exit a subcell using an EXIT
command (or a LEAVE command that results in saving the subcell), the
command file _LOG_CELL.CMD will be executed.

If the NOW parameter is added to the EDIT, P_EDIT or T_EDIT command, any
string stored in ENTER.SUBCELL is ignored. Similarly, when NOW is added
to an EXIT or LEAVE command, the EXIT.SUBCELL definition is ignored.

Automatic Execution when Error is Encountered

The last user macro that can trigger command file execution is the ERROR.CMD
macro. When this macro is defined, the string stored in it is executed when a
syntax error is encountered, or when the ERROR command is executed. See the
ERROR command on page 165 for more details.

Example: GLOBAL #ERROR.CMD="@_ERROR_HANDLER.CMD"

See an example
on page 25 that
appends a line
to a file.

Executing Command Files

22 ICED™ Command File Programmer's Reference

Executing a Command File on Many Cells

You can execute a command file in many cells using a loop that opens each cell,
executes the command file, and then exits the cell. There are two command files
supplied with the installation for this purpose, or you can write your own
example based on either of these files or the examples in this manual listed
below.

These examples are all designed to be executed when you are editing the main
cell of a design. You should exit from all nested edits and have only the main
cell open when you execute any of these methods.

_LOOP.CMD6 Executes a command string on all subcells of the current
cell. (See page 297)

_LOOP2.CMD6 Executes a command string on all subcells of the current
cell that are stored in direct-edit libraries. Alternately, you can
override the protection level and edit or browse cells at higher levels
of protection (e.g. copy-edit or read-only.) This command file
contains extra processing to modify cells at the lowest level of the
hierarchy first. It continues up through the hierarchy so that no cell
is modified before all of its subcells are modified. The command
string is then executed on the main cell as well.

Simple example of using MARK_SUBCELLS to edit every subcell in a loop.
See page 109. MARK_SUBCELLS makes a loop that edits every
subcell very efficient (especially when only you restrict the subcell
marking to cells that contain certain layers.) The two command files
listed above also use MARK_SUBCELLS.

Simple example of loop to process all loaded cells. This is the only example
that will modify not only all editable subcells of the current cell, but
all other editable cells that have been loaded in the current editor
session. See page 264.

6 These command files are stored in Q:\ICWIN\AUXIL which is always on the command
file search path.

See the next
section on page
23 to learn how
to execute a
command file
on every cell in
a library.

See page 106 to
learn more
about cell
libraries and
protection
levels.

_LOOP.CMD
and
_LOOP2.CMD
are explained
more fully in
the tutorial on
Looping
Through All
Subcells in the
Classroom
Tutorials
Manual.

Executing Command Files

ICED™ Command File Programmer's Reference 23

Example: @_LOOP2.CMD; #LOOP.LEVEL = 1; #LOOP.OP = @MYCMD.CMD;

The example above is a single statement to execute _LOOP2.CMD with
overrides for the LOOP.LEVEL and LOOP.OP macros. It will open every
subcell of the current cell and execute MYCMD.CMD in each one. Since the
LOOP.LEVEL is overridden, even read-only and copy-edit subcells will be
opened. If MYCMD.CMD contains commands that modify components, then
the command file would fail as it tries to exit a modified read-only or copy-edit
cell.

When you use _LOOP2.CMD and do not override the LOOP.LEVEL macro,
only cells stored in directly-editable libraries will be opened and have the
command string in LOOP.OP executed in them.

When you do not override LOOP.OP, the default behavior is to open an
interactive shell session for each subcell using the SHELL command. You must
close each shell by typing an EXIT command to allow the command file to
continue to the next subcell.

Batch Execution

You can create a batch file with multiple ICED.EXE command lines to open the
editor and execute a command file in each of multiple cells. You use one of the
command line options described on page 18 on each ICED.EXE command line to
automatically execute a command file as the editor opens. If you use the
appropriate option, the editor will close automatically after the command file is
completed.

We provide a utility (ALLCELLS.EXE) to create a batch file that includes an
ICED.EXE command line for every cell in a given library. Even if the batch file
created by the AllCells utility does not exactly meet your needs, it is an excellent
example to modify for your own purposes.

Some Windows operating systems do not process batch files correctly. The
processes started by a batch file can overlap and/or the error level is not reported
back to the calling batch file correctly. For this reason, you must avoid batch file

Macros used as
arguments for
command files
must be defined
in the same
statement. See
page 97.

The AllCells
utility is
completely
described in the
IC Layout
Editor
Reference
Manual.

Executing Command Files

24 ICED™ Command File Programmer's Reference

processing the Windows 95, 98, or Me operating systems. AllCells will
recognize these operating systems and will refuse to create the batch file.

Executing the AllCells utility on one of the supported operating systems will
create a batch file to execute a command file in each cell file in the current
directory. You specify the name of the command file to execute and the exit
mode to use during the execution of AllCells.

The choice of the exit mode determines which of the options described on page
18 will be used in the batch file.

If you specify that ICED™ should run minimized, then the RUNMIN utility will
be used in the batch file to prevent the creation of a visible window for each
editor session.

If the cells you want to open contain subcells that are located in different cell
libraries, you must make sure that the ICED_PATH environment variable is
defined to tell ICED™ where to look for subcell cell files. To define
ICED_PATH in the batch file, execute your project batch file with no arguments
before executing the AllCells utility. This will define ICED_PATH. Then
respond with a <y> to the prompt about including environment variable
definitions when you execute AllCells. This will include the ICED_PATH
definition in the new batch file.

The utility creates a batch file with the name XCELLS.BAT. You execute this
batch file to process the cells. See a sample XCELLS.BAT file in Figure 4.

Since the EXIT option is used to specify the command file in each of the
ICED.EXE command lines in the example in Figure 4, the editor will close
automatically after the X.CMD file is executed in each cell. Since the
BATCH=YES option is used, the editor will close even if an error is encountered
in the command file. In this case, a return code of 20 will be posted to the
operating system, and the "IF ERRORLEVEL==1…" line will cause the cell
name to be added to the XCELLS.ERR error log file.

Executing Command Files

ICED™ Command File Programmer's Reference 25

rem ***Sample XCELLS.BAT***
Q:
CD Q:\ICWIN\TUTOR
DEL *.JOU
DEL *.JO1
DEL XCELLS.ERR

SET ICED_DIST=Q:\ICWIN
SET ICED_HOME=Q:\ICWIN;
SET ICED_PATH=Q:\ICWIN\SAMPLES
SET ICED_USER=Q:\ICWIN

rem NOTE: errorlevel==1 really means errorlevel is at least 1.

RUNMIN ICED CELLA EXIT="X.CMD" PAUSE=0 WINDOWS=500 BATCH=YES
IF ERRORLEVEL==1 ECHO CELLA >> XCELLS.ERR

RUNMIN ICED CELLB EXIT="X.CMD" PAUSE=0 WINDOWS=500 BATCH=YES
IF ERRORLEVEL==1 ECHO CELLB >> XCELLS.ERR

IF NOT EXIST XCELLS.ERR GOTO DONE
@ECHO OFF
ECHO ***************************************
ECHO ICED failed for at least one cell file.
ECHO A list of failed cells is in XCELLS.ERR
ECHO ***************************************
:DONE

Figure 4: Sample batch file created by AllCells utility

The BATCH Command Line Option

Note the BATCH=YES command line option used in the sample batch file
above. This option has the following effects on the way the editor operates:
1) If an error is encountered as the command file is executed, the editor will

terminate with an error code of 20 rather than being left open with the error
message displayed below the command line.

2) If you need to pass arguments of the form keyword=value when executing
the batch file, using BATCH=YES on the command line will allow this if
you use keyword#value instead. This is best explained by example. See the
example below.

The DOS
ECHO
command writes
a line to the
console. When
you redirect it to
a file, it appends
the line to the
file.

A batch file will
probably not be
able to test the
error code when
using the
Windows 95,
98, or Me
operating
systems.

Executing Command Files

26 ICED™ Command File Programmer's Reference

If you pass arguments into a batch file, the '=' is considered whitespace by the
DOS command interpreter and converted into a blank space. This prevents you
from passing an argument into a batch file that contains an '='. For example, if
you want to pass the string "PAUSE=10" as an argument into a batch file, it will
be stored as "PAUSE 10". This can cause problems when the argument is used
on the ICED.EXE command line. The '=' is required by many command line
options including PAUSE. The BATCH option allows you to use '#' in place of
'=' for succeeding command line options. The '#' is not stripped by the DOS
command interpreter.

Example: Q:\ICWIN\ICED MYCELL1 EXIT=MYCMD BATCH=YES %1 %2 %3

Suppose the line above is stored in a batch file with the name MYBAT.BAT.
Now suppose that you execute this batch file by typing the following at the
console window prompt.

MYBAT PAUSE#10

As it executes the batch file, the command interpreter will replace the %1 with
the first argument "PAUSE#10". The following line will then be executed.

Q:\ICWIN\ICED MYCELL1 EXIT=MYCMD BATCH=YES PAUSE#10

This will add a delay to the opening and closing of the editor allowing you to see
any messages generated by the editor.

Even if you do not add an argument when executing MYBAT, the BATCH=YES
option will prevent the editor from being left open in interactive mode if an error
is encountered in MYCMD.CMD. The editor will close with an error code. If
MYBAT.BAT contains the following lines after the ICED.EXE command line,
then the batch file will recognize that an error has occurred and will take the
appropriate action.

Executing Command Files

ICED™ Command File Programmer's Reference 27

Example: IF ERRORLEVEL==1 GOTO ERROR
GOTO DONE
:ERROR
@ECHO OFF
ECHO *****************
ECHO **Error encountered
ECHO *****************
:DONE

The test
"errorlevel==1"
is true anytime
the error code is
greater than 0.

Executing Command Files

28 ICED™ Command File Programmer's Reference

Command File Syntax

ICED™ Command File Programmer's Reference 29

Command File Syntax

Command File Syntax: Review of ICED™ Command Syntax

30 ICED™ Command File Programmer's Reference

Review Of ICED™ Command Syntax

ICED™'s command parser reads and interprets commands. The same routines are
used to interpret commands typed at the command prompt in the layout editor,
selected from the menus, or executed from command files. So, the syntax used
in ICED™ command files is identical to that used in the editor. With few
exceptions, all of the extra commands and other features described in this manual
can be executed at the prompt line in the editor, and all of the commands
described in the IC Layout Editor Reference Manual can be used in a command
file.

Since most experienced layout designers normally enter commands with the
keyboard, ICED™'s command syntax was optimized for keyboard input. To
accomplish this, the parser minimizes the number of keystrokes required to enter
a command and makes the syntax as forgiving as possible. The parser accepts
keyword abbreviations, places minimal restrictions on keyword order, and, in
most contexts, treats common delimiters as blanks.

In order to understand some of the syntax we will cover later, it is best to start
with a review of the command syntax described in the layout editor reference.
You may never have had occasion to use some of these syntax constructs, and it
is best to have this information fresh in your memory when we go on to describe
the additional syntax constructs used command files.

We will keep this review of basic ICED™ command syntax brief.

Commands, Continuation Lines, and Statements

When you enter a command from the keyboard, a command line is everything
you type until you hit the <Enter> key.

Command File Syntax: Review of ICED™ Command Syntax

ICED™ Command File Programmer's Reference 31

When you type commands in a command file, a command line is an initial line
plus 0 or more continuation lines. A command is continued on the next line if
the last non-blank character in the line is an ampersand '&'.

Example: ADD WIRE LAYER=WELL TYPE=2 WIDTH=3.0 AT &
 (-71.5, 38.0) (-14.5, 38.0) (-14.5,0.0) (48.0,0.0) &
 (48.0, 43.0) (102.5, 43.0) (102.5,-1.0) (119.5,-1.0)

This example shows a command line that consists of an initial line plus two
continuation lines. As a first step in reading commands, the command parser
joins an initial line with all its continuation lines to form one command line. This
command line can be up to 8000 characters long.

This manual often uses the term "statement" to refer to the entire command line
once the continuation lines have been joined together.

One statement can contain several commands separated by semicolons (';'). The
following example shows a statement with three commands.

Example: UNSELECT ALL; SELECT CELL * ALL; UNGROUP

Comments

If the command parser encounters an exclamation point '!' outside of a quoted
string or a Boolean expression (described later), the rest of the statement is
treated as a comment (i.e. ignored).

Example: ADD TEXT "!CLOCK" AT (0, 0) ! This part is a comment.

Command File Syntax: Review of ICED™ Command Syntax

32 ICED™ Command File Programmer's Reference

The command interpreter joins continuation lines before it does anything else, so
the example below is interpreted as a single comment line.

Example: ! ******Next line will be ignored*********; &
ADD BOX AT (0, 0) (10, 10)

The ADD BOX command in the example above will not be executed.
Semicolons ';'s and other special characters are ignored in this type of comment.

ICED™ supports a second type of comment that uses a '$' as the first character in
the statement.

Example: $ This comment will echo in journal file

$Comments and !comments differ in that $comments are displayed on the screen
and entered in the journal file. The parser also does macro substitution and
evaluates expressions in $comments. (These subjects will be described later.)
!comments are used primarily to allow the writer of a command file to document
features of a command file and to make it more understandable to the reader.
$comments are used to display messages to the user of the command file and to
enter comments in the journal file.

Line Labels

You can label statements with a label name string followed by a colon (':'). You
can then refer to these labels in BACK_TO or SKIP_TO commands as you
would use GOTO commands in other programming languages.

Example: MYLABEL:
!missing statements
BACK_TO MYLABEL

You can include commands on the same line as a label.

Example: MYLABEL: UNSEL ALL

$Comments that
begin with "$$"
are processed
differently. See
page 161 for
more details on
$comments.

Command File Syntax: Review of ICED™ Command Syntax

ICED™ Command File Programmer's Reference 33

The statement label string cannot use macro references. The restrictions for
labeled statements are shown below.

• The label must be a string from 1 to 32 characters long.

• Valid characters include letters, digits, and the special characters: '#',
'_', and '$'. Blanks are not allowed in the label. The first character
may not be a digit or one of the special characters listed above.

• Labels are case-independent.

• You must follow the label with a ':' when defining the labeled
statement. Further references to the labeled statement omit the ':'.

• The label must be the first string on a line. However, it does not
need to be in the first column.

• A command can follow the label on the same line, or the label can be
on a line by itself.

• You should not label statements inside of a WHILE, IF, or ELSEIF
block. This will not generate an error, but using SKIP_TO or
BACK_TO to jump into a block can have unfortunate consequences.

Delimiters

The parser usually treats the comma ',', open and close parenthesis '(' and ')', and
equals sign '=' as blanks. They can be added to improve the readability of a
command, but with few exceptions they can be omitted to save typing.

The next three statements will all execute the same command.

Example: ADD WIRE LAYER=POLY WIDTH=5 AT (0, 0) (10, -10) (10, -20)

ADD WIRE LAYER POLY WIDTH 5 AT 0 0 10 -10 10 -20

ADD WIRE=LAYER POLY WIDTH (5 AT 0) (0, 10) (-10, 10) -20

Command File Syntax: Review of ICED™ Command Syntax

34 ICED™ Command File Programmer's Reference

Tab characters are also converted to a single blank space. You can use tabs
freely to make your command file easier to read.

Semicolons are optional at the end of commands. However, if you want to place
several commands on a single statement, you must delimit the commands with
semicolons.

Example: UNSELECT ALL; SELECT CELL * ALL; UNGROUP

Underscores

Underscores can be inserted inside of or at the end of keywords, layer names, and
color names to improve readability. Thus, NOPEN, NO_PEN and NO_PEN_ all
mean the same thing. However, _NOPEN is invalid.

Case Insensitivity

With few exceptions, ICED™ does not distinguish between upper and lower case
letters. Thus, "Add Box", "ADD BOX", and "add box" all mean the same thing.
You can type using whatever case you feel comfortable with.

Most of the examples in this manual are typed in upper case. This does not
imply that you must (or even should) type your command files in upper case.
The manual examples are in upper case simply to make them stand out from the
other text.

Abbreviating Keywords, Layer Names, and Color Names

The parser allows you to abbreviate keywords, layer names, and color names, so
long as you type enough characters to make their interpretation unambiguous.

The use of '^' to
delimit macro
names is
covered on page
44.

Command File Syntax: Review of ICED™ Command Syntax

ICED™ Command File Programmer's Reference 35

For most keywords, two characters will do. The following three commands are
equivalent:

Example: LAYER MET1 GREEN

LA MET1 GREEN

LA ME GRE

The last command would fail with an error message if more than one layer name
begins with the letters "ME" since that would make the abbreviation ambiguous.

Quotes and Strings

The simple definition of a string is a series of characters. In ICED™, we usually
restrict the term "string" to mean a series of characters to be stored or displayed
as a unit. Strings can contain references to macros and the parser will replace the
references as it parses the string. Examples of strings include comments, prompt
messages, and labels to be added by the ADD TEXT command.

Strings are often enclosed in quotation marks. This can make their interpretation
unambiguous, and also improves readability. Any string that contains characters
that might be misinterpreted by the parser (e.g. command keywords, quotes, etc.)
should be surrounded by quotes. However, quotes are not usually required
around a string.

There are four legal quotation marks: ', `, ~, and ". The opening and closing
quotation marks at either end of the string must be the same. Thus, "abc", 'abc',
~abc~, and `abc` are all the same valid quoted string. Similarly, "a'b", ~a'b~, and
`a'b` are all equivalent, but 'a'b' is illegal.

Command File Syntax: Review of ICED™ Command Syntax

36 ICED™ Command File Programmer's Reference

% Prompts and Position Prompts

% prompts are a simple way to prompt the user for a value when a command is
executed. ICED™ commands include many constructs of the form:

KEYWORD=value

For example, this is the syntax of the ADD BOX command:

 ADD BOX LAYER=layer_id AT pos1 pos2

"LAYER=layer_id" is an example of a "KEYWORD=value" construct. If you
use a '%' for the layer_id, ICED™ will prompt the user for the value.

Example: ADD BOX LAYER=% AT 50,50 60,60

When this command is executed, the program will prompt the user with the
phrase "Enter layer name or number:" and then wait until something is typed.
After <Enter> is pressed, the characters typed by the user will be substituted for
the '%' in the command.

You can use more than one % prompt in a command.

Example: LAYER 10 NAME=% COLOR=%

When the statement above is executed, the user will first be prompted with:
"Enter layer name:"

After the user has typed the layer name and pressed <Enter>, the user will be
prompted with:

"Enter color name or number:"

After the user has responded to this second prompt, the LAYER command will
be executed using whatever values the user has typed in with the keyboard.

The '%' can be omitted when it is the last character in the command. Therefore,
the example above could also be written as shown below and it will still prompt
the user for both the layer and the color as shown above.

Command File Syntax: Review of ICED™ Command Syntax

ICED™ Command File Programmer's Reference 37

Example: LAYER 10 NAME=% COLOR

You cannot use a '%' prompt to prompt the user for position information
normally supplied with the mouse.

Example: ADD BOX LAYER 5 AT % ! WRONG

The command above uses illegal syntax and will fail.

When no positions are included in a command that requires them, the user will
automatically be prompted to supply them with the mouse.

Example: ADD BOX LAYER=5 AT ! OK

No '%' is required in this command to prompt the user to digitize the positions for
the new box.

Command File Syntax: Macros

38 ICED™ Command File Programmer's Reference

Introduction to Macros

The primary addition to ICED™ command syntax for command files is macro
substitution. The following pages cover the basics you need to know to use
macros. The full syntax required for macro definition statements is completely
described later in the manual on page 133.

Many macros are pre-defined with information about the layout editor
environment and design geometry. These system macros are described
beginning on page 249.

In ICED™, a macro consists of a name and a value. The value of a macro is also
called the "contents" of the macro and is said to be "stored" in the macro. When
you use the correct syntax to refer to a macro in a command, the macro reference
will be replaced with the contents of the macro.

String Substitution

In ICED™, macros store strings that can be interpreted later in many different
ways. Referring to a macro name with a '%' in front of it results in string
substitution. For example, the following lines define a macro with the name
COORD, then use this macro in an ADD command.

Example: LOCAL #COORD = "(20.5, 65.0)"
ADD TEXT "BUS0" AT %COORD

The command parser will substitute the macro reference, "%COORD", with the
contents of the COORD macro, the string "(20.5, 65.0)". Once this substitution
is performed, the following command will be executed:

ADD TEXT "BUS0" AT (20.5, 65.0)

Command File Syntax: Macros

ICED™ Command File Programmer's Reference 39

Use of the '#' and '%' Characters

The '#' in the macro definition on the previous page indicates to the program that
a macro name follows. When you want to assign a value to a macro, this is how
you designate which macro will receive the value.

The '%' in the second statement indicates a macro reference that should be
replaced with the value of the macro.

Any time you type a macro name, you should indicate that it is a macro name and
not just a string by prefixing it with either '#' or '%'. While the '#' is optional in
some cases, the '%' is always required to force macro substitution.

Example: ADD TEXT "BUS0" AT COORD !Oops, forgot the %

If this statement was used in your command file, rather than the one on the
previous page, the program would not realize that you were referring to a macro
name. No string substitution would be performed. The program would halt the
command file and display the message:

ADD TEXT "BUS0" AT <<>>COORD
error: Expected coordinate or end of command.

Since it is very easy to forget this aspect of using macros, we recommend that
you avoid syntax mistakes by following the rule below.

Every time you type a macro name,
use either the '#' or '%' prefix.

Macro Values are Stored as Strings

When ICED™ assigns a value to a macro, it does not make assumptions about
how the value will be used. It is simply a stored string. Since no restrictions are
made on how the value can be used, there is no automatic syntax or range
checking on the value as is common with variables in other programming
languages.

Command File Syntax: Macros

40 ICED™ Command File Programmer's Reference

If the COORD macro was defined with a value of "42", and the ADD TEXT
command from the previous example was executed, the following command
would be generated:

ADD TEXT "BUS0" AT 42

The command above would fail since 42 is not a valid coordinate pair. You
could set COORD to "abc", "30 40 50 60", or "" and the error would only be
found when the ADD TEXT command was executed.

Since macros result in simple string substitution, there are few limits to their use.
You can place an entire command, or even several commands separated by
semicolons, into a macro and then execute the statement later with a macro
reference.

Example: LOCAL #CMD = ADD TEXT "BUS0" AT (20.5, 65.0)
.
. !missing statements
.
%CMD

This reference to the CMD macro would execute the statement stored in the
string. If the statement contained a syntax error, it would be found only when the
statement was executed.

Macro Substitution in Strings

Macro substitution takes place even in a quoted string. The '%' used to indicate a
macro reference is one of only two special characters that cause special
interpretation in a quoted string. (This is why you must sometimes use "%-"
when you need to have the percent sign in a quoted string. See below.)

Example: LOCAL #LABEL = BUS
ADD TEXT = "%LABEL 0" AT 50,50

The first statement above stores the string "BUS" in a macro with the name
LABEL. The macro substitution indicated by the %LABEL macro reference will

Command File Syntax: Macros

ICED™ Command File Programmer's Reference 41

take place even though it occurs in a quoted string. The statement after macro
substitution is:

ADD TEXT = "BUS 0" AT 50,50

The Percent Sign '%' In Strings

Since the syntax %macro_name has special meaning even in a quoted string, if
you need to use the character '%' in a string where it does not indicate a macro
reference, you may need to type "%-" instead of '%'. The dash is removed by the
parser.

Example: ADD TEXT "50%-CLOCK" AT (0, 0)

This command actually adds the text "50%CLOCK".

The dash is required to prevent the parser from looking for a macro name only if
the '%' is immediately followed by a character that may represent the beginning
of a macro name (i.e. a letter, an underscore '_', a dollar sign '$', or a period '.'). If
a number or a blank space follows the '%', the dash is permitted but not required.

Overview of Macro Definition and Assignment

A macro must be defined with a macro definition statement before it can be used
in another statement.

Macro Scope

Most macro definitions (including the examples above) begin with the LOCAL
keyword that sets the scope of the macro. With few exceptions, either the
LOCAL keyword or the GLOBAL keyword must be used in each macro
definition statement.

Command File Syntax: Macros

42 ICED™ Command File Programmer's Reference

LOCAL macros:

• can only be used in the command file in which they are defined.

• hide the existence of global macros with the same names defined
outside of the current command file.

• will be deleted automatically at the end of the command file in
which they are defined.

GLOBAL macros:

• can be used outside of the command file that defines them.

• persist until the end of the current layout editor session unless
they are explicitly deleted with the REMOVE command.

• can have their values displayed with the SHOW command after
the command file is completed.

For example, let us assume that your command file defines the following macros:

GLOBAL #COORD1 = ""
GLOBAL #COORD2 = ""

After the command file was finished, you could display the final values of the
both macros on the screen with the command:

Example: SHOW USER=COORD* FILE=*

Macro Names

There are few restrictions on the names of macros. Since each macro name
should be prefixed by a '#' or a '%', the parser will not confuse macro names with
command keywords or function names.

Macro names can contain up to 32 characters. The characters in a macro name
may include letters, digits, and the special characters: '.', '_', and '$'. You may
not use a digit as the first character. No blanks are allowed. Macro names are
case-independent.

You can test if a
macro name has
already been
defined with the
MACRO-
_EXISTS
function.

You cannot use
the name of
system macro to
define a macro
of your own.
See the list on
page 255.

Command File Syntax: Macros

ICED™ Command File Programmer's Reference 43

Although the '#' is optional before the macro name in a macro definition, we
recommend that you use it as a prefix for the macro name for readability and
consistency.

Example: LOCAL #COORD = "(20.5, 65.0)"

This is the macro definition we used earlier. The name of the macro is COORD.

Macro Substitution in Macro Names.

You can build the name of a macro by referring to other macros. For example,
there is a system macro with the name LAYER.NAME.layer_spec, where
layer_spec represents some layer number. You could use this macro in the form
"LAYER.NAME.6". However, it is more common to specify the layer number
with another macro.

Example: #LAYER=%LAYER.NAME.%LAYER_NUMBER

First the parser will replace the rightmost macro reference, resulting in a
statement similar to:

#LAYER=%LAYER.NAME.6

Then the next macro reference is processed, which transforms the statement into:
#LAYER=M1

Finally, this statement will be executed which will store the string "M1" in the
macro LAYER.

Simple string substitution allows you to implement an array of coordinates by
using macro names with subscript notation. You can create arrays with any
number of dimensions, simply by using string substitution to build the macro
names. See several examples beginning on page 148.

There are
several reserved
macro names
that have
special meaning
when they are
defined. See
the list on page
153.

Command File Syntax: Macros

44 ICED™ Command File Programmer's Reference

Delimiting a Macro Name

The ICED™ parser normally recognizes the end of a macro name when it comes
to a blank or some other character that cannot be part of a macro name.

When you cannot use a blank after the macro name, the '^' special character is
used to delimit (i.e. mark then end of) a macro name. This situation arises when
you use macro substitution to build strings like subscripted array macro names,
fully qualified file names, or prompt messages.

Example: #NET_NAME = %BASE_NAME^1

The example above will add the character "1" to the end of whatever string is
stored in the BASE_NAME macro and store the result in the NET_NAME
macro. No blank space will be added between the "1" and the rest of the string.
The '^' is discarded by the parser. If BASE_NAME contains the string "BUS_",
then the NET_NAME macro will be set to "BUS_1".

Example: #FILE_NAME = %TMP^%CELL^.TXT

This example builds a file name by concatenating three strings. TMP is a system
macro that contains the path to the directory used by ICED™ to store temporary
files. CELL is a system macro used to store the name of the current cell. If TMP
= "Q:\ICWIN\TMP\" and CELL = "MYCELL", then the macro FILE_NAME
will be set to "Q:\ICWIN\TMP\MYCELL.TXT".

Assume that we have stored the string "LUCY" in a macro with the name
NAME1 and stored the string "RICKY" in macro NAME2. The results of
various concatenations are shown below.

Syntax used Result string
%NAME1 %NAME2 "LUCY RICKY"
%NAME1%NAME2 Error: macro "%NAME1RICKY" is not declared
%NAME1^%NAME2 "LUCYRICKY"
%NAME1^.%DIM1^.%DIM2 "LUCY.1.2" (if DIM1 = 1 and DIM2 = 2)

FRED ETHEL LUCY^RICKY "FRED ETHEL LUCY^RICKY"

See another
example of
building file
names on page
256.

Command File Syntax: Macros

ICED™ Command File Programmer's Reference 45

Note that the last example indicates that the parser will treat a '^' character as an
ordinary text character when it does not follow a macro reference.

Methods of Assigning Macro Values

Each macro must be defined with an initial value. If you do not provide an initial
value, the user of the command file will be prompted to supply the value when
the macro definition statement is executed. There are several ways to prompt the
user for the value. Some methods require the user to supply the value by typing
at the keyboard, others require the use of the mouse to digitize one or more
positions with the cursor.

Example: LOCAL #NUM = $PROMPT "Type in number of copies"

The macro definition above will prompt the user with the message shown and
wait until something is typed. The characters typed before <Enter> is pressed
will be stored as the value of the macro.

Remember that no verification is performed on macro values. The user could
type "ABC" in response to the prompt above and that would be stored as the
value of the NUM macro. We discuss methods of verifying these type of user
responses on page 87.

Example: LOCAL #COORD $PROMPT "Digitize initial position" POS

This macro definition will display the indicated prompt message and wait for the
left mouse button to be clicked. The coordinate pair of the current cursor
position is then stored as the value of the macro.

The entire list of prompt methods available in a macro definition is covered when
we discuss the exact syntax of the macro definition statement on page 143.

Command File Syntax: Macros

46 ICED™ Command File Programmer's Reference

You can change the value stored in a macro with an assignment statement after
the macro is defined.

Example: #NUM = {%NUM +1}

This statement uses an expression with the addition operator to increment the
value in the previously declared NUM macro. The curly braces "{}" are
required. They prevent the program from storing the "+ 1" as ordinary string
characters rather than forcing the evaluation of the mathematical expression and
storing the result. We will discuss this in more detail later on.

You can also use the user prompt keywords of a macro definition statement in a
macro assignment statement.

Example: #COORD = $PROMPT "Digitize next position" POS

This macro assignment will prompt the user with the message shown, wait for the
user to digitize a position with the mouse, then replace the old value of the
COORD macro with the new position digitized by the user.

Delayed Substitution

This is a rarely used feature of ICED™ command file syntax that you may want
to skip over. It allows you to delay macro substitution until a string is actually
executed. (This feature can be very handy when defining keyboard macros. A
keyboard macro is executed when the user presses a certain key combination.
We cover this subject in detail on page 151.)

Use a pair of percent characters, "%%" to force delayed evaluation of a macro
reference. When you assign a value to a macroA that contains a reference to
macroB in the form "%%macroB", the value of macroB will not be substituted
for the "%%macroB" at that time. Instead, the string will be stored with the
macro reference intact. However, when the value of macroA is evaluated in a
command, the current value of macroB will be used, rather than the value of
macroB when macroA was created.

Command File Syntax: Macros

ICED™ Command File Programmer's Reference 47

Example: GLOBAL #KEY.F5 = "ADD TEXT=% AT %%LAST.POS"

The macro definition above will create a keyboard macro with the name KEY.F5.
Once this macro is defined, pressing the <F5> key will execute the indicated
ADD TEXT command. The user will be prompted to type in the text for the
command. Since the system macro LAST.POS is referenced with a "%%", the
value of this macro at the time the <F5> key is pressed will be used rather than
the value at the time the keyboard macro was created.

Overview of System Macros

In addition to the macros you define yourself, there are a number of global
macros called system macros that are automatically defined and updated by
ICED™. You do not need macro definition statements to define system macros
and you cannot change their values directly with macro assignment statements.
However, most system macro values can be altered with appropriate editor
commands.

These system macros contain useful information about editor settings (e.g.
resolution step size, layer properties, etc.), the current cell (e.g. the cell name, the
number of currently selected components, etc.), and recent user actions (e.g. the
last position digitized). See the complete list on page 252.

Example: #COORD = %LAST.POS

The LAST.POS system macro (described on page 272) stores the last position
digitized with the cursor. The statement above copies this coordinate pair into
the macro COORD.

Command File Syntax: Expression Evaluation

48 ICED™ Command File Programmer's Reference

Expression Evaluation

In ICED™, an expression is a string that should be evaluated and the result of the
expression substituted for the expression string in the statement.

Expressions can include:
mathematical expressions,
Boolean expressions,

and
function calls.

We will discuss each of these types of expressions after we discuss something
common to all expressions in ICED™.

Expressions Should Be Surrounded By {}

When you need the parser to evaluate an expression and replace the expression
with the result before the statement is executed, the expression must usually be
surrounded by curly braces "{}". For example, if the curly braces are omitted in
a macro assignment, the expression will simply be interpreted as a string of
characters and stored without evaluation.

Example: LOCAL #VAL = 50 + 1.6 !No evaluation will be done

Since no curly braces are included in this macro definition, the program will not
attempt to evaluate this mathematical expression before storing the string. The
value of the VAL macro will be "50 + 1.6".

Example: LOCAL #VAL = {50 + 1.6 } !Expression will be evaluated

This is the correct way to write the macro definition when you want to store the
result of the expression, "51.6", in the macro VAL.

You can use '{'
or '}' in a quoted
string without
causing an
attempt at
evaluation.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 49

If an expression is used in a command, the parser may misinterpret the first part
of the expression as a simple value, store that part of the expression as the value
of a parameter, then assume that the rest of the expression is a syntax error.

Example: ADD BOX AT 0,0 12 * 1.6, 14 * 1.8 !Syntax error

This command will fail. The 12 will be parsed and then stored as the second x-
coordinate. Succeeding characters cannot modify that value, and since the '*' is
not valid as the second y-coordinate, the program will respond with the following
error message:

ADD BOX AT 0,0 12 <<*>> 1.6, 14 * 1.8
error: Unpaired coordinate

Example: ADD BOX AT 0,0 {12 * 1.6}, {14 * 1.8} !Correct syntax

Once the curly braces are added, the parser will evaluate each expression and
replace the expressions with the results to execute the following statement:

ADD BOX AT 0,0 19.2, 25.2

There are some commands that expect an expression, such as the IF command.
For these commands, the curly braces are not required around an expression.
When in doubt, you can add curly braces around any expression. We will cover
some exceptions to the requirement for curly braces that can save on typing, but
you can always insure that an expression will be evaluated by surrounding it with
curly braces.

Function calls
also need to be
surrounded by
curly braces to
force
evaluation.

Command File Syntax: Expression Evaluation

50 ICED™ Command File Programmer's Reference

Mathematical Expressions

Mathematical Operators

Statements that require simple
mathematical operations can
use expressions with the
operators shown in the table.
When an expression using
these operators is surrounded
with curly braces, the parser
will perform the operations
and replace the expression
with the result before the
statement is executed.

(ICED™ also supports many functions to perform mathematical operations like
trigonometric functions, minimums and maximums, and square roots. See the
list of mathematical functions on page 220.)

Example: MOVE SIDE X { 64 / 8 }

The parser will evaluate the expression, perform the division operation, then
execute the statement:

MOVE SIDE X 8

Of course, mathematical operations are more useful in a command file when you
use macros as the operands.

Example: MOVE SIDE X { %TOT_WIDTH / %NUM }

The parser will replace the macro references with the numbers stored in them,
evaluate the expression, then execute the statement. However, if the NUM
macro contains the number 0, the statement will fail with the message:

error: Cannot divide by 0

Operator
symbol

Purpose

+ Addition: single numbers or
coordinate pairs

- Subtraction:
single numbers or coordinate pairs
or
reverse sign of single number or
coordinate pair

* Multiplication: single numbers or
coordinate pair and number

/ Division: single numbers or
coordinate pair and number

Figure 5: Mathematical Operators

We discuss the
precedence of
operators on
page 59.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 51

The '-' operator can be used to reverse the sign of a single number.

Example: ADD BOX 1, {- -3} 5, 5

When the '-' operator is used in this fashion, the curly braces are required since
evaluation is required to reverse the sign of the number.

Example: ADD BOX 1, –1 10, 10

In this case, the '-' indicates that the sign of the first y-coordinate is negative.
You do not need to add curly braces to enter negative coordinates where the '-' is
followed by a single coordinate. Note that even though commas are really
ignored by the parser, it will not misinterpret the string "1, -1" as "1 –1" and
replace this string with "0". The requirement for curly braces to force evaluation
makes this statement unambiguous.

Mathematical Operations on Coordinate Pairs

Mathematical calculations can be performed on single numbers or on coordinate
pairs. When performing math on coordinate pairs, you must specify coordinates
with the following syntax:

(x-coord, y-coord)

Where x-coord and y-coord are single real numbers. Blanks can be inserted for
readability, but the parentheses and the comma are required for the parser to
be able to perform mathematical operations on each coordinate of the pair.

Example: ADD BOX AT (5,5) {(0,1) + (10,11)}

This statement will result in addition of coordinate pairs. The x-coordinate "0"
will be added to the x-coordinate "10", and the y-coordinate "'1" will be added to
the y-coordinate "11". The result of the expression, "(10,12)" will replace the
expression and the program will execute the statement:

ADD BOX AT (5,5) (10,12)

The POSN
function returns
a single coordi-
nate pair from a
position list.
See page 234.
The X and Y
functions return
a single coordi-
nate from a pair.
See page 246.

Command File Syntax: Expression Evaluation

52 ICED™ Command File Programmer's Reference

When you need to perform calculations on the values stored in macros, the
syntax is exactly the same. Be sure to surround the coordinate pair with
parentheses and separate each coordinate in the pair with a comma.

Example: LOCAL #COORD = (5,5)
LOCAL #X_DISP = 10
LOCAL #Y_DISP = 12
ADD BOX AT %COORD {%COORD + (%X_DISP,%Y_DISP)}

You can use the '-' operator to subtract
coordinate pairs, to reverse the sign of
a single coordinate, or to reverse the
signs of both coordinates of a pair.
See the examples in the table. The
examples using the macro COORD
assume that COORD = "3".

Multiplication or division can also be
performed using a coordinate pair and
a number.

Example: LOCAL #MULT = 12
LOCAL #DISP = {%SNAP.STEP * %MULT}

This example performs multiplication on a coordinate pair. The system macro
SNAP.STEP contains a pair of numbers that represent the minimum
displacement in the x and y directions for the snap grid. Let us assume that
SNAP.STEP is set to (0.5,0.5). After macro substitution the statement above
would be:

LOCAL #DISP = {(0.5,0.5) * 12)}

After performing the multiplication, the statement executed will be:

LOCAL #DISP = (6,6)

It is a good idea
to define
macros that
represent
coordinate pairs
with the full (x-
coord,y-coord)
syntax as shown
in this definition
of the COORD
macro.

Expression Result
{(3,3) – (2,2)} (1,1)
{-(3,3)} (-3,-3)
{-(-3,3)} (3,-3)
{(-%COORD, %COORD)} (-3, 3)
{-(%COORD, %COORD)} (-3, -3)

Figure 6: Using the '-' operator on
coordinate pairs.

See page 293
for more
information on
SNAP.STEP.

The ROUND
function
resolves a
coordinate to
the resolution
grid. See page
235.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 53

Boolean Expressions

Boolean Values

A Boolean expression is one that evaluates to either TRUE or FALSE. ICED™
implements TRUE and FALSE with simple numbers. When a Boolean
expression is evaluated, TRUE and FALSE are defined as:

FALSE = 0
TRUE = 1 or any non-zero number

Boolean expressions are used most often in condition expressions for WHILE
(page 212), IF (page 168) and ELSEIF (page 171) commands. They are used to
define a condition that determines whether or not a block of statements will be
executed.

If the Boolean condition expression is TRUE, the WHILE, IF, or ELSEIF
command will cause ICED™ to execute the statement or block of statements
controlled by the command. If the expression is FALSE, the statement(s) will
not be executed.

When a Boolean expression is contained in the condition expression between the
"()" in an IF, ELSEIF, or WHILE statement, the curly braces "{}" are not
required to force evaluation. The parser already expects an expression in this
case. However all other uses of Boolean expressions should be contained in
curly braces to force the parser to replace the expression with the result of the
expression.

A Boolean condition expression can be as simple as a single number.

Example: IF (0) $This statement will not be executed.

Since the Boolean condition above is FALSE, the statement will not be executed.

Example: IF (1) $This statement will be executed.

Since the Boolean condition is TRUE, the statement will be executed.

The ICED™
functions that
return a
Boolean value
always return a
0 for FALSE
and a 1 for
TRUE.

Command File Syntax: Expression Evaluation

54 ICED™ Command File Programmer's Reference

Example: IF (7) $This statement will be executed.

This Boolean condition is also TRUE since it is non-zero. The statement will be
executed.

Number Comparison Operators

There are six operators to compare numbers.
The result of expressions that use these
operators is either a '0' for FALSE or a '1' for
TRUE.

Example: IF (6 <= 7) $This statement will be executed.

The parser will evaluate the expression in the
IF condition and determine that it is TRUE.
The expression will be replaced with the value
'1'. The statement that will be executed is:

IF (1) $This statement will be executed.

You must use a double equals operator "==" to compare two numbers. A single
equals "=" in an expression will result in a syntax error.

Example: IF (6 == 6) $This statement will be executed.

The statement above is an example of the correct way to compare two numbers in
a condition expression when you need to determine if the two numbers are equal.
The parser will evaluate the expression in the IF condition and determine that it is
TRUE. The expression "6==6" will be replaced with the value '1'. The statement
controlled by the IF command will be executed.

Purpose
< Less than

<= Less than or equal to
== Equal to
!= Not equal to
>= Greater than or equal to
> Greater than

Figure 7: Number
Comparison Operators

See page 65 to
learn how to
compare strings.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 55

The "not equals" operator ("!=") will result in an expression evaluating to FALSE
when two numbers are equal.

Example: IF (6 != 6) $This statement will not be executed.

It is unlikely that you will be comparing two numbers explicitly like this. It is
more common that one of the numbers is contained in a macro.

Example: IF (%COUNTER < 10) $This statement may be executed.

The parser will replace the macro reference with the value stored in the macro.
Then the expression will be evaluated. For example, if the value of the
COUNTER macro is 6, then the expression will evaluate to TRUE since 6 is less
than 10. The expression will be replaced with the value '1'. The $comment
statement will then be executed.

Boolean Operators

If you need to create a more complex Boolean
expression, you can use the "&&" (Boolean AND)
and "| | " (Boolean OR) operators to combine the
results of several Boolean expressions into a single
Boolean value.

A Boolean AND operation will
evaluate to a TRUE ('1' in this case)
only when both operands are TRUE.
Either operand is TRUE whenever it is
a non-zero number. The result of the
expression is always '1' or '0'.

Example: IF (7 && 5) $This will be executed.

This Boolean expression will evaluate to '1', and the statement controlled by the
IF will be executed.

Purpose
&& Boolean AND

|| Boolean OR

Figure 8: Boolean
operators

op1 op2 op1 && op2
TRUE TRUE 1

0 TRUE 0
TRUE 0 0

0 0 0

 Figure 9: Boolean AND

Command File Syntax: Expression Evaluation

56 ICED™ Command File Programmer's Reference

It is more common to have both operands be Boolean expressions.

Example: IF (7 <=10 && 5 >= 3) $This statement will be executed.

The Boolean expression on the left, "7 <=10" will evaluate to '1'. So will the
Boolean expression on the right, "5 >=3". The statement will then be:

IF (1 && 1) $This statement will be executed.

Since both operands are TRUE, the expression "1 && 1" will evaluate to '1' and
the statement controlled by the IF command will be executed.

However, when one of the operand expressions evaluates to FALSE ('0'), then
the result of the AND operation will also be FALSE ('0').

Example: IF (7 <=10 && 5<= 3) $This statement will not be executed.

The Boolean expression on the right, "5<=3" will evaluate to '0'. The statement
will then be:

IF (1 && 0) $This statement will not be executed.

Since one of the operands is FALSE, the expression "1 && 0" will evaluate to '0'.

A Boolean OR operation will
evaluate to a TRUE ('1') whenever
either operand is TRUE. As with an
AND expression, the operands are
TRUE whenever they are non-zero
numbers, but the result of the
expression will be '1' if it is TRUE.

Example: IF (7 <=10 || 5<= 3) $This statement will be executed.

The Boolean expression on the left, "7 <=10" will evaluate to '1'. The Boolean
expression on the right, "5<=3" will evaluate to '0'. Since one of the operands is
TRUE, the expression "1 || 0" will evaluate to '1'.

op1 op2 op1 || op2
TRUE TRUE 1

0 TRUE 1
TRUE 0 1

0 0 0

 Figure 10: Boolean OR

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 57

Compound Boolean Expressions

You can use more than one "||" or "&&" operator in a Boolean expression. You
can combine as many operand expressions as needed. (You may sometimes need
to surround some expressions with parentheses "()". We will discuss this subject
beginning on page 61.)

Example: IF (%X_COORD < 0 || &
%X_COORD >10000 || &
%Y_COORD < 0 || &
%Y_COORD >10000)….

In the example above, if the value of X_COORD is outside of the range 0:10000,
or if the value of Y_COORD is outside of the same range, then the compound
Boolean expression will evaluate to TRUE and the statements controlled by the
IF command will be executed. The '&' continuation characters make this
statement much easier to read than if it had all been typed on one line.

Storing the Result of a Boolean Expression

You can assign the result of a Boolean expression to a macro just as you would
any number.

Example: #RESULT = {%DISTANCE < 10.5} !correct syntax

This is the correct syntax to use if you use a Boolean expression outside of an IF,
ELSEIF, or WHILE command. The macro substitution and evaluation will be
performed and either TRUE ('1') or FALSE ('0') will be stored in the macro
RESULT.

Example: #RESULT = %DISTANCE < 10.5 !missing {}

When the curly braces are omitted, no evaluation of the Boolean expression is
performed. If the value of the DISTANCE macro is 10, this statement will store
the string "10 < 10.5" in the macro RESULT. This probably not what you
intended.

Command File Syntax: Expression Evaluation

58 ICED™ Command File Programmer's Reference

Programmers often call a simple stored Boolean value a "flag". Your command
file may want to perform some action if the flag is TRUE, and/or some other
action when it is FALSE. A Boolean condition expression in an IF, ELSEIF, or
WHILE command can be as simple as the value of a single flag macro, as seen in
the next example.

Example: LOCAL #SUCCESS=0
.
. !Missing statements that set %SUCCESS to non-zero number if the
. !command file performs the operation correctly
.
IF (%SUCCESS) RETURN;$ The command file was successful
.
. !Command file continues to solve problem
.

The flag macro in this case is named SUCCESS. If it is non-zero when the IF
command is executed, then the command file will terminate at that point with the
RETURN command. If the flag is FALSE, the command file will continue.

The NOT Boolean Operation

While the "!=" operator can be used to determine when two numbers are not
equal, ICED™ does not currently support a true NOT function or operator.
However, it is very easy to use this syntax instead:

val == 0

When val is FALSE, then the result of this expression is TRUE. If val is TRUE,
then the result of the expression is FALSE.

Let us say that you need to perform an action when a flag macro is FALSE. If
the flag macro is the same SUCCESS macro we used in the previous example,
we could write an IF statement as follows:

Example: IF (%SUCCESS == 0) RETURN;$ The command file was not successful

In this case, the statement controlled by the IF command will be executed when
the SUCCESS macro is FALSE.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 59

Operator Precedence and Associativity (or, when are () required in an expression?)

When you have a complex mathematical or Boolean expression, the order in
which the operations should be performed may often look ambiguous.

{2 + 3 * 4}

Does this simple expression really mean

{(2 + 3) * 4} → { 5 * 4} → 20
or

{2 + (3 * 4)} → { 2 + 12} → 14

The correct answer is 14.

Of course, if you have forgotten your grammar school algebra, and don't want to
bother looking it up, you could always add the parentheses and write the
expression as "{2 + (3 * 4)}". This is perfectly acceptable. In fact if you prefer
to skip this entire explanation, and always add extra parentheses when an
expression looks ambiguous, that is also perfectly acceptable. ICED™ will
always evaluate portions of expressions surrounded by parentheses before
evaluating the rest of the expression.

ICED™ uses the same precedence of operators and rules of associativity as the
"C" programming language (except of course for the missing "C" operators that
ICED™ does not support), so if you are an experienced programmer, you also get
to skip this material.

Those of you in the above categories can skip ahead to page 63.

Command File Syntax: Expression Evaluation

60 ICED™ Command File Programmer's Reference

Definitions of Precedence and Associativity

Precedence is the order in which different operators will be evaluated in the
absence of parentheses.

In the example above:
{2 + 3 * 4}

the '*' operator has higher precedence than the '+' operator. The expression "3*4"
will be evaluated first and replaced with "12" before the addition operation is
evaluated.

If you want the addition to be performed first, you would have to force the
program to do this with parentheses and write the expression as:

{(2 + 3) * 4}

When you write an expression using multiple operators at the same level of
precedence, the order in which the operations are evaluated is determined by
their associativity.

In other words, the expression using the operator with the highest precedence is
performed first. But if two operators have the same precedence, an operand is
grouped with the operator on the right or left to form the first expression
evaluated depending on whether the operator is right-associative or left-
associative.

All ICED™ operators that support associativity are left associative.

Let us consider the division operator.

{12 / 2 / 3}

Which division operation is evaluated first? The '2' operand is the operand that
could go either way, and since the division operator is left-associative, it will be
associated with the '/' operator on the left and "12 / 2" will be evaluated first. The
expression will then be:

{6 / 3} which evaluates to '2'.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 61

If you wanted the expression evaluated the other way, you would have to force
this order with parentheses:

{12 / (2 / 3)} ! this evaluates to 18

Table of Precedence of ICED™ Operators

This table has the operators
at the highest level of
precedence at the top, and
precedence decreases as
you go down the column.
Operators in the same row,
have the same precedence.
With one exception, the
order of evaluation of
expressions using operators
in the same row is left-
associative.

The exception is the row of number comparison operators. These operators are
non-associative. This means that you cannot use more than one of them in an
expression unless you specify the order of evaluation yourself using parentheses.

{1 < 2 < 3} !Syntax error

The expression above is illegal because the '<' operator is non-associative. You
must add parentheses to explicitly define the order of evaluation.

{1 < (2 < 3)} !Will evaluate to 0

Precedence in Compound Boolean Expressions

One common area where it is easy to make mistakes because of precedence rules
is Boolean expressions using both the "&&" and "||" operators. The "&&"
operator has higher precedence, so expressions using a Boolean AND will be
processed first.

Operator Associativity
- (when used to reverse sign) left
* / left
+ - (when used to subtract) left
<= < == != > >= non-associative
&& left
|| left

Figure 11: Precedence Table for ICED™
operators.

Command File Syntax: Expression Evaluation

62 ICED™ Command File Programmer's Reference

Example: IF (%X_COORD < 0 || &
%X_COORD >10000 || &
%Y_COORD < 0 || &
%Y_COORD >10000 && %ERROR ==0)…. !Not written well

This example shows a compound expression that is written poorly. The intent is
that the statements controlled by the IF command will not be executed whenever
the ERROR flag has been set to a non-zero number. However that is not the
result.

Let's take a closer look at this condition expression assuming that ERROR = 1,
X_COORD = -5 and Y_COORD = 3. Then the expression looks like:

IF (-5 < 0 || &
-5 >10000 || &
3 < 0 || &
3 >10000 && 1==0)….

The expressions with the higher precedence number comparison operators are
evaluated first resulting in the following expression:

IF (1 || &
0 || &
0 || &
0 && 0)….

Then the "&&" operator is processed.

IF (1 || &
0 || &
0 || &
0)….

The result is '1' since the "&&" operation in the last line is processed before the
"||" operations. Only when the final "%Y_COORD >10000" is TRUE will the
value of ERROR have any effect on the result of the expression.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 63

If you want to prohibit the execution of the statements controlled by the IF
command whenever the ERROR flag is TRUE, you must surround the "||"
expressions with parentheses. This forces them to be evaluated as a group before
combining the result with the result of the "%ERROR ==0" expression.

Example: IF ((%X_COORD < 0 || &
%X_COORD >10000 || &
%Y_COORD < 0 || &
%Y_COORD >10000) && %ERROR ==0)….

Now, if the expression is evaluated with the same values as above, it resolves to
the following expression:

IF ((1 || &
0 || &
0 || &
0) && 0)….

The compound Boolean OR is then processed resulting in the expression:

IF (1 && 0)

The final result of the expression is now '0', or FALSE. The value of the ERROR
macro now controls whether or not the statements controlled by the IF command
are executed, regardless of the result of the other tests.

Functions

ICED™ supports many functions. Some perform mathematical operations, others
manipulate strings or coordinate lists. New functions are often added with
program updates. The complete list as of the writing of this manual is shown on
page 219. Descriptions and examples of each function in alphabetical order
follow this list.

Command File Syntax: Expression Evaluation

64 ICED™ Command File Programmer's Reference

Syntax for Function Calls

All functions are called using a similar syntax:

Function_name(argument)

The parentheses are required, and the open parenthesis '(' must be typed
immediately after the function name with no space in between. This forces
the parser to recognize that the string represents a function name and argument.

Calling a Function in a Command

When a function call cannot be misinterpreted by the parser, you do not need to
enclose the function call in curly braces. This includes uses of a function call in
a command where the command expects a number. The parser will call the
function and replace the function call string with the result.

Example: ADD BOX AT 0,0 COS(45), SIN(45)

When the parser interprets "COS(45)" it expects a number, but sees a function
call instead. The parser is smart enough to realize that it can evaluate the entire
string "COS(45)" to a number and will do so. The same is true for "SIN (45)".
The statement executed will be:

ADD BOX AT 0,0 .707 .707

Expressions in the Argument of a Function Call

Expressions in the argument of a function call will be evaluated without the need
for curly braces. The parser expects an expression in this case.

Example: ADD BOX AT 0,0 COS(45 + 10), SIN(45 - 10)

This statement will be evaluated to the following before it is executed.

ADD BOX AT 0,0 0.574, 0.423

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 65

Calling a Function in a Macro Assignment

When a function call is used to set the value of a macro, it must be enclosed in
curly braces. In this case, the parser is not already expecting a number, so the
parser will assume that function call is a simple string.

Example: #MAC = COS(45 + 10) !Function call will not be evaluated

In this case the value assigned to the macro MAC will be the string "COS(45 +
10".

However, when you surround the function call with curly braces, the parser will
be forced to evaluate the string and store the result in the macro.

Example: #MAC = {COS(45 + 10)} !Function call will be evaluated

The parser will now consider the function call an expression that must be
evaluated. The value stored in the MAC macro will be "0.574".

String Comparison Functions

Two functions that are used
frequently by writers of command
files are the string comparison
functions.

Remember that the "==" operator
is used only to compare numbers.
To compare strings, you must use
one of these functions.

Purpose Page
CMP Compare two strings,

ignore case
224

XCMP Determine if two strings
are eXactly the same,
including case of each
character

224

Figure 12: String Comparison
Functions

Command File Syntax: Expression Evaluation

66 ICED™ Command File Programmer's Reference

Example: IF (%RES.MODE == "HARD"){ !Incorrect syntax

The statement above fails with the error message:

IF (HARD <<>> == "HARD"){
error: Expected (or { following function name

This is because it encounters the "==" operator, but no numeric operand was to
the left of the operator. It then attempts to interpret the string contained in the
system macro RES.MODE (in this case "HARD") as function call, but it cannot
find the argument in parentheses that it expects.

Example: IF (CMP(%RES.MODE, "HARD")==0) { !Correct syntax

The CMP function will return 0 if the two strings match regardless of case.
When the RES.MODE system macro contains the string "HARD", the statement
above will evaluate to:

IF (0==0){

In this case since the two numbers are equal, the condition expression evaluates
to TRUE and the statements in the IF block will be executed.

The CMP and XCMP functions do not return Boolean values. They follow the
"C" programming language convention of returning a value of '0' when two
strings match, a negative value when string1 is less than string2, and a positive
value when string1 is greater than string2. While this makes the functions more
useful, users that expect a Boolean return value often make mistakes.

RES.MODE is
a system macro
that stores the
resolution mode
for coordinates.
See page 290.

Command File Syntax: Expression Evaluation

ICED™ Command File Programmer's Reference 67

Calculations in Layout Editor

You can type mathematical operations or function calls in the layout editor to
perform the functions of a calculator. Simply type the mathematical expression
on the command line surrounded by curly braces and prefixed by a '$' comment
indicator.

Example: ${ 20.2 + ((56/2)*3) }

Typing this command on the command line will report the result of the
mathematical expression on the prompt line.

Another method for performing calculations in the layout editor is to execute the
CALC.CMD command file supplied with the installation. Simply type on the
command line:

Example: @CALC

You will be prompted to enter an expression. You can enter it without the curly
braces, since they will be added by the command file. The result of the
expression is reported on the prompt line.

Command File Syntax: Statement Parsing

68 ICED™ Command File Programmer's Reference

Summary of Special Characters

Here is a review of all special syntax characters used in command files:

#macro_name Whenever you want to set the value of a macro, prefix the macro name on the left
side of the '=' with a '#'. (Details on page 39.)

%macro_name When you want ICED™ to replace a macro reference with the value of the
macro, prefix the macro name with a '%'. (Details on page 39.)

%macro^string The '^' character is used to delimit the end of a macro name without a blank
space. (See details on page 44.)

%- When you need a real '%' character in a string where characters that could be
misinterpreted as a macro name immediately follow the '%', you must type the
combination "%-". The '-' is stripped from the string by the parser, but no
attempt at macro substitution will be performed. (Details on page 41.)

%%macro_name Using a double percent instead of a single percent means that the value of the
macro will not be substituted until it used in an executed command. This is
referred to as delayed substitution. (Details on page 46.)

keyword=% When you type a command in a command file, and you want the user to supply
the value of a parameter when the statement is executed, you can specify the
parameter with a '%'. (Details on page 36.)

$ In a macro assignment statement, the '$' is used to indicate that the user will need
to define the value of a macro at execution time. The method the user must use
to define the value is determined by the following keyword. See page 143.

Command File Syntax: Statement Parsing

ICED™ Command File Programmer's Reference 69

$comment The '$' at the beginning of a statement indicates that the string that follows is a
comment that will be echoed in the journal file. The comment will also be
echoed on the prompt line of the layout editor window. When a $comment is the
last line executed in a command file, the comment will still be displayed on the
screen when control is returned to the layout editor.

$$comment If a comment is prefixed with "$$", it will be processed even if the LOG mode
prevents the logging or display of $comments. See page 162.

!comment This type of comment is not echoed. Comments like these can be very useful in
making your command file easy to understand, but they are ignored by the
parser. Comments can be added at the end of any line or on lines of their own.

@file_name This indicates that the statements in the specified command file should be
executed. (Details on page 159.)

stmt;stmt A ';' allows more than one command to be typed on one line. When the first
statement is a RETURN command, the additional statements are executed before
the command file is terminated. (See an example on page 58.) When the first
statement is a @file_name command, macro definitions or other statements can
be typed on the same line. The additional statements are executed as though they
are statements in the command file. (See page 97 for examples.)

stmt; Semicolons at the end of a statement are ignored. You can type them if you are
used to programming this way.

{expression} Curly braces force an expression to be evaluated. Otherwise, the expression is
often treated like an ordinary string of characters.

(Curly braces in a quoted string do not force evaluation. Therefore, you can use
either '{' or '}' in quoted string without causing the program to attempt an
evaluation of an expression.)

Command File Syntax: Statement Parsing

70 ICED™ Command File Programmer's Reference

"string"
'string'
~string~
`string` Any of these characters can be used as a pair of quotes. They are all treated in

exactly the same manner. Having more than one pair of valid quotes allows you
to include quote characters in a quoted string. (See an example on page 142.)
No processing of special characters (except for '%' macro references and '&' line
continuation characters) will take place in a quoted string.

& When an '&' is added at the end of a line of characters, after a whitespace
character, it suppresses the end-of-line indicator. At the end of a line of text in a
command file, this indicates that the statement continues on the next line. This
can be used to make long statements more readable. The '&' is processed first,
before the statement is interpreted. (Details on page 30.)

Another way the '&' can be used to suppress an end of line character is to use a
'&' at the end of a keyboard macro string.

&& Boolean AND operator. (Details on page 55.)

|| Boolean OR operator. (Details on page 56.)

< Less than operator.

<= Less than or equal to operator.

== Equals operator. When you need to compare two numbers in an expression you
must use the double equals, "==".

!= Not equals operator.

>= Greater than or equal to operator.

Command File Syntax: Statement Parsing

ICED™ Command File Programmer's Reference 71

> Greater than operator.

+ Addition operator.

- Subtraction or sign reversal operator.

* Multiplication operator.

/ Division operator.

Review of Statement Parsing

Let us review briefly what happens as a statement like the one below is parsed now
that you can easily follow what happens when ICED™ parses a statement.

ADD CELL MYCELL AT &
{X(%MYITEM.POS.%N)}, &
{Y(%MYITEM.POS.%M)}

Step 1) Command lines are concatenated when a line ends with a '&'.

ADD CELL MYCELL AT {X(%MYITEM.POS.%N)},{Y(%MYITEM.POS.%M)}

Step 2) Macro references with a '%" prefix are replaced with the contents of the
macro. Macro references are replaced from right to left.

ADD CELL MYCELL AT {X(%MYITEM.POS.1)}, {Y(%MYITEM.POS.2)}
ADD CELL MYCELL AT {X((-14.0,42.5))}, {Y((-9.5,58.5))}

Step 3) Expressions are evaluated. (This includes function calls.)

ADD CELL MYCELL AT -14.0, 58.5

Step 4) The command is executed.

Command File Syntax: Statement Parsing

72 ICED™ Command File Programmer's Reference

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 73

Overview of Programming
Techniques

Overview of Programming Techniques

74 ICED™ Command File Programmer's Reference

This section covers general information and techniques that are very useful when
creating different types of command files. The organization is task-oriented.
You can refer only to the subjects you need to complete a specific command file.
However, reading all of the subjects will help prepare you to be a well-rounded
command file programmer.

Selecting Components

Command files that operate on components must select those components before
the operation, or make sure that they are already selected. The process of
insuring that the correct number and right type of components is selected is very
important. Many operations will cause an error and terminate the command file
if the wrong number or types of components are selected. By default, most
operations will pause waiting for input when no components are selected. Either
situation can be very confusing to the user of your command file.

Selection Status at the Beginning of a Command File

When a command file begins, the selection status of components is not cleared.
That is, if components are selected prior to the execution of the command file,
they will be operated on by all relevant commands in the file.

For example, say part of your command file swaps components on layer OLD to
layer NEW. The lines will be similar to those below:

Example: SELECT LAYER OLD ALL
SWAP LAYER OLD AND NEW

Suppose that there are components on LAYER NEW already selected before the
command file begins. When this is the case, the SWAP command will swap
these components from layer NEW to layer OLD.

The exercises in
the Classroom
Tutorials
Manual are
another great
way to learn
command file
programming
techniques.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 75

If you want to make sure that the only components selected are selected during
your command file, you can add an UNSELECT ALL or UNSELECT PUSH
command near the beginning of the file. The UNSELECT PUSH command has
the advantage that you can add a SELECT POP command at the end of your
command file to restore the selection status of components. (See page 111 for
more details.)

If you want to check how many components are selected, use the N.SELECT
system macro. See an example on page 96. We'll go into methods of verifying
that the correct type of components are selected on page 176.

Embedded Selects and the XSELECT Mode

When no components are selected prior to executing a component modification
command, the command will issue an embedded SELECT command. This
embedded SELECT command will pause and wait for the user to select a
component. You may want to use this behavior in some circumstances. See page
85 for an example that uses this feature to allow the user to select a component
for a copy operation.

However, in many cases these embedded SELECT commands (primarily
intended for use outside of command files) cause problems in a command file.
For example, let us consider the SWAP OLD to NEW example on the previous
page assuming that no components are already selected. If no components exist
on layer OLD, then the SEL LAYER OLD ALL command would select no
components. This is not an error. Since no components are selected, the SWAP
command would then issue an embedded SELECT command. This embedded
SELECT command will wait for the user to select something. The only way to
continue without selecting something is to cancel the command file.

In this case, it would be much better if the SWAP command did nothing and the
command file continued without error when no components exist on layer OLD.
This is accomplished by adding the XSELECT OFF command to the command
file before the SWAP command. All embedded selection commands are disabled
by the XSELECT OFF command. We'll see an example on page 84.

Holding down
the <Shift> key
during a
embedded
SELECT
command
allows the user
to select
multiple
components.

See methods to
cancel a
command file
on page 125.

Overview of Programming Techniques

76 ICED™ Command File Programmer's Reference

Whenever you write a command file that contains a command that operates
on selected components, and you want that command to "do nothing" when
no components are selected, be sure to add the XSELECT OFF command to
the command file. See page 215 for more details.

The UNPROTECT and UNBLANK Commands

Components or entire layers can be made unselectable prior to execution of your
command file through the use of BLANK and/or PROTECT commands. The
blank and protection status of components and layers is preserved as you execute
a command file. If you want to make sure that all components are selectable for
modification, your command file should include the UNBLANK ALL and
UNPROTECT ALL commands.

If your command file should not modify any protected or blanked components,
your command file should not include these commands. If you want to leave the
decision to the user of the command file, you can ask the user if protected or
blanked components should be included in the operation. (See page 274 for an
example.)

Selection Criteria

There are several ways to select components by their properties. For example
you can select components by layer, by unique id number, or by component type
(e.g. BOX, WIRE, CELL, etc). Reread the SELECT command description in the
IC Layout Editor Reference Manual for complete details and many examples. A
few SELECT command examples are provided on the next page.

Refer to these
commands in
the IC Layout
Editor
Reference
Manual for
more details.

You can save
and restore the
blank and
protection status
of layers. See
page 258.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 77

Example: SELECT LAYER PDIF+NDIF ALL

The example above uses the LAYER keyword and a simple layer list to select all
unblanked, unprotected components on layers PDIF and NDIF.

Example: SEL IDS AFTER 6; UNSEL IDS AFTER 10

This example selects all components with a unique id between 7 and 10. Note
that the SELECT and UNSELECT keywords are often abbreviated.

Example: SEL CELL=NAND IN

This example selects all NAND cells within a selection box digitized by the user
when the command is executed.

Example: SEL SIDE NEAR %LAST_POS

This example selects the sides of all wires and polygons within the near box. The
center of the near box will be the last position digitized by the user. The relevant
components are called "partially selected". Only the selected sides are modified
by commands like MOVE.

Example: SEL PARTS

If components are partially selected, they will be fully selected by this command.

Example: SEL NEW

This command will select all of the components operated on by the previous
command. For example, if your command file used an ADD command to add a
component, if this SELECT NEW command is the next command executed, it
will select the component just created.

Selecting Components from a List

You can place all selected components on a list and them select them one at a
time from the list. See the LIST command on page 182 for more details.

See more on the
LAST_POS
system macro
on page 272.

Overview of Programming Techniques

78 ICED™ Command File Programmer's Reference

The SELECT stack operations (like UNSELECT PUSH) can also be used to
build a set of selected components. In this case, a single set of components on
the stack can all be selected at once. See an example of this on page 185.

Selecting A Single Component

Sometimes you need to insure that a single component is selected. For example,
the ITEM command will fail unless exactly one component is selected.

This type of operation is so common that we show you how to create a reusable
command file that you can call from your command file to insure that exactly one
component is selected. This example is covered on page 96. If you prefer you
can use the statements in this example directly in your command file to select a
single component.

Allowing User to Use Multiple SELECT Commands

It can occasionally be difficult for the user to select the exact group of
components necessary with a single SELECT command in your command file.
A series of SELECT and UNSELECT commands, or the use of the
2:SHOW→@one menu option, can often be the easiest or only way for the user
to select the required component(s).

There are two ways to allow this.
1) Create the command file so that it will work on components already

selected. You should have some sort of IF or WHILE block with
SELECT commands to handle the case where the correct components are
not selected prior to the command file.

2) You can use a shell allowing the user to issue as many commands from
the keyboard or regular menus as required to select the correct
component(s). Refer to the SHELL command on page 207.

Use the
item.TYPE
macro created
by the ITEM
command to test
what type of
component is
selected. See
page 176.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 79

Adding Components

Command files often add components to the current cell with ADD commands.
You may also occasionally find the COPY command useful for adding copies of
new or existing components. (See an example on page 272.)

ADD Commands

The following features make ADD commands easier to write in command files:

keyword=% prompts allow the user to type the missing parameters
when the command file is executed without a lot of extra
statements.

The OFFSET keyword allows you to define coordinates as offsets
from a base set of positions without extra mathematical
calculations.

The use of the '%' symbol to take the place of missing parameters is supported in
other commands besides the ADD command, but it is most useful in the ADD
TEXT command. This is because the user will usually be prompted for missing
required parameters, but the text string must be included as the first parameter in
any ADD TEXT command, and if additional parameters are required something
must take the place of the missing text.

Example: ADD TEXT=% AT %LAST.POS

This ADD TEXT command will prompt the user with the prompt "Enter text"
when it is executed. You do not need to define any macros or write any prompt
statements yourself to have the command file prompt the user for the text string.
The text will then be added on the current layer at the last position digitized by
the user since the reference to the LAST.POS system macro is used to specify the
location of the new text component.

See more on the
LAST_POS
system macro
on page 272.

Overview of Programming Techniques

80 ICED™ Command File Programmer's Reference

Example: ADD TEXT=% LAYER=% AT %LAST.POS

If you prefer to prompt the user for the layer you can write the command as
shown above. If the user cancels the command by typing an <Esc> instead of
supplying either parameter, the remainder of command file containing this
command will not be executed.

The following example demonstrates how the OFFSET keyword makes it easier
to write ADD commands that create components offset from a base position.

Example: ADD TEXT="I=%I, J=%J" &
OFFSET={%I*%ROW_STEP, %J*%COL_STEP} &
AT=%BASE_COORD

This statement is intended to be included in a WHILE loop that increments the I
and J macros. Each text component is created at an offset from a base position.
You could write the ADD command without the OFFSET, but that would require
extra function calls to return the X and Y coordinates of the base position
resulting in the less readable statement:

Example: ADD TEXT="I=%I, J=%J" &
AT= {X(%BASE_COORD) + (%I*%ROW_STEP)}, &

{Y(%BASE_COORD) + (%J*%COL_STEP)}

The OFFSET keyword is even more useful when you are adding components that
have a long list of vertices (e.g. wires or polygons). Without the OFFSET
keyword, you would have to add the offset to each vertex in the ADD command.
See the SERIAL.CMD advanced example on page 313 to see how the OFFSET
keyword can be used to make ADD commands for complex polygons easier to
write.

Adding Components with ITEM Macros

One other feature useful when adding components is the ITEM command. (See
page 173.) This command stores a variety of information about a single selected
component in a series of macros. You can use these macros in one or more ADD

The user can
select a layer
from a menu of
valid choices.
See page 147.

Note that in the
ADD command
the OFFSET
parameter must
come before the
AT parameter.

The X and Y
functions return
a single
coordinate from
a coordinate
pair. See page
246.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 81

commands to create similar components. Or you can modify the values in the
item macros and add a new component using the modified values by executing
the ADD command string stored in the ADD.item_name macro. (See an example
on page 180.)

Snapping Coordinates to Resolution Grid

Coordinates in an ADD command will NOT be forced to lie on the resolution or
snap grids. When coordinates are digitized using the mouse, then you can be
sure that the coordinates are on the snap and resolution grids. However, if your
command file uses mathematical operations to calculate coordinates, they
probably do not lie on grid. You will need to perform extra processing to snap
the coordinates to grid before using them in an ADD command.

If you calculate coordinates, you should use the functions below to snap the
coordinates to grid. If you prefer to avoid rounding coordinates to grid, your
command file should check the value of the system macro RES.MODE to
determine if the user has set the resolution mode to "SOFT". (See an example on
page 290.) If the resolution mode is "SOFT", then the decision is up to you.
However, if the resolution mode is "HARD" then the user has indicated that all
coordinates should be on grid.

The ROUND() function is usually used to round a coordinate pair to the nearest
point on the resolution grid. The ROUND1() or ROUND2() functions may be
preferable in some special circumstances. See page 235.

Methods that Enable Undoing ADD Commands

One drawback to command files that add components is that after the user
executes the command file, if he doesn't like the results, the UNDO command
will not reverse the effects of the command file. One method to allow the user to
undo all of the ADD commands is to add the components on a scratch layer, then
prompt the user to accept or reject the components. If the user accepts the

The POSN
function returns
a single
coordinate pair
from a
coordinate list.
See page 234.

The
SNAP.STEP
system macro
(see page 293)
can be used in
coordinate
calculations
when you want
to keep
coordinates on
the snap grid.

Overview of Programming Techniques

82 ICED™ Command File Programmer's Reference

components, swap the layer of the components to a real layer. If the user rejects
them, delete the entire scratch layer.

Any time you add components on a scratch layer, use layer numbers in the
range 250:255. These layers are reserved for scratch layers in command
files. Using other layers for scratch work may corrupt the design of some
future user (maybe you) if he happens to use that layer for real design work.

Another method that will allow you to remove all of the added components is to
keep track of the id numbers. Each component has a unique id number. If you
store the id numbers of the first and last components added, you can use the id
related keywords of the SELECT command to select just these components then
delete them all with one DELETE command. The ED.CMD and UNED.CMD
command files on covered beginning on page 318 use this method. UNED.CMD
can undo the results of ED.CMD. If you store the id numbers in a manner
consistent with ED.CMD, you can use UNED.CMD as an UNDO command for
your command files.

Adding Components using SHOW Command File

The ED.CMD command file uses an interesting method for adding components.
The SHOW SELECT FILE=file_name command will export selected shapes to a
command file. An ADD command will be generated in the file for each selected
component. If you execute this command file, it will create identical
components. You may even execute this file in a different cell, or allow the user
to edit it before executing the file. See page 318 of this manual for an example.
See the IC Layout Editor Reference Manual for complete details on the SHOW
command.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 83

Deleting Components

Using DELETE commands in a command file has some interesting ramifications.
Most of these methods involve careful selection of components before issuing the
DELETE command. If you have trouble selecting exactly the components you
need to delete, see page 74 of this manual or carefully re-read the description of
the SELECT command in the IC Layout Editor Reference Manual to see if there
are features that will assist you.

There are three things you must be especially careful with when selecting
components for a DELETE command:

UNSELECT all components that may happen to be selected in the
current session before the command file is executed. The best method
for this is the UNSELECT PUSH command. It is a good programming
practice to restore these selections at the end of your command file with
an UNSELECT POP command. (See page 111 for more details.)

Insure that the components are neither blanked nor protected. This will
prevent them from being selected for the DELETE. (See the BLANK
and PROTECT commands in the IC Layout Editor Reference Manual.)

When a DELETE command is executed and no components are selected,
the default behavior of the DELETE command is to issue an embedded
SELECT command and wait for the user to select a component to delete.
This can be a puzzling event for the user of your command file. Add an
XSELECT OFF command before the DELETE command to force the
DELETE command to do nothing and continue to the next command
when no components are selected.

The following example is a command file to delete components. It will delete all
components on layer SCRATCH in the current cell. This command file is far
more powerful than a single DELETE command since extra commands in the file
insure that even protected or blanked components will be removed.

See more about
embedded
SELECT
commands on
page 75.

Overview of Programming Techniques

84 ICED™ Command File Programmer's Reference

Example: ! CLR_SCR.CMD
UNPROTECT LAYER SCRATCH
UNBLANK ROOT LAYER SCRATCH
UNSELECT PUSH
SELECT LAYER SCRATCH ALL
XSELECT OFF
DELETE
XSELECT ON
SELECT POP

If no components exist on layer SCRATCH, the command file will not pause
waiting for user input; it will simply have no effect.

We will expand this example on page 98 to prompt the user to enter the layer
name. This makes the command file more useful since it can then be used to
delete all components on any desired layer.

See page 22 to learn about executing a command file in all subcells. Only
components in the current cell will be deleted by this command file.
Components on layer SCRATCH nested in subcells will not be deleted.

User Interaction

Some command files (like the CLR_SCR.CMD example above) operate without
user input. However, your command files can be far more versatile and powerful
when the user has some control over how the command file operates.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 85

One of the most common types of user interaction in command files is prompting
the user to supply a parameter. Several methods of prompting the user to supply
a parameter are supported.

1) Using "keyword=%" in an editor command will prompt the user for the
value when the command is executed. (See an example on page 79.)
The value may be a location digitized by the user. No macro definition
or creation of a prompt message is required.

2) Commands that operate on selected components will allow the user to
select the component(s) when the command is executed (unless the
XSELECT mode is off; see page 75.)

3) The user can be prompted to supply the value of a macro when the
command file executes. This selection can be from a menu of valid
choices. See page 147.

When you want the user to select a component using method 2, you should
display a prompt so that the user understands what they are supposed to do.

Example: UNSELECT ALL
PROMPT "Select component to copy."
COPY BY 1,1

When no components are selected, the default behavior of the COPY command
is to issue an embedded SELECT NEAR command and wait for the user to select
the component. By default, no prompt message is shown on the screen.
However, when you add the PROMPT command directly before the COPY
command, that message remains on the screen while the program waits for the
user to select the component.

When you want to use method 3 above to prompt the user to enter the value of a
macro, there are several keywords that make this possible. Any time a macro is
defined without a value, the user is prompted to supply it with the default prompt
message "Enter value for macro macro_name." You can write a more
explanatory prompt message yourself by adding the $PROMPT keyword to the
macro definition.

When you want
to allow the user
to perform a
series of editor
commands
before your
command file
continues, you
can use the
SHELL
command. See
page 207.

Holding down
the <Shift> key
during a
embedded
SELECT
command
allows the user
to select
multiple
components.

Overview of Programming Techniques

86 ICED™ Command File Programmer's Reference

Example: LOCAL #LAY_NAME $PROMPT="Enter layer to delete:"

The macro definition statement above will display the indicated prompt message
on the screen and wait for the user to type something on the keyboard. If the user
types <Esc> instead of typing a value, the entire command file is cancelled. This
method does not insure that a valid layer has been entered. We will explore
methods of verifying a user response in a moment.

There are several response type keywords that require the user to digitize macro
values with the mouse.

Example: LOCAL #CENTER $PROMPT="Digitize center point." POSITION

When the POSITION keyword is used in a macro assignment, the program will
display the prompt string and wait for the user to digitize a position with the
cursor. This insures not only that a valid coordinate has been entered, but that
the point is on the resolution and snap grids.

Other user response keywords require the user to digitize a set of positions or
make a selection from a menu of choices. See page 143 for more details and
examples.

Other methods of getting the user to supply a value are covered in the next
subject. These include several command files supplied with the installation that
request the user to supply a specific type of value and go on to verify that the
value is valid.

You can let a
user select a
layer name from
a menu of
choices. See an
example on
page 147.

Methods of
displaying a
message to the
user are covered
beginning on
page 88.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 87

Verifying User Input

When you request that the user enter a macro value, no validation of the user's
response is performed automatically. For example, suppose the user mistyped a
layer name ("1M" instead of "M1") in the LOCAL #LAY_NAME macro
definition example above. The command file contained a command like the
following, it would fail with the mysterious message indicated:

Example: UNPROTECT LAYER %LAY_NAME

UNPROTECT LAYER 1 <<M>>
Error: Expected end of command

Whenever the user types in a macro value, and you do not verify that
an appropriate value has been entered, a later command may fail with
an error message that only confuses the user.

When you need the user to supply a coordinate, the best method is to let them
digitize it with the cursor. See an example on the previous page. When the cursor
is used to digitize a position, this insures not only that a valid coordinate has been
entered, but that the point is on the resolution and snap grids.

However, you may need to verify that the user has entered a macro value that
represents valid layer name, integer, or other type of value. Several functions can
be used to verify user responses. All of the functions in the table on the
following page can be used in the following way:

Example: IF (VALID_INT("%NUM_COPIES")) {

In addition, several command files are provided with the program that can be
called by your command file to insure that the user types a valid response. These
command files support default values and range checking. They do not terminate
until a valid value is stored, or until the user cancels the command file. See the
list of these command files on the following page.

You can let a
user select a
layer name from
a menu of
choices. See an
example on
page 147.

Overview of Programming Techniques

88 ICED™ Command File Programmer's Reference

Displaying Messages to the User

There are several commands used to display a message to the user. In all of these
methods, macro references in the message string will be replaced with the
contents of the macro(s).

Function name Purpose Pg
DEVICE_EXISTS Test if device (e.g. printer) exists 226
DIR_EXISTS Test if file directory exists 226
FILE_EXISTS Test if file exists 227
STD_COORD Format coordinate string 240
VALID_INT Test that string is a valid integer 242
VALID_REAL Test that string is a valid real number 245
VALID_LAYER Test that string is a valid layer name 243
VALID_CELL_NAME Test that string is valid as a cell name 241

Command file name
_GET_ANS.CMD User must select a character from a list of

choices (usually "Yn" for yes/no)
163

_GET_DEV.CMD User must enter the name of a valid printing
device

-

_GET_INT.CMD Requests that user enter integer, performs value
and range validation

305

_GET_REAL.CMD Requests that user enter number, performs
value and range validation

100

_GET_LAY.CMD Requests that user enter a layer and verifies that
the response is a valid layer name or number

279

Figure 13: Value Validation

See a complete
list of functions
on page 220.

The ROUND
function will
snap a
coordinate pair
to the resolution
grid.

These command
files can be
found in the
AUXIL
subdirectory of
the installation.
This is on the
default
command file
search path.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 89

Whenever a user response is required, insure that meaningful prompt is
displayed. Both the PROMPT and $comment commands are useful for showing a
prompt message when you have a command in your command file that requires
the user to digitize coordinates or select components. The string from the
previous PROMPT command will be displayed on the prompt line during the
next user interaction command. See an example on page 96. The previous
$comment command is visible below the command line. See page 271.

$comment commands are very useful when debugging a command file. Since
these comments are recorded in the journal file, you can record the values of all
of your important macros at any given moment in the journal file.

$$comments are useful in displaying updates during very long command files.
They operate in the same manner as $comments except that they are displayed
and logged even when the LOG mode is off. If you have a huge command file,
or a very long loop, a few $$comments will indicate the progress of the
command file and prevent the impression that the command file has crashed the
session. (See examples on pages 131 and 162.) Leaving the LOG mode on might
also show progress, but only at the cost of slowing down the command file
considerably.

Command name Purpose Pg
PROMPT Replaces the prompt to the left of the '>' on the

command line, command file continues without pause
201

PAUSE Displays message and waits until user presses button
or key to continue

199

$comments Displays message on command line and in log file,
command file continues without pause

161

$$comments Displays message on command line and in log file
even when log mode is off, command file continues
without pause

162

RETURN Terminates command file leaving the message visible
below command line

205

ERROR Terminates command file leaving the word "Error" in
red and the message visible below command line

164

Figure 14: Message commands

Quotes are
required around
the message
string only
when it could be
misinterpreted
by the parser.

The LOG mode
determines
whether or not
commands are
logged to the
journal file and
the screen.

Overview of Programming Techniques

90 ICED™ Command File Programmer's Reference

During debugging, if you want to pause the command file while the user looks at
the comment message, use a PAUSE command. This allows the user to cancel
the entire command file by pressing both mouse buttons if the macro values are
not what were expected.

Example: PAUSE "Processing cell %CELL. <Enter> to continue."

It is a good programming practice to provide a quick summary of the success of
the command file in the RETURN statement. Whenever a message is included in
an ERROR or RETURN command, the message will remain on the screen after
the command file is complete. This type of message that tells the user exactly
what action was taken by the command file and gives the user important
feedback. For example, this may inform the user that no components were
deleted on a given layer.

Example: RETURN SUCCESS: %CLR.NUM_DELETED Components deleted &
from layer %CLR.LAYER.

Conditional Execution

ICED™ command files do not have to execute every
statement once in top-down order. The IF and ELSEIF
commands give you the option to execute a block of
statements if a Boolean condition expression is TRUE or
FALSE. The WHILE command loops through a block of
statements until a certain condition is met.

We have already covered Boolean expressions on page
53. Briefly, a Boolean expression evaluates to FALSE
(the number 0) or TRUE (any non-zero number). When
the Boolean condition expression is TRUE, the block of statements controlled by
an IF, ELSEIF, or WHILE command will be executed.

You can use the
SHOW
command after
a command file
is over to
display the
contents of
GLOBAL
macros.

Command Page
IF 168
ELSEIF 171
WHILE 212

Figure 15:
Conditional
statement
commands

The LOG
LEVEL =
DEBUG
command can
add comments
to the journal
file to help you
debug command
files with these
commands. See
page 127.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 91

Boolean condition expressions in these commands do not require curly braces.
However, the expression should be surrounded by the ordinary parentheses "()"
required by the command.

Curly braces are used in this context to indicate the block of statements
controlled by the command. The first curly brace must be at the end of the same
line as the IF, ELSEIF, or WHILE statement. The closing curly brace must
always be on a line by itself.

Example: IF (%N.SELECT == 0){ !(a)
PROMPT Select components for operation !(a1)
SELECT IN !(a2)
IF (%N.SELECT > 1) #MULT_COMPONENTS = 1 !(a3)
ELSE #MULT_COMPONENTS = 0 !(a4)

}
ELSEIF (%N.SELECT > 1){ !(b)

#MULT_COMPONENTS = 1
}
ELSE { !(c)

#MULT_COMPONENTS = 0
}
IF (% MULT_COMPONENTS){… !(d)

If the Boolean condition in statement (a) "(%N.SELECT == 0) evaluates to
TRUE (i.e. the value of the N.SELECT system macro is equal to 0), then the
statements in between the curly braces "{}", statements (a1) through (a4), will be
executed.

After the statements in the block are executed, control passes to the next
statement beyond any ELSEIF or ELSE blocks, statement (d).

If the condition in statement (a) evaluates to FALSE, then control passes directly
to statement (b). This new condition, "(%N.SELECT > 1)" is then evaluated. If
it is TRUE, then the statements between that curly brace and the next closing
curly brace are executed. Control then passes to the next statement beyond any
following ELSEIF or ELSE blocks, statement (d).

Only when the conditions in statements (a) and (b) both evaluate to FALSE, will
statements in the (c) ELSE block be executed.

The N.SELECT
system macro
contains the
number of
currently
selected
components.
See page 289.

Overview of Programming Techniques

92 ICED™ Command File Programmer's Reference

Note that it is acceptable to nest IF constructs. Statements (a3) and (a4) form a
second IF/ELSE construct. These statements use single statement syntax rather
than curly braces.

When the block controlled by an IF, ELSE, ELSEIF, or WHILE command is a
single statement, the curly braces are not required, but the statement must be on
the same line as the IF, ELSEIF, ELSE, or WHILE command. (The continuation
character '&' allows you to type the statement on the next line.)

Example: IF (%N.SELECT > 1) &
#MULT_COMPONENTS = 1 !interpreted as being on a single line

You can use an IF command without any following ELSE or ELSEIF commands.
When ELSE or ELSEIF commands are used, no other statements can come
between the end of the IF block and the ELSE or ELSEIF.

You can use as many ELSEIF commands as required to test all possible
conditions. This command allows you to build the equivalent of a case or select
structure found in other programming languages. However the ELSEIF is more
versatile than a case statement because there are no constraints on the condition
expressions in the ELSEIF commands. There is also no error checking to verify
that you have written a consistent set of conditions. We recommend that you
always include a final ELSE command to catch any conditions you may not have
thought of when writing your list of ELSEIF commands.

Example: LOCAL #MY_LAYER $PROMPT = &
"Enter layer number [<Enter> to abort]:"

IF (LEN("%MY_LAYER")==0) {
RETURN Command file aborted

}
ELSEIF (VALID_LAYER("%MY_LAYER")==0) {

RETURN Invalid layer "%MY_LAYER" entered
}
ELSEIF ((%MY_LAYER == 0) && (%LAYER_0_VALID==0)) {

RETURN Layer 0 is not acceptable
}
ELSE USE LAYER %MY_LAYER !MY_LAYER is a valid layer

The LEN
function returns
the length of a
string. See
page 229.

The
VALID_LAYER
function is
described on
page 243.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 93

The command file fragment on the previous page uses RETURN commands to
abort the entire command file when certain conditions are met.

Note the compound condition expression using the Boolean AND operator "&&"
in the second ELSEIF command. Both of these conditions must evaluate to
TRUE for the block controlled by the command to be executed. When you write
a compound expression like this, surround each expression with parentheses, and
then surround the entire compound expression with another set of parentheses.

When writing long compound Boolean expressions, it is useful to use the line
continuation character, '&', to write the compound expression on several lines as
seen in the next example. Be sure to surround each expression with parentheses.

Example: IF ((%ERROR_FLAG == 0) && &
((%X_COORD == X(%MY_POS)) || &

(%X_COORD > 1) || &
(%Y_COORD == Y(%MY_POS)) || &
(%Y_COORD > 0))) {

The five lines above are all part of one long IF statement. It is much easier to
read the statement when it is typed this way, rather than typed all on one line.
The first Boolean expression, "(%ERROR_FLAG == 0)", must be TRUE for the
entire Boolean expression to be TRUE since the AND operator "&&" is used to
combine it with the following compound Boolean expression. Only one of the
following Boolean expressions must be TRUE for the entire statement to be
TRUE since they are combined with the Boolean OR operator "||".

In some programming languages, if the first expression in a compound Boolean
AND expression is FALSE, then the remainder of the compound expression is
not interpreted. However, this is not the case in ICED™. The entire statement is
interpreted and macro substitution is performed before any part of it is executed.
This means that the entire statement must be valid or the command file will fail.
For example, even if the macro ERROR_FLAG is set to 1, if the MY_POS
macro did not exist, the IF command would fail with an error message and the
entire command file would be aborted.

The WHILE command should be used when you need to continue executing a
block of statements as long as a condition is TRUE.

Refer to page 61
to learn about
operator
precedence in
compound
Boolean
expressions.

See an example
of the
importance of
insuring that all
conditions in a
compound
Boolean
expression can
be evaluated on
page 177.

Overview of Programming Techniques

94 ICED™ Command File Programmer's Reference

Example: WHILE(%VALID==0){
#MY_LAYER=$PROMPT = &

"Enter layer number [<Enter> to abort]:"
IF (LEN("%MY_LAYER")==0) {

 RETURN Command file aborted
}

 #VALID = {VALID_LAYER("%MY_LAYER")}
 IF(%VALID){
 IF((%MY_LAYER == 0) && (%LAYER_0_VALID==0)){

#VALID=0
PAUSE " Layer 0 not acceptable "

 }
 }
 ELSE{

PAUSE " Invalid layer '%MY_LAYER' entered "
}

}

This simplified fragment of the _GET_LAY.CMD command file will loop until a
valid layer name or number is entered. The PAUSE commands leave the
messages displayed until the user presses a key to be reprompted with the
message "Enter layer number [<Enter> to abort]:".

The WHILE loop will continue to execute the statements before the final '}' until
the WHILE condition expression evaluates to FALSE. This means that the value
of the VALID macro must be non-zero when the condition expression is
evaluated. Note that the VALID macro may be briefly set to 1 in the loop, then
reset back to 0 before the WHILE condition expression is re-evaluated. This will
not terminate the loop.

WHILE loops are often used to execute a statement or block of statements a
certain number of times. In this case a counter macro should be incremented.

Example: LOCAL #LAY_NUM = 1
WHILE (%LAY_NUM <= 10){

#LAY_NAMES = %LAY_NAMES %LAYER.NAME.%LAY_NUM
#LAY_NUM = {%LAY_NUM +1}

}

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 95

The command file fragment above will execute the block of statements 10 times.
The last statement in the block increments the counter macro. Since
%LAY_NUM + 1 is a mathematical expression, it must be surrounded by curly
braces to force evaluation. (See page 48 for an explanation of expressions.)

Nesting Command Files

Command files can call other command files. In fact, you can nest command
files 16 levels deep.

One important thing to remember when using nested command files is that
macros defined as local macros in a nested command file will not be available in
the calling command file. In addition, macros local to the calling command file
will not be available in the nested command file. However, macros defined with
the GLOBAL keyword can be used in both command files, no matter where they
were defined.

You can use nested command files in a manner similar to subroutines in other
programming languages. This makes many complicated tasks easier to write,
debug, and reuse. You can also reuse working command file source in more
than one command file without a lot of cutting and pasting.

Let us say that you have a command file that requires the user to select a single
component. You cannot just have a prompt and a single SELECT NEAR, since
SELECT NEAR may select more than 1 component. Selecting more than 1
component would make your command file fail.

The example on the next page uses an existing selection if exactly one
component is already selected. If not, the statements will loop until exactly one
component is selected.

Overview of Programming Techniques

96 ICED™ Command File Programmer's Reference

Example: ! _SEL_ONE.CMD
LOCAL #DONE =0
WHILE (%DONE == 0){

IF (%N.SELECT != 1){
UNSELECT ALL
PROMPT "Please select a single component"
SELECT NEAR

}
ELSE #DONE = 1

}

Now let us say that you need to select exactly one component in more than one
place in your command file. You could repeat these lines again, but your
command file will be much neater and easier to read if you place the lines above
in a separate command file with the name SEL_ONE.CMD.

Now you can add the following single line wherever it is needed to insure that
exactly one component is selected.

Example: @_SEL_ONE

This will make your command file much easier to write and easier to read.

What happens if the user cancels the SELECT NEAR command in the
SEL_ONE command file by pressing both buttons? The answer is that the
SEL_ONE command file is also canceled, and so is the command file that called
it. Whenever a command in a nested command file is canceled, all calling
command files are also canceled and control is immediately returned to editor.

Your _SEL_ONE.CMD file would be even more useful in other command files if
it was enhanced to insure that exactly n components were selected. If you want
to make a more multi-purpose command file like this, you need to be able to pass
parameters like n into the nested command file. We cover how to do this next.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 97

Passing Arguments into Command Files

ICED™ does not support passing arguments into a command file in the traditional
manner (i.e. similar to a function call). However, you can simulate this type of
argument passing.

One method is to use global macros for all values that the nested command file
may need to access. However, this makes the nested command files less
independent from the command file that calls it. The nested command file will
not be as easy to use in other command files.

While global macros can be used to pass information into a command file, it is
best to keep the use of global macros to a minimum. There is a better way to pass
information into a command file.

Whenever you add additional statements on the same line as a nested command
file reference, the extra commands are executed before the command file begins.

Example: @MY_FILE; &
LOCAL #GEORGE="GEORGE BUSH"; &
LOCAL #BILL="BILL CLINTON"

When we use this method to execute the nested command file MY_FILE.CMD,
the macros GEORGE and BILL are defined as though they were the first lines in
the nested command file. The &'s in this example indicate that the statement
continues on the next line. The semicolons are required to separate the
commands.

It is acceptable to omit the LOCAL scope definition keyword in macro
definitions on the same line as a @file_name command. This type of macro
definition will default to local scope, so the LOCAL keyword is not necessary.

Example: @MY_FILE; &
#GEORGE="GEORGE BUSH"; &
#BILL="BILL CLINTON"

This statement is shorthand for the example given above.

Overview of Programming Techniques

98 ICED™ Command File Programmer's Reference

The macro definitions provided on the same line as the @file_name command
override macro definitions provided in the nested command file. If the contents
of MY_FILE.CMD begin with the lines:

Example: DEFAULT LOCAL #GEORGE="GEORGE JESSEL"
DEFAULT LOCAL #BILL="BUFFALO BILL"

Then those defaults will be overridden by definitions supplied on @MY_FILE
statements.

However, the nested command file will use the default values defined in the file
when it is called without macro definitions as shown below.

Example: @MY_FILE

Now let us cover a somewhat more realistic example. The following command
file will delete all components on a given layer despite their blank or protection
status.

Example: !CLR_LAYR.CMD
!Delete all components from a given layer.
!Use the following syntax to avoid the prompt for the layer:
! @CLR_LAYR; #CLR.LAYER = layer_name

DEFAULT LOCAL #CLR.LAYER $PROMPT= &
"Enter layer to delete from current cell."

LOCAL #CLR.NUM_DELETED = 0

UNPROTECT LAYER %CLR.LAYER
UNBLANK ROOT LAYER %CLR.LAYER
UNSELECT ALL
SELECT LAYER %CLR.LAYER ALL
#CLR.NUM_DELETED = %N.SELECT
XSELECT OFF
DELETE
XSELECT ON

$SUCCESS: %CLR.NUM_DELETED Components deleted.

This example is
expanded from
a simpler
example on
page 84. See
that page for
explanations of
the statements
that delete the
components.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 99

When the command file above is executed with the following syntax, the user
will be prompted for the layer to delete.

Example: @CLR_LAYR

Since the CLR.LAYER macro is defined with the DEFAULT keyword, you can
avoid the prompt for the layer by defining the CLR.LAYER macro on the same
line as the @CLR_LAYR command.

Example: @CLR_LAYR; #CLR.LAYER=M1
@CLR_LAYR; #CLR.LAYER=M2

The lines above will execute the command file twice. The first will clear the M1
layer; the second will clear the M2 layer. The user will not be prompted.

You can even use macro substitution to supply the parameters. Even though
statements on the same line as the @file_name statement are executed as though
they are inside the nested command file, the macro substitution is performed first
in a separate step, so that macros local to the calling command file can be
properly substituted.

Example: LOCAL #LAY_NUM = 250

WHILE (%LAY_NUM <= 255){
@CLR_LAYR; #CLR.LAYER=%LAY_NUM
#LAY_NUM = {%LAY_NUM +1}

}

Even though the LAY_NUM macro is local to the calling command file, the
macro substitution is performed as you would expect and the CLR_LAYR
command file will be executed 6 times on the layers 250:255. No prompts for
the layer will be issued.

Overview of Programming Techniques

100 ICED™ Command File Programmer's Reference

You can also use IF commands on the same line as a @file_name command to
conditionally pass values into a command file.

Example: LOCAL #DISP=-9
LOCAL #MY_MIN=0
LOCAL #MY_MAX=100

@_GET_REAL; #MIN = %MY_MIN; &
#MAX = %MY_MAX; &
#PROMPT = &

"displacement in range %MY_MIN:%MY_MAX ";&
IF (MACRO_EXISTS(#PREV_DISP)) &

 #DEFAULT =%PREV_DISP
#DISP = {ROUND(%RET.VALUE)}
GLOBAL #PREV_DISP = %DISP

This example uses the _GET_REAL.CMD command file supplied with the
installation to have the user enter a displacement. The MIN, MAX, and
PROMPT default macros in the _GET_REAL.CMD file are overridden using
macros local to the calling command file.

The DEFAULT macro is defined only when the macro PREV_DISP exists. The
MACRO_EXISTS function is used to test if the macro has already been defined
by a previous execution of these lines. It will return FALSE when the
PREV_DISP macro does not exist. In this case, the _GET_REAL.CMD will
complete without a default return value.

The macro RET.VALUE is created by the _GET_REAL command file. It is
rounded to the resolution grid by the ROUND function before being stored in the
macro DISP. If the resolution step size is set to .5, and the user types 2.61, the
DISP macro will be set to 2.5. This value is then saved in a global macro for the
next time these lines are executed.

The MACRO_EXISTS function will also tell you if an existing macro is local or
global. For example, if your nested command file can be called with or without a
default value for a parameter, you could use statements like these in your nested
command file GET_SIDES:

The
_GET_REAL-
.CMD
command file
can be found in
the AUXIL
subdirectory of
the installation.
This is on the
default
command file
search path.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 101

Example: IF(MACRO_EXISTS(#DEFAULT)==2){
#MSG="Enter number of sides [%DEFAULT]:"

}
ELSE #MSG="Enter number of sides"

This command file fragment will use the value in the macro DEFAULT in the
message if that macro has been defined on the same line as the @GET_SIDES
command as in the statement:

Example: @GET_SIDES; #DEFAULT = 6;

However, suppose a global macro with the name DEFAULT is left over from
some other unrelated command file. In that case MACRO_EXISTS would return
a 1. If no macro with the name DEFAULT is defined, then MACRO_EXISTS
would return a 0. In either case, the message will be built without a default
indicated between "[]".

The MACRO_EXISTS function is fully described with other examples on page
231.

The GET_INT.CMD command file is another excellent example of how to use
MACRO_EXISTS as well as other value passing features. See page 305.

Opening Other Cells

The Edit Commands

You are not limited to modifying only the current cell in a command file. You
can use any of the edit commands (EDIT, PEDIT, and TEDIT) to edit other cells.
The rest of this discussion will refer to the use of any of these three commands
with the generic term "edit command".

Overview of Programming Techniques

102 ICED™ Command File Programmer's Reference

Be sure to pair each edit command with an exit command (i.e. EXIT, LEAVE or
QUIT) that will return you to the parent cell. In a command file that modifies
geometry, the LEAVE command is the best termination command to use since it
will not cause ICED™ to overwrite the cell file of any cell that was not actually
modified. The QUIT command always returns to the parent cell without saving
the edited cell. EXIT will always mark the cell file for saving.

Example: LOCAL #MY_CELL $PROMPT "Type subcell name for swap:"
LOCAL #NUM_SWAPPED = 0

EDIT CELL %MY_CELL
UNSEL ALL
SEL LAY M1+M2 ALL
XSELECT OFF
SWAP LAY M1 AND M2
#NUM_SWAPPED = %N.SELECT

LEAVE
RETURN "%NUM_SWAPPED Components swapped"

The command file above will prompt the user for a cell name, then use the EDIT
command to begin editing that cell. The commands between the EDIT command
and the LEAVE command will be executed in the nested cell rather than in the
parent cell.

Opening Cells in VIEW-ONLY Mode

Sometimes, you only need to open another cell to get information on the
contents. In these cases, you can use the VIEW_ONLY=TRUE option in an edit
command when you do not intend to save the modified cell. In this case, you do
not need to be concerned if the cell you are about to open might be in a protected
library.

Example: VIEW ON
UNSELECT ALL
PROMPT "Select cell for M1 component count."

!continued on next page

The EXIT
command will
cause the edited
cell file to be
overwritten,
even if it is
unmodified.

The XSELECT
OFF statement
is critical to this
command file
example. See
page 75 for
details.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 103

SELECT CELL * NEAR
IF (%N.SELECT == 1){

PEDIT SELECT VIEW_ONLY=TRUE
UNSEL ALL; SEL LAYER M1 ALL
PAUSE "Cell %CELL has %N.SELECT components on layer M1."

QUIT
}
ELSE ERROR "More than 1 cell selected."
RETURN

The P_EDIT command in the example above uses the SELECT keyword to edit
the selected cell. This keyword is valid for all three edit commands. It will open
the currently selected cell if exactly one copy is selected. This is the reason the
P_EDIT command is located inside of a block executed only when a single
component is selected.

Errors and Interruptions during Nested Edits

Suppose the user presses both mouse buttons to cancel the PAUSE command
while the M1 component count example above is being executed. In this case,
the rest of the command file will not be executed. This will leave the LEAVE
command unprocessed. The nested cell will remain the current cell rather than
the cell the user was editing when he executed the command file. This is likely
to confuse the user. The only way he can return to the parent cell is to execute an
exit command explicitly. Some users may not realize what has happened and
may terminate the edit session with a JOURNAL command to recover.

Any time a command file is cancelled or terminated with a failed command while
the command file was editing a nested cell, the editor remains in that nested cell.

The same situation happens when there is a syntax error in one of the commands
after an edit command is processed. This is one of the most perplexing things that
can go wrong with command files. Be sure to debug command files using nested
edit commands carefully.

The P_EDIT
command will
leave the parent
cell displayed
but dimmed out.

See
DEEPSHOW-
.CMD on page
325 to see
another example
of the
usefulness of
the VIEW-
ONLY mode.

Overview of Programming Techniques

104 ICED™ Command File Programmer's Reference

The Cell Table and Open Cells

Before we can explore more advanced cell edit methods, we need to review the
meaning of the cell table and the definition of an open cell.

The cell table is a list of all cells loaded in the current layout editor session. This
list includes the root cell (i.e. the cell the editor was launched to edit) and all of
its subcells. The list also includes all cells that have been explicitly opened by
edit commands and the subcells of those cells. (If either the QUIT or LEAVE
command was used to unload the edited cell without saving, it and its subcells
are removed from the cell table.) New cells created with the GROUP command
are also in the list. When you delete a subcell, it is not removed from the cell
table.

The root cell (i.e. the cell the editor was launched to edit) is always the first entry
in the cell table with an index of 1.

Many system macros use the index of a cell in this cell table to access
information about the cell. For example, the methods of testing whether or not a
cell is stored in a protected cell library use the cell index to specify the cell in
question.

A cell in the cell table may be open. When you launch ICED™ to edit root cell
CellA, then use an edit command to edit CellX, CellA is still open, even though it
is not the current cell. If an edit command tries to edit a cell that is already open,
the command will fail and terminate the command file.

Cells that contain an open cell are also
open. Consider Figure 16. CellA
contains a subcell, CellB. CellB contains
a subcell, CellC. Assume that you launch
the ICED™ session to edit CellA. Then
you used an edit command to open CellC.
All three cells are now open. CellB is
also open since it contains an open cell.

See page 22 for
an overview of
executing
commands on
many cells.

The
MAX.CELL
system macro
contains the last
valid index into
the cell table.
See page 286.

CellA

CellB

CellC

Figure 16: Example of nested
cells.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 105

Determining if a Cell Exists and is Loaded

When you execute an edit command on a cell that does not exist in any of the
known cell libraries, a new cell will be created in the current directory.
Sometimes this is not the intended effect and can represent an error.

Consider the swap example on page 102. If the user mistypes the name of the
cell, and enters a cell name that does not already exist in a cell library, a new cell
will be created by the EDIT command.

The CELL function will return value of –1 if a cell does not exist in any cell
library. If a cell exists, but is not currently loaded, the CELL function will return
0. If the cell is already loaded, the positive, non-zero index of the cell in the cell
table is returned.

Example: #MY_CELL_INDEX = {CELL("%MY_CELL")}
IF (%MY_CELL_INDEX == -1) {… ! cell doesn't exist and is not loaded
ELSEIF (%MY_CELL_INDEX == 0) {… ! cell exists and is not loaded
ELSE … ! cell exists and is in the cell table

The statement:
#MY_CELL_INDEX = {CELL("%MY_CELL")}

will store the cell index of the cell with the cell name typed by the user. Various
blocks of commands not shown in the example will be executed depending on
the value returned from the CELL function.

The "{}" around the CELL function call are required to force the parser to realize
that the function call is an expression requiring evaluation. The quotes around
the argument string are strongly recommended. If the CELL function is called
with an argument of an unquoted string containing invalid characters, the parser
may fail to interpret the function call correctly. In this case, ICED™ will post an
error message and the remainder of the command file will remain unprocessed.
However, when the string is quoted, even a null string ("") or a string containing
invalid characters (e.g. ',' or '*') will not cause a syntax failure.

If you do want
to create a new
cell, see page
110.

See a complete
description of
the CELL
function on
page 221.

Overview of Programming Techniques

106 ICED™ Command File Programmer's Reference

Determining if a Cell is Open or Protected

Consider again the swap example on page 102. If the cell is already open from
another edit command, the EDIT command will fail. If the cell is stored in a
protected library, the command file will pause when executing the EDIT
command and display a warning prompt on the bottom of the screen.

For these reasons, when you use an edit command in a command file to modify
and then save a cell you first need to verify the edit status of the cell. This status
tells you if the cell is already open, and what type of protection is defined for the
library where the cell file is stored.

Remember that there are three types protection for cell libraries:

In a command file, you normally want to edit only cells located in direct-edit
libraries. These are cells you are allowed to modify without warning. For
example, if you share a library of cells with other users, you usually don't want a
command file to inadvertently modify some of these cells and make local copies
in your current directory unless you are made aware that this has happened.

Unless you add special keywords to an edit command, when it tries to open a cell
in a protected library, the program will prompt the user with a warning message
and the user must reply to proceed. This is not a good command file practice.

There are three system macros that contain the edit status of a cell. All three of
these system macros require the cell table index to specify the cell. If all you
have is a cell name, you must obtain the index with the CELL function described

Cell libraries
are defined by
the
ICED_PATH
environment
variable.

Direct-edit Cells in direct-edit libraries can be modified and then saved
in the same directory.

Copy-edit Modified cell files for cells in copy-edit libraries can only be
saved to the current directory. The original cell files remain
unchanged. This allows you to use your copy of the cell,
while allowing other users to use the original version.

PR
O

TE
C

TE
D

Read-only Cells in a read-only library cannot be modified and then
saved. You can edit them only in "VIEW ONLY" mode.

Figure 17: Cell Library Types

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 107

on the previous page. If the cell is not loaded, you will need to load it first with
an edit command.

We next expand the swap example to test the edit status of the cell name entered
by the user. First, the cell index of the cell is determined with the CELL
function. This insures that the cell name does not refer to a non-existent cell.
Next, the CELL.EDIT.cell_index system macro is used to determine the edit
status of the cell. Only when the edit status is equal to '3' will the command file
edit the cell. This insures the cell is not in a protected library.

System Macro Name Use Page
CELL.EDIT.cell_index For any valid cell_index, this system macro will contain

one of the values shown in the table in Figure 19.
261

SUBCELL.EDIT.cell_index This system macro contains the same values as
CELL.EDIT cell_index except that any cell that is not a
subcell of the current cell will have a '0' stored for it.
Also, using this system macro is more efficient when you
will be editing many cells in a loop.

296

CELL.LIB.TYPE.cell_index The only difference between this system macro and
CELL.EDIT.cell_index is that open cells will not
automatically have a 0 stored for them.

263

Figure 18: Edit Status System Macros

The MARK-
_SUBCELLS
command must
be executed to
store the values
for the
SUBCELL-
.EDIT macros.

Value Meaning
0 The cell cannot be edited since it is already open, contains an open

cell, or the cell_index does not refer to a valid entry in the cell table.
1 The cell is in a view-only library that cannot be edited then saved.
2 The cell is in a copy-edit library so that if you edit and then save it, it

will be saved to the current directory rather than its original library.
3 The cell is directly editable.

Figure 19: Possible values for CELL.EDIT.cell_index macro

Overview of Programming Techniques

108 ICED™ Command File Programmer's Reference

Example: LOCAL #MY_CELL $PROMPT "Type subcell name for swap:"
LOCAL #MY_CELL_INDEX = ""
LOCAL #NUM_SWAPPED = 0

#MY_CELL_INDEX = {CELL("%MY_CELL")}
IF (%MY_CELL_INDEX > 0) {

IF (%CELL.EDIT.%MY_CELL_INDEX==3){
EDIT CELL %MY_CELL

UNSEL ALL
SEL LAY M1+M2 ALL
XSELECT OFF
SWAP LAY M1 AND M2
#NUM_SWAPPED = %N.SELECT

LEAVE
RETURN %NUM_SWAPPED Components swapped

}
ELSE ERROR Cell %MY_CELL is not in a direct edit library, &

or is already open.
}
ELSE ERROR Cell %MY_CELL is not loaded in this session

The two lines:
IF (%MY_CELL_INDEX > 0) {

IF (%CELL.EDIT.%MY_CELL_INDEX==3){
must be in separate IF commands. If both conditions were included in a single IF
statement as in the following statement:

IF ((%MY_CELL_INDEX > 0) && (%CELL.EDIT.%MY_CELL_INDEX==3))

and MY_CELL_INDEX was equal to –1, the second condition would be parsed
even though the first condition is FALSE. The parser would try to evaluate:

(%CELL.EDIT.-1==3)
and the statement would fail with a syntax error.

When you execute a command file like the one above, you want to first exit from
any nested edits you may have opened in the editor session. Open cells cannot be
modified by this command file.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 109

Looping Through All Subcells

It is more common to edit cells in a loop than to have the user specify a cell name
explicitly. In this case, you can loop through every cell in the cell table.

If you want to restrict loop processing to subcells of the current cell, use the
SUBCELL.EDIT.cell_index system macro to test the edit status. Only subcells
of the current cell when MARK_SUBCELLS is executed will have non-zero
values.

Example: LOCAL #N = 1; ! define counter macro

MARK_SUBCELLS ! initialize subcell.edit.n macros
WHILE(%N <= %MAX.CELL){ ! loop through each cell

IF(%SUBCELL.EDIT.%N==3){ ! get edit status
EDIT CELL %CELL.NAME.%N;
!cell processing commands go here
LEAVE;

}
#N = {%N + 1}; ! increment counter

}

See page 22 for other methods of executing commands in many cells.

Allowing Local Copies of Cells

You can use the LOCAL_COPY=TRUE option on an edit command. This will
avoid a warning prompt when the indicated cell already exists in a copy-edit
library. Instead, the modified cell will be saved in the current directory rather
than overwriting the cell file in the protected library. Use this option only when
you know the cell is located in a copy-edit library. If the cell is located in a
direct-edit library or a read-only library, the edit command will fail.

The cells
marked by
MARK-
_SUBCELLS
can be restricted
to those with
components on
certain layers.

MAX.CELL is
a system macro
containing the
last valid index
into the cell
table. See page
286.
See details on
the
CELL.NAME.n
system macro
on page 264.

Overview of Programming Techniques

110 ICED™ Command File Programmer's Reference

Example: ELSEIF (%SUBCELL.EDIT.%N==2){
EDIT CELL %CELL.NAME.%N LOCAL_COPY=YES
!cell processing commands go here
LEAVE

}

If the lines above were added to the command file on the previous page just
before the line that increments the counter, the command file would be able to
perform the processing for cells located in copy-edit libraries as well. The
modified cell files would be saved in the same directory as the root cell file.

Creating New Cells with an EDIT Command

If your command file allows the user to create a new cell by typing in the name
of the cell, you can use the VALID_CELL_NAME function to test that the string
is valid to name a cell. This will prevent an edit command from failing with a
syntax error about the invalid name. It is also a good idea to use the CELL
function described above to test that the cell does not already exist.

Example: DEFAULT LOCAL #NEW_CELL $PROMPT "Type new cell name"

IF (CELL("%NEW_CELL") != -1){
 ERROR Cell %NEW_CELL already exists

}
IF (VALID_CELL_NAME("%NEW_CELL")) {

EDIT CELL %NEW_CELL
ADD CELL TEMPLATE AT 0,0
SEL CELL TEMPLATE
UNGROUP

LEAVE
ADD CELL %NEW_CELL

}
ELSE ERROR "%NEW_CELL is not a valid cell name"

This command file fragment prompts the user for a new cell name. The user's
response is tested to insure that a cell with that name is not already used in the

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 111

design, and that it is a valid string to name a cell. The new cell has template
shapes (perhaps standard cell bus wires) added to it. Then the cell is added to the
current cell at coordinates digitized by the user when the ADD CELL
%NEW_CELL command is executed.

The new cell file (as with any saved cell file) will include the cell environment
properties (e.g. layer names) of the current cell.

Saving and Restoring Settings

You will often change the selection status of components or use commands to
alter editor settings during your command files. It is a good practice to restore
these properties to their original condition before the end of your command file.

Saving the Selection Status of Components

When the user has components selected, they are often selected for a reason. The
selection status of components may be the result of a complicated series of
SELECT and UNSELECT commands that the user does not want to repeat. If
the user then executes your command file and it has unselected everything, he
may be a little upset. It is a very good command file practice to save and restore
the selection status of components in command files that need to modify these
selections.

The SELECT command has a stack feature for saving and restoring the selection
status of components. You can "push" the selection status of all components onto
the stack, then "pop" it back off later. Only one set of selection information can
be saved on this stack. Pushing another set of selections onto the stack will
replace a set already there. Popping twice in a row will only reselect the single
set of components saved on the stack.

Overview of Programming Techniques

112 ICED™ Command File Programmer's Reference

Example: UNSELECT PUSH
SELECT LAYER SCRATCH ALL
XSELECT OFF
DELETE
XSELECT ON
SELECT POP

This fragment of the CLR_SCR.CMD command file (from page 84)
demonstrates how to use the SELECT stack commands to save and retrieve the
selection status of components. It is especially important to remember to
unselect all components when you perform a DELETE in the command file.
Otherwise, components that are selected before the command file begins will
disappear as well.

When your command file may be used on large flat designs, and speed is an
issue, the UNSELECT PUSH command can be relatively expensive in time. Do
not add it if it is not required. UNSELECT ALL is much faster than
UNSELECT PUSH. The best method you can use is to perform the push only if
components are selected.

Popping information from the stack before it has been pushed will result in an
unpredictable set of selections. You should be careful to avoid popping when a
push may or may not have been performed.

SELECT PUSH Push selection information onto stack.
UNSELECT PUSH Push selection information onto stack, then unselect all components.

SELECT POP Select components that were selected when push was performed. Other
components that are already selected remain selected.

UNSELECT POP Unselect all components, then select components that were selected
when push was performed.

SELECT
EXCHANGE

Push selection information onto stack; unselect all components; then
select the components that were pushed in a previous command.

SELECT FAIL Push selection information onto stack, then select only components that
caused a previous command to fail.

Figure 20: Select stack commands

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 113

Example: IF(%N.SELECT!=0){
 UNSELECT PUSH;
}
.
. ! Missing commands that select and manipulate components
.
UNSELECT POP ! May have unpredictable results

This example always executes the UNSELECT POP, but conditionally executes
the UNSELECT PUSH. If no components were selected when the command file
is executed, the UNSELECT POP may restore selections from a push performed
earlier, even in a previous edit session.

Example: LOCAL #POP.FLAG=0

IF(%N.SELECT!=0){
 UNSELECT PUSH
 #POP.FLAG=1;
}
.
. ! Missing commands that select and manipulate components
.
IF(%POP.FLAG!=0) UNSELECT POP
ELSE UNSELECT ALL

This command file fragment uses a much better way to save and restore
selections if components are selected when the command file executes, while still
avoiding the expensive UNSELECT PUSH command when it is not required.
Since the flag macro is tested, the UNSELECT POP will be executed only when
UNSELECT PUSH was performed.

Saving the Editor Settings

Other settings may need to be saved and restored by your command file. The
view window, the resolution and snap settings, the default layer, and layer
properties are all examples of settings that should have their initial values saved
and restored if your command file needs to alter them temporarily.

Overview of Programming Techniques

114 ICED™ Command File Programmer's Reference

There are two methods to save and restore editor settings:

• Save the value of a setting in a local macro using the appropriate
system macro, then use the correct command to restore the value.

• Use the TEMPLATE command to save all system settings in a
command file, then restore the settings by executing the
command file.

Category Setting System macro name(s)
.xxx means several macros

Page Command used
to restore value

Resolution step size RES.STEP 291 RESOLUTION
Resolution mode RES.MODE 290 RESOLUTION

Coordinate
resolution

Snap grid settings SNAP.xxx 293+ SNAP
Current view window VIEW.BOX 301 VIEW
Center of current view
window

VIEW.CENTER 302 VIEW
View
window
settings

Current menu file MENU 287 MENU
Blank status of compo-
nents in nested cells

LAYER.BLANKED.CELL-
.layer_spec and

BLANKED.CELL.LAYERS

274

257

[UN]BLANK

Blank status of compo-
nents in current cell

LAYER.BLANKED.ROOT-
.layer_spec and

BLANKED.ROOT.LAYERS

274

257

[UN]BLANK

Protection status of layer LAYER.PROTECTED-
.layer_spec

279 [UN]PROTECT

Various layer properties LAYER.xxx 275+ LAYER
Spacing cursor properties SPACER.xxx 294+ SPACER
Default layer USE.LAYER 299 USE

Layer
settings

Other defaults used in
ADD commands

USE.xxx 299+ USE

Figure 21: System macros to save editor settings.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 115

Example: LOCAL #ORIG_SNAP_ANGLE = %SNAP.ANGLE
SNAP ANGLE = 90
.
. ! Missing commands that depend on 90º snap angle
.
SNAP ANGLE = %ORIG_SNAP_ANGLE

The system macro SNAP.ANGLE contains the value of the current snap angle.
The command file fragment above saves this value in the local macro
ORIG_SNAP_ANGLE. This macro is then used to restore the snap angle at the
end of command file using the SNAP command.

You may want to restore the original view window if your command file
modifies the view window explicitly or anytime the user is allowed to digitize
coordinates or select components. The view window may be changed by the user
during any user interaction command.

Example: LOCAL #ORIG_VIEW = %VIEW.BOX

IF (%N.SELECT == 0){
$Select component(s) for operation
SELECT NEAR

}
! Missing statements that manipulate the selected component(s)
VIEW BOX = %ORIG_VIEW !restore view setting

During the command file indicated above, the user may alter the view window
with nested view commands (selected with the menu after pressing <Esc> during
the SELECT NEAR command). The view window will not be restored
automatically to its original state unless the VIEW BOX command is executed as
shown above. Of course, you may prefer to leave the view window displaying
the new widow chosen by the user. If this is the case, omit the VIEW BOX
command.

As of this writing, some settings cannot be saved and restored with the macro
method described above since no system macros save the settings' values.
However, the TEMPLATE command can be used to save and restore just about
all editor settings.

Overview of Programming Techniques

116 ICED™ Command File Programmer's Reference

Example: LOCAL #ORIG_TEMPLATE = %TMP^TMPLSAVE.CMD
TEMPLATE %ORIG_TEMPLATE
. !Missing commands that alter editor settings
@%ORIG_TEMPLATE !restore editor settings

The command file fragments above demonstrate how to use the TEMPLATE
command to save and restore editor settings. First a command file name is
defined in the ORIG_TEMPLATE macro. The system macro TMP is used to
define the directory path of the temporary file. Then the TEMPLATE command
is used to create this file with commands that restore editor settings. The
@%ORIG_TEMPLATE command at the end of the example executes the file
created by the TEMPLATE command.

The settings saved by the TEMPLATE command include color definitions, grids,
layer properties, keyboard macros and many other settings. You can execute the
TEMPLATE * command to display the entire list on the screen.

The following settings are not saved by the TEMPLATE command:
view window,
selection status of components, and
default layer.

Saving Macros for Future Sessions

The only user-defined macros saved in a cell file are keyboard macros. Other
macros are removed automatically at the end of an editor session. If you want to
save other macros you must use a SHOW command to export the macros to a
command file. You can then execute this command file in a future editor session
to restore the macros. When you automate this process, you have the equivalent
of your own system macros available to any edit session.

When you exit ICED™ using an EXIT command (or a LEAVE command that
results in saving the root cell), the editor first checks to see if the macro
EXIT.ROOT exists. If it does, ICED™ will execute the command string stored in
the macro before terminating. If EXIT.ROOT contains a command to save

See more on
EXIT.ROOT on
page 20.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 117

macros in a file, then this file can be executed in a later session to restore the
macros.

1) Create the global macro EXIT.ROOT as shown below in your startup
command file. You can optionally create other global macros useful
to your command files with default values.

2) Have your command files create, use, and update global macros as
required.

3) When EXIT.ROOT is defined with a SHOW command (as shown
below), it will automatically save a set of global macro definitions in
a command file every time you exit the editor.

4a) Create an ALWAYS=command_file option on your layout editor
command line to execute the command file created by step 3 every
time you open the layout editor. (See example below.)

or
4b) Execute the command file created by step 3 in each of your

command files when a necessary macro does not already exist.

Example: GLOBAL #EXIT.ROOT="SHOW USER MY.* &
FILE=%HOME.1^SETTINGS\MY.MAC"; &
SHOW USER EXIT.ROOT APPEND"

When this macro definition is executed, it creates a macro EXIT.ROOT. A
definition like this is usually found in a startup command file so that it is created
automatically for all new cells. Once the definition is made, when the editor
closes and saves the cell file, another file is saved automatically in the
SETTINGS subdirectory with the name MY.MAC. This file contains macro
definition statements for all global macros with names beginning with the string
"MY.". In addition, the definition of the EXIT.ROOT macro is added to the end
of the MY.MAC file by the second SHOW command.

Suppose that one or more of your command files needs to refer to and update a
text label suffix. Your startup command file might contain the following macro
definition in addition to the one above.

Example: GLOBAL #MY.NET_SFX = "0"

When using
option 4b, the
EXIT.ROOT
macro does not
need to be
defined in the
startup
command file.
See the example
at the end of
this section.

The MACRO-
_EXISTS
function can be
used to test if a
macro has been
defined.

The system
macro HOME.1
stores the name
of base
installation
directory. The
'^' delimits the
macro reference
without creating
a space in the
file name string.

Overview of Programming Techniques

118 ICED™ Command File Programmer's Reference

Then you might have a command file to add and label wires that is similar to the
following:

Example: !ADDBUSWIRE.CMD
!This line allows the command file to work everywhere
DEFAULT GLOBAL #MY.NET.SFX = $PROMPT "Initial net suffix"
LOCAL #NETNAME = BUS_%MY.NET.SFX
ADD WIRE
ADD TEXT "%NETNAME" AT %LAST.POS
#MY.NET.SFX = {%MY.NET.SFX + 1}

The macro MY.NET.SFX is defined with the DEFAULT keyword so that the
command file will be successful even for users who do not have the macro pre-
defined. Since you do have MY.NET.SFX pre-defined, the first time you
execute the command file, the label "BUS_0" will be added. The second time
will add the label "BUS_1". You can then exit the editor and the macro
definition "GLOBAL MY.NET.SFX="2" will be stored in the file MY.MAC.

Now you change your project batch file to use the following option on the
ICED.EXE command line:

Example: ALWAYS=Q:\ICWIN7\SETTINGS\MY.MAC

The next time you open the editor, the MY.MAC command file will be executed
automatically, defining the MY.NET.SFX macro in the current editor session.
When you execute the ADDBUSWIRE.CMD command file again, the label
"BUS_2" will be added as though you were continuing the previous edit session.

Since EXIT.ROOT was also redefined by MY.MAC, when you exit this edit
session, the file MY.MAC will be stored again with the current value of
MY.NET.SFX.

Alternately, if you want to avoid using the ALWAYS option on the command
line, you can have each of your command files execute MY.MAC when a
required macro does not already exist. In this case, EXIT.ROOT is not defined
in every session, only in sessions where a macro was used and perhaps updated.

7 Q:\ICWIN represents the drive letter and path of your first ICED™ home directory,
usually C:\ICWIN.

The system
macro
LAST.POS
stores the
coordinate pair
for the last point
digitized with
the mouse.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 119

To alter this example for this method, replace the first statement in
ADDBUSWIRE.CMD with the following:

Example: IF (MACRO_EXISTS(#MY.NET.SFX) ==0){
IF (FILE_EXISTS("%HOME.1^SETTINGS\MY.MAC")){

@%HOME.1^SETTINGS\MY.MAC
}
ELSE GLOBAL #MY.NET.SFX = $PROMPT "Initial net suffix"

}

In this case, the EXIT.ROOT command does not really need to be defined in the
startup command file. It can be defined in the original copy of MY.MAC.

See the _EXIT.ICED.CMD command file supplied with the installation for a
more elaborate example of saving macros for future sessions. It is used in
combination with the DRCNOW.CMD file.

Calling Other Programs

A command file can call another program by shelling out to DOS and executing
any command string that is valid at the DOS prompt. This simple feature can
result in some very powerful command files.

Use the DOS command to temporarily shell to a DOS console, perform an
operation, and then return to the next command in the command file when the
operation is complete. Use the SPAWN command instead to allow the new
operation to continue while control immediately proceeds to the next command
in the command file. This procedure can be completely transparent to the user of
your command file, or they can interact with the spawned program if the program
supports this (e.g. the text editor NOTEPAD.EXE, supplied with all Windows
installations).

You can even import or export component data to or from another program. We
describe how to use command files of ADD commands as an import/export file
format later on page 122.

Overview of Programming Techniques

120 ICED™ Command File Programmer's Reference

To execute a program (or a batch file) from a command file, the operating system
needs to be able to find the executable file. You can explicitly specify the path to
the program in the DOS or SPAWN command, or allow the operating system to
search for the file using the directories stored in the PATH environment variable.

If you want to distribute your command file to other users, you must also
distribute any executable programs it calls (unless they are commonly available
system utilities or utilities supplied with the ICED™ installation.) The executable
file must be located where the operating system can find it, or you must specify
it's location in your command file when you call the program. This can make
portability on various users' computers an issue.

The best method in this situation is to store the executable file in the same place
as the command file. Then use the EXEC.DIR system macro (see page 267) to
specify the location of the executable file. EXEC.DIR will always contain the
directory path of the currently executing command file.

Shelling Out to a GUI Program

The following command in your command file will suspend the command file
and the layout editor and let the user edit an ASCII file for as long as necessary
using the NOTEPAD editor supplied with all Windows installations. When the
user closes the NOTEPAD window, control returns to the command file.

Example: DOS –NOTEPAD.EXE MYFILE.TXT

To allow the NOTEPAD window to remain open while the command file
continues, use the SPAWN command instead.

Example: SPAWN –NOTEPAD.EXE MYFILE.TXT

When the '-' is used as a prefix in the executable command string, it prevents the
creation of a temporary console window unnecessary to a GUI (Graphical User
Interface) application.

The
ICED_HOME
directories (e.g.
Q:\ICWIN) are
added to the end
of the
environment
variable PATH
for the duration
of the DOS or
SPAWN
commands.

Refer to the
DOS and
SPAWN com-
mands in the IC
Layout Editor
Reference
Manual.

A GUI window
will usually
remain open
until the user
closes it.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 121

Shelling Out to a DOS Command

You can perform DOS commands such as COPY (to copy files), MD (to create a
directory), or CD (to change a directory) using the DOS command

Example: DOS "^COPY %MY.FILE %NEW.FILE >NUL"

The command above will execute the DOS COPY command in a temporary
console window. The command executes so quickly that the console window
will flicker on then off too quickly to see any information reported by the COPY
command. So the '^' prefix is added to the front of the command string to
prevent the display of the temporary window.

The '>' redirection character redirects the output of the command so it is not
reported to the console window. Redirecting to the NUL device discards any
output to the console window. This prevents unwanted behavior in some
operating systems that can hang when console output is not redirected. Always
redirect the output of DOS commands to prevent problems.

One limitation of this command is that any information reported by the COPY
command will not be visible to the user. If the file name stored in MY.FILE did
not exist, then the COPY command would do nothing, but the command file
would continue anyway with no indication to the user.

You can capture the console output of a DOS command and redirect it to a file
with the '>' redirection character.

Example: DOS "^COPY %MY.FILE %NEW.FILE > %TMP^DOSLOG.TXT"

This command redirects the output of the command (usually the string "1 file(s)
copied") to the file DOSLOG.TXT. This redirection allows you to view the
results of the COPY command if your command file does not perform as
expected. The DOSLOG.TXT file will be stored in the directory defined in the
system macro TMP.

It is best to verify that the operation succeeded in your command file. If the
operation failed, you can display the log file on the screen rather than allow the
command file to continue. This is shown in the following example.

The quotes are
recommended
to prevent the
parser from
misinterpreting
the command
string, but they
are rarely
necessary.

Learn more
about the TMP
system macro
on page 299.

Overview of Programming Techniques

122 ICED™ Command File Programmer's Reference

Example: DOS "^COPY %MY.FILE %NEW.FILE > %TMP^DOSLOG.TXT "
IF (FILE_EXISTS(%NEW.FILE) == 0) {

SPAWN -NOTEPAD.EXE %TMP^DOSLOG.TXT
ERROR "See log file. File %MY.FILE not copied to %NEW.FILE"

}

Using Other Programs to Manipulate Component Data

When you want to import or export component data to/from another program in
your command file, ICED™ supports a simple mechanism to do this. The SHOW
command can be used to create a command file of ADD commands for all
currently selected components. This command file can then be used to import
the data into a program that expects this format. If the program creates a file of
component data the form of ADD commands, this file can be executed to create
the components in the layout editor.

The ED.CMD (page 312) and BUSROUTE.CMD (page 327) command files both
use this method. Both command files use the following steps:

• The SHOW command builds a file of component information in the form
of ADD commands.

• The name of this file is then passed as an argument to a program called
with the DOS command.

• The program manipulates the data in this file and either modifies the
original file or creates a new file filled with ADD commands.

• After the DOS program is complete, the new or modified file is then
executed as a nested command file to add new components.

The ED.CMD example uses the NOTEPAD.EXE to allow the user to modify
selected components by editing the ADD commands directly with the text editor.
ED.CMD implements a very nice method to undo the results by saving the
original command file as well as the modified version and storing the id numbers

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 123

of the new components. The UNED.CMD file can then delete the new
components with these id numbers and then re-create the old components with
the original command file.

The BUSROUTE.CMD example is more complex. It routes a bus through a path
digitized by the user. After prompting the user for several parameters, it prompts
the user to digitize the path of the bus with a single ADD WIRE command. The
coordinates of this wire are then exported to a file with the SHOW command.
This file is passed as an argument, along with other parameters, to a C program
written specifically for this application, BUSROUTE.EXE. This program
calculates the coordinates of each wire in the bus and then exports these new
wires as ADD commands in a new command file. BUSROUTE.CMD then adds
these new wires by executing the new file.

The C code for BUSROUTE.EXE, including subroutines for parsing the output
of the SHOW command, is provided in full in the description of this example.
You may want to use these subroutines if you need to create a similar
application.

NOTE: You must use caution whenever you use the SHOW command to export
data for more than the current cell. Carefully read the important information
about the NOLIBS keyword in the SHOW command description in the IC Layout
Editor Reference Manual to avoid corrupting nested cells when exporting data
from protected libraries.

Overview of Programming Techniques

124 ICED™ Command File Programmer's Reference

Testing, Error Checking, and Recovery from
Errors

Remember that ICED™ command files are interpreted, not compiled. Each
statement is parsed for the first time just before it is executed. If you have
written a statement incorrectly, the command may fail when it is executed, and
control is returned to the editor with the remaining statements in the command
file unprocessed. An error message will be displayed on the view window
prompt line.

More puzzling errors occur when the incorrectly written statement does not result
in an immediate error, but instead results in an inappropriate value being stored
in a macro. The error will only cause a problem later when this value is used in a
correctly written command later on in the command file, so it can be difficult to
spot the problem.

One common source of this type of problem is when the user is prompted for a
value. The best way to avoid confusing errors is to validate the value before it is
used. See the table on page 88 for a list of methods to validate values.

When you are having trouble debugging a command file that uses local macros,
you may want to change them to global macros. This will allow you to see their
final values with the SHOW command after the command file is complete.

Example: SHOW USER

Typing this command at the command prompt will display all user-defined
global macros.

You can see
exactly what
commands were
executed by a
command file
by viewing the
journal file with
the 1:FILE→
edit.JOU menu
option. See
page 127.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 125

Canceling a Command File

There are two methods for canceling a command file. Both of these methods can
be used only when the command file is paused, waiting for input from the user.
If you want to give yourself the option of canceling a command file while you
are debugging it, the easiest method is to add a few PAUSE commands. You can
then cancel the command file during any of these PAUSE commands.

To cancel the command file while it is waiting for the user to
type something at the keyboard,

• press the <Esc> key, or
• press both the left and right mouse buttons.

To cancel the command file while it is waiting for the user to
digitize a position,

• press both the left and right mouse buttons.

Error Handlers

Normally, when the command interpreter finds a syntax error in a command file,
the error is reported to the screen, and the command file is immediately
terminated. You can change this behavior by defining an ERROR.CMD macro.

When ERROR.CMD is defined, the string stored in it is executed when an error
is encountered. The example on page 165 opens up a notepad window displaying
the journal file when an error occurs. You may want to perform other actions
when a command fails. You can even execute a command file when a syntax
error occurs as shown in the next example.

Example: LOCAL #ERROR.CMD=@ERR_HANDLER.CMD

Either of these
options will
cancel the entire
command file
and
immediately
return control to
the layout
editor.

When digitizing
a position,
pressing the
<Esc> key will
bring up the
nested view
menu.

Overview of Programming Techniques

126 ICED™ Command File Programmer's Reference

Mysterious Errors

Some command file errors can be difficult to find. Here are a few common
mistakes that you should consider when searching for command file errors.

Carefully review each macro reference for the % prefix when you have a
mysterious error.

When a macro reference is made without the % prefix, the name of the macro is
used rather than the value. This can lead to many perplexing errors. Consider
the following command file fragment.

Example: LOCAL #MY_CELL $PROMPT "Type subcell name:"
#MY_CELL_INDEX = {CELL("MY_CELL")} !Oops, forgot the %
IF (%MY_CELL_INDEX != -1) {…

The second line is a function call that is supposed to use the cell name typed by
the user to determine the cell table index of the cell with that name. However
"MY_CELL" was used instead of the macro reference "%MY_CELL". This
means that the CELL function will always return –1, and the statements
controlled by the IF command will never be executed, unless you happen to have
a cell with the name "MY_CELL".

Another common error is to forget the {} when you type an expression.

Example: #COUNTER = %COUNTER + 1 !Incorrect syntax

If this statement is part of a loop that is executed repeatedly, and the initial value
of the COUNTER macro is 0, the first time through the loop the value of the
COUNTER macro would be:

"0 + 1"

The second time through the loop, the value will be the following string:
"0 + 1 + 1"

If you want the expression to be evaluated as a mathematical expression, you
must write it as:

Example: #COUNTER = {%COUNTER + 1} !Correct syntax

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 127

When the statement on the previous page is executed, the mathematical
expression will be evaluated, and the COUNTER macro will be set to "1" the
first time through the loop. It will be set to "2" the second time through the loop,
etc.

The best way to solve this type of mystery, if you are not yet familiar enough
with command files to spot the missing {}, is to look in the journal file to see
what values are being stored in the macros.

The Journal File

By default, most every editor command and macro assignment executed is
logged to the journal file. Commands like IF or WHILE are not logged; only
commands that add or modify components or editor settings. The intent is to be
able to re-execute every command that altered the cell or the editor environment
if the journal file is executed as a command file.

This enables the journal file to be used as a recovery mechanism if a command
file has corrupted the cell. The file can also be browsed to determine exactly
what happened when a command file did not do what you expected.

If you prefer that commands in a command file are not logged to the journal file,
add the LOG OFF command as the first line of the command file. This may
result in a substantial speed improvement for large command files or command
files that execute loops.

However, when a command file with user interactions (e.g. one that prompts the
user to enter a value or select a component) is executed in the log off mode, the
user's responses are not recorded in the journal file. Only the call to the
command file is recorded and will be executed by the journal file. This means
that work done cannot be recovered automatically by executing the journal file.
Add the LOG OFF command to only those command files without user
interaction when speed is a concern.

To learn more
about using a
journal file for
cell file
recovery, see
page 129.

The LOG
command is
completely
described in this
manual on
page 190.

Overview of Programming Techniques

128 ICED™ Command File Programmer's Reference

If your command file contains user interactions, we recommend that you use the
LOG SCREEN OFF instead of LOG OFF. This prevents commands from being
logged to the status line of the display, but does not affect the journal file.

During debugging, it can be helpful to add LOG LEVEL=DEBUG to the
beginning of your command file. This will add extra information comments to
the journal file. Commands like IF and WHILE will be logged with comments.
This information will not aid in recovery, but can be helpful when using the
journal file to determine why a command file did not do what you expected.

One problem with journaling during command files is that the journal file is not
updated immediately after every command in a command file. ICED™ will
buffer the information to be copied to the journal file. The results of a command
file will be written to the journal file only after the buffer is full. (This is much
faster than opening and closing the file for each command.) If you want to
browse the journal file immediately after your command file is completed, and
you do not see the results of your command file, execute a command in the editor
to force the buffer to get dumped to the journal file, then browse it again.

UNDOing Command Files

When a command file is canceled, terminates with an error, or just completes its
task incorrectly, the UNDO command will not undo any commands in the
command file. The UNDO command is designed to undo only the last edit
command. Since it cannot reverse the effects of all of the commands in a
command file, the UNDO command is disabled at the end of a command file
rather than allowing it to undo only the last edit command in the file.

Unless the command file has a special mechanism for undoing the results, the
only way to undo the results of a command file is to use the JOURNAL
command and edit the journal file before using it for recovery. This will restore
the cell to what it was before the command file was executed.

See the IC
Layout Editor
Reference
Manual to learn
more about
journal files and
recovery.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 129

Using the Journal File for Recovery

The procedure below can be used to restore a cell to what it was before a
command file was executed.

1) Execute the JOURNAL command to terminate the editor and avoid
saving any cell files.

2) Edit the journal file to remove all commands from the bottom of the
file up to the line that called the command file that did the damage.

3) Finally, relaunch the editor to edit the same cell. The editor will
automatically give you the option to execute the journal file and
recover the work done by all of the commands remaining in the
journal file.

Every time a command file is executed, a comment with the name of the
command file is inserted in the journal file. This will allow you find the point in
the journal file where the commands in the command file began.

Using UNED.CMD to Undo Command File

A much simpler way of "undoing" the results of a command file is to add a
recovery mechanism to the file. One method is to keep track of the component id
numbers assigned to components added by the command file. The new
components can then be deleted by selecting them by these id numbers.

The ED.CMD and UNED.CMD command files use this method. Once you
understand how these examples work, you can use the same method of keeping
track of the id numbers in your command file. Then the user can undo the results
of your command file by executing @UNED. See page 318 for descriptions of
ED.CMD and UNED.CMD

Overview of Programming Techniques

130 ICED™ Command File Programmer's Reference

Control File Efficiency

When your command file takes a long time to execute, most of the time ICED™
takes to execute the commands may be spent updating the display or logging
commands. You can speed up your command file considerably by controlling
how ICED™ performs these tasks.

Disable View Window Update

The most speed improvement is achieved by preventing the view window from
being updated after every command. For this reason, the default behavior during
a command file is to avoid updating the view window, except during commands
requiring user interaction. However, if your command file contains a VIEW ON
command, this will slow down the execution considerably.

The usual reason for adding a VIEW ON command to your command file is to
allow the user to see visible evidence that the command file is still working.
However, after the command file is debugged, you should remove this command
and allow the command file to execute more quickly. If you want the user to see
progress updates, use $$comment commands. (See page 162.)

Disable Command Logging to Screen

By default, as commands are executed, ICED™ echoes each one on the status line
of the screen. This is the default behavior because the user may be disconcerted if
he sees no activity happening while a command file is executing. You can speed
up a slow command file by preventing this logging of commands to the screen
with a LOG SCREEN OFF command. However, unless you add some sort of
progress indicator for the user, the session may appear "frozen".

The LOG SCREEN OFF command makes an exception for the $comment
command. These comments will result in messages visible to the user. If your
command file takes a long time, add several of these $comments at key points in
your command file so the user knows that the command file is progressing
normally. If you want the comments to display even when the LOG OFF mode
is in effect (see next section) use a "$$" before the comment.

See page 189
for the effi-
ciency of the
LIST command
when proces-
sing many com-
ponents.

The VIEW
command is
completely
described
beginning on
page 210.

The LOG
command is
completely
described
beginning on
page 190.

$comments are
described on
page 161.

Overview of Programming Techniques

ICED™ Command File Programmer's Reference 131

Example: LOG SCREEN OFF
$$ Initializing arrays. Please wait.
.. !time consuming commands
$$ Computing offsets….
.. !time consuming commands
$$ Adding components….
.. !time consuming commands
$$ Command file completed successfully.

If your command file has a particularly lengthy loop, you may want to add
$$comments to the loop so progress is easy to follow.

Disable Command Logging to Journal File

In addition to the echo of each command to the screen, the command is logged
into the journal file. This command logging can take a significant amount of
time in a long command file. You can turn off this logging with the LOG OFF
command as the first command in the command file.

Since the journal file is the only mechanism to recover work done to a cell in the
event of a system crash or power interruption, you must be careful about using
this command in your command files. You can prevent the automatic recovery
of data. To avoid this result, you should never use the LOG OFF command in
the following types of command files. When you do, the values stored in macros
have not been preserved in the journal file. Automatic recovery of work using
the journal file will be prevented.

• Any command file that prompts the user for input

• A command file that is called by passing arguments on the same command
line (See an example on page 97.)

We suggest that you restrict using LOG OFF to command files that modify no
geometry or those that add many components with no user interaction (e.g. DRC
results files.) In these cases, re-executing the entire command file during
recovery will be enough to recover any work done by it.

A LOG OFF
command on
the same line as
the @file_name
command is
considered the
first command
in the file.

See more details
on the journal
file on page
128.

Overview of Programming Techniques

132 ICED™ Command File Programmer's Reference

Macro Definition

ICED™ Command File Programmer's Reference 133

Macro Definition

Macro Definition

134 ICED™ Command File Programmer's Reference

Overview

Macros allow you to store and manipulate values. While macros are really
implemented in ICED™ using string substitution, you can use them in a manner
similar to variables in other programming languages.

Basically, a macro is an object that has a name and a value. The value is always
a string, but these strings can represent text, numbers, coordinate lists, or any
other element of an ICED™ command. When you assign a number or a
coordinate pair to a macro, it is stored as a string. The value of the macro will be
interpreted as a string unless it is later used in a mathematical expression
surrounded by "{}" or in a function or a command that expects a number or a
coordinate list.

Example: LOCAL #COORDS = (32.5, -156.3) (39.5, -151.3)
ADD BOX AT %COORDS

When the first statement is executed, a macro with the name COORDS is
defined. The string "(32.5, -156.3) (39.5, -151.3)" is stored as its value. When
the second statement is executed, ICED™ will first perform string substitution to
create the command:

ADD BOX AT (32.5, -156.3) (39.5, -151.3)

Then the ADD command is executed creating the box at the indicated
coordinates.

There are several special
characters that are used to
control how statements using
macros are interpreted. The
special characters '#', and '%' are
the most important. As seen in
the examples above, the '#'
should be used before a macro

Refer to an
overview of
macros on page
38 for more
information on
how macro
references are
parsed by the
interpreter.

Special
character

Use

Refer to name of macro
% Substitute value of macro
^ Delimit macro reference

without a space

Macro Definition

ICED™ Command File Programmer's Reference 135

name to indicate that you are referring to the name of a macro. The '%' before a
macro name means that ICED™ should replace the macro reference with the
value of the macro.

It is a good habit to always precede a macro name with either the '#' or the
'%' character. While the '#' is not required in a macro definition, for almost all
other uses, one symbol or the other is required for the program to recognize that
you are referring to a macro name rather than typing a string.

One of the most common errors in command files is to forget to use a prefix
when typing a macro name, and this can lead to confusing errors.

Example: LOCAL #COORDS = (32.5, -156.3) (39.5, -151.3)
ADD BOX AT COORDS ! oops, forgot the %

When the program executes the second statement, the parser will not realize that
you referring to a macro. No string substitution will be performed and the
command will fail causing the entire command file to fail.

There are two kinds of macros: user-defined and system.

System macros cannot be changed by any user commands. Their
values are set and updated by the system. Refer to the table all of the
system macros on page 255.

User-defined macros allow you to store values temporarily. They are
not stored in the cell file. The data stored in them is discarded at the end
of the command file, or when you terminate the layout editor. (Keyboard
macros, usually defined with the KEY command, are an exception. They
are stored in the cell file. See page 148.)

Any value you need to store in a command file must be assigned to a macro.
User-defined macros must be defined before they can be used. We explore many
options for macro definition and assignment on the following pages.

You must assign an initial value when a macro is defined. If you do not assign a
value in the definition statement, the user will be prompted for the value when
the macro definition statement is executed.

If you do want
to save user-
defined macros
for use in a later
session, you can
use the SHOW
command to
save them in a
command file.
See page 116.

Macro Definition

136 ICED™ Command File Programmer's Reference

ITEM Macros

One class of user macros is defined in a different manner than the methods we
cover below. The ITEM command will create several user macros filled with
information about a single component. See the table on page 175 for a complete
list of the macros created for each type of component.

User Macro Definition Syntax

[DEFAULT] (GLOBAL | LOCAL) [#]macro_name [=] [macro_value]

macro_value commonly takes one of the four following forms:
["]string["]

{expression}

$[PROMPT="string"] response_type

$MENU menu_name[:submenu_name]

We will cover the use of each parameter or keyword
quickly and then cover each in more detail with
examples.

The optional DEFAULT keyword will cause the
program to ignore the entire definition if a macro with
the same name already exists.

The GLOBAL and LOCAL keywords specify the scope of the macro. You must
usually include exactly one of these keywords when defining a macro in a
command file. A GLOBAL macro can be used outside of the command file that
defines it. A LOCAL macro can only be used in the command file in which it is
defined. LOCAL macros are automatically deleted at the end of the command
file in which they are defined.

You can use
macros outside
of command
files. When
typed in the
editor, the
shorthand
syntax
#macro_name=
macro_value is
enough to
define and
initialize a
macro since the
scope is
automatically
global.
However, this
syntax is not
valid in a
command file.

Square brackets
"[]" are used to
indicate
optional
parameters and
keywords.
Parentheses
"()" indicate
that a choice of
keywords is
required.

POSITION
BOX
POLYGON
DISP
X_DISP
Y_DISP
NEAR

Figure 22: Valid
$response_type
keywords.

Macro Definition

ICED™ Command File Programmer's Reference 137

The macro_name can be up to 32 characters long. We will cover all of the
restrictions on macro names on page 139. It is a very good idea to include the
optional '#' prefix before the macro name. We will cover the reasons for this
later.

Now that we have covered the basics of macro definition, we will cover each of
the options in more detail.

[DEFAULT]

This optional keyword is used to provide a value for the macro only if it is not
already defined. This can be useful when passing arguments into command files,
or for making command files more versatile. The entire macro definition will be
ignored if the macro already exists.

This next example uses one of the $response_type options to prompt the user for
a string. We will cover these later, but in this example we use this option to
demonstrate that the entire macro definition, including the prompt, is ignored
when the DEFAULT keyword is used.

Assume that a macro with the name NET_BASE has already been defined in the
current layout editor session with a statement similar to:

Example: GLOBAL #NET_BASE = "BUS"

Now in a separate command file, the following statement defines a macro with
the same name:

Example: DEFAULT LOCAL #NET_BASE = $PROMPT="Enter net base name:"

Since the macro NET_BASE already exists, the user will not be prompted and
the existing value for NET_BASE, the string "BUS", will remain the value of the
macro.

However, if in a different ICED™ session the first statement is not executed, then
when the second statement is executed, the user will be prompted to type in the
value of the NET_BASE macro.

When you
define macros
on the same line
as a
@file_name
command, their
scope is local by
default.

Learn other
ways to pass
arguments into
command files
on page 97.

Macro Definition

138 ICED™ Command File Programmer's Reference

(GLOBAL | LOCAL)

Exactly one of these two keywords must be used in each macro definition in a
command file. They determine the scope of the macro.
 LOCAL macros will be deleted at the end of the command file in which

they are declared
 GLOBAL macros will persist until the end of the edit session or until they

are explicitly deleted with the REMOVE command .

Any macro defined with a command typed in the layout editor (i.e. outside of any
command file) is global by default. A macro defined on the same line as a
@file_name command is local by default. You can omit the scope keyword in
either of these cases.

Local macros will be removed automatically at end of the command file in which
they are declared. They are deleted even when the command file terminates
prematurely with an error. You will not be able to see their final values when
command file is finished.

Global macros can be useful if you want to use the values of macros in other
command files. They are also useful while debugging a command file, so you
can see their final values with the SHOW command. Once your command file is
debugged, you can change them to local macros so they do not persist once the
command file is completed.

Local macros hide the existence of global macros with the same name in a
higher-level command file. If a command file defines a local macro (without the
DEFAULT keyword) and a different macro already exists with the same name,
the macros are kept separate and will not interfere with each other.

If the command file defines a global macro with the same name as an existing
macro, this definition will override the previous definition. The global macro
will retain the value assigned in the command file even after that command file is
complete.

The only
macros that are
saved with a
cell file are
keyboard
macros (see the
discussion on
page 148). All
other user-
defined macros
are deleted
automatically at
the end of each
layout editor
session.
See page 116
for a method of
saving user-
defined macros
to be restored in
a different
session.

You can report
the final value
of a local macro
by ending the
command file
with a
$comment or
RETURN
statement. See
examples on
pages 98 and
205.

Macro Definition

ICED™ Command File Programmer's Reference 139

[#]macro_name

The restrictions on the name of a macro are:

• The name must be a string from 1 to 32 characters long.

• Valid characters include letters, digits, and the special characters: '.',
'_', and '$'. (The $ character should usually be avoided since it is
used as a special character in certain cases.)

• The first character may not be a digit.

• Macro names are case-independent.

It is good practice to include the '#' prefix before the macro name in a macro
definition. This character makes it obvious that you are referring to a macro
name. If you neglect to add the '#', mistakes in typing the macro definition may
cause the parser to interpret the command differently than you intended.

It is a good idea to name all user-defined macros with a prefix similar to the
name of the command file. This makes it easy to remove all macros if necessary.
It also makes the command file easier to read since system macro names will be
obviously different. Also, if all user-defined macros begin with the same string,
it is easy to use the SHOW command to display the values of all your macros
when the command file does not perform as expected.

Example: SHOW USER=MY_CMD*

If all of your macros have been defined with names that begin with the string
"MY_CMD", the SHOW command above can be used after the command file or
in an error handler to see what their final values were.

Example: REMOVE MY_CMD*

This single command can be used to delete all of the macros defined in your
command file if you have named all of those macros with "MY_CMD" as a
prefix.

Macros that use
the name
KEY.key, are
treated as
keyboard
macros. See
page 148 for
more details.

Only global
macros can be
displayed with
the SHOW
command after
a command file
is complete.

Macro Definition

140 ICED™ Command File Programmer's Reference

macro_value

The macro_value can be specified in any of the five following ways:

["]string["] You can explicitly type the value of the macro as a number,
coordinate pair or string. The quotes are usually not required.
More on this below.

{expression} A mathematical expression can be typed. You must surround the
expression with curly braces {} if you want ICED™ to evaluate
the expression and store the value, rather than storing the
expression as a string. See page 143.

$response_type Use one of the keywords in the table on page 143 to prompt the
user to define the value with the cursor or keyboard.

$MENU The user can select a choice from a menu using this option. See
page 147.

The fifth method is to omit the macro_value entirely. If you do not use one of
the other methods, the user will be prompted to supply the value with the
following often-cryptic message:

"Enter value for macro_name"

The first two methods are just different ways of specifying a simple value. The
last three methods require user input at the time the command file is executed.

The maximum length of the string stored in a macro is 7900 characters. This is
slightly less than the maximum command line length of 8000 characters.

["]string["]

Use this syntax when assigning a simple value to your macro. The string can
represent a word, phrase, number, or coordinate pair. In any case, the value is
stored as a string. However, that string will be interpreted later as a number or
coordinate pair by commands or functions that expect such values.

All of these
methods can
also be used in
any macro
assignment
statement after
the macro is
already defined.

Macro Definition

ICED™ Command File Programmer's Reference 141

Example: LOCAL #MY_MAC = 99

The statement above defines a macro with the name MY_MAC. The string "99"
will be stored as its initial value. This string can be used as a number in other
statements. The following command is an example:

MOVE X %MY_MAC

After macro substitution, this statement will read:

MOVE X 99

Example: LOCAL #MY_MAC = (-32.5, 67.3)

The statement above assigns the string "(-32.5, 67.3)" to the macro MY_MAC.
The macro can then be used in any statement that expects a coordinate pair. The
following ADD command is a good example:

ADD TEXT="MY TEXT" AT %MY_MAC

After macro substitution is performed, the command above will be interpreted as:

ADD TEXT="MY TEXT" AT (-32.5, 67.3)

While many commands do not require the parentheses and comma when entering
coordinates, it is a good idea to include them when assigning a coordinate pair to
a macro. Some functions that operate on coordinates require the
"(x-coord,y-coord)" syntax.

Example: LOCAL #MY_MAC = Four score and seven years ago

The statement above will assign the string "Four score and seven years ago" to
the macro. Quotes are not required even though the string contains blanks.

Quotes are required around the string in two cases:
The string contains a ';', '!', or quote character.

The string ends with a &.

Macro Definition

142 ICED™ Command File Programmer's Reference

The second restriction is necessary because a '&' at the end of a line means that
the statement is continued on the next line.

When quotes are necessary, ICED™ supports four different quote
characters. This allows you to include quote characters in a
string.

Example: LOCAL #MY_MAC = 'ADD TEXT "MY TEXT" AT 0,0'
%MY_MAC

The pair of lines above will result in the execution of the
following command:

ADD TEXT "MY TEXT" AT 0,0

The quote character used in a quoted string cannot be included in the string. No
string can contain all four valid quotes.

You can use the string stored in system macro or a previously defined user macro
to assign a value to another macro.

Example: LOCAL #MY_MAC = %LAST.POS

This statement uses the system macro LAST.POS to assign the coordinate string
of the last point digitized with the cursor to the macro MY_MAC.

Valid
quote
characters

"
'
~
`

See a list of
system macros
on page 252.

Macro Definition

ICED™ Command File Programmer's Reference 143

{expression}

You can assign to a macro the result of a mathematical expression or a function
call by surrounding the expression with curly braces.

Example: LOCAL #MY_MAC = {SIN(45)/2} !Correct syntax

This statement will assign the sine of a 45º angle divided by 2 (0.3535533906) to
the macro.

If you forget to surround the expression with curly braces, ICED™ will interpret
the expression as a string instead.

Example: LOCAL #MY_MAC = SIN(45)/2 !Incorrect syntax

This statement will assign the string "SIN(45)/2" to the macro.

$[PROMPT="string"] response_type

There are nine different options for prompting the user to supply the value of a
macro when a macro definition in a command file is executed. The prompt string
is displayed on the command line while the user defines the macro value by
typing at the keyboard or selecting positions with the cursor.

Example: LOCAL #MYMAC $PROMPT="Click with mouse." POSITION

The example above displays the string "Click with mouse" below the command
line and waits for the user to click the left mouse button. The location of the
cursor is then stored as the value of the macro.

The first option in the table on the next page represents definitions where no
macro_value or response type keyword is included. The other options use the
keywords indicated to control how the user will define the macro value.

See a list of
supported
mathematical
operators on
page 50. Page
220 has a list of
mathematical
functions.

The PROMPT
command (page
201) is used to
temporarily
replace the
prompt string
on the left of the
'>' on the
command line.

Macro Definition

144 ICED™ Command File Programmer's Reference

$response_type Default prompt User must respond by:
Enter value for
macro macro_name

Typing number, coordinate pair, or
string

$PROMPT="string" string Typing number, coordinate pair, or
string

$[PROMPT="string"]POSITION Use mouse to enter
POSITION.

Clicking mouse once to define a
coordinate pair

$[PROMPT="string"]BOX Use mouse to enter
BOX.

Clicking mouse twice to define two
coordinate pairs
(The coordinates are reordered so
lower left corner is the first
coordinate pair.)

$[PROMPT="string"]POLYGON Redigitize starting
vertex to signal end
of command.

Clicking mouse to define several
coordinates, ending by redigitizing
the first one

$[PROMPT="string"]DISP Use mouse to enter
DISPLACEMENT

Clicking mouse twice to define pair
of numbers representing
displacements in x and y directions

$[PROMPT="string"]X_DISP Use mouse to enter
X DISP

Clicking mouse twice to define
number representing displacement
in the x-direction

$[PROMPT="string"]Y_DISP Use mouse to enter
Y DISP

Clicking mouse twice to define
number representing displacement
in the y-direction

$[PROMPT="string"]NEAR Use mouse to enter
NEAR

Clicking mouse once to define
coordinate pair representing the
center of a near box

Each of these options prints a prompt on the prompt line of the layout editor
window and waits for the user to supply the information requested. If the user
does not supply the information, the entire command file is aborted. (See page
125 to see methods of aborting command files when user input is expected.)

To allow the
user to use the
mouse to select
from a menu of
choices, see
page 147.

Macro Definition

ICED™ Command File Programmer's Reference 145

The first row in the table on the previous page is meant to describe a macro
definition where no macro_value is supplied. In this case the prompt string the
user sees is "Enter value for macro macro_name", where macro_name is the
name of the macro.

Example: LOCAL #BASE_LABEL !No macro_value is defined

This macro definition provides no value or prompt option for the macro. When
this statement is executed, the user will see the following prompt in the layout
editor window:

Enter value for macro BASE_LABEL

The program will wait until the user hits the <Enter> key. Any text typed by the
user before the <Enter> is typed will be stored as the value of the BASE_LABEL
macro.

If the user types no text before pressing <Enter>, then the null string "" will be
stored as the value of BASE_LABEL.

The $response_type methods all have an optional PROMPT="string" parameter
that allows you to write the prompt string yourself. The prompt string must be
enclosed in quotes. Any one of the four valid quote characters listed on page
142 can be used.

If you use $PROMPT="string" by itself, any type of value can be requested. The
string typed by the user will be assigned as the value of the macro.

Example: LOCAL #BASE_LABEL $PROMPT="Type base label:"

When this macro definition statement is executed, the text "Type base label:" will
appear on the prompt line in the layout editor window. The text typed by the
user before <Enter> is typed will be stored in the BASE_LABEL macro.

If the user presses <Enter> without typing any text, the null string "" will be
stored as the value of the macro. When the macro is used in a later command,
this may cause a syntax error. For this reason, it is a very good idea to test the
length of the return string in your command file before using the value of the
macro.

Macro Definition

146 ICED™ Command File Programmer's Reference

Example: LOCAL #DEFAULT_LABEL = "BUS"
LOCAL #BASE_LABEL &

$PROMPT="Enter base label, [%DEFAULT_LABEL]:"
IF (LEN("%BASE_LABEL") == 0) {

#BASE_LABEL = %DEFAULT_LABEL
}

These extra lines will assign a default value to the BASE_LABEL macro if the
user presses <Enter> without typing a string. The user is shown what the default
value is surrounded by "[]". Remember that macro substitution takes place even
in a quoted string. The value for the DEFAULT_LABEL macro will be inserted
into the prompt string before it is printed on the screen.

You can request that the user type a number or coordinates instead of a string.
However, ICED™ does no automatic verification of the contents of the typed
string. The user may type inappropriate data. See page 88 to learn about
methods of verifying the value typed by the user.

Extra processing to insure that coordinates are entered correctly can be avoided if
you use one of the following $response_type options to prompt the user for
coordinate data: POSITION, BOX, POLYGON, DISP, X_DISP, Y_DISP, or
NEAR. These options require that the user move the cursor to a location in the
layout and then press the left mouse button to digitize the position(s). The
digitized position(s) will then be stored as the value of the macro. You can be
sure that the coordinates are on the snap grid and that they use the correct
syntax. (In the case of the displacement options, the displacement between the
positions is stored as the value of the macro.)

The user cannot type the data at the keyboard when these options are used for
$response_type.

Example: LOCAL #CENTER = $PROMPT="Digitize center" POSITION

When this macro definition is executed, the user will be prompted with the
phrase, "Digitize center", and then the program will wait until the left mouse
button is pressed to digitize the current location of the cursor. The coordinate
pair selected is then stored as the value of the macro.

The LEN
function returns
the number of
characters in a
string. See
page 229.

Displacements
can also be
defined with the
RULER
command. See
an example on
page 273.

Macro Definition

ICED™ Command File Programmer's Reference 147

When you do not specify PROMPT="string" for these options, the prompt shown
in the table on page 144 will be used.

Example: LOCAL #CENTER = $POSITION

When you use this option to prompt the user for the value of the CENTER
macro, the user will see the prompt "Use mouse to enter POSITION."

Example: LOCAL #CENTER = $POS

Note that like most ICED™ keywords, the POSITION keyword can be
abbreviated to a few characters.

$[PROMPT="string"] MENU menu_name[:submenu_name]

You can allow the user to select the value of a macro with the mouse from a
menu of choices. (This really just a special case of the previous method with the
MENU keyword and parameter in the place of the response_type keyword.) You
can use any of the predefined submenus available in the default menu, M1.

Example: LOCAL #MYLAYER = $MENU M1:LAYER_NAMES_1

This example displays the layer selection submenu defined in the M1 menu
supplied with the installation. Only layers with names defined for them will be
listed. Each layer in the list will be displayed with a rectangle drawn using the
color and pattern defined for the layer.

There are many submenus to choose from in the M1 menu. Some of these are
filled in at the time of execution, such as the layer menu in the example above.
All submenus include all of the relevant options available for a specific
command.

Specify the menu name without the .MEN menu file extension. If you want a
submenu displayed, add the :submenu_name after the menu name without a
space. When you omit the submenu name, the first top-level menu is displayed.

See the
CHANGES-
LAY.TXT file
for information
on recompiling
older menus to
be used with
this feature.

See an example
of selecting a
pattern from a
menu on
page 277.

You can browse
the source for
the M1 menu in
the Q:\ICWIN-
\SAMPLES-
\M1.DAT and
M1A.DAT files.

Macro Definition

148 ICED™ Command File Programmer's Reference

If you want a prompt displayed in yellow below the command line to tell the user
what they are supposed to do, add the PROMPT keyword and a quoted string to
the command.

Example: GLOBAL #MYLAYER= $ PROMPT= "Choose layer for processing." &
MENU M1:LAYER_NAMES_1

If you create your own menu, it must be defined in ICED™ syntax and compiled
with MkMENU.EXE to create the compiled .MEN file from the .DAT source
file. Move the compiled menu file to the Q:\ICWIN8\AUXIL directory.

Arrays

There is no special storage mechanism for arrays in ICED™. However you can
easily create collections of macros that you can use as arrays. Since numbers are
valid in macro names, and since you can use macro substitution in macro names,
you can create macros that can be referred to in the same manner as arrays. Also,
there is practically no limit in the number of dimensions of your arrays.

However, the special characters '[', ']', '(', and ')' are not valid in macro names.
You can use the special characters '.' or '_' to separate the base of the array name
from the numeric index if you desire.

Example: ! Add Spiral of wire components
LOCAL#BASE_COORD = "(0,0)"
LOCAL#NUM_POINTS = 10
LOCAL#COUNTER = 0
LOCAL#COORD_LIST = ""
LOCAL#QUADRANT = 1
LOCAL#XSIGN = ""
LOCAL#YSIGN = ""

!continued on next page

8 Remember that Q:\ICWIN represents the drive letter and path where you have installed
ICED™.

Macro Definition

ICED™ Command File Programmer's Reference 149

WHILE (%COUNTER <= %NUM_POINTS){
IF ((%QUADRANT == 1) || (%QUADRANT == 2)) #XSIGN = ""
ELSE #XSIGN = "-"
IF ((%QUADRANT == 1) || (%QUADRANT == 4)) #YSIGN = ""
ELSE #YSIGN = "-"

!Array element definition statement
LOCAL #COORD%COUNTER = &

"(%XSIGN %COUNTER , %YSIGN %COUNTER)"

#QUADRANT = {%QUADRANT + 1}
IF (%QUADRANT > 4) #QUADRANT = 1
#COUNTER = {%COUNTER + 1}

}
#COUNTER = 0
WHILE (%COUNTER < %NUM_POINTS){

#COORD_LIST = {%BASE_COORD + %COORD%COUNTER}
#COUNTER = {%COUNTER +1}
#COORD_LIST = &

%COORD_LIST {%BASE_COORD + %COORD%COUNTER}
ADD WIRE TYPE=2 AT %COORD_LIST

}

The example above will create a simple spiral construct using separate wire
components for each leg of the spiral. It uses a single dimension array of macros
to store the coordinates of the endpoints of each wire. The macros are defined in
the first WHILE loop with the statement:

LOCAL #COORD%COUNTER =…

Each time through the loop, as the COUNTER macro is incremented, a new
macro is created based on the base name of "COORD" with the value of
COUNTER concatenated on the end of the macro name. The first time through
the loop, the macro COORD0 is defined. The second time through the loop the
macro COORD1 is defined, etc.

When your
positions
involve more
complex
calculations,
you should use
the ROUND()
function to snap
each coordinate
to grid. See
page 235.

Macro Definition

150 ICED™ Command File Programmer's Reference

You can also easily create an array of two or more dimensions. Macro
substitution can be used to add as many array subscripts as you need. There are
only two tips to remember.

• When macro references are used to supply array subscripts,
they must be delimited with '^'s to separate one macro
reference from the next without a space.

• Some other delimiter (e.g. '.' or '_') must be used to separate
one subscript from the next to avoid confusion between
multi-digit subscripts and several single digit subscripts.

These tips are best explained by example. To define one of the macros in a
multi-dimension array, use a macro definition similar to:

Example: LOCAL #ARRAY.%I^.%J^.%K = … !Correct syntax

This macro definition is typical of a multi-dimensional array defined in nested
loops that increment the I, J, and K macros. The first few times through the
loops macros similar to the following are created:

ARRAY.1.1.1
ARRAY.1.1.2
ARRAY.1.1.3

When the subscripts reach the multi-digit stage, there will be no confusion. The
meaning of ARRAY.1.2.345 is clearly understood. If we removed the '.'
delimiters from the macro definition, the macro created would be ARRAY12345,
which is ambiguous. It could mean ARRAY.12.3.45, or ARRAY.1.234.5, etc.

If the '^' delimiters are omitted from the macro definition, the program will not be
able to parse the statement properly to determine the macro references. If the
macro definition was written as:

LOCAL #ARRAY.%I.%J.%K = … !Incorrect syntax

The first macro substitution would be interpreted correctly resulting in a
statement similar to:

LOCAL #ARRAY.%I.%J.1 = …

Macro Definition

ICED™ Command File Programmer's Reference 151

The program would then attempt the next macro substitution, however the next
macro reference is "%J.1". Unless there is a macro with the name "J.1" the
command file would fail at this point.

Keyboard Macros

This special class of macros is used to store a command string that can be
executed by pressing a single key or a combination of keys at the beginning of a
command line in the editor. Unlike other user-defined macros, these macros are
saved in the cell file.

Keyboard macros can be defined with the following syntax:

[GLOBAL] [#]KEY.key [=] [command_string]

The GLOBAL keyword is required if the definition is in a command file. It is
the default if the definition is typed on the command line in the layout editor.

The key portion of the name must be one or more characters. The following key
strings have special significance:

Fn Function key <Fn> (e.g. F1)
AFn Key combination <Alt><Fn>
CFn Key combination <Ctrl><Fn>
SFn Key combination <Shift><Fn>

If command_string contains any quote characters, you must surround it with
different quote characters. The four valid quote characters are ", ' ,~, and `. If
you omit command_string, the user will be prompted to enter the value.

Example: GLOBAL #KEY.AF8 = ADD TEXT

After this keyboard macro definition is executed, you will be able to execute an
ADD TEXT command the layout editor by holding down the <Alt> key then
pressing the <F8> key. The user will be prompted for the text string to add as a
component.

The KEY
command can
also be used to
define keyboard
macros.

Delayed
evaluation can
be useful in
keyboard
macros. See an
example on
page 47.

See an example
that assigns
opening a text
editor window
to a key on page
10.

Macro Definition

152 ICED™ Command File Programmer's Reference

When you use other strings for key, typing those keys as the first characters on
the command line will execute the command_string.

Example: GLOBAL #KEY.ZT = ADD TEXT=% LAYER=M1_TEXT SIZE=2

Once this keyboard macro definition is executed, typing ZT on the command line
will execute the indicated ADD TEXT command. Since the optional parameters
LAYER and SIZE must come after the TEXT parameter, the special character '%'
must used as the text string to allow the user to be prompted for the text string.

When a keyboard macro definition uses ordinary characters for key that would
make it ambiguous whether the user meant to execute the keyboard macro or a
command that begins with the same characters, ICED™ will wait until the user
presses <Enter> before assuming that the keyboard macro is intended.

Example: GLOBAL #KEY.TE = ADD TEXT

After this definition is executed, if "TE" is typed as the first characters on the
command line, ICED™ will wait to see what is typed next before executing the
"ADD TEXT" command. If <Enter> or a space is typed, then the keyboard
macro will be triggered, executing the "ADD TEXT" command. If a <M> is
typed instead, then ICED™ will assume that you are typing the TEMPLATE
command and the keyboard macro will not be triggered.

The keyboard macro is never triggered when the key string is typed in the middle
of a command. The key string must be the only characters typed at the command
prompt before an <Enter> or space is typed.

See an example
of executing an
operating
system
command with
a keystroke on
page 12.

Macro Definition

ICED™ Command File Programmer's Reference 153

Reserved Macros

There are several user macro names that have special significance when they are
defined. Do not use these names for your macros unless you want to use them
for the intended purpose.
ERROR.CMD Defines an error handler. When a syntax error occurs, or an

ERROR command is executed, the string stored in this
macro is executed. See page 165.

ENTER.SUBCELL When an edit command is executed to open a child cell (any
cell except the root cell), the string stored in this macro is
executed. See page 21.

EXIT.SUBCELL When an EXIT, QUIT, or LEAVE command is used to
return from editing a child cell, the string stored in this
macro is executed before the cell is closed. See page 21.

EXIT.ROOT When an EXIT, QUIT, or LEAVE command is used to
terminate the editor, the string stored in this macro is
executed before the editor closes. See page 20.

You cannot use
the name of a
system macro as
a user macro
name. See the
list on page 255

Macro Definition

154 ICED™ Command File Programmer's Reference

Commands Used Primarily in Command Files

ICED™ Command File Programmer's Reference 155

Commands Used Primarily in
Command Files

Commands Used Primarily in Command Files

156 ICED™ Command File Programmer's Reference

The following commands are described here, rather than in the IC Layout Editor
Reference Manual, because they are rarely used outside of command files.

Category Command Use Page
IF, ELSE, and ELSEIF Conditionally execute statements or blocks of

statements.
168Condi-

tional
execution WHILE Conditionally execute a statement or a block of

statements more than once.
212

@file_name Suspend execution and execute a command file 159
BACK_TO Force interpreter to skip lines backward until a

statement with a specific label is reached
163

SKIP_TO Force interpreter to skip lines until a statement with a
specific label is reached

209

RETURN End command file immediately. 205

Goto type

ERROR End command file immediately w/ error message 164

$comment Display comment on screen and in journal file 159
ITEM Store component information in macros 173
LIST Save named list of components 182
REMOVE Delete macros 203

Informa-
tion

MARK_SUBCELLS Initialize contents of SUBCELL.EDIT macro to
return edibility of given cells.

197

LOG Enable or disable logging of commands in
journal file

173

VIEW ON | OFF Enable or disable screen updates during
command file.

209

Command
file
control

XSELECT Disable embedded SELECT commands 215

PAUSE Pause command file with an optional message 199
PROMPT Display message to user on screen 201

User
interaction

SHELL Suspends command file to allow menu access 207

Figure 23: Commands used primarily in command files

ICED™ Commands: @file_name

ICED™ Command File Programmer's Reference 157

Table of Commands Covered in Other Manual

Some of the commands covered only in the IC Layout Editor Reference Manual
have features added primarily for use in command files. However, only
commands used exclusively in command files are covered in this manual.
You may often need to refer to the description of commands in the other manual
when writing command files.

Always reread the command description carefully for commands you use in
command files. For example, the GROUP command creates a new cell from
currently selected components. If a cell with the name indicated in the command
already exists, you must respond with a prompt to the warning message. These
prompts can make command files awkward. The [YES|NO] parameters were
added to the GROUP command to allow you to avoid the warning prompt in
command files.

Command Feature useful in command file Expl in
this

manual
@file_name Execute command file 97
ADD OFFSET keyword allows you to type list of ADD

commands easily
271

[UN]BLANK Make some components or entire layers unselectable and
invisible

275

BLINK Used to highlight component(s) for user -
DELETE If XSELECT mode is OFF, DELETE command will not

issue embedded SELECT NEAR command to select
component for deletion if no components are selected

84

DOS Allows DOS programs to be executed 312
EDIT Execute commands in other cells; LOCAL_COPY and

VIEW_ONLY keywords allow you to avoid warning
prompts for protected libraries

325

GROUP YES | NO keywords allow you to avoid warning prompts 183
JOURNAL If command file goes wrong and leaves nested cells

corrupted, JOURNAL quits editor without saving any cells
129

ICED™ Commands: @file_name

158 ICED™ Command File Programmer's Reference

KEY Shorthand for creating GLOBAL macros that assign
functions to keys

47

LEAVE Using this command after an edit command instead of
EXIT will prevent an unaltered cell from having it's cell file
overwritten

108

P_EDIT LOCAL_COPY and VIEW_ONLY keywords avoid
warning prompts

325

PROTECT Prevent command file from altering certain layers or
components

185

REDRAW Redraw screen when command file may leave screen
cluttered

-

ID keyword allows you to select components added before
or after a benchmark id was issued

312

Stack keywords PUSH, POP, and EXCHANGE allow you
to save and restore component selections at beginning and
end of command file

112

FAIL keyword allows you to select components that caused
a command in command file to fail

-

LIST keyword allows you to select components one by one
from a list

284

SELECT

TAG keyword allows you to select DRC generated shapes
by rule number

-

USER_MACROS keyword allows you display current
macro values, or save definitions to be restored in future
sessions

174

SYSTEM_MACROS keyword displays current system
settings

250

SHOW

FILE keyword allows you to export component or macro
definitions to a file to be manipulated outside of editor

327

SNAP Temporarily change the grid used for digitizing positions 330
SPAWN Launch another application without pausing editor 265
T_EDIT LOCAL_COPY and VIEW_ONLY keywords avoid

warning prompts
325

TEMPLATE Allows you to save and restore editor settings 116
VIEW Change view window to area user needs to see during

command file
301

Figure 24: Some commands described in IC Layout Editor Reference
Manual that have features useful in command files

ICED™ Commands: @file_name

ICED™ Command File Programmer's Reference 159

@file_name Execute a command file.

@[path\]file_name

This command causes ICED™ to execute the commands in file file_name.

If file_name does not include an extension, ICED™ will add an extension of
.CMD to file_name before looking for the file. If you omit path, ICED™ looks for
the file in the following directories in the order shown:
1) the working directory,
2) the directories specified by the ICED_CMD_PATH environment variable,
3) the AUXIL directory(ies).

Example: @GEORGE

ICED™ will execute the commands in the file GEORGE.CMD if this file can be
found in the working directory or in one of the other directories listed above.

Example: @D:\WORK\NAND.LOG

ICED™ will execute the commands in the file D:\WORK\NAND.LOG.

The @%.cmd Menu Option

The ICED™ menu option '@%.cmd' allows you to select a command file to
execute from lists of the command files on the command file search path. Only
files with a .CMD extension and without a "_" prefix in the file name will be
listed.

See an overview
of methods to
execute
command files
on page 13.

Learn more
about the
command file
search path on
page on page
14.

Command files
with a "_"
prefix are meant
to be called
from other files.

ICED™ Commands: @file_name

160 ICED™ Command File Programmer's Reference

Nested Command Files

The VIEW, LOG, and XSELECT modes selected by using those commands in a
command file will be used in any @file_name commands nested within the file.
The VIEW and XSELECT modes can be overridden with commands in the
nested @file_name command files.

If a command file contains a LOG=OFF command, logging to the journal file
remains off until the command file is completed. There is no way to override the
LOG OFF mode.

Command files can be nested up to 16 deep.

Other Commands in the Same Statement

If the @file_name command is issued with other commands on the same
command line using semicolons to delimit them, the other commands will
execute before the first command in the command file.

Example: @CMDFILE;VIEW OFF; XSELECT OFF

In this example, the command @CMDFILE is parsed first by the command
interpreter. Then the VIEW OFF command is executed as though it is the first
line of the command file. The XSELECT OFF command is executed next.
Finally, the commands in the file CMDFILE.CMD are executed.

Example: @_GET_INT; LOCAL #MIN=0; LOCAL #DEFAULT=1; &
LOCAL #PROMPT="initial serial number"

The example above will result in the macro definitions being executed before the
commands in the _GET_INT.CMD command file are processed. This allows
you to pass values into a command file. See more details on page 97.

Note that the '&' continuation character allows this statement to be typed on more
than one line.

The @*
command
executes the
commands in
the startup and
always
command files.
See the IC
Layout Editor
Reference
Manual for
details.)

ICED™ Commands: $comment

ICED™ Command File Programmer's Reference 161

$comment Add comment to journal file and screen.

$comment

or

$$comment

Whenever ICED™ processes a statement with a '$' as the first character, the
remainder of the line is treated as a comment. The '$' and the remainder of the
line will be logged into the journal file as a comment and the line will echo on
the screen below the command line. Even if there is a valid command in the
comment, it will not be executed.

Example: $My command file completed successfully; VIEW IN 3

The entire line above will be treated as a comment and be will copied into the
journal file and displayed on the bottom of the editor window exactly as shown.
The VIEW command will not be executed.

Although commands in $comments will not be executed, macro substitution and
expression evaluation will be performed.

Example: $ 5 + %MYMACRO={ 5 + %MYMACRO }

If the value of MYMACRO is "10", the comment will produce the following
echo on the screen and in the journal file:

$ 5 + 10=15

$Comment commands can be used to mark locations in the journal file. Let us
say that you are performing a series of complicated editing tasks. After each
successful step, you can add a comment that the step is complete. If the last step
you performed went badly, and you need to recover the state of the design
several steps back to correct the problem, you can edit the journal file using the

$Comments are
displayed
regardless of the
mode set with
the VIEW
ON/OFF com-
mand.

Adding a
PAUSE
command after
a $comment will
leave the
comment on the
screen until a
key or mouse
button is
pressed.

ICED™ Commands: $comment

162 ICED™ Command File Programmer's Reference

comments to locate the step where things went wrong. After the journal file is
edited, you can use it to recover your work up to the step where problems began.

Differences Between $comments, $$comments and !comments

During long command files, you may want to turn the logging of commands to
the command file off with the LOG OFF command. This will speed up a long
command file considerably. This also turns off the display and logging of
$comments.

$$comments will still be displayed and logged to the journal file even when the
LOG OFF mode prevents the display and logging of other commands. This is
the only difference between $comments and $$comments.

Example: LOG OFF
LOCAL #I = 0
WHILE (%I <= 10000){

!missing processing on components
IF (INT(%I/100) == (%I/100)) &

$$ %I components processed successfully
#I = {%I + 1}

}

The example above will update the message on the screen as the loop progresses.
The message is updated only every 100 components so that it is left on the screen
for a brief moment instead of being a blur from being overwritten every time
through the loop.

!comments can also be used to create comments in command files, but these
comments will not be logged into the journal file or displayed on the screen.
They are used only as documentation within the command file itself.

The LOG
SRCEEN=OFF
command will
not prevent the
display of
$comments.

ICED™ Commands: BACK_TO

ICED™ Command File Programmer's Reference 163

BACK_TO Force interpreter to go back to a specific line.

BACK_TO label_name[:]

The BACK_TO command causes the command interpreter to search upward in
the current command file for a statement with label label_name. Execution will
continue from that statement.

The simplest way to label a statement is to type a label string followed by a colon
":". More details on label syntax are shown on page 32.

Example: BEGIN:
! missing code that performs some action

@_GET_ANS; #prompt="Are you happy with these results?"; &
#choices="yn";

IF (%ret.value != 1) BACK_TO BEGIN !if <n> repeat from BEGIN label

This example assigns the label "BEGIN" to a statement. Assume that the lines
following this label gather some information from the user and then perform
some action. Then the _GET_ANS.CMD command file asks the user for an
answer to the prompt. In this case it expects the user to type a <y> or a <n>.

_GET_ANS.CMD will set the ret.value macro to a 1 if the user types <y>. In
this case, the BACK_TO BEGIN command is not executed. Execution will
continue with the line after the IF statement. However, it the user types a <n>
response, ret.value will not be set to 1 and the BACK_TO BEGIN command is
executed. In this case execution continues with the line after the BEGIN label.

The BACK_TO command cannot use a label that does not exist in the current
command file. You should avoid using BACK_TO to jump to a statement inside
of a WHILE, IF, or ELSEIF block.

Use the
SKIP_TO
command
instead to
search forward
for a labeled
statement.

The
_GET_ANS-
.CMD
command file is
supplied with
the installation.

ICED™ Commands: ERROR

164 ICED™ Command File Programmer's Reference

ERROR Display error message.

ERROR "err_msg_string"

or

ERROR

Use this command to display an error message to the user when your command
file fails.

The two forms of the ERROR command are used quite differently Examples of
both uses follow this page.

ERROR err_msg_string Posts error message and terminates the
current command file, leaving the word "Error" drawn in
red and the err_msg_string visible in the history area at
the bottom of the ICED™ window.

ERROR This form is useful only when the ERROR.CMD macro
is defined. (We'll cover this macro in more detail on
page 165.) In this case, an ERROR err_msg_string
command will not display the message on the screen and
terminate the command file immediately. Instead, the
command processor executes the code indicated by the
ERROR.CMD macro. This code should include an
ERROR command (without an argument) to post the last
error message saved by a previous ERROR
err_msg_string command. The command file is not
terminated immediately. This gives you the opportunity
for more error handling processing after the error
message is posted.

The quotes
around
err_msg_string
are
recommended
to avoid parsing
problems, but
can be omitted
in most cases.

ICED™ Commands: ERROR

ICED™ Command File Programmer's Reference 165

Example: LOCAL #MYLAYER = $PROMPT="Enter layer for operation:"

IF (CMP("%MYLAYER", "")==0) { !User just pressed Enter
ERROR "No layer entered."

}

When the user responds by pressing <Enter> to the prompt in the example above,
the editor will post the message "Error: No layer entered." at the bottom of the
ICED™ window. The word "Error" will be displayed in red text to highlight the
problem for the user. The command file would terminate at this point and no
other commands in the file would be processed.

Macro substitution can be used in the err_msg_string. The example above might
continue with the following lines:

Example: ELSE { !User typed response
IF (VALID_LAYER("%MYLAYER")){

$layer valid, add processing code here
}
ELSE{

ERROR "%MYLAYER is not a valid layer."
}

}
RETURN "Processing successful on layer %MYLAYER"

The string the user typed replaces the macro reference %MYLAYER in the error
message string before it is displayed in the history area.

The RETURN command in the example above will be processed only when the
user types a valid layer in response to the prompt.

ERROR.CMD Macro Processing

When an ERROR err_msg_string command is executed, or a syntax error is
encountered, the command interpreter checks for the existence of a macro with
the name ERROR.CMD. If such a macro exists, the string stored in it is executed
as a command string instead of displaying the error message and terminating the
command file.

The CMP
function
compares two
strings and
returns a 0 when
they are the
same. See page
224.

The
VALID_LAYER
function returns a
0 if the argument
is not an existing
layer. See page
243.

ICED™ Commands: ERROR

166 ICED™ Command File Programmer's Reference

ERROR.CMD can contain any valid command string including a @file_name
command to call another command file to process the error. However,
ERROR.CMD typically stores a SKIP_TO command that triggers an error
handler part of your command file. This section of code should contain an
ERROR command without an argument to display the error message stored by
the previous error.

Example: LOCAL #ERROR.CMD="SKIP_TO FAIL"
LOCAL #MYLAYER = $PROMPT="Enter layer for operation:"

IF (CMP("%MYLAYER", "")==0) { !User just pressed Enter
ERROR "No layer entered."

}
ELSE { !User typed response

IF (VALID_LAYER("%MYLAYER")){
$layer valid, add process code here

}
ELSE{

ERROR "%MYLAYER is not a valid layer."
}

}
RETURN "Processing successful on layer %MYLAYER"

FAIL:
$Error handler triggered
ERROR
DOS -NOTEPAD "%JOU" !User must close new window to continue
PAUSE

The example above is similar to the previous example, except that since
ERROR.CMD is defined (see first line), the string in it will be executed when
either ERROR err_msg_string command is executed. All of the commands in
the block beginning with the label "FAIL" will be executed. This error handler
opens a Notepad editor window containing the journal file for the current session.
This allows the user to see what commands were executed by the command file
before the error occurred.

See a brief
overview of
error handlers
on page 125.

The SKIP_TO
command
causes the
command
interpreter to
skip
immediately to
the labeled
statement. See
page 209.

Always include
a RETURN
command to
terminate the
command file
normally before
an error block.

The JOU
system macro
stores the name
of the journal
file

ICED™ Commands: ERROR

ICED™ Command File Programmer's Reference 167

A PAUSE command may be required to allow the user to see the message
displayed by the form of the ERROR command without arguments. When this
form is used, execution is not halted and succeeding commands may erase the
error message. The PAUSE is required only if the following types of commands
will be executed in the command file after the ERROR command.

• a $comment command,

• a RETURN command that defines a msg_string

• a PROMPT command,

• an interactive command that requires use of the status lines, or

• another error.

This type of error handler is particularly useful when debugging command files.
Errors caused by syntax problems in the command file will trigger the error
handler rather than immediately terminating the command file.

If the command string stored in ERROR.CMD is not a SKIP_TO or BACK_TO
command, after the command string is executed, execution of the command file
will resume at the statement after the command that failed.

Example: LOCAL #ERROR.CMD="#FAILED=1"

This type of ERROR.CMD definition will prevent the display of any error
message when a command fails or an ERROR command is executed. The
FAILED macro will be set to '1' and the command file will continue. This is the
method used in the ED.CMD file. See page 318.

ICED™ Commands: IF, ELSEIF, ELSE

168 ICED™ Command File Programmer's Reference

IF, ELSEIF, ELSE Conditionally execute statements

IF (boolean_expression) single_statement

IF (boolean_expression) {
!Block of statements

}

ELSEIF (boolean_expression) single_statement

ELSEIF (boolean_expression) {
!Block of statements

}

ELSE single_statement

ELSE {
!Block of statements

}

(Unlike most syntax descriptions, the parentheses
used above in the syntax descriptions must be
typed in the command.)

The IF command is used to execute a statement or
block of statements only when a Boolean
expression evaluates to TRUE, i.e. any non-zero
number.

The ELSEIF and ELSE commands are optional after an IF command. They are
executed only when the Boolean expression in the preceding IF command is
FALSE, i.e. 0.

FALSE 0
TRUE 1

(or any non-
zero number)

Figure 25: Boolean
values

See an overview
of conditional
statements
beginning on
page 90.

ICED™ Commands: IF, ELSEIF, ELSE

ICED™ Command File Programmer's Reference 169

The IF Command

The IF command is used to execute one statement or a block of statements only if
the boolean_expression evaluates to TRUE. Briefly, a Boolean expression is an
expression that evaluates to a number. If the number is 0, the expression is
FALSE. If the number is non-zero, then the expression is TRUE.

Example: LOCAL #ASSERTION = $PROMPT="Please type a 1 or a 0:"
IF (%ASSERTION) $The assertion is true

This simple example uses the single statement syntax of the IF command. If the
value of the ASSERTION macro is non-zero, the $comment command will be
executed. This command will print the comment on the prompt line of the
ICED™ window. If ASSERTION does equal 0, then the $comment command
will not be executed.

Example: LOCAL #NAME $PROMPT="Enter name [FRED]:"
IF (LEN("%NAME") == 0) {

#NAME = FRED
$Default name used

}

The first line above prompts the user to type a string to define the initial value of
the NAME macro. If the user simply presses <Enter> in response the prompt,
the value of the NAME macro will be "". When NAME is "", the
LEN("%NAME") function call will return 0 and the IF condition will be TRUE.

This example demonstrates the block form of the IF command. The block begins
with the open curly brace '{' at the end of the line containing the IF command.
The block ends with a line that contains only the closing curly brace '}'. Both
commands "#NAME = FRED" and "$Default name used" will be executed when
the condition in the IF command is TRUE. Both commands are skipped if the
condition is FALSE.

If the Boolean condition expression evaluates to FALSE, then control passes
immediately to the statement following the end if the IF block, indicated by the

A complete
explanation of
Boolean
expressions is
provided on
page 53.

The LEN()
function returns
the number of
characters in a
string. See page
229.

Always type a
blank before the
condition
expression in
().

ICED™ Commands: IF, ELSEIF, ELSE

170 ICED™ Command File Programmer's Reference

'}'. Statements in the IF block are not executed or even evaluated. Macro
substitutions or definitions in the block will not be performed.

Ordinarily, any time a function call or operator is used in an expression, the
expression must be surrounded by "{}" to force ICED™ to evaluate the
expression rather than interpreting it as a string. Note that in the example above,
no "{}" are used to surround the boolean_expression "LEN("%NAME") == 0".
This is because ICED™ will always interpret the boolean_expression in an IF,
ELSEIF, or WHILE command as an expression. The "{}" are not required.

Note the double equals "==" in the condition statement of the IF command. This
is the proper syntax to use in a Boolean expression to test that two values are
equal. It is a common mistake to forget that the "==" is required. You can
review Boolean expression syntax beginning on page 53.

The ELSE Command

The ELSE command can be used only immediately after an IF command (or after
the closing '}' of an IF block). It is used to execute a single statement, or a block
of statements, if the Boolean expression in the preceding IF command is FALSE
(i.e. equal to 0). No statements can come between the end the IF command (or
block) and the ELSE command.

Example: LOCAL #ASSERTION = $PROMPT="Please type a 1 or a 0:"
IF (%ASSERTION) $The assertion is true
ELSE $The assertion is false

Example: LOCAL #NAME $PROMPT="Enter name:"
IF (LEN("%NAME") == 0) {

#NAME = FRED
$Default name used

}
ELSE $Hello there %NAME

The ELSE command can control an entire block of commands by surrounding
them with curly braces in the same manner as an IF block. The open curly brace

ICED™ Commands: IF, ELSEIF, ELSE

ICED™ Command File Programmer's Reference 171

must be at the end of the same line as the ELSE command. The closing curly
brace should be on a line by itself.

Example: IF (%SNAP.ANGLE == 90) {
#VERTEX1 = (1,1)
#VERTEX2 = (1,2)
#VERTEX3 = (2,2)

}
ELSE {

#VERTEX1 = (1,1)
#VERTEX2 = (2,2)
#VERTEX3 = ""

}

The command file fragment above demonstrates how to use the block form of
both the IF and ELSE commands. In this case, different vertices are stored in the
macros based on the value of the system macro SNAP.ANGLE.

The ELSEIF Command

The ELSEIF command is used to implement a form of a case statement. That
means you can write a series of statements, beginning with an IF statement and
continuing with one or more ELSEIF statements, that execute different
commands depending on the values of various condition expressions.

If the Boolean expression in the IF condition is TRUE (i.e. non-zero), the
statements in the IF block will be executed and any following ELSEIF or ELSE
statements and their corresponding blocks will be ignored. When the Boolean
expression in the IF command is FALSE (i.e. equal to 0), the program will then
execute the following ELSEIF command. If the Boolean expression in the
ELSEIF is TRUE, then the single statement or block of statements controlled by
the ELSEIF command is executed and control passes to the next statement after
all other ELSEIF or ELSE blocks. If the Boolean expression in the ELSEIF
command is FALSE, the statements in the block are skipped and control passes
to the next command. The next command can be another ELSEIF command, an
ELSE command, or any other command.

The system
macro
SNAP.ANGLE
is described on
page 293.

ICED™ Commands: IF, ELSEIF, ELSE

172 ICED™ Command File Programmer's Reference

No statements can come between the end the IF command or block and the
ELSEIF command.

Example: LOCAL #ASSERTION = $PROMPT="Please type a 1 or a 0:"
IF (%ASSERTION == 1) $The assertion is true
ELSEIF (%ASSERTION == 0) $The assertion is false
ELSE $I told you to type a 1 or a 0

Only one of the three $comment commands in the example above will be
executed.

Example: LOCAL #NAME $PROMPT="Enter name:"

IF (CMP(%NAME, "LUCY")==0){
$Hello Lucy

}
ELSEIF (CMP(%NAME, "RICKY")==0){

$Luuuuuuuuuucy!
}
ELSEIF ((CMP(%NAME, "FRED")==0) || &

(CMP(%NAME, "ETHEL")==0)){
$Hide the talent scout in the closet.

}
ELSE ERROR "%NAME is at the door"

The previous example uses the string comparison function CMP to test the value
of macro NAME. The CMP function returns 0 when two strings are equal.

Note that this example uses more than one ELSEIF statement. You can use as
many as required. Note also the compound Boolean expression in the second
ELSEIF statement. If the value of NAME is either FRED or ETHEL, the
command "$Hide the talent scout in the closet" will be executed. The use of the
'&' to allow a single command to span more than one line makes this example a
little more readable.

See other examples of IF commands on pages 92, 225, and 301.

The ERROR
command aborts
the command
file with the
message, or
triggers an error
handler.

The CMP
function is
described on
page 224. See a
list of other
comparison
operations on
page 54.

ICED™ Commands: ITEM

ICED™ Command File Programmer's Reference 173

ITEM Get information on single component

ITEM [DEFAULT] [GLOBAL | LOCAL] [#]item_name [BOX=(BOX | POLYGON)]

This command is used to place information on a single component into a
collection of macros. The number of macros created by this command and the
information stored in them depends on what type of component is selected when
the command is executed. The complete list is provided in the table on page 175.

The values stored in the ITEM macros can be modified with macro assignment
statements. A new component based on these new values can be easily created.
See the example on page 180.

The DEFAULT keyword is used to force the editor to ignore a redefinition of an
existing set of item macros. The values of the existing item macros remain
unchanged.

The GLOBAL or LOCAL choice of keywords defines the scope of the macros
created. The first time an ITEM command is executed in a command file to
define a specific item_name, one of the keywords must be used. Once the
macros have been created by a previous use of the command, then repeated uses
of ITEM commands with the same item_name can omit both keywords.

Choose item_name carefully so that none of the created macro names will
conflict with existing macros (including system macros). If the ITEM command
is unable to create all macros, then the value of the item_name.TYPE macro will
be "ERROR".

The following restrictions are enforced for an item_name:
• Names can be from 1 to 16 characters long.
• Valid characters consist of all alphanumeric characters and '.', '_', and '$'.
• Do not use a number or '#' as the first character in an item name.

Information on
the ITEM
command is also
provided in the
Q:\ICWIN-
\DOC\LIST.TXT
file.

Exactly one
component must
be selected or
this command
will fail.

See page 41 for
a definition of
scope.

See this
command used
in the advanced
example
SERIAL.CMD
on page 312.

The BOX
keyword
controls how
information on
boxes is stored.
See page 179.

ICED™ Commands: ITEM

174 ICED™ Command File Programmer's Reference

Example: ITEM GLOBAL #MYITEM
SHOW USER #MYITEM*

This example creates a series of global
macros with names beginning with
"MYITEM". For example one of the
macros created will be MYITEM.TYPE.
If a single box is selected when the
command is executed, the value of
MYITEM.TYPE will be "BOX". The
SHOW command displays the newly
created macros. Since the GLOBAL
keyword is used, the macros will persist
until you delete them with a REMOVE
command or terminate the edit session.

When the XSELECT mode is "ON" (the default mode), and no components are
selected when the ITEM command is executed, then the ITEM command will
generate an embedded SELECT NEAR command to allow the user to select a
single component. Add an XSELECT OFF command (see page 215) before the
ITEM command if you prefer to have the ITEM command create only the single
macro item_name.TYPE with a value of "ERROR" when no component is
selected.

Example: IF (%N.SELECT ==1) ITEM GLOBAL #MYITEM

The example above tests that exactly one component is selected before creating
item macros. Insuring that exactly one component is selected before executing
the ITEM command is important since the command will fail (and abort the
command file) if more then one component is selected when the command is
executed. See more details on this subject on page 180.

GLOBAL MYITEM.AREA="500"
GLOBAL MYITEM.BB.X0="-28.5"
GLOBAL MYITEM.BB.X1="-3.5"
GLOBAL MYITEM.BB.Y0="0"
GLOBAL MYITEM.BB.Y1="20"
GLOBAL MYITEM.ID="1"
GLOBAL MYITEM.LAYER="1"
GLOBAL MYITEM.N.POINTS="2"
GLOBAL MYITEM.OFFSET="(0, 0)"
GLOBAL MYITEM.PERIM="90"
GLOBAL MYITEM.POS.1="(-28.5, 0.0)"
GLOBAL MYITEM.POS.2="(-3.5, 20.0)"
GLOBAL MYITEM.TAG="0"
GLOBAL MYITEM.TYPE="BOX"

Figure 26: ITEM macros for a
box displayed by SHOW
command

Use the
REMOVE
command. to
delete item
macros See
page 203.

See the example
on page 269 for
using ITEM in a
loop when you
need to process
many
components.

ICED™ Commands: ITEM

ICED™ Command File Programmer's Reference 175

Macro name Purpose B
o
x

P
o
l
y
g
o
n

W
i
r
e

L
i
n
e

T
e
x
t

C
e
l
l

A
r
r
a
y

item_name.AREA* Area X X X X X X X
item_name.BB.X0* Bounding box lower left corner x-coordinate X X X X X X X
item_name.BB.X1* Bounding box upper right corner x-coordinate X X X X X X X
item_name.BB.Y0* Bounding box lower left corner y-coordinate X X X X X X X
item_name.BB.Y1* Bounding box upper right corner y-coordinate X X X X X X X
item_name.CELL.NAME Cell name X X
item_name.CELL.NO* Index into cell table X X
item_name.COL.STEP Pitch of array columns X
item_name.ID* Component id number X X X X X X X
item_name.JUST Text justification (See page 300 for codes) X
item_name.LAYER Layer number X X X X X X X
item_name.LEN* Length of component (including type 2 extension) X X
item_name.LINE.n Text strings (number of macros stored in item.N.LINES) X
item_name.MY* Mirror code: 1 if mirrored in Y direction, else 0 X X X
item_name.N.COLS Number of columns X
item_name.N.LINES Number of lines of text X
item_name.N.POINTS Number of vertices X X X X X X X
item_name.N.ROWS Number of rows X
item_name.OFFSET Always created as "(0,0)"; can be changed to

relocate component added with ADD.item_name
X X X X X X X

item_name.PERIM Perimeter X X X X X X X
item_name.POS.n Vertices (number of macros provided in item.N.POINTS) X X X X X X X
item_name.ROT* Rotation code ("0", "1", "2", or "3") X X X
item_name.ROW.STEP Pitch of array rows X
item_name.SIZE Height of text X
item_name.TAG DRC tag integer (See DRCSTEP.CMD) X X X X X X X
item_name.TRANS Transformation code:

"R0", "R1", "R2", "R3", "MY", "R1 MY", "R2 MY", "R3 MY"
X X X

item_name.TYPE Component type (Use upper case when changing.) X X X X X X X
item_name.WIDTH Width of wire X X
item_name.WIRE.TYPE Wire end code: "0" (flush)or "2" (extended) X X

* Ignored by ADD.item_name macro when creating a new component.

Figure 27: Macros created by ITEM command

ICED™ Commands: ITEM

176 ICED™ Command File Programmer's Reference

Using the ITEM Macros

It is a good programming practice to test the value of item_name.TYPE before
using the macros created by the ITEM command. This macro will contain the
string "ERROR" if the ITEM command failed for any reason. When this is the
case, the creation and value of the other item_name macros is undependable.

The existence and relevance of other item_name macros depend on the value
currently in item_name.TYPE. For example, consider what happens when the
example below is executed in the following situations:
1) The user selects a wire.
2) The user selects more than 1 component.
3) The user selects nothing, and no MYWIRE item macros already exist.
4) The user selects a box, and no MYWIRE item macros already exist.
5) The user selects a box, and GLOBAL MYWIRE item macros do already

exist for some other wire component.

Example: XSELECT OFF
UNSEL ALL
$Select wire for processing
SELECT NEAR
ITEM LOCAL #MYWIRE
LOCAL #ORIG_WIDTH = %MYWIRE.WIDTH !this stmt may fail

In case number 1 (user selects a wire), then MYWIRE.TYPE = "WIRE" and the
ITEM command will create the MYWIRE.WIDTH macro using the width of the
selected wire. The reference to %MYWIRE.WIDTH will successfully resolve to
the width of the selected wire.

In cases 2, 3 and 4, the command file will fail. In case number 2 (user selects
more than 1 component), the ITEM command will fail and the command file will
be terminated. In case number 3 (user selects nothing), MYWIRE.TYPE =
"ERROR". In case number 4 (user selects box), MYWIRE.TYPE = "BOX". In
neither of these cases will a macro with the name MYWIRE.WIDTH be created.
So either case will fail with an error message when the %MYWIRE.WIDTH
reference is processed.

The
ADD.item_name
macro creates a
new component
based on the
current values
in the other
item_name
macros. See
page 180.

See page 180
for a method of
making sure a
single
component is
selected.

ICED™ Commands: ITEM

ICED™ Command File Programmer's Reference 177

Case number 5 is the most dangerous. In this case the user selects the wrong
type of component, so MYWIRE.TYPE = "BOX" and no MYWIRE.WIDTH
macro is created. However, since a MYWIRE.WIDTH macro already exists
from a previous execution of the ITEM command, the command file does not
fail. The information in the MYWIRE.WIDTH macro is incorrect, but no error is
generated.

These problems are easily avoided if you test the value in the item_name.TYPE
macro every time you use the ITEM command. Use lines similar to those below.

Example: IF (CMP(%MYWIRE.TYPE, "WIRE")!= 0) &
ERROR "Wire not selected or error encountered."

or
IF (CMP(%MYWIRE.TYPE, "ERROR")==0) ERROR "Nothing selected."
IF (CMP(%MYWIRE.TYPE, "WIRE")!=0) ERROR "Must select wire."

Another good programming tip to avoid problems like case 5, is to use the
REMOVE command (see page 203) to delete all obsolete item macros just before
executing the ITEM command.

Example: REMOVE #MYWIRE*

Referring to ITEM Macros in Conditional Statements

When you create a WHILE or IF command condition statement using item
macros, be sure that all macro references that will be evaluated refer to macros
that are guaranteed to exist. Remember that all macro references in a compound
IF condition will be evaluated. However, macro references inside an IF block
that is not executed will not be evaluated.

Example: ITEM LOCAL #THIS
IF (CMP(%THIS.TYPE, "ERROR")!= 0) {

IF ((CMP(%THIS.TYPE, "WIRE")==0) && &
(%THIS.AREA <= %MIN_AREA)) {

LOCAL #MYWIDTH = %THIS.WIDTH
!other processing

}
}

The CMP
function returns
0 when two
strings match.
See page 224.

The ERROR
command posts
a message and
terminates the
command file.
See page 163.

ICED™ Commands: ITEM

178 ICED™ Command File Programmer's Reference

The first IF condition refers only to the item_name.TYPE macro. Even if the
ITEM command failed because no component was selected, the
item_name.TYPE macro will exist. The inner IF condition can refer to the
item_name.TYPE and item_name.AREA macros because these macros are
created for all valid components. For example, even if a line component is
selected, the ITEM command is guaranteed to create the item_name.AREA
macro. This value is not applicable to a line component, but the creation of the
macro insures that executing a macro reference to it will not cause the command
file to fail. The item_name.WIDTH macro is created only for wires, but the
reference to it is safely inside the IF block that insures that the ITEM command
was executed while a wire was selected.

Using the item_name.LAYER Macro

The ITEM command stores the layer number of the component in the
item_name.LAYER macro. This macro is guaranteed to be created for all
component types. (When the component is a cell or array, then item_name-
.LAYER is created with a value of "0".

To test the value of the layer macro against a specific layer name, you can use the
system macro LAYER.NUMBER.name to derive the layer number from the
layer name. Use syntax similar to the following.

Example: IF (%MYWIRE.LAYER==%LAYER.NUMBER.M1) …

(When changing the layer stored in the item_name.LAYER macro, you can use
either the layer number or the layer name string.)

Position Lists

The ITEM command always creates an item_name.N.POINTS macro for any
valid component. This macro will contain the number of vertex points. Each
vertex point n will have a item_name.POS.n macro that stores the coordinate pair
of the vertex.

See that table on
page 175 to see
what item
macros are
created for
different types
of components.

The MACRO-
_EXISTS()
function can be
used to test that
a specific item
macro exists.
See page 231.

See page 277
for LAYER-
.NUMBER-
.layer_spec.

ICED™ Commands: ITEM

ICED™ Command File Programmer's Reference 179

(For arrays, cells, and text components, item_name.N.POINTS always equals '1'
and the origin of the component is provided in item_name.POS.1.)

Example: ITEM LOCAL #MYCOMP
LOCAL #n = 1
LOCAL #POS_STRING = ""
WHILE (%n <= %MYCOMP.N.POINTS){ !loop concatenating vertex list

#POS_STRING = %POS_STRING %MYCOMP.POS.%n
#n = {%n +1} !don’t forget to always use {} around expressions

}

When the selected component is a polygon (item_name.TYPE="POLYGON"),
the ITEM command creates two extra macros: item_name.POS.0 and
item_name.POS.m, where m = item_name.N.POINTS +1. For example, if you
are testing angles on a polygon with n vertices, as you test item_name.POS.1,
you can refer to the previous position as item_name.POS.0 instead of
item_name.POS.n. When testing item_name.POS.n, you can refer to the
following position as item_name.POS.n+1 instead of item_name.POS.1.

Always test item_name.N.POINTS when using the position macros. Remember
that obsolete position information from vertices with indices greater than the
current item_name.N.POINTS may be left behind from an earlier ITEM
command.

Using the BOX Keyword

For box components, you have two choices on how positions are stored in the
position macros. The default behavior is to set item_name.N.POINTS to "2" and
store opposite corners in item_name.POS.1 and item_name.POS.2.

However, if you prefer to use the same code for parsing the coordinate lists of
boxes or polygons, you can add the BOX keyword to the end of the ITEM
command. When BOX=POLYGON is included in the ITEM command and a
box component is selected, item_name.TYPE will be set to "POLYGON" instead
of "BOX", item_name.N.POINTS is set to 4, and the positions of all four vertices
will be listed in position macros item_name.POS.1 through item_name.POS.4.

ICED™ Commands: ITEM

180 ICED™ Command File Programmer's Reference

Selecting a Single Component

Exactly one component should be selected when the ITEM
command is executed.

If more than one component is selected when the ITEM command is executed,
the command will fail, and any remaining commands in the command file will
not be executed.

So it is best to select the component with lines similar to the following to insure
that exactly one component is selected.

Example: WHILE (%N.SELECT !=1){
UNSELECT ALL
$ Select single component. Press both mouse buttons to cancel.
SELECT NEAR

}

When the WHILE statement is executed for the first time, if one component is
already selected, the WHILE block is ignored. When this is not the case, all
components are unselected and the SELECT NEAR command is executed while
the $comment is displayed as a prompt. If the SELECT NEAR command selects
more than one component, then the loop executes again. If the user presses both
mouse buttons, the command file terminates.

Using the ADD.item_name Macro

One of the macros created by the ITEM command is ADD.item_name. When
this macro is executed as a command string, a new component based on the
current values in the other item_name macros is created.

The following example uses the ITEM command to change the width of a wire.

Example: @_GET_REAL.CMD;#default=5;#prompt="new width of wire";#min=.5
LOCAL #NEW_WIDTH = %RET.VALUE !save number typed by user

WHILE (%N.SELECT !=1){
UNSELECT ALL

You can put
statements like
these in a
command file
for re-use. See
SEL_ONE on
page 96.

The N.SELECT
system macro
contains the
number of
selected
components.

The SHOW
command will
not list an
ADD.item_name
macro.

Learn about
_GET_REAL-
.CMD on page
100.

ICED™ Commands: ITEM

ICED™ Command File Programmer's Reference 181

$ Select wire
SELECT WIRE NEAR

} !continued on next page
REMOVE #WIRE_ITEM* !Delete obsolete macros
ITEM LOCAL #WIRE_ITEM !Create new item macros
IF (CMP(%WIRE_ITEM.TYPE, "WIRE")!= 0){

ERROR Wire not selected or error encountered.
}
#WIRE_ITEM.WIDTH = %NEW_WIDTH

%ADD.WIRE_ITEM

DELETE !This deletes old wire.

The command file above begins by using the _GET_REAL.CMD command file
to obtain and verify the real number to be used as the new width of the wire. The
WHILE loop verifies that exactly one component is selected.

All obsolete information in any pre-existing WIRE_ITEM macros is deleted with
the REMOVE command. Next, the ITEM command is used to create macros
that contain the component information for the selected component. One of these
macros is the WIRE_ITEM.TYPE macro that is tested to insure that the selected
component is indeed a wire. If the user had a single non-wire component
selected before the command file was executed, this test avoids a mysterious
failure when the WIRE_ITEM.WIDTH macro is used. That macro will not exist
if the selected component is a box or polygon.

Next, the width in the appropriate item macro is replaced. Then the
%ADD.WIRE_ITEM statement executes an ADD command to create a new wire
identical to the selected wire, except for the new width.

Since the DELETE command to delete the old wire is the last statement, if any
statement in the command file fails, the old wire will not be deleted.

The ERROR
command posts
an error
message and
terminates the
command file.
See page 163.

ICED™ Commands: LIST

182 ICED™ Command File Programmer's Reference

LIST Save a named list of components.

LIST [DEFAULT] [GLOBAL | LOCAL] [#]list_name

This command is used to save a named set of components allowing you to
unselect everything and then select one component at a time from the list with a
SELECT LIST command.

Lists are valid only in the cell in which they were defined. (Therefore, you
cannot use a list to copy a set of components to another cell.) You cannot have
more than 6 lists for a given cell at any one time and a single list cannot contain
more than 10,000,000 components.

The DEFAULT keyword is used to force the editor to ignore a redefinition of an
existing list.

The GLOBAL or LOCAL choice of keywords defines the scope of the list
created. LOCAL lists are valid only in the command file that defines them, while
GLOBAL lists persist until you exit the current cell. (See When Lists Are
Removed on page 188 for more details on how long lists persist.)

The first time a LIST command is executed in a command file to define a
specific list_name, one of the [GLOBAL | LOCAL] keywords must be used.
Once the list has been created by a previous use of the command, then repeated
LIST commands using the same list_name can omit both keywords. When you
execute this command at the prompt (outside of a command file), you can omit
both keywords and a global list is created by default.

Example: LIST GLOBAL #MYLIST

This example defines a list with the name MYLIST. All selected components
will be added to the list. These components remain selected after the command.

Information on
the LIST
command is also
provided in the
Q:\ICWIN-
\DOC\LIST.TXT
file.

The easiest way
to copy a set of
components into
another cell is to
GROUP the
components into
a cell, ADD the
new cell to
another cell,
then
UNGROUP the
new cell.

The
SHOW1.CMD
file supplied
with the
installation uses
the LIST
command.

ICED™ Commands: LIST

ICED™ Command File Programmer's Reference 183

Example: UNSELECT ALL
ADD CELL NAND
SELECT NEW
UNGROUP
SELECT NEW
LIST GLOBAL #MYLIST
UNSELECT ALL; SELECT LIST #MYLIST NEXT

The example above demonstrates the LIST and SELECT LIST commands. The
cell NAND is added to the current cell, then ungrouped into its components.
Only those components are selected and placed in the list MYLIST. Then all
components are unselected, and the first component in the list is selected by the
last command. You can repeat the last statement over and over to select each
component imported from the NAND cell one at a time.

Selecting Components for a List

When no components are selected when a LIST command is executed, an
embedded SELECT NEAR command is executed to allow you to select
components for the list. If the user holds the <Shift> key down during the
embedded SELECT NEAR, a set of multiple components can be selected.

It is usually best to select the components for a list prior to executing the LIST
command. Both fully and partially selected components will be put on the list. A
component that was partially selected before being put on the list is fully selected
by a SELECT LIST command.

When the XSELECT mode is "ON" (the default mode), and no components are
selected when the LIST command is executed, then the LIST command will
generate an embedded SELECT NEAR command to allow the user to select
components. Add an XSELECT OFF command (see page 215) before the LIST
command if you prefer to have the LIST command create nothing when no
components are selected.

SELECT LIST
commands can
contain the
keywords,
PREVIOUS,
FIRST, or
LAST instead
of NEXT.

Any time you
are selecting
components,
you can hold the
<Shift> key to
allow you to
select as may
components as
required. Click
in an empty area
to finish
selection

See page 74 for
an overview on
selecting
components.

The
LIST_EXISTS
function tells
you if a list has
been created.
See page 188.

ICED™ Commands: LIST

184 ICED™ Command File Programmer's Reference

List Names

The following restrictions are enforced for a list_name:
• List names can be from 1 to 16 characters long.
• Valid characters consist of all alphanumeric characters and '.', '_', and '$'.
• Do not use a number as the first character in a list name.

The '#' before the list_name is optional when defining a list for the first time.
This character is often used to identify macro names in many other commands,
and a list is simply a special case of a macro. However, since the parser expects
a list_name after the required LOCAL or GLOBAL keyword, the '#' is not
required.

However, if you are redefining the contents of an existing list, you can omit the
LOCAL or GLOBAL keywords. In this case, the '#' is required to tell the parser
that the following string represents a list name. It is a good programming
practice to always precede a list name with a '#'.

Example: SELECT ALL
LIST #MYLIST !might cause syntax error

In a command file, the LIST command above would result in a syntax error
unless the list MYLIST was previously defined with either the LOCAL or
GLOBAL keywords. If this is the case, the previous contents of the list are
replaced with the list of all components in the current cell.

Building a Set of Components in a Loop

The following example selects small boxes on a contact layer. It saves the set of
small contacts on a second list for further processing.

There is no simple way to add components to an existing list. Since we want to
build up a new set of small contacts as the loop is executed repeatedly, we use
the select stack to store the small contacts until the loop is complete, then create
the final list from the set of components on the stack.

You can use the
VALID_LIST_
NAME function
to verify that a
string is valid as
a list name. See
page 188.

Use the SHOW
LIST=*
command to list
currently
defined lists.

ICED™ Commands: LIST

ICED™ Command File Programmer's Reference 185

Example: LOG LEVEL=BRIEF SCREEN=OFF ! Speeds up command file
DEFAULT LOCAL #MIN_AREA = .5
DEFAULT LOCAL #CONTLAYER = "CONT"
LOCAL #NOT_DONE = 1

UNBLANK ALL; UNPROTECT ALL; !Make all components selectable
UNSELECT ALL
SELECT PUSH !empty select stack
XSELECT OFF !required in case no components are on CONTLAYER
SELECT LAYER=%CONTLAYER BOXES
LIST LOCAL #ALLCONTACTS
UNSELECT ALL

WHILE (%NOT_DONE){
SELECT LIST #ALLCONTACTS NEXT

IF (%N.SELECT == 0) #NOT_DONE=0 ! Set to FALSE
ELSE{

ITEM LOCAL #THIS

IF ((CMP(%THIS.TYPE, "BOX")== 0) && &
(%THIS.AREA <= %MIN_AREA)){

SELECT POP !leaves this component selected
UNSELECT PUSH !pushes selected components on stack

 }
}
UNSELECT ALL

}

SELECT POP
LIST GLOBAL #SMALLCONTACTS !Persists after end of command file

Learn more
about the select
stack in the
SELECT
command
description in
the IC Layout
Editor
Reference
Manual.

The ITEM
command stores
information on
a single
component in a
set of macros.
See page 173.
Note that you
can specify the
LOCAL scope
keyword on the
ITEM command
in the loop.

ICED™ Commands: LIST

186 ICED™ Command File Programmer's Reference

Macros Created by the LIST Command

All of these macros can be referenced only after the corresponding LIST
#list_name command is executed. You cannot set their values directly. These
macros are also described in more detail in the section on system macros
beginning on page 284.

LIST.EOL. list_name
This macro is set initially to "-1" for a new list. Every time a SELECT LIST
command for that list is executed, the macro is reset to one of the following
values:

"0" when a component was successfully selected by the SELECT LIST
command.

"1" when the end-of-list flag is set and no component was selected by the
SELECT LIST command.

Example: UNSELECT ALL; SELECT LIST #MYLIST FIRST
WHILE (%LIST.EOL.MYLIST == 0){

!process component
UNSELECT ALL; SELECT LIST #MYLIST NEXT

}
$out of loop, already passed end of list
SELECT LIST #MYLIST NEXT !This stmt causes an error

This loop will process every component on the list one at a time until the
SELECT LIST command does not select a component because it has reached the
end of the list. This will not cause an error condition or halt the command file.
Instead the LIST.EOL.MYLIST macro is set to 1 and the command file
continues. When the WHILE condition is tested, the loop ends and control passes
to the $comment after the WHILE block. However, when the final SELECT
LIST statement is executed, the end-of-list flag is already set when the command
is executed, so an error is generated and the command file is halted.

These macros
are deleted
when the
REMOVE LIST
list_name
command is
executed. See
page 188.

See
_DRCTAG1-
.CMD for an
example using
LIST.EMPTY
and LIST.EOL.

To see another
example of a
SELECT LIST
command, refer
to page 284.

ICED™ Commands: LIST

ICED™ Command File Programmer's Reference 187

LIST.EMPTY.list_name
This macro will be equal to "0" when components are in list list_name.
Otherwise it is set to"1". This may be due to the fact that the XSELECT mode
was off and that no components were selected when the LIST command was
executed. Or components that were on the list when it was created have been
deleted since the LIST command was executed.

LIST.LEN. list_name
This macro will contain the number of items added to the list. If components are
deleted after the list was created, the value of the macro does not change.

LIST.INDEX. list_name
When a list is created by the LIST command, each component is assigned an
index. The list is sorted by ID number (i.e. the component having the lowest ID
number will have a list index of 1, the second lowest ID number is assigned an
index of 2 etc.) The last has an index of n, where n is the number of components
on the list. Deleting a component on the list (or otherwise removing it with a
MERGE or GROUP command) does not affect the list indices of any of the
remaining components on the list.

The LIST.INDEX. list_name macro holds current list index. For a new list, the
value of the macro is 0. SELECT LIST commands change the value of the
macro in the following ways:

SELECT LIST list_name FIRST sets the index macro to 1.
SELECT LIST list_name NEXT adds 1 to the index. Then the

command tests to see that the component with this index exists.
If it does it is selected. If it does not, the SELECT command
adds 1 to the index and tries again. Once the index is greater
than n, the LIST.EOL.list_name macro is set to 1.

SELECT LIST list_name LAST sets the index macro to n.
SELECT LIST list_name PREV subtracts 1 from the index. Then the

command tests to see that the component with this index exists.
If it does it is selected. If it does not, the SELECT command
subtracts 1 from the index and tries again. Once the index is set
to 0, the LIST.EOL.list_name macro is set to 1.

See an example
on page 230.

ICED™ Commands: LIST

188 ICED™ Command File Programmer's Reference

Functions Related to Lists

These functions are also covered in the section on functions on pages 244 and
230.

VALID_LIST_NAME()
This function will return "1" if the string in parentheses can be used as the name
of a list. Otherwise it will return "0".

Example: #VALID={VALID_LIST_NAME("MORE_THAN_16_CHARACTERS")}

When this statement is executed, the value of the VALID macro will be set to
"0". (Remember that curly braces are required around a function call, unless the
function is called in the condition statement of an IF or WHILE command.)

LIST_EXISTS()
This function will return a "1" of the string in parentheses is the name of a
previously created list. Other wise it returns "0".

Example: IF (LIST_EXISTS("MYLIST")) { !process list

When Lists Are Removed

Local lists are removed automatically when the command file in which they are
declared is complete.

Global lists are removed automatically as soon as you EXIT, QUIT, or LEAVE
the current cell.

Lists can be deleted at any time with a REMOVE LIST #list_name command.

When a list is removed by any method, all macros created by the LIST command
are deleted (e.g. LIST.EOL.list_name, etc.)

Refer to the
REMOVE
command on
page 203.

ICED™ Commands: LIST

ICED™ Command File Programmer's Reference 189

Efficiency of Using a List When Looping Through Components

Suppose that you need to perform individual processing on many components of
your cell. You need to create a while loop that selects each relevant component
one at a time. Using a SELECT ID=int command in the loop to select each
component is inefficient. The entire component database is interrogated each
time this command is executed to find the component with the required id. It is
far more efficient to select each component from a list. See an example on page
185.

You can use one
of the methods
described
beginning on
page 22 to
execute a
command file in
all cells of your
design.

ICED™ Commands: LOG

190 ICED™ Command File Programmer's Reference

LOG Speed command files by controlling how commands are logged.

LOG OFF
or

LOG [SCREEN=(ON | OFF)] [LEVEL=(BRIEF | NORMAL | DEBUG)]

The LOG command is used to control how commands in command files are
logged (i.e. copied) to the journal file and echoed on the status line of the layout
editor window. The primary use of these commands is to speed command file
execution time.

When no LOG command overrides the default behavior, each of the commands
in a command file will be echoed on the screen and logged in the journal file. In
many command files, most the execution time is spent performing these
command logs.

If you use the LOG OFF command as the first command in a command file, only
the @file_name command will be logged in the journal file, and no commands
will be echoed on the screen. When the LOG OFF command is used, it must be
the first command executed in the command file. It is an error to execute a LOG
OFF command outside of a command file. See Effects of the LOG OFF
Command below to better understand how this command affects your ability to
recover from errors.

The SCREEN keyword is used to control whether or not commands in the
command file will be echoed on the screen display. See page 193. The LEVEL
keyword is used to control what kind of commands will be logged. We will
cover the different settings on page 194.

LOG [SCREEN=(ON | OFF)] [LEVEL=(BRIEF | NORMAL | DEBUG)]
commands can be executed anywhere in a command file, and you can change the
logging mode more than once in a command file. When a command file is
completed, the LOG mode always returns the value it had before the command
file began.

See an overview
on control file
efficiency on
page 130.

The journal file
is not only a
record of what
was done during
the edit session,
but it can also
be used to
recover from
errors in the
command file.
To learn more
about journal
files, see page
128 or the IC
Layout Editor
Reference
Manual.

ICED™ Commands: LOG

ICED™ Command File Programmer's Reference 191

These commands can also be executed outside of a command file which will
change the defaults for any command files executed during the session. In a
session where no LOG commands have yet been executed, the defaults are:

LOG SCREEN = ON LEVEL = NORMAL

A LOG command with no parameters reports the current settings on the status
line of the screen and in the journal file.

Effects of the LOG OFF Command

When the LOG mode is not turned off, ICED™ will insert comments in the
journal file to indicate that control passed to a command file. Then each
command in the command file that modified geometry or system settings will be
logged into the journal file as well. The journal file will look similar to:

! @Q:\ICWIN\AUXIL\TEST.CMD
XSELECT OFF
SEL LAYER 100 ALL
DELETE
LEAVE
! Exit file Q:\ICWIN\AUXIL\TEST.CMD

Unless speed is a major concern, it is strongly recommended to leave the LOG
mode on. The journal file is not only a history of what actions were taken with
your design, but also a recovery mechanism if your system crashes during your
session, or if you make a major mistake. It is best to have all commands
executed logged into the journal file.

The only good reason to use LOG OFF is for speed during huge command files.
Logging to the journal file does increase run time, but for a typical command file,
the time increase is negligible.

ICED™ Commands: LOG

192 ICED™ Command File Programmer's Reference

We recommend that you restrict use of the LOG OFF command to large
command files that do not create geometry that you may need to recover. The
command files generated by the DRC (Design Rule Checker, available from IC
Editors, Inc.) and NLE (Net List Extractor, part of the LVS tool available from
IC Editors, Inc.) are good examples of command files where LOG OFF is
appropriate. Since these command files generate only temporary geometry to
indicate errors, you will never need to recover from an error in the command file.

Actions taken by command files that contain user interactions (e.g. a prompt for
the user to supply a macro value or select a component) will not be automatically
re-created by executing the journal file when the log mode is off. This is because
the results of the user interactions will not be recorded in the journal file. Do not
use the LOG OFF command in these types of command files or you will
prohibit automatic recovery of lost work with the journal file.

If a command file that uses LOG OFF as the first command calls a nested
command file, there is no way for the nested command file to turn the LOG mode
back on.

If the LOG mode is on in command file, and a nested command file uses a LOG
OFF command as the first statement in the file, the LOG mode will remain off
until the nested command file is complete. The LOG mode in use by the first
command file will then be back in effect.

Even when no LOG OFF command is included in a command file, you can turn
logging off on the same line as the @file_name command. The LOG OFF
command will then be executed as though it was the first command in the file.

Example: @DRCOUT.CMD; LOG OFF

The commands in DRCOUT.CMD will not be logged in the journal file. Only
the call to the command file is logged to the journal file. In this case, the journal
file will look similar to:

! @Q:\ICWIN\DRC\DRCOUT.CMD
! LOG OFF
@Q:\ICWIN\DRC\DRCOUT.CMD LOG=OFF
! Exit file Q:\ICWIN\DRC\DRCOUT.CMD

ICED™ Commands: LOG

ICED™ Command File Programmer's Reference 193

If this journal file is executed in a new ICED™ session to recover work, the
command file will be called and re-executed. However, recovery of work done
by that command file is not guaranteed. If the command file has been changed,
the new version is executed. Or if a command file contains a SELECT command
that requests the user to select a component, and the user does not select the same
component he did the first time, the effect of the command file will be different
the second time it is executed.

Showing Progress Messages During LOG OFF

The LOG OFF command also prevents commands from being echoed on the
status line of the display screen. In a long command file, the session will appear
"frozen" since no visible evidence that a command file is executing will appear
on the display. The user may be confused by this, and even fail to realize when
the command file is completed.

Adding $comment commands to the command file cannot help this situation,
since they will be prevented from being displayed on the screen. However, if
you prefix the comment with double dollar signs ("$$") then the comment will
show on the screen and in the log file even when the log mode is off. This is a
good way to show progress indicators in your command file. See the $comment
command for more details.

Effects of the LOG SCREEN =(ON |OFF) Command

A LOG SCREEN=OFF command prevents all commands except for $comment
commands from being echoed on the status line of the display. This command
does not affect the logging of commands to the journal file.

Turning off the logging of commands to the screen display with this command
can speed up a command file considerably, and recovery of a crashed session is
not compromised as it is in the case of the LOG OFF command.

The message in
a RETURN
command will
not be displayed
when the log
mode is OFF or
SCREEN=OFF.

ICED™ Commands: LOG

194 ICED™ Command File Programmer's Reference

In order to see the speed increase associated with a LOG SCREEN OFF
command, the view mode should also be off. (I.E. No VIEW ON command
should be in effect.) When the view mode is on, commands will still be echoed
on the command line as they are executed, despite the execution of the LOG
SCREEN OFF command.

If the view mode is off, and you have turned off the echo of commands to the
status line with a LOG SCREEN OFF command, the only commands displayed
on the screen are $comments. You may want to add some $comment or
$$comment commands to display progress reports. Otherwise, the user will see
no visible evidence that your command file is executing.

Effects of the LOG [LEVEL=(BRIEF | NORMAL | DEBUG)] Command

Several commands can optionally produce !comments in the journal file. (These
comments are not shown on the screen.) These comments provide extra
information that can be of interest when determining exactly what happened
during a command, but they will not affect how the commands in the journal file
are executed. Adding these comments to the journal file takes extra time during
the execution of a command file.

LOG LEVELType of
command

Example
BRIEF NORMAL DEBUG

Commands that
alter geometry or
alter system
settings

ADD,
MOVE,
GRID, LOG

Command
is logged

Command is logged Command is logged

Commands that
alter view
window

VIEW IN Command
is logged

Command is logged
and !comment
reports new window

Command is logged
and !comment
reports new window

Macro definition
or assignment

#I ={%I + 1} !comment reports
assignment

!comment reports
assignment

Conditional
execution

IF, WHILE !comment reports if
test was passed

Figure 28: Effects of log level on journal file for different commands

ICED™ Commands: LOG

ICED™ Command File Programmer's Reference 195

You can speed up a long command file by adding a LOG LEVEL=BRIEF
command to your command file. This will prevent the generation of most
!comments. This can decrease the size of the journal file considerably without
affecting its ability to recover your work.

If you are having trouble debugging a command file, you can execute a LOG
LEVEL=DEBUG command. This will add comments that help you follow
exactly how the conditional statements were executed. The execution of
conditional statement commands (IF, ELSE, ELSEIF, and WHILE) are not
reflected in the journal file unless the LOG level is DEBUG.

Example: LOCAL #FIRST_BOX $PROMPT="DIGITIZE FIRST BOX" BOX
LOCAL #I = 1
WHILE (%I < 4) {

ADD BOX OFFSET={%I * (0.5, 0.5)} AT %FIRST_BOX
#I = {%I + 1}

}

The lines above will add only 3 boxes, none of which will be at the location
digitized by the user. Let us assume that this is not what the writer of the
command file expected. If the lines above are executed when the log level is
NORMAL (the default), the journal file will look like the following:

! LOCAL FIRST_BOX="(65.0,-55.0) (70.0,-50.0)"
! LOCAL I="1"
ADD BOX LAYER=WELL ID=163 OFFSET=(0.5, 0.5) AT (65.0,-55.0) (70.0,-50.0)
! LOCAL I="2"
ADD BOX LAYER=WELL ID=164 OFFSET=(1.0, 1.0) AT (65.0,-55.0) (70.0,-50.0)
! LOCAL I="3"
ADD BOX LAYER=WELL ID=165 OFFSET=(1.5, 1.5) AT (65.0,-55.0) (70.0,-50.0)
! LOCAL I="4"

It is not immediately obvious why the loop executed only 3 times since no record
of the execution of the WHILE command is reported in the log file.

If a LOG LEVEL=DEBUG command is added before the lines are executed, the
log will add !comments each time the test in the WHILE command is evaluated.
The journal file will then look like the following:

ICED™ Commands: LOG

196 ICED™ Command File Programmer's Reference

! LOCAL FIRST_BOX="(60.0,-45.0) (65.0,-40.0)"
! LOCAL I="1"
! WHILE(1){ -- Begin block -- Line 4
ADD BOX LAYER=WELL ID=160 OFFSET=(0.5, 0.5) AT (60.0,-45.0) (65.0,-40.0)
! LOCAL I="2"
! } -- End WHILE block -- Line 7
! WHILE(1){ -- Begin block -- Line 4
ADD BOX LAYER=WELL ID=161 OFFSET=(1.0, 1.0) AT (60.0,-45.0) (65.0,-40.0)
! LOCAL I="3"
! } -- End WHILE block -- Line 7
! WHILE(1){ -- Begin block -- Line 4
ADD BOX LAYER=WELL ID=162 OFFSET=(1.5, 1.5) AT (60.0,-45.0) (65.0,-40.0)
! LOCAL I="4"
! } -- End WHILE block -- Line 7
! WHILE(0){ -- Skip to end of block -- Line 4
! } -- End of block -- Line 7

Now the writer can see exactly what the value of the macro I was during each
execution of the loop. The line numbers mentioned in the !comments about the
WHILE block refer to the line number of the WHILE statement in the command
file.

ICED™ Commands: MARK_SUBCELLS

ICED™ Command File Programmer's Reference 197

MARK_SUBCELLS Initialize SUBCELL.EDIT system macro

MARK_SUBCELLS [LAYERS=layer_list]

This ICED™ command is used to initialize the data in the
CELL.DEPTH.cell_index and SUBCELL.EDIT.cell_index system macros. (See
pages 259 and 296.) It will traverse the cell table and determine the cell
hierarchy tree for all cells. This information is used to determine the values of
the indicated system macros.

For the CELL.DEPTH.cell_index macros, MARK_SUBCELLS will store for
each cell the depth of cells nested inside of it. The layer_list has no effect on the
values stored in these macros.

For SUBCELL.EDIT.cell_index system macros, MARK_SUBCELLS will store
an edit code for each cell. Only subcells of the current cell will have a non-zero
code. The edit code of a cell is determined by the type of cell library in which it
is contained. The SUBCELL.EDIT.cell_index macro will return different values
for cells that can be edited and saved vs. cells that are in read-only libraries.

If you prefer to restrict the list of cells marked with non-zero
SUBCELL.EDIT.cell_index system macros to those cells that contain shapes on
specific layers, add the LAYERS keyword followed by the list of layers in layer
list syntax. (See page the IC Layout Editor Reference Manual for complete layer
list syntax and examples.)

Example: MARK_SUBCELLS LAYERS=METAL1+METAL2
WHILE (%N < %MAX.CELL){

IF (%SUBCELL.EDIT.%N >0) {
!process cell

The cell table is
the list of all
cells currently
open in the
layout editor.
The list includes
all subcells of
explicitly
opened cells.
See page 104.

See some
examples of
layer lists on
page 257.

See page 126 to
lean about
incrementing
counter macros
like N in this
example.

ICED™ Commands: MARK_SUBCELLS

198 ICED™ Command File Programmer's Reference

This use of the MARK_SUBCELLS command will initialize the data in the
SUBCELL.EDIT.cell_index system macros so that they will contain non-zero
numbers only for cells that meet both of the following criteria:

• the indicated cell must be nested in the cell hierarchy of the current cell , and

• the cell must directly contain shapes on layer METAL1 or METAL2.

When the N macro in the example above contains the index of a cell that meets
both of these criteria, then the code inside of the IF block would be executed.

Note that a subcell must contain shapes on the indicated layer directly. A cell
can contain a marked subcell without being marked itself.

The data stored in the system macros by this command is not updated
automatically. If you run the MARK_SUBCELLS command, then add or delete
a subcell from the current cell, then get the edit status for that subcell from the
SUBCELL.EDIT.cell_index macro, the value returned will not reflect that the
status has changed since the MARK_SUBCELLS command was executed.

The information stored by MARK_SUBCELLS is discarded when you terminate
the editor. It is not saved with the cell file.

The possible
values of the
SUBCELL.EDIT.
cell_index
system macros
are listed on page
296.

See another
example of this
command in the
SUBCELL.EDIT
description on
page 296.

ICED™ Commands: PAUSE

ICED™ Command File Programmer's Reference 199

PAUSE Create a pause in a command file.

PAUSE [seconds] [" [+ | - | *] msg_string"]

The PAUSE command is used to insert wait states in command files. It is usually
used to give a command file user a chance to see a message. (The command will
have no effect if typed in during an ICED™ session except that it will be logged
into the journal file.}

Use quotes around the msg_string when it can be misinterpreted. For example,
when the string begins with a number that can be interpreted as the seconds
parameter.

If used, the seconds parameter determines how long ICED™ will be frozen. The
seconds parameter must be an real number in the range 0:60. When you omit
seconds, or specify '0', then the command file is paused until the user hits a key
or mouse button. A prompt indicating this replaces the command prompt near
the bottom of the screen.

Example: $ This message is left on history line during pause
PAUSE

These lines will leave the $comment displayed on the history line until the user
presses a key or mouse button. The menu is not displayed. Once the user has
interrupted the pause, the execution of the command file continues.

When you supply a msg_string, it is
displayed on the command line during
the wait. You can add one of the
prefixes in Figure 29 to select the color
used to display the message.

The PROMPT
command can
be used to
temporarily
replace the
message in the
prompt area of
the command
line.

Prefix character msg_string
color

+ green
- red

* or none (default) white

Figure 29: PAUSE message colors

ICED™ Commands: PAUSE

200 ICED™ Command File Programmer's Reference

Example: PAUSE This message is drawn in white on the command line.
PAUSE -This message is drawn in red on the command line.

If seconds is non-zero, the command file will be paused for that length of time
before the command file automatically continues. The user can interrupt the wait
by clicking the mouse or typing any key on the keyboard. However, no message
informing the user of this is displayed unless you supply an appropriate
msg_string in the command.

Example: $ This message is left on history line during pause
PAUSE 10 Press key or mouse button to continue immediately.
$ This message is displayed on history line after pause is done

These lines will display the first two messages for 10 seconds. A countdown in
yellow replaces the command prompt. When the countdown gets to 0, the
execution of the command file continues.

The command parser performs macro replacement in the msg_string. You
should surround the msg_string with quotes if it uses syntax that may cause
parsing conflicts.

Example: PAUSE "%MYMAC errors found"

Before this command is executed, the value of the MYMAC macro will replace
the %MYMAC reference in the message string. Since the example above omits
the seconds parameter, if MYMAC contained a number, and the quotes were not
present, the parser would interpret the number as the seconds parameter of the
PAUSE command.

Updating the Display Window

Older versions of ICED™ required that you change the VIEW mode before a
PAUSE command to force the display to be updated. Versions newer than 4.86
no longer require this. The display is now automatically updated before the
pause no matter what the VIEW mode is.

ICED™ Commands: PROMPT

ICED™ Command File Programmer's Reference 201

PROMPT Change prompt message on the command line.

PROMPT ="string"

This command is used to replace the usual prompt string to the left of the '>' on
the command line in the layout editor window. The normal "Layer_id; Sel=n;
cell_name" prompt will temporarily be replaced with the string specified in the
PROMPT command until after the next command is completed. The prompt
string will be displayed in an easy-to-notice yellow color.

Keep string as brief as possible. Depending on the size of the screen, a prompt of
more than 35 characters may fill more than half of the command line. If string is
longer than 50 characters, only the first 50 characters will be displayed.

The PROMPT command is particularly useful prior to commands that have the
user interact with the mouse. SELECT commands, commands that issue an
embedded SELECT command (e.g. COPY), and ADD commands are all much
more likely to have the desired result when you replace the prompt so that the
user understands what to do.

The prompt returns to normal after one command is executed. Therefore, do not
include any command between the PROMPT command and the user interaction
command during which you want the prompt displayed.

Example: PROMPT "Add wire outlining bus"
ADD WIRE LAYER 250 WIDTH=%TOTAL_WIDTH TYPE=0

Let us assume that the command file fragment above comes after a local macro
with the name TOTAL_WIDTH has been defined. The indicated prompt will be
displayed on the screen while the ADD WIRE command is waiting for the user to
digitize the wire. The screen will look similar to the image shown on the next
page.

In older
versions of
ICED™, the
VIEW ON
command was
required for the
user to see the
prompt. This is
no longer the
case.

See the
$comment and
PAUSE
commands to
display an
ordinary
message to the
user.

ICED™ Commands: PROMPT

202 ICED™ Command File Programmer's Reference

Figure 30: ICED™ screen with command line prompt replaced.

ICED™ Commands: REMOVE

ICED™ Command File Programmer's Reference 203

REMOVE Delete macros

REMOVE [#]macro_name_string
or

REMOVE LIST [#]list_name_string

Use this command to delete user-defined macros. Macros defined with the
GLOBAL keyword will remain in storage until the end of your current session
unless you explicitly delete them with this command. (Remember that macros
defined with the LOCAL keyword are removed automatically at the end of the
command file in which they are defined.)

Example: GLOBAL #MY_MAC=0
GLOBAL #SUCCESS = 0

!missing statements that process data and set SUCCESS to
 ! non-zero number if the command file is successful.
IF (%SUCCESS){

REMOVE #MY_MAC
}

This command file defines a global macro named MY_MAC. Let us assume that
the missing statements assign a value to MY_MAC that might help you figure
out what went wrong if the command file is not successful. You want to be able
to look at the final value of MY_MAC only if the command file is not successful.
If the command file is successful, this macro will be deleted.

Example: REMOVE LIST=MYLIST

The command above will delete a list with the name "MYLIST". Note that the '#'
is not required before name_string in a REMOVE command. (We still
recommend its use for consistency with other commands where it is required)

Wildcard characters can be included in the name string. This allows you to
remove more than one macro or list with a single REMOVE command.

ICED™ Commands: REMOVE

204 ICED™ Command File Programmer's Reference

* This wildcard character can be used only once in the string. All
macros that have names matching the name string when zero or
more characters replace the * will be deleted.

? This wildcard character means that any single character can
replace each '?' to match macro names. You can use multiple '?'s
in one name string.

Example: REMOVE #*MAC
REMOVE #MY_*
REMOVE #???MAC*

Any of these commands will remove a macro with the name MY_MAC.. Many
other macro names may also match each of these macro_name_strings. The last
command will also remove macros with the names "ABCMAC", "XXYMAC",
and "XXYMAC1234". However, a macro with the name "ABMAC" would not
be removed because it has only two characters before the "MAC".

Example: REMOVE #RES*

The command above is used in the RES.CMD example on page 305 to delete all
global macros created by the command file. It is a very good practice to name all
of the macros in a command file with the same prefix string. One good reason is
that you can delete them all with a single REMOVE command similar to the one
above.

Example: REMOVE *
REMOVE #*

Either command above will delete all user-defined macros. This includes
keyboard macros defined with the KEY command. However, this command
will not delete any lists. The LIST keyword must be included to delete a list.

It is not an error to delete a list or macro that does not exist. A command file will
not be halted with an error message even when a REMOVE command has no
effect. Removal of a system macro will have no effect.

ICED™ Commands: RETURN

ICED™ Command File Programmer's Reference 205

RETURN Terminate command file or exit shell state

RETURN ["msg_string"]

This command immediately ends a command file. It is usually used in
combination with an IF, ELSEIF, ELSE or WHILE command to end a command
file before the end of the file if certain conditions are true. Since a command file
will automatically return after the last statement in the file is executed, a
RETURN command is not required at the end of a command file.

Example: LOCAL #FAILURE = 0
. !missing statements that process data and set FAILURE to
. ! non-zero number if the commands are unable to perform their function.
IF (%FAILURE){

RETURN "FAILURE: return code = %FAILURE"
}

Since the %FAILURE macro reference in the RETURN message is executed
before the command file is terminated, the value of the local macro FAILURE is
reported in the return message before it is deleted. This command will leave the
indicated comment displayed near the bottom of the window below the prompt
line when control is returned to the layout editor.

The return message is optional. The return message will not be visible when
either a LOG OFF or LOG SCREEN OFF command is in effect. The return
message will not be recorded in the journal file when the LOG OFF command is
in effect.

A RETURN command in a nested command file will terminate only the
command file in which it is located. Control will then pass to the statement after
the @file_name command that called the nested command file.

Recent versions
of ICED™ use
this command
to return from a
shell. See the
next page.

The ERROR
command can
also be used to
immediately
end a command
file with an
error message.

When you add
an error handler
block, precede it
with a
RETURN com-
mand so that it
does not get
executed when
command file is
successful. See
page 165.

ICED™ Commands: RETURN

206 ICED™ Command File Programmer's Reference

The next example uses RETURN in a conditional statement to exit the command
file from within an infinite loop. The command file terminates automatically
after all components in a list have been processed.

Example: WHILE (1) {
 UNSEL ALL; SELECT LIST #tmp NEXT ! Select next component on list
 IF(%N.SELECT==0) RETURN ! Nothing left on list, we're done

!missing processing statements that process selected component
}
! statements after WHILE block would never get executed

Returning from a Shell

The RETURN command is also used to return from a temporary command shell.
You can type the RETURN command at the command prompt, or use it as a
menu option in a special menu, to return control to the command file that created
the shell. Refer to the SHELL command on page 207.

See page 182 to
learn about lists.

ICED™ Commands: SHELL

ICED™ Command File Programmer's Reference 207

SHELL Suspend command file and execute interactive commands.

SHELL [MENU=(menu_name | *)[:submenu_name]] [NAME=shell_name]

This command is used to suspend the current command file and return control to
the user interactively. The user can execute any commands with any of the
standard methods (including executing other command files). When the user is
finished with the shell, he should execute a RETURN command to return control
to the command file at the statement after the SHELL command.

Example: PAUSE "Press <Enter>, select the desired components, &
then type 'RETURN' to continue."
SHELL

When the commands above are executed, the command file is suspended and the
user can interact in the editor as though no command file is currently executing.
The only evidence that a shell has been entered is that the string "Shell=1" is
added to the beginning of the command prompt. The user must type "RETURN"
at the command prompt to close the shell and return to the command file.

If the optional MENU parameter is specified, the menu menu_name.MEN is
loaded before control is given to the user. Do not specify the ".MEN" file
extension in the menu_name parameter.

Example: SHELL MENU=MYMENU

When the command above is executed, the effect is the same as the first example,
except that the menu MYMENU.MEN is loaded before the command file is
suspended. The original menu is restored when the user returns to the original
command file.

See AUXUL\-
_LOOP2.CMD
for a sample
command file
that uses a shell.

The DOS or
SPAWN
command opens
a DOS console
shell. See the
IC Layout
Editor
Reference
Manual.

To learn more
about menus,
see the
MkMenu utility
in the IC Layout
Editor
Reference
Manual.

ICED™ Commands: SHELL

208 ICED™ Command File Programmer's Reference

The RETURN command can be assigned to a menu option in your menu file. In
this case, the user can return to the command file by selecting the option from the
menu.

Example: SHELL MENU=MYMENU:MYSUB

If the file MYMENU.MEN defines a submenu "MYSUB" using lines similar to
those below, that submenu is selected before the command file is suspended.

#unused mysub 2
* 0 1 "DELETE" "delete" RET
-12 1 "RETURN" "return" RET
#end

Example: SHELL MENU=*

When you have already loaded a menu and selected a submenu, this use of the
SHELL command begins a shell with the default top-level menu selected.

When the optional NAME keyword is used and another shell with the same name
is still active, ICED™ will report an error and halt the command file. Use this
form of the SHELL command to prevent a user from accidentally launching a
shell from within the same shell.

Example: SHELL NAME=MYSHELL

Suppose the SHELL command above is included in a command file X.cmd. If
the user types @X, and opens the shell, then types @X at the prompt while the
shell with the same name is already open, then an error is reported in red at the
bottom of the window and rest of the second call to X.CMD is not processed.
However the first call to X.CMD is not interrupted and the first shell remains
open.

When the NAME keyword is not used, nothing prevents you from opening a
succession of shells. The number of open shells is reported in the command
prompt. You can have no more than 8 open shells.

See
DRCTAG.CMD
and
SHOW1.CMD
in the AUXUL
directory for
sample SHELL
commands that
use menus and
submenus.

For an example
of a custom
menu source
file, see
SAMPLES\-
DRC.DAT, the
source file for
AUXIL\-
DRC.MEN.

ICED™ Commands: SKIP_TO

ICED™ Command File Programmer's Reference 209

SKIP_TO Force interpreter to go directly to a specific line.

SKIP_TO label_name[:]

The SKIP_TO command causes the command interpreter to keep skipping whole
command lines in the current file until it reaches a statement with label
label_name. Skipped commands will not be processed at all. Macro references
will not be replaced. Even syntax mistakes in the skipped lines will not halt
execution.

The simplest way to label a statement is to type a label string followed by colon
":". More details on label syntax are provided on page 32.

Example: SKIPTO JAIL
$Passing GO, Collect $200 !this will not be executed
JAIL:
! lines following the label will be executed.

The SKIP_TO command above will cause the command interpreter to ignore all
succeeding lines until it processes the statement labeled "JAIL". The $comment
command will not be executed. Note that the '_' can be omitted from the
SKIP_TO keyword.

Avoid labeling statements inside of WHILE, IF, or ELSEIF blocks. While it is
not an error to label statements inside of a block, skipping into a block can have
unforeseen consequences.

Use the
BACK_TO
command
instead to
search
backward for a
labeled
statement.

The SKIP_TO
command is
especially
useful as an
error handler in
the
ERROR.CMD
macro. See
page 165.

ICED™ Commands: VIEW (ON | OFF)

210 ICED™ Command File Programmer's Reference

VIEW (ON | OFF) Control display refresh during command files.

VIEW (ON | OFF)

Outside of command files, ICED™ updates the display after each command it
executes. The display update usually takes most of the time required to execute
the command. The VIEW ON and VIEW OFF commands allow you to enable or
inhibit the display update during the execution of command files. The VIEW
OFF mode, which inhibits display update during command files, results in an
order of magnitude decrease in execution time. This is the default for new cells.

When the view mode is OFF, commands in a command file will not be displayed
on the command line near the bottom of the window while they are being
executed. If geometry is created or modified, this will not be reflected in the
display until the command file is completed, or until a command is executed
while the VIEW mode is set to ON. ($Comments are seen on the status line in
either view mode.)

Commands in a command file that require the user to select or digitize
components temporarily set the view mode set to ON. You no longer need to add
VIEW ON commands to ensure that the view is updated correctly during these
types of commands.

Example: VIEW OFF
WHILE (%COUNT <=32000){

!missing processing that creates components
$ %COUNT components added. Press both mouse buttons to abort.
PAUSE
#COUNTER = {%COUNTER + 1}

}

The command file fragment above consists of a while loop that may execute
32000 times. The block of lines in the middle allows the user to see the progress
of the command file and abort it if it is not performing as expected. Even when

See the LOG
SCREEN
commands to
control the
update of the
status line
during
command files.

See page 162 to
see an example
of posting a
message every
100th time
through a loop.

ICED™ Commands: VIEW (ON | OFF)

ICED™ Command File Programmer's Reference 211

the VIEW mode is OFF, the display will be updated automatically to reflect the
current design by the PAUSE command.

When ICED™ executes a VIEW ON or VIEW OFF command outside of a
command file, the default view mode for all command files executed in the
current session is modified. When one of these commands is executed in a
command file, it affects the view mode only during the current command file. In
either case, this command does not affect the automatic refresh after every
command entered from the keyboard or menus.

When ICED™ executes a command file, it begins execution with the current value
of the view mode. This value remains in effect until it is changed by another
VIEW ON or VIEW OFF command. When ICED™ exits a command file, it
resets the view mode to what it was before entering the command file. Thus, a
VIEW ON or VIEW OFF command in a command file affects only the view
mode for the current command file and any command files it calls.

There are two other commands that begin with the keyword VIEW. The VIEW
command is used to alter the view window. The VIEW LIMIT command is
used to speed screen refreshes by controlling which components are drawn.
Learn more about these commands in the IC Layout Editor Reference Manual.

ICED™ Commands: WHILE

212 ICED™ Command File Programmer's Reference

WHILE Execute block of statements more than once

WHILE (boolean_expression) {
!Block of statements

}

This command will continue executing a block of statements as long as the
Boolean expression evaluates to TRUE (i.e. a non-zero number).

The Boolean expression is evaluated before the block of statements is executed
for the first time. If the expression is FALSE (i.e. 0), control will pass to the next
statement past the '}'. If the expression is TRUE, the statements in the block will
be executed and then the Boolean expression will be evaluated again.

The most common use of a WHILE loop uses a counter to perform the loop a
certain number of times. Create the Boolean expression to test that the counter is
below or equal to a maximum number. You can include other conditions in the
Boolean expression to terminate the loop early if necessary.

Example: GLOBAL #COUNTER=0
LOCAL #FAILURE = 0
WHILE ((%COUNTER < 10) && (%FAILURE == 0)){

.

. !missing statements that set FAILURE to non-zero number

. !if the loop is unable to perform its function.

.
#COUNTER = {%COUNTER + 1} !Don’t forget to increment the counter

}

This WHILE loop will execute the block of statements 10 times, unless the
FAILURE macro gets set to a non-zero number. The statement that
increments the counter is critical. If you forget to include it in the loop
block, the loop will continue indefinitely. We refer to a loop that will never
terminate as an infinite loop.

A complete
explanation of
Boolean
expressions is
provided on
page 53.

More examples
of WHILE
commands are
provided in the
overview of
conditional
statements
beginning on
page 90.

See a list of
comparison
operators on
page 54.

The "&&"
Boolean And
operator is
explained on
page 55.

Always type a
blank before the
condition
expression in
().

ICED™ Commands: WHILE

ICED™ Command File Programmer's Reference 213

A common mistake with WHILE loops is to forget to add curly braces {} to the
statement that increments the counter. In this case the program will perform
string manipulation rather than evaluate a mathematical expression.

Example: WHILE ((%COUNTER < 10) && (%FAILURE == 0)){
.
.
.
#COUNTER = %COUNTER + 1 !OOPS, forgot the {}

}

In this case, the first time through the loop the COUNTER macro will be set to:
 "0 + 1".

The next time through the loop, it will be set to:
"0 + 1 + 1"

When the mathematical expression is surrounded by curly braces (as shown in
the example on the previous page), the expression will be evaluated and
COUNTER will be incremented as expected.

Note that in the example above, no "{}" are used to surround the
boolean_expression "(%COUNTER < 10) && (%FAILURE == 0)". This is
because ICED™ will always interpret the boolean_expression in an IF, ELSEIF,
or WHILE command as an expression. The "{}" are not required.

The WHILE condition can be created so that the block of commands is executed
once for each component or subcell. See examples on pages 269, 186 and 297.

If your WHILE loop does not require a counter, you should add some other
mechanism to avoid an infinite loop. Infinite loops require that you terminate
your edit session with a <Ctrl><Alt><Delete> combination (or a close window
operation.) The cell files will not be saved. You must recover other work
performed during the session with the journal file.

Many more
examples of
Boolean
expressions are
located in the IF
command
description
beginning on
page 168.

Recovery using
the journal file
is explained in
the IC Layout
Editor
Reference
Manual.

ICED™ Commands: WHILE

214 ICED™ Command File Programmer's Reference

Example: LOCAL #ERROR=0
LOCAL #COUNTER = 0
LOCAL #TIME = 0
LOCAL #TIME_START = %TIMER

WHILE((%TIME < 20) && (%ERROR==0) && (%COUNTER< 10)) {
.
. !statements to perform a task that should complete in 20 seconds
.
#TIME = {%TIMER - %TIME_START}

}

The statements in the WHILE block will not be executed if any of the
expressions separated by "&&" AND operators evaluate to FALSE. Even if you
forget to increment the COUNTER macro, and never set ERROR to a non-zero
number, this WHILE loop will always terminate after 20 seconds.

Another method to terminate an infinite loop is to add a RETURN statement in
an IF block. This will terminate not only the loop, but the entire command file.
See an example on page 206.

Other examples of WHILE loops appear on pages 94, 180, and 260.

The TIMER
system macro
contains the
time in seconds
from the start of
the current
session. See
page 298.

ICED™ Commands: XSELECT

ICED™ Command File Programmer's Reference 215

XSELECT Enable or disable embedded selects in command files.

XSELECT (ON | OFF)

The XSELECT command can be used to enable or disable embedded select
commands in command files. (An embedded select command is generated when
you execute a command that usually operates on selected components, but no
components are currently selected.) The XSELECT mode is on by default, this
enables embedded select commands.

Consider the following command file fragment:

Example: UNSELECT ALL
SELECT LAYER "JUNK" ALL
DELETE

If there are no components on layer JUNK, no components are selected when the
DELETE command is executed. If the XSELECT mode is on, the DELETE
command will execute an embedded SELECT NEAR command, bring up a near
box, and wait for you to select something. The only way to bypass the SELECT
NEAR command would be to cancel the command, and this would cause ICED™
to issue an error message and terminate the command file with any remaining
commands unprocessed.

Example: UNSELECT ALL
SELECT LAYER "JUNK" ALL
XSELECT OFF
DELETE

In this example, the embedded select command is disabled since the XSELECT
OFF command is included. Thus the DELETE command will do nothing when
no components are selected. No error is generated and the remainder of the
command file is processed. The embedded select commands will remain
disabled until you exit the command file or execute XSELECT ON.

ICED™ Commands: XSELECT

216 ICED™ Command File Programmer's Reference

The XSELECT mode has no effect on ICED™'s behavior when executing
commands from the keyboard or menus. However, if you execute a XSELECT
OFF command outside of a command file, embedded select commands will then
be disabled by default within all command files. This can be overridden within a
specific command file with a XSELECT ON command.

When you come to the end of a command file, ICED™ forgets the current
XSELECT mode and restores the mode in effect when you entered the command
file.

This following paragraph is for your information only. You may have noticed
XSELECT statements in journal files. This form of the XSELECT command is
intended for use in these files only. Other uses are not supported!

When you execute a command that generates an embedded select command,
ICED™ must record the select information in the journal file. The following
journal entry represents the embedded select command associated with a MOVE
SIDE command.

XSELECT SIDE IN (-41.0, 27.5) (-39.0, 29.5)
MOVE SIDE BY (0.5, 6.0)

Holding down
the <Shift> key
during a
embedded
SELECT
command
allows the user
to select
multiple
components.
Release <Shift>
before selecting
the last
component, or
click in empty
area, to
complete
selection and
return to the
command file.

Functions

ICED™ Command File Programmer's Reference 217

Functions

Functions

218 ICED™ Command File Programmer's Reference

ICED™ supports many functions. When you call a function in a statement,
ICED™ will replace the function call string with the value returned by the
function. A function is called with the syntax:

function_name(arg1)
 or
function_name(arg1, arg2)

The function arguments, arg1 and arg2, can be numbers, expressions, strings, or
macro references. When macro references are used, the value of the macro is
substituted before the function call is evaluated.

Example: #VERTEX = {POS1(%VIEW.BOX)}

This use of the POS1 function is a typical use of a function. The POS1 function
returns the first coordinate pair of a list of coordinate pairs. VIEW.BOX is a
system macro that contains 2 coordinate pairs that represent the corners of the
current view window. This statement will result in the user macro VERTEX
storing the coordinate pair of the lower left corner of the view window.

There are two important syntax restrictions demonstrated in the example above:

• Do not insert a blank between a function name and the '('
character.

• Surround any function call in a macro assignment with curly
braces, '{}'s.

The following table lists every function currently supported by ICED™. They are
grouped by purpose. Longer explanations and examples follow on the pages
indicated.

See an overview
on the use of
functions on
page 63.

Do not omit '_'s
when typing
function names
like
DIR_EXISTS.

Functions

ICED™ Command File Programmer's Reference 219

Functions Sorted by Purpose

Category Function name Purpose Pg.

MACRO_EXISTS Test if macro is defined 231

DEVICE_EXISTS Test if device (e.g. printer) exists 226

LIST_EXISTS Test if a specific list has been created 230

DIR_EXISTS Test if file directory exists 226

FILE_EXISTS Test if file exists 227

FILE_TIME Returns last modification time of file 228
STD_COORD Format coordinate string 240
VALID_INT Test that string is a valid integer 242
VALID_REAL Test that string is a valid real number 245
VALID_LAYER Test that string is a valid layer name 243
VALID_ITEM_NAME Test that string is a valid name for ITEM command 243
VALID_LIST_NAME Test that string is a valid name for LIST command 244

Value
validation

VALID_CELL_NAME Test that string is valid as a cell name 241

ROUND
ROUND1
ROUND2

Round single coordinate or coordinate pair to
resolution grid

235

POS1 Returns first coordinate pair in list 233
POS2 Returns second coordinate pair in list 234
POSN Returns nth coordinate pair in list 234
X X-coordinate of coordinate pair 246
Y Y-coordinate of coordinate pair 247
X0 First x-coordinate of list of coordinate pairs 246
Y0 First y-coordinate of list of coordinate pairs 247
X1 Second x-coordinate of list of coordinate pairs 247

Coordinate
manipula-
tion

Y1 Second y-coordinate of list of coordinate pairs 248
Continued on next page

Functions

220 ICED™ Command File Programmer's Reference

CMP Compare two strings, case independent 224
XCMP Compare two strings, case dependent 224
CHAR Returns nth character in string 223
LEN Find length of string 229
CHAR_TO_N Returns integer from ASCII character code 224

String
manipula-
tion

N_TO_CHAR Returns a single ASCII character from integer 233

SQRT Square root of number (use positive numbers only) 239
INT Integer part of real number 229
ABS Absolute value of single number

or vector length of coordinate pair
220

SIN SINE of angle in degrees 239
COS COSINE of angle in degrees 225
TAN TANGENT of angle in degrees 241
ATAN ARCTANGENT of single value or coordinate pair 221
MIN Minimum of two single numbers 232

Mathe-
matical
operations

MAX Maximum of two single numbers 232

Cell
information

CELL Provides cell table index given a cell name 221

Figure 31: ICED™ Functions

Functions Alphabetically

ABS(val)
or

ABS(x_coord,y_coord)

When used on a single number, this function will return the absolute value of the
number. That means that if the number is negative, it is multiplied by –1.

Functions: A

ICED™ Command File Programmer's Reference 221

When used on a coordinate pair in the form
"(x-coord,y-coord)", this function will return
the length of the vector from (0,0) to the point
represented by the coordinate pair. The return
value will be equal to:

x-coord 2 + y-coord 2

ATAN(val)
or

ATAN(x_coord,y_coord)

When used on a single number, this function will return the arctangent of that
number. When used on a coordinate pair, the arctangent of y-coord / x-coord
will be returned. The result will be expressed in degrees.

Example: #VAL = {ATAN(1)}
#VAL = {ATAN(4,4)}

When either of these statements are executed, the macro VAL will be assigned
the number 45.

CELL("cell_name")

This function returns the cell table index of the cell with the name cell_name.
This index can be useful when using cell related system macros. It will also tell
you if a cell with that name is already defined in any cell library.

Example: LOCAL #CELL_NAME = $PROMPT "Enter the cell name:"
LOCAL #CELL_INDEX = {CELL('%CELL_NAME')}
IF (%CELL_INDEX > 0) {

$The bounding box of cell %CELL_NAME is &
%CELL.BOX.%CELL_INDEX

}
ELSE $Cell %CELL_NAME is not loaded

Expression Result
{ABS(3)} 3
{ABS(-3.2)} 3.2
{ABS(3,3)} 4.242640687
{ABS(-3,-3)} 4.242640687

Refer to an
overview of cell
table indices on
page 252

See another
example of the
CELL function
on page 242.

Functions: C

222 ICED™ Command File Programmer's Reference

The statements in the previous example use the CELL.BOX.cell_index system
macro (see page 258) to report the bounding box of the cell with the name typed
by the user. This system macro requires the cell index to refer to the cell.

Note the "{}" around the call to the CELL function. If the "{}" were not
included, CELL_INDEX would be set to the string "CELL('MYCELL')" instead
of the result of the function call.

If cell cell_name is in the cell table, (i.e. the cell has been loaded in the current
editor session) the function will evaluate to a positive non-zero integer that
represents it's position in the cell table. If the cell is not in the table, one of the
following integers will be returned:

0 The cell is not currently loaded, but the cell file does exist on a
directory in the cell file search path.

-1 The cell is not loaded, and no cell file with that name exists in
any current cell library.

The use of quotes around the cell_name parameter is strongly recommended. If
quotes are not used, and cell_name is a macro reference that may contain the null
string, or special characters, the parser may be unable to evaluate the function
call properly and the command will fail. However, if quotes are used, the
command will not fail even when cell_name evaluates to the null string. The
return value of the function will just be –1.

Example: LOCAL #CELL_NAME = $PROMPT "Enter the cell name:"
LOCAL #CELL_INDEX ={CELL('%CELL_NAME')}
IF (%CELL_INDEX == 0) {

EDIT CELL %CELL_NAME LOCAL_COPY=TRUE ! load cell
EXIT
#CELL_INDEX ={CELL('%CELL_NAME')}

}
IF (%CELL_INDEX <= 0) {

PAUSE "Unable to load cell %CELL_NAME"
}

To get the cell
name from the
cell table index,
use the
CELL.NAME-
.cell_index
system macro.
See page 264.

Any quote
character may
be used ",',~, or
`.

The
LOCAL_COPY
= TRUE
parameter
allows you to
edit cells from
copy-edit
libraries without
a warning
prompt.

Functions: C

ICED™ Command File Programmer's Reference 223

This example will try to load the cell if it is not already loaded. If the user
simply hits return so that CELL_NAME = "", then the command file will not fail,
it will simply execute the PAUSE command in the second IF block.

If the user types an cell name that has been loaded, neither IF block will be
executed. If the user types a cell that is not loaded, but exists in one of the cell
libraries, it will attempt to load the cell. However, this example will not work if
the cell is stored in a read-only cell library; the EDIT command will fail.

CHAR(n, "string")

This function returns a string consisting of the nth single character from the
indicated string.

Example: {CHAR(1,"fred")}

This expression will resolve to the string "f".

ICED™ does not currently have a function to return a substring, but this function
can be used to accomplish the same thing.

Example: LOCAL #LONG_NAME = LONGNAME
LOCAL #SHORT_NAME = ""
LOCAL #N = 1

WHILE (%N <= 4) {
#SHORT_NAME= %SHORT_NAME^{CHAR(%N,%LONG_NAME)}
#N = {%N + 1}

}

The example above will place the first 4 characters of the string contained in the
LONG_NAME macro in the SHORT_NAME macro.

To test the
protection level
of a loaded cell,
see the
CELL.EDIT.-
cell_index
system macro
on page 261.

Functions: C

224 ICED™ Command File Programmer's Reference

CHAR_TO_N("char")

Use this function to get the decimal integer ASCII character code for the single
character char. Quotes are required around the character only when it is a special
character that might confuse the parser.

Example: #ASCII_VAL = {CHAR_TO_N("%")}

The value of ASCII_VAL will be "37". Note the curly braces that force
evaluation around the function call.

CMP(string1,string2) and XCMP(string1,string2)

Both of these functions return 0 if the two strings contain the same text. The
CMP function translates both strings to upper case before they are compared.
Therefore case is irrelevant for the CMP function. However, case is considered
by the XCMP function that returns 0 only when the strings are eXactly the same.

Example: {CMP("hello", "hello")}
{CMP("hello", "HELLO")}

Both expressions above will resolve to 0.

Example: {XCMP("hello", "hello")}
{XCMP("hello", "HELLO")}

The first of these two expressions will resolve to 0. However, the second will
resolve to a non-zero number since the case of the letters is different.

The strings are compared letter by letter. Leading or trailing blanks are not
stripped before the comparison.

Example: {XCMP("hello", " hello")}

The expression above will resolve to a non-zero number.

Do not omit the
'_' when typing
this function
name.

Functions: C

ICED™ Command File Programmer's Reference 225

These functions are usually used in Boolean condition expressions in WHILE, IF
and ELSEIF statements. It is important to remember that this function returns 0
(or FALSE) when the strings are identical. (This conforms to the C
programming convention for string comparison. A number less than 0 is
returned when the first character of string1 comes before the first character of
string2 in alphabetical order. A number greater than 0 is returned when the first
character of string1 comes after the first character of string2. 0 is returned to
indicate that the strings are identical.) Always use this function in a condition
expression in a manner similar to:

Example: IF (CMP(%RES.MODE, "HARD")==0){ !TRUE if RES.MODE = HARD...
}

This example will execute the statements in the IF block (the statements between
the curly braces) when the system macro RES.MODE indicates that the
resolution mode is HARD.

If you instead write the IF condition expression in the following manner:

Example: IF (CMP(%RES.MODE, "HARD")){ !FALSE if RES.MODE = HARD...
}

then the statements between the curly braces would be executed only when the
RES.MODE macro is not equal to the string "HARD".

COS(angle)

This function will return the cosine of an angle expressed in degrees.

Example: #VAL = {COS(30)}

When this statement is executed, the user-defined macro VAL will be assigned
the number 0.86602540378.

See an overview
of Boolean
condition
expressions on
page 53.

Functions: D

226 ICED™ Command File Programmer's Reference

DEVICE_EXISTS("dev_name")

This function is used to test if a device (e.g. a printer) is defined to the operating
system. It will return TRUE ("1") if the device is found, and FALSE ("0") if the
device cannot be found.

Example: IF(DEVICE_EXISTS("%VALUE")==0){
PAUSE "Invalid device <%VALUE> -- Device does not exist."

}

If the VALUE macro contains a valid device name (e.g. "LPT1"), then the IF
block will not be executed.

The example above is based on the code in the command file _ GET_DEV.CMD.
This command file (supplied with the installation) prompts the user for a device
name and then validates the user response with the DEVICE_EXISTS function.

You should use quotes around the value or macro reference you are using as the
function argument. Many device names contain blanks or slashes that may
confuse the parser if quotes are not used.

New Windows operating systems change the operating system procedures for
determining if a device name is valid. We suggest that you test this function on
all relevant operating systems before using it for production purposes. Known
problems exist in Windows 2000. On that operating system, this function will
return TRUE even if the dev_name refers to a file rather than to a system device.

DIR_EXISTS("path_name")

This function will return TRUE ("1") if the path_name refers to a valid directory
path or file name. Otherwise, it will return FALSE ("0").

Do not omit the
'_' when typing
this function
name.

See also the
FILE_EXISTS
function on
page 227.

Functions: D

ICED™ Command File Programmer's Reference 227

Example: IF(DIR_EXISTS("%TMP^RESULTS") == 0){
 DOS "^MD %TMP^RESULTS>NUL "
}

This example tests if a subdirectory named RESULTS exists in the directory used
by ICED™ to store temporary files (usually "Q:\ICWIN\TMP".) The name of
this temporary file directory is stored in the system macro TMP. (See page 299.)
If the RESULTS subdirectory does not exist, it is created with the MD (Make
Directory) DOS command.

The ">NUL" specification causes the output console messages to be discarded.
This can prevent unwanted console effects from showing on the screen. See page
121.

The path_name can be an absolute or relative path. The reference above was an
absolute reference; the path is defined using the drive letter and all directory
names. If path_name begins without a drive letter or backslash ('\'), then it is
assumed to be a relative path, a subdirectory of the current directory.

For example, assume that the current directory is "Q:\ICWIN\TUTOR". The
following example would test if the Q:\ICWIN\TUTOR\MYTEST directory
exists.

Example: IF(DIR_EXISTS("MYTEST")){…

This function is tolerant of trailing backslashes ('\'). They are stripped before
testing the path name.

You should use quotes around the value or macro reference you are using as the
function argument. Many path names contain blanks or slashes that may confuse
the parser if no quotes are used.

FILE_EXISTS("path_name")

Use this function to determine a file exists. It will return TRUE ("1") if the
path_name refers to an existing file name. Otherwise, it will return FALSE
("0").

The DOS
command can
be used to
execute any
valid system
command. See
the IC Layout
Editor
Reference
Manual.

See also the
DIR_EXISTS
function on
page 226.

Functions: F

228 ICED™ Command File Programmer's Reference

The path_name argument can use an absolute path or a relative path. An
example of a absolute path is the fully qualified file name "Q:\ICWIN-
\TUTOR\TEMP.TXT". A relative path begins without a drive letter or backslash
('\'). The path of the current directory will be added as a prefix to a relative
path_name. If "Q:\ICWIN\TUTOR" is the current directory, then the relative
path_name of "TEMP.TXT" resolves to "Q:\ICWIN\TUTOR\TEMP.TXT".

Example: IF (FILE_EXISTS("mycmd.cmd")) @mycmd.cmd

The example above uses a relative path to test if a command file exists before
executing it. The command file MYCMD.CMD must exist in the current
directory or it will not be executed.

You should use quotes around the value or macro reference you are using as the
function argument. Many file names contain blanks or slashes that may confuse
the parser.

FILE_TIME("path_name")

Use this function to determine the last modification time of the file with the name
path_name. You can use either an absolute or relative path for the file name.

The return value is stored in "C" language time format, i.e. the number of
seconds elapsed since midnight (00:00:00), January 1, 1970. While this is may
be an awkward format for reporting, this format is ideal for comparing times.

Example: GLOBAL #DRC.FILE.TIME = {FILE_TIME("%DRC.FILE")}...
!from DRCRELOAD.CMD
IF(MACRO_EXISTS(#DRC.FILE.TIME)){
 IF(FILE_TIME("%DRC.FILE")!=%DRC.FILE.TIME){
 ERROR "Cannot reload -- %DRC.FILE has been modified"
 }
}

The MACRO-
_EXISTS
function returns
TRUE only
when the
indicated macro
exists. See page
231.

Functions: F

ICED™ Command File Programmer's Reference 229

The example above comes from the DRCRELOAD.CMD command file supplied
with the installation. If the user macro DRC.FILE.TIME was already created by
some previous command file using the definition in the first line of the example,
then it is compared to the modification time of the current version of file with the
file name stored in the user macro DRC.FILE. If this file has changed since the
DRC.FILE.TIME macro was assigned its value, the command file cannot
continue.

Note that the function call in the DRC.FILE.TIME macro definition must be
surrounded by {} to force evaluation rather than storing the function call as a
string.

You should use quotes around the value or macro reference you are using as the
function argument. Many file names contain blanks or slashes that may confuse
the parser. The path_name can be a relative or absolute file name. See the
FILE_EXISTS function on page 227 for more details on absolute vs. relative
paths.

INT(real_val)

This function is used to discard the part of a real
number to the right of the decimal point. Numbers are
not rounded to the nearest integer. Instead only the
integer part of a real number is returned.

Example: #Q = {INT(%REM / 10)}

LEN("string")

This function will return the number of characters in the string. You should
surround the string with quotes if it contains characters likely to confuse the
parser (e.g. blanks, commas or parentheses).

Expression Result
{INT(3)} 3
{INT(3.2)} 3
{INT(3.999)} 3
{INT(-3.2)} -3
{INT(-3.9)} -3

Any quote
character may
be used ",',~,
or `.

Functions: L

230 ICED™ Command File Programmer's Reference

Example: LOCAL #NAME $PROMPT="Enter name:"

IF (LEN("%NAME") == 0) {
#NAME = FRED

}

This is a good example of how you can insure that a non-zero length string has
been entered by the user of your command file. When this command file is
executed, and the user just hits <Enter> at the "Enter name:" prompt, the
statement in the IF block will store the default name of "FRED" in the NAME
macro.

LIST_EXISTS("list_name")

This function will return TRUE ("1") if a list with the name list_name has
already been created. Otherwise, it will return FALSE ("0").

Example: IF (LIST_EXISTS(STEP.ERROR.LIST)) {
IF (%LIST.EMPTY.STEP.ERROR.LIST==0){

!list processing commands
}

}

These lines from DRCSTEP.CMD (a command file supplied with the installation
to step through DRC error shapes) test if a list exists and is not empty before
processing the components in the list.

You should not combine the two IF commands in the example above into one
command with a compound Boolean expression of the form below:

IF(LIST_EXISTS(STEP.ERROR.LIST) && &
 (%LIST.EMPTY.STEP.ERROR.LIST==0)){ !cmd file might fail

Even if the list STEP.ERROR.LIST does not exist, the macro reference in the
second half of the compound expression above will still be evaluated. The
LIST.EMPTY.STEP.ERROR.LIST macro will not exist and the command file
will be immediately terminated with a syntax error.

See the LIST
command on
page 182 for
more details on
creating lists.

Do not omit the
'_' when typing
this function
name.

The
LIST.EMPTY-
.list_name
system macro
contains TRUE
only when the
list is empty.
See page 284.

See more about
Boolean
expressions on
page 53.

Functions: M

ICED™ Command File Programmer's Reference 231

MACRO_EXISTS("[#]macro_name")

This function tests that a macro has been defined. It also informs you of the
scope of the macro (i.e. whether the macro is global or local). This function is
used primarily in nested command files to test whether or not a specific local
macro has been defined in the statement that called the command file. (See page
97 to see more examples of passing values into a command file.)

The return value of this function will be one of the following values:

0 macro_name does not exist or is only defined as a local macro in
a different command file.

1 macro_name is defined as a global macro and no local macro
with the same name is defined in the current command file.

2 macro_name is defined as a local macro in the current command
file.

Example: IF (MACRO_EXISTS(#DEFAULT)==2) #MSG="Enter value [%DEFAULT]:"
ELSE #MSG="Enter value:"

This command file fragment builds different prompt messages depending on
whether or not a local macro with the name DEFAULT exists. Since the IF
command tests that the return value of the MACRO_EXISTS function must be
equal to '2', the existence of a global macro with the name DEFAULT will be
ignored. A global macro with that name that may have been created by some
unrelated command file will not affect the prompt message in this command file.

Let us assume that the lines above are used in a command file with the name
DETERMINE_VALUE. When this command file is called with the following
syntax:

@DETERMINE_VALUE; LOCAL #DEFAULT = 6

Then the nested command file will build the message:
"Enter value [6]:"

See page 138 to
learn more
about macro
scope.

Do not omit the
'_' when typing
this function
name.
However, the
square brackets
are not typed.
They indicate
that the '#' is
optional.

This function
can be used to
test the
existence of
macros created
with the ITEM
command.

Functions: M

232 ICED™ Command File Programmer's Reference

However, when the command file is called without defining the DEFAULT local
macro, then the message will be defined as:

"Enter value:"

We recommend that you surround the macro_name string with quotes if you are
using a macro reference for macro_name. Blanks or special characters can
prevent the parser from interpreting the function call correctly unless the
argument is surrounded by quotes.

Example: LOCAL #TEST = $PROMPT ="Type macro name:"
IF (MACRO_EXISTS("%TEST")) $ macro %TEST exists
ELSE $ macro %TEST does not exist

This command file fragment prompts the user to type the name of a macro, then
tests if that macro exists. Since you are prompting the user to enter the macro
name, anything might get stored in the TEST macro. For example, if the user
types "(5,6)" instead of a macro name, and the quotes were not included in the
function call (i.e. MACRO_EXISTS(%TEST)), then the function would fail
with an error after macro substitution.

The _GET_INT.CMD command file is an excellent example of the usefulness of
the MACRO_EXISTS function. See page 305.

MAX(val1,val2)

This function is used to determine the maximum of two real numbers.

Example: #VAL = {MAX(%X_COORD1, MAX(%X_COORD2, %X_COORD3))}

This is the correct syntax to use if you need to find the maximum of a set of 3
numbers.

MIN(val1,val2)

This function is used to determine the minimum of two real numbers.

Any quote
character may
be used ",',~, or
`.

Functions: M

ICED™ Command File Programmer's Reference 233

Example: #VAL = {MIN(%X_COORD1, MIN(%X_COORD2, %X_COORD3))}

This is the correct syntax to use if you need to find the minimum of a set of 3
numbers.

N_TO_CHAR(int)

This function will return the single ASCII character represented by int. The
value of int must be an integer in the range 32:128. Do not use quotes around int.

Example: #STR = {N_TO_CHAR(%VAL)}{N_TO_CHAR(32)}&
{N_TO_CHAR(%VAL)}

The ASCII character for the decimal integer 37 is the percent sign, '%'. The
ASCII character for 32 is the blank space, ' '. If the value of macro VAL is "37",
then the value of macro STR will be "% %". Note that each call to the function is
surrounded by its own pair of curly braces to force evaluation.

POS1(coordinate_pair_list)

This function will return the first coordinate pair from a list. The list must
contain exactly 2 coordinate pairs in the form:

(x-coord1, y-coord1),(x-coord2, y-coord2)

The comma between the pairs is optional (any white space will do), but the
parentheses and the comma in each pair are required.

Example: #VERTEX_LIST = "(0,0) , (5,5)"
#VERTEX1 = {POS1(%VERTEX_LIST)}

The value of VERTEX1 after these statements are executed will be "(0,0)".

Do not omit the
'_' when typing
this function
name.

See this
function used in
another example
on page 301.

Functions: P

234 ICED™ Command File Programmer's Reference

POS2(coordinate_pair_list)

This function will return the second coordinate pair from a list. The list must
contain exactly 2 coordinate pairs in the form:

(x-coord1, y-coord1),(x-coord2, y-coord2)

The comma between the pairs is optional (any white space will do), but the
parentheses and the comma in each pair are required.

Example: #VERTEX_LIST = (0,0) , (5,5)
#VERTEX2 = {POS2(%VERTEX_LIST)}

The value of VERTEX2 after these statements are executed will be (5,5).

POSN(n, coordinate_pair_list)

This function will return the nth coordinate pair from a list. The list must contain
coordinate pairs in the form:

(x-coord1, y-coord1) (x-coord2, y-coord2)…(x-coordi, y-coordi)

The list can contain as many coordinate pairs as required. You can have commas
separating one coordinate pair from the next. These commas will be ignored.

Use only positive, non-zero numbers for the n parameter.

Example: #VERTEX_LIST = (0,0), (5,5), (5,7), (10,7), (10,3)
#VERTEXN = {POSN(%NUM,%VERTEX_LIST)}

If this example is executed when the user-defined macro NUM is set to 1, the
value of VERTEXN will be set to "(0,0)". If NUM is set to "5", VERTEXN will
be "(10,3)". If the statement is executed when NUM is set to "6", the command
file will be terminated with the following error message:

Error: Too few coordinates – Cannot select position 6 from 5 coordinates

You can use the
ITEM command
to get the
position list and
the number of
vertices for a
component. See
page 173.

Functions: R

ICED™ Command File Programmer's Reference 235

ROUND(coord)
ROUND1(coord)
ROUND2(coord)

or
ROUND(x-coord, y-coord)

ROUND1(x-coord, y-coord)
ROUND2(x-coord, y-coord)

These functions are used to resolve a single coordinate or a coordinate pair to the
nearest location on the resolution grid.

All three functions are identical except for the manner in which coordinates that
are exactly halfway between points on the resolution grid are handled. Unless
you need special control over how these coordinates are rounded, simply use the
ROUND function in all situations. We will cover the use of ROUND1 and
ROUND2 on the next page.

When the coordinates of a shape are not located on the resolution grid
determined by your technology, post-processing software that translates your
design to machine instructions can distort the shape. These functions round
calculated offsets or coordinates to the resolution grid. When you perform this
rounding in the command file, you can inspect and possibly correct how your
shapes are distorted by rounding .

Example: #X_DISP = {ROUND(%WIDTH / %NUM_POINTS)}

This example performs division on a single number stored in the user-defined
macro WIDTH by the single number stored in the user-defined macro
NUM_POINTS. The result of this division is then rounded to the nearest
resolution grid displacement by the ROUND function.

Example: #VERTEX1 = {ROUND(%VERTEX0 / 2)}

The example above performs division on each coordinate of the coordinate pair
stored in the user-defined macro VERTEX0, then rounds the result to the nearest
point on the resolution grid.

The
STD_COORD
function
validates and
formats a user
typed
coordinate pair.
See page 240.

The resolution
grid consists of
all coordinates
that can be
digitized with
the mouse.

You can check
the resolution
mode with the
RES.MODE
system macro.
See page 290.

Functions: R

236 ICED™ Command File Programmer's Reference

Rounding coordinates can result in a shape shrinking or growing up to one
resolution step.

Example: #VERTEX0 = {ROUND(1.24, 1)}
#VERTEX1 = {ROUND(6.3, 3.1)}
ADD BOX %VERTEX0, %VERTEX1

As we consider this example, let us assume that the resolution step size is 0.5.
These lines will then result in the execution of the following statement:

ADD BOX (1,1), (6.5,3)

The coordinates for the box before rounding indicate that the width of the box
should be 5.06 units. However, after rounding, the box is 5.5 units wide. This is
because each x-coordinate is rounded towards the nearest grid point, not
necessarily in the same direction.

Differences between the ROUND1 and ROUND2 Functions

The ROUND1 and ROUND2 functions are identical except in how they handle
coordinates that are exactly halfway between points on the resolution grid.

ROUND1 is the traditional method of rounding numbers. Basically, numbers
exactly halfway between multiples of the resolution step size are rounded away
from the origin. This is usually the best method for rounding displacements (e.g.
the distance between wires).

The ROUND2 function will instead always round coordinates exactly halfway
between resolution points upwards or towards the right. This makes the function
quadrant independent; i.e. coordinates are shifted in the same direction regardless
of whether they are negative or positive. Performing the calculation in this
manner avoids extra distortion when a shape contains coordinates on both sides
of the origin. This means that ROUND2 is usually the best method for rounding
coordinate pairs.

Example: LOCAL #TOT_DISP $PROMPT "Digitize total displacement" X_DISP
LOCAL #SINGLE_DISP1 = {ROUND1(%TOT_DISP/6)}
LOCAL #SINGLE_DISP2 = {ROUND2(%TOT_DISP/6)}

You can test the
resolution mode
before
approximating
coordinates.
See an example
on page 290.

See a brief
overview on
coordinate math
on page 51.

Functions: R

ICED™ Command File Programmer's Reference 237

The command fragment on the previous page prompts the user to digitize a total
displacement in the x-direction then divides this number by 6, to obtain
increments of this displacement on the resolution grid for further processing. We
want the value to be independent of whether the user digitizes a positive
displacement or a negative displacement. Should we use the SINGLE_DISP1
value calculated by the ROUND1 function, or the SINGLE_DISP2 value
calculated by ROUND2?

Let us assume that the resolution step size is 0.5 and that the user digitizes a total
displacement of 4.5 units. Then, each single displacement is 0.75 units.

If the user digitizes the displacement in the positive direction (i.e. from left to
right), then both functions return the same number, '1'.

ROUND1(4.5/6) → ROUND1(.75) → 1
ROUND2(4.5/6) → ROUND2(.75) → 1

However, if the user digitizes the displacement from right to left, the total
displacement is "-.75", and the results of the two functions are different.

ROUND1(-4.5/6) → ROUND1(-.75) → -1
ROUND2(-4.5/6) → ROUND2(-.75) → -0.5

So you can see that if you want negative and positive displacements handled in
the same manner, you should use the ROUND1 function.

Example: ADD BOX AT ROUND1(.25, .25) ROUND1(1.25, 1.25)
ADD BOX AT ROUND2(.25, .25) ROUND2(1.25, 1.25)

ADD BOX AT ROUND1(-.25, -.25) ROUND1(-1.25, -1.25)
ADD BOX AT ROUND2(-.25, -.25) ROUND2(-1.25, -1.25)

The ABS
function returns
the absolute
value of a
number. See
page 220.

Functions: R

238 ICED™ Command File Programmer's Reference

Figure 32 illustrates the
effect of each of the round
functions on two boxes
whose corners are exactly
halfway between points on
the resolution grid (shown
with the small crosses).
The box in the positive
quadrant is shifted to the
same location by both
functions. The box in the
negative quadrant is
shifted in the same
direction by the ROUND2
function, leaving the boxes
the same distance apart.
However, the ROUND1
function shifts the box
further away from the box
in the positive quadrant.

This demonstrates that ROUND2 is the better choice when rounding coordinate
data.

ROUND Function Evaluates to ROUND1 or ROUND2

When you specify the ROUND function, the program will automatically choose
between ROUND1 and ROUND2. If you call the ROUND function on a single
number, the program will execute the ROUND1 function. When you call
ROUND with a coordinate pair as the argument, then the program will use the
ROUND2 function.

ROUND(x) ⇒⇒⇒⇒ ROUND1(x)
ROUND(x,y) ⇒⇒⇒⇒ ROUND2(x,y)

In most cases, this is the correct choice. You do not have to remember the details
of the differences between ROUND1 and ROUND2. Simply specify the
ROUND function and let the program resolve the function call to either
ROUND1 or ROUND2.

Origin
(0,0)

Unrounded
boxes

Result of ROUND1

Result of
ROUND1
or
ROUND2

Result of ROUND2

Figure 32: Result of ROUND1 and ROUND2 on
two boxes

Functions: R

ICED™ Command File Programmer's Reference 239

However, in some cases you may want to specify either the ROUND1 or
ROUND2 function instead of the multi-purpose ROUND function.

Example: LOCAL #TOT_DISP $PROMPT "Digitize total displacement" DISP
LOCAL #SINGLE_DISP = {ROUND(%TOT_DISP/6)}

This example is similar to the displacement example above, except that now the
displacement is a coordinate pair with displacements in both the x and y
directions since the DISP keyword is used rather than X_DISP. The multi-
purpose ROUND function is called to resolve the result of the division to the
resolution grid. Since the TOT_DISP macro is now a coordinate pair, the
ROUND function will call ROUND2 rather than ROUND1. This is a poor
choice for rounding displacements. In this case, it would be better to force the
use of ROUND1 by explicitly calling it rather than the ROUND function.

SIN(angle)

This function will return the sine of an angle expressed in degrees.

Example: #VAL = {SIN(30)}

When this statement is executed, the user-defined macro VAL will be assigned
the number 0.5.

SQRT(pos_val)

The SQRT function will return the square root of a positive number. Using a
negative value for pos_val will result in an error message and the termination of a
command file containing the expression.

Example: ${SQRT(49)}

Typing this command on the command line will report the square root of 49 (i.e.
7) on the screen below the command line. Never type a blank between the

Functions: S

240 ICED™ Command File Programmer's Reference

function name and the '(' character. Always remember to surround a
mathematical expression with curly braces.

STD_COORD("string")

This function returns a coordinate pair in the standard "(x, y)" format from the
pair of coordinates indicated in the argument string. If string does not contain a
valid pair of real numbers, then the function will return the string "BAD". The
primary purpose of this function is to verify user input in a command file where
the user has been prompted to type in a coordinate pair.

Example: LOCAL #COORD $PROMPT="Type new center coordinate pair"
LOCAL #VALID=0
WHILE(%VALID==0){

#COORD = {STD_COORD("%COORD")}
#VALID = {CMP("%COORD", "BAD")}
IF(%VALID==0){

$Invalid coordinate pair! <Esc> to quit or <Enter> to try again
PAUSE 0
#COORD $PROMPT="Type new center coordinate pair"

}
}

When the STD_COORD function is used in a WHILE loop like the one above,
the command file will continue to prompt the user for a coordinate pair until the
user has typed a valid pair of coordinates.

This function will ignore commas, open and close parentheses, and extra blanks
in the argument string. If the user of the command file fragment above typed in
any of the following strings, the STD_COORD function would return the string
"(5, 6)":

"5 6"
"(5, 6)"
"5 6"
"5,6"
")5)6,"

When the POS
keyword is used
to prompt the
user to digitize a
position this
function is not
necessary. See
page 143.

The CMP
function
compares two
strings and
returns 0 when
they are
identical. See
page 224.

Do not omit the
'_' when typing
this function
name.

See a brief
overview on
coordinate math
on page 51.

Functions: S

ICED™ Command File Programmer's Reference 241

The string returned by STD_COORD will be valid in any command, function, or
expression that expects a coordinate pair. Some of the strings in the list above
would cause a failure if you tried to use them in a mathematical expression or as
the argument in a function like the X function (see page 246).

The use of quotes around the argument string when calling this function is
almost always required. The string is likely to contain characters that have
special meaning to the parser (i.e. ',', ')', and '(').

TAN(angle)

This function will return the tangent of an angle expressed in degrees.

Example: #VAL = {TAN(30)}

When this statement is executed, the macro VAL will be assigned the number
0.5773502692.

VALID_CELL_NAME("string")

Returns TRUE ("1") if the string can be used as a valid cell name. The function
will return FALSE ("0") if the string can not be used to name a cell.

As with the other verification functions, the use of quotes around string is
strongly recommended.

Do not omit the
'_' when typing
this function
name.

The valid quote
characters are
",',~, or `.

Functions: V

242 ICED™ Command File Programmer's Reference

Example: LOCAL #NEWCELL = $PROMPT "Enter the new cell name:"
LOCAL #INDEX = 0

#INDEX = {CELL("%NEWCELL")}

IF (%INDEX > -1) ERROR "Cell %NEWCELL already exists"
ELSEIF (VALID_CELL_NAME("%NEWCELL")){

EDIT CELL %NEWCELL
.
. !missing statements that create components in this new cell
.
EXIT

}
ELSE ERROR "%NEWCELL is not a valid cell name"

This command file fragment prompts the user for a cell name and creates that cell
as long as the cell does not already exist and the cell name is a valid string for
naming a cell. If the call to VALID_CELL_NAME was not made, and the user
typed an invalid string (e.g. "abc 123"), the EDIT command would fail and
terminate the command file with an error.

VALID_INT("string")

This function insures that a string, (usually one stored in a macro) represents a
valid integer. It returns TRUE (i.e. "1") if the string represents an integer. The
function will return FALSE (i.e. "0") if the string does not represent a integer.

Example: LOCAL #NUM_COPIES $PROMPT="Enter number of copies[1]:"
IF (VALID_INT("%NUM_COPIES")==0) #NUM_COPIES = 1

This example demonstrates a typical use of the VALID_INT function. If the user
responds to the prompt with a valid integer, that will be used as the value of the
NUM_COPIES macro. However, if the user simply hits <Enter> instead of
typing a value, or if he enters a string that is not a valid integer (e.g. "twelve"),
then the default value of "1" will be stored in NUM_COPIES.

The CELL
function returns
the cell index of
a cell already
loaded, '0' if the
cell is not
loaded but does
exist in a cell
library, or '–1' if
the cell does not
exist See page
221.

The new cell
will be saved in
the current
directory when
the editor
terminates.

See this
function used in
the sample
command file
for requesting
the user to enter
a valid integer,
_GET_INT, on
page 305.

Functions: V

ICED™ Command File Programmer's Reference 243

The use of quotes around the string is strongly recommended, but not required.
Blanks or special characters in the string may prevent the parser from interpreting
the function call correctly unless the string is surrounded by quotes.

In the example above, if the user pressed <Enter> without typing a value, then
the function would be called with the following syntax after macro substitution:

VALID_INT("")

The statement above will be interpreted correctly and the return value will be 0.
Without the quotes, the function call would fail and terminate the command file.

VALID_ITEM_NAME("string")

Use this function to verify that the string you want to use in the ITEM command
can be used as a valid item_name.

Example: LOCAL #NAME="8_ITEM" !not a valid item name
IF (VALID_ITEM_NAME(%NAME)){

ITEM LOCAL %NAME !this stmt will not be executed
}

This example will not execute the ITEM command since the string stored in
macro NAME does not contain a valid base name for item macros. The ITEM
command would fail with a syntax error and halt the command file if it was
executed with "8_NAME" as the item_name.

VALID_LAYER("string")

This function is used to verify that a string represents a valid layer name or
number. It returns TRUE ("1") if the string represents an existing layer name or
valid layer number in the current cell. The function will return FALSE ("0") if
the string does not represent a layer name or number.

Any quote
character may
be used ",',~, or
`.

See page 173
for item name
restrictions.

The user can
select a layer
from a menu of
valid choices.
See page 147.

Functions: V

244 ICED™ Command File Programmer's Reference

Example: LOCAL #SCRATCH = 254
LOCAL #TARGET = $PROMPT="Enter target layer:"

XSEL OFF
UNSELECT ALL; SEL LAYER %SCRATCH ALL
IF(VALID_LAYER("%TARGET") && CMP("%TARGET", "0")!=0){

SWAP LAY %SCRATCH AND %TARGET
}
ELSE {

ERROR "%TARGET not valid. Shapes are left on layer %SCRATCH."
PAUSE 0

}
UNSELECT ALL

This command file fragment will swap shapes on a scratch layer with a layer to
be entered by the user. If the user does not enter a valid layer name or number
for the swap, no shapes are changed. Note that VALID_LAYER("0") will return
TRUE. The extra test to determine if the target layer is equal to 0 is required if
the layer will be used in a command that will fail if layer 0 is specified.

As with the other verification functions, the use of quotes around string is
strongly recommended. Unless string is surrounded by quotes, blanks or special
characters in the string can make this function terminate with an error and the
command file will fail with an error.

VALID_LIST_NAME("string")

Use this function to verify that the string you want to use in the LIST command
can be used as a valid list_name.

Example: LOCAL #NAME=$PROMPT="Enter name of list"
WHILE (VALID_LIST_NAME("%NAME")==0){

PROMPT "Invalid list name <<%NAME>>"
LOCAL #NAME=$PROMPT="Re-enter name of list"

}
LIST LOCAL %NAME

Do not omit the
'_' when typing
this function
name.

The _GET-
_LAY.CMD
file supplied
with the
installation can
be used in place
of this function.
See page 279.

Layer 0 can be
used to select
subcells and
arrays.

Any quote
character may
be used ",',~,
or `.

Determine if a
list already
exists with the
LIST_EXISTS
function. See
page 230.

The user can
interrupt this
type of loop and
cancel the
command file
by pressing both
mouse buttons.

Functions: V

ICED™ Command File Programmer's Reference 245

The example on the previous page uses a loop to insure that the list name is valid
before executing the LIST command.

VALID_REAL("string")

This function returns TRUE ("1") if the string represents a real number or
FALSE ("0") if the string does not.

As with the previous function, the use of quotes around the string is strongly
recommended, but not required. Unless the string is surrounded by quotes,
blanks or special characters can make this function terminate with an error and
the command file will fail with an error.

Example: LOCAL #VALID = 0
WHILE (%VALID==0) {

LOCAL #OFFSET = $PROMPT="Enter offset:"
#VALID = {VALID_REAL("%OFFSET")}

}

The command file fragment above will loop until the user has entered a valid real
number. If the user presses <Esc> at the prompt instead, the entire command file
will be canceled.

The use of curly braces {} around the expression with the call to the
VALID_REAL function is critical. Any time a macro assignment contains a
function call, the function call will not be performed unless the program is forced
to evaluate the expression. When the curly braces surround the expression, it
will be evaluated. When the curly braces are not present, the program interprets
the expression as a string of characters with no special purpose.

Any quote
character may
be used ",',~,
or `.

See this
function used in
the sample
command file
for requesting
the user to enter
a valid real
number,
_GET_REAL-
.CMD file
supplied with
the installation.

Functions: X

246 ICED™ Command File Programmer's Reference

X((x-coord, y-coord))

This function returns the x-coordinate from a single coordinate pair. In addition
to the parentheses that indicate that this is a reference to a function, the
coordinate pair must be surrounded by parentheses.

Example: #VERTEX = (20.5,34.0)
#X_COORD = {X(%VERTEX)}

After macro substitution, the second statement above will read:

#X_COORD = {X((20.5,34.0))}

This is the correct syntax. Once these statements are executed, the value of
X_COORD will be 20.5.

X0(coordinate_pair_list)

This function will return the first x-coordinate from a list of coordinate pairs.
The list must contain exactly 2 coordinate pairs in the form:

(x-coord1, y-coord1) (x-coord2, y-coord2)

Example: #X_LEFT = {X0(%CELL.BOX.1)}
#X_RIGHT = {X1(%CELL.BOX.1)}

The statement above will set the X_LEFT macro to the x-coordinate of the lower
left corner of the bounding box of the root cell. The X_RIGHT macro will
contain the x-coordinate of the upper right corner of the bounding box of the root
cell.

See this
function used in
another example
on page 292.

Refer to the
CELL.BOX.cell
_index system
macro
description on
page 258.

Functions: X

ICED™ Command File Programmer's Reference 247

X1(coordinate_pair_list)

This function will return the second x-coordinate from a list of coordinate pairs.
The list must contain exactly 2 coordinate pairs in the form:

(x-coord1, y-coord1),(x-coord2, y-coord2)

Refer to the example on page 246.

Y((x-coord, y-coord))

This function returns the y-coordinate from a single coordinate pair.

Example: #VERTEX = (20.5,34.0)
#Y_COORD = {Y(%VERTEX)}

After these statements are executed, the value of Y_COORD will be 34.

Y0(coordinate_pair_list)

This function will return the first y-coordinate from a list of coordinate pairs.
The list must contain exactly 2 coordinate pairs in the form:

(x-coord1, y-coord1) (x-coord2, y-coord2)

Example: #Y_BOT = {Y0(%LAST.BOX)}
#Y_TOP = {Y1(%LAST.BOX)}

This example will set the macro Y_BOT to the lower y-coordinate of the last box
digitized with the cursor. Y_TOP will be set to the upper y-coordinate of the last
box digitized with the cursor.

The XCMP
function is
described on
page 224.

Refer to the
LAST.BOX
system macro
description on
page 271.

Functions: Y

248 ICED™ Command File Programmer's Reference

Y1(coordinate_pair_list)

This function will return the second y-coordinate from a list of coordinate pairs.
The list must contain exactly 2 coordinate pairs in the form:

(x-coord1, y-coord1),(x-coord2, y-coord2)

Refer to the example on page 247.

System Macros

ICED™ Command File Programmer's Reference 249

ICED™ System Macros

System Macros

250 ICED™ Command File Programmer's Reference

Overview

In addition to the user-defined macros covered back beginning on page 133 there
are many ICED™ pre-defined system macros. Remember that macros are used for
the same purposes as variables in other programming languages. System macros
are like read-only variables. You cannot set their values directly.

System macros have their values set and updated by the ICED™ program. They
contain useful information about the cells currently loaded, the editor settings,
and recent user actions among other things.

New system macros are often added with program updates. Use the command
below at the editor command line to see the current list.

Example: SHOW SYSTEM_MACROS=*

The list as of the printing of this manual is shown in the table on page 252. The
succeeding pages describe each system macro in alphabetical order with details
and examples.

You can find out the value of any of these system macros by typing a $comment
command at the command prompt in the layout editor. When used this way, the
comment is left as an echo on the bottom of the editor window. Macro
substitution is performed as the comment is generated.

Example: $ My startup command file is %START.CMD

Typing this command at the command prompt will display the path and name of
the startup command file. This information is stored in the START.CMD system
macro.

There are also
several user-
defined macros
that have special
significance.
See page 153 to
learn about the
EXIT.SUBCELL,
EXIT.ROOT,
ENTER-
.SUBCELL, , and
ERROR.CMD
macros.

Refer to the
$comment
command on
page 159.

System Macros

ICED™ Command File Programmer's Reference 251

Indexed System Macros

Many of the system macros are indexed. That is, some macros refer to values
stored in an indexed table. These macros have names that use a prefix string
followed by an index number or string that selects a unique macro from the table.

For example, the LIB.lib_index system macros store the names of all the current
cell library directories. The first cell library name will be stored in LIB.1, the
second (if it is defined) will be stored in LIB.2, etc.

Some system macros allow names to be used as the index for convenience. For
example, all of the layer related system macros can be indexed by either the layer
name or the layer number. One of these layer system macros is
LAYER.COLOR.layer_spec. Suppose that layer 1 has the name "NWEL", in
this case LAYER.COLOR.NWEL refers to the same system macro as
LAYER.COLOR.1.

Using an index beyond the range valid for that system macro will result in an
error and the immediate termination of the command file. Valid indices usually
begin with 1 and end with a maximum index stored in a related system macro.
You can use a reference to another macro as the index as shown below.

The SHOW command cannot be used to report the value of an indexed macro.
If you want to report the value of an indexed macro, use a $comment command
with the full system macro name.

Example: $%CMD.DIR.%N.CMD.DIRS

Typing the example above at the command prompt will report below the
command line the full path of the last directory on the command file search path.
The N.CMD.DIRS system macro stores the last valid index for the
CMD.DIR.dir_index system macro. If N.CMD.DIRS contains the number 3, the
entire macro reference resolves to %CMD.DIR.3. This macro will contain the
path to a directory on the command file search path.

System Macros

252 ICED™ Command File Programmer's Reference

Cell Table Indices

Several of the cell-related system macros refer to cells by their index into the cell
table. The cell table is a list of all cells loaded in the current layout editor
session. This list includes the root cell (i.e. the cell the editor was launched to
edit), all of its subcells, and all other cells that have been explicitly opened by the
EDIT, PEDIT, or TEDIT commands (unless the QUIT command was used to
unload the cell) as well as new cells created with the GROUP command.

For example, the CELL.NAME.cell_index system macros store the cell names of
all cells in the cell table.

Cell table indices always begin with 1. This is always the index of the root cell.
The MAX.CELL system macro contains the current number of entries in the cell
table; therefore it is also is the highest valid cell_index. See page 286 for the
MAX.CELL system macro description.

You can obtain the cell table index from a cell name with the CELL() function.
(See page an example on page 258.) You can obtain the cell table index for a
selected cell with the ITEM command. (See an example on page 263.)

System Macros Sorted by Purpose

Category Macro name Purpose Page
MAX_COORD The maximum valid coordinate 286
CELL.BOX.cell_index Bounding box for specific cell 258
SELECT.BOX Bounding box of selected components 292
LAST.POS Last position digitized 272
LAST.BOX Last box digitized 271
LAST.DISP Last displacement digitized 271
LAST.RULER.POS.0 First point defined in last RULER command 273

Coordinates

LAST.RULER.POS.1 Final point defined in last RULER
command

273

Continued on next page.

See page 104for
more
information on
the cell table.

The EXIT
command closes
a cell, but does
not unload it
from the cell
table.

System Macros

ICED™ Command File Programmer's Reference 253

CELL Name of cell currently being edited 258
SHORT.CELL First 8 characters of CELL macro 292
CELL.ROOT Name of cell ICED™ was launched to edit 264
SHORT.ROOT First 8 characters of CELL.ROOT 293
CELL.NAME.cell_index Name of cell for cell table index cell_index 264
CELL.BOX.cell_index Bounding box for specific cell 258
CELL.DEPTH.cell_index Nesting depth for specific cell 259
CELL.LIB.NUMBER.cell_index Cell library that contains specific cell 262
CELL.LIB.TYPE.cell_index Protection status of cell library that contains

specific cell
263

CELL.EDIT.cell_index Indicates if cell can be edited 261
SUBCELL.EDIT.cell_index Indicates if cell is subcell that can be edited 296
NEW.CELL Test if cell was just created 289

Cell macros

MAX.CELL Last cell table index used 286
AUX Name of AUXIL directory 256
TMP Name of TMP directory 299
HOME.dir_index Name of ICED home directory (ies) 268
N.HOME Number of ICED home directories 289
CMD.DIR.dir_index Name of command file directory (ies) 265
N.CMD.DIRS Number of command file directories 288
DRC.DIR.dir_index Name of DRC file directory(ies) 266
N.DRC.DIRS Number of DRC file directories 288
LIB.lib_index Cell library path name from index 282
LIB.TYPE.lib_index Protection status for cell library 283
N.LIBS Number of cell libraries 288
EXEC.FILE File name of current command file 268
JOU Journal file name 270
START.CMD Name of startup command file 295

Directory and
file macros

ALWAYS.CMD Name of always command file 255
VIEW.BOX Current view window 301
VIEW.CENTER Center of current view window 302

View window
settings

VIEW.SCALE Scale of current view window 302
Continued on next page.

System Macros

254 ICED™ Command File Programmer's Reference

N.SELECT Number of currently selected components 289
ID.MAX Last component id used 269
MENU Name of menu file 287
RES.STEP Resolution step size 291
RES.MODE Resolution mode 290
SNAP.ANGLE Snap angle 293
SNAP.OFFSET Snap offset 293
SNAP.STEP Snap step size 293
USE.ARC.TYPE Default new arc wire end type 299
USE.LAYER Default layer 299
USE.N.SIDES Default number of sides for new circles 299
USE.TEXT.JUST Default text justification for new text 300
USE.WIRE.TYPE Default end type for new wires 300
TIMER Time (in seconds) from start of edit session 298
SPACER.ON Spacer cursor mode 294
SPACER.SPACE Spacer cursor spacing value 294
SPACER.STYLE Spacer cursor style number 294
SPACER.TRACK.LAYERS Auto spacer cursor distance mode set? 294
LIST.EMPTY.list_name Undeleted components remain on list? 284
LIST.EOL.list_name Has end of list been reached? 284
LIST.INDEX.list_name Current index of list 285

Editor settings
and counters

LIST.LEN.list_name Number of components on list 286
USE.LAYER Default layer 299
BLANKED.CELL.LAYERS List of all layers blanked for nested cells. 257
BLANKED.ROOT.LAYERS List of all layers blanked in current cell. 257
PROTECTED.LAYERS List of all protected layers. 290
LAYER.BLANKED.CELL-
.layer_spec

Blank status of components on given layer
in nested cells

274

LAYER.BLANKED.ROOT-
.layer_spec

Blank status of components on given layer
in current cell

274

LAYER.PROTECTED-
.layer_spec

Protection status of components on given
layer in current cell

279

Layer settings

Continued on next page.

System Macros

ICED™ Command File Programmer's Reference 255

LAYER.NAME.layer_spec Layer name for layer number layer_spec 277
LAYER.NUMBER.layer_spec Layer number for layer name layer_spec 277
LAYER.WIRE.WIDTH-

.layer_spec
Default wire width for layer layer_spec 281

LAYER.SPACE.layer_spec Default spacing for spacer cursor 279
LAYER.PAT.layer_spec Pattern number used to display layer

layer_spec
277

LAYER.PEN.layer_spec Pen number used to plot layer layer_spec 278
LAYER.COLOR.layer_spec Color number for layer layer_spec 276
LAYER.STREAM.LAYER-

.layer_spec
Stream layer number for layer layer_spec 280

LAYER.STREAM.DATA-
.TYPE.layer_spec

Stream data type number for layer
layer_spec

280

LAYER.STREAM.TEXT-
.TYPE.layer_spec

Stream text type number for layer
layer_spec

281

Layer settings

LAYER.CIF.LAYER-
.layer_spec

CIF layer name for layer layer_spec 275

Figure 33: ICED™ System macros

System Macros Alphabetically

Refer to the table on the previous pages to see ICED™ system macros sorted by
purpose.

ALWAYS.CMD

This macro contains the path and filename of the always command file. This is
the command file that is executed when one of the ALWAYS, LEAVE, EXIT, or
QUIT command line options is used when the editor is launched.

Example: @%ALWAYS.CMD

See an overview
on always
command files
on page 18.

System Macros: A

256 ICED™ Command File Programmer's Reference

Typing the command on the previous page at the command prompt will execute
the current always command file. Another method to execute this command is to
use the menu options 1:FILE→@ALWAYS or 3:@*. (The menu option 3:@*
executes the startup command file and then the always command file.)

If no always command file is defined, then the value of this macro will be
"DO_NOTHING". When the command above is executed with this value for
ALWAYS.CMD, the command file is not halted with an error; the command
simply has no effect.

AUX

The value of this macro is the name of the primary AUXIL directory. This is the
directory where ICED™ looks for technology independent auxiliary files such as
command files, menu files, plotter definition files, and fill pattern files. The
value of this macro is the fully qualified name of the AUXIL subdirectory of the
first home directory, usually "Q:\ICWIN9\AUXIL\".

Example: DOS "^COPY %AUX^*.cmd>NUL"

Executing this command will cause the command files in the AUX directory to
be copied to the current directory. Note that the macro substitution is performed
despite the quotes around the command string. The value stored in the AUX
macro ends with a final '\' character to facilitate using it to name files. The '^'
character after the %AUX reference separates the name of the macro from the
rest of the string without adding a space. After macro substitution, the command
will be similar to:

DOS "^COPY Q:\ICWIN\AUXIL*.cmd>NUL"

The ">NUL" discards the console messages generated by this command. It is
strongly recommended when you use DOS console commands in a command
file. See page 121 for details.

9 Remember that Q:\ICWIN represents the drive letter and path where you have installed
ICED™.

See page 14 for
more details on
the command
file search path.

The DOS
command
executes the
indicated
command in a
temporary DOS
console
window. See
page 119.

System Macros: B

ICED™ Command File Programmer's Reference 257

BLANKED.CELL.LAYERS

The macro contains the list of layers blanked for nested cells. The list is stored in
layer list format using the layer numbers.

If there are no layers blanked for nested cells, then value of the macro will be
"(none)". You should check for this value before using the string in another
command.

Example: LOCAL #BLANKED_CELL_LAYLIST = %BLANKED.CELL.LAYERS

If some layers are blanked for components in nested cells, then the string stored
in this system macro will be the list of layer numbers delimited with '+'. This
syntax is valid for the (UN)BLANK command. (See the IC Layout Editor
Reference Manual for complete details on layer lists.) Some typical layer lists
that might be stored in this system macro are shown below:

"1+3" -Layers 1 and 3
"0:255" -All layers
"0:5+7:255" -All layers except for layer 6
"(none)" -No cell layers are blanked

BLANKED.ROOT.LAYERS

The macro contains the list of layers blanked for the current cell, the cell open for
editing. The list is stored in layer list format using the layer numbers.

If there are no root layers blanked, then value of the macro will be "(none)". You
should check for this value before using the string in another command.

If some layers are blanked for components in the current cell, then the string
stored in this system macro will be the list of layer numbers delimited with '+'.
This syntax is valid for the (UN)BLANK command. Some typical layer lists that

Set the value of
this macro with
the
[UN]BLANK
command.
Refer to the IC
Layout Editor
Reference
Manual.

This example is
expanded in the
next macro
description.

To find out
about a specific
layer, use the
LAYER.BLAN-
KED.CELL-
.layer_spec
system macro.
See page 274.

Set the value of
this macro with
the
[UN]BLANK
command.
Refer to the IC
Layout Editor
Reference
Manual.
Blanked
components are
not visible or
selectable.

System Macros: B

258 ICED™ Command File Programmer's Reference

might be stored in this system macro are shown on in the previous macro
description.

Example: LOCAL #BLANKED_CELL_LAYLIST = %BLANKED.CELL.LAYERS
LOCAL #BLANKED_ROOT_LAYLIST = %BLANKED.ROOT.LAYERS
UNBLANK ALL

!missing processing that requires all layers to be visible or selectable
!restore blank status of layers in nested cells
IF (CMP("%BLANKED_CELL_LAYLIST","(none)") != 0) &
 BLANK CELL LAYERS=%BLANKED_CELL_LAYLIST
!restore blank status of layers in current cell
IF (CMP("%BLANKED_ROOT_LAYLIST","(none)") != 0) &
 BLANK ROOT LAYERS=%BLANKED_ROOT_LAYLIST

CELL

The value of this macro is the name of the cell currently being edited. This does
not mean the name of the cell file, but merely the name of the cell itself.

Example: $%NUM_DEL components deleted from cell %CELL

Before this statement is executed, the %CELL reference will be replaced with the
name of the cell being edited. The %NUM_DEL reference will also be replaced
with the contents of that user-defined macro. The string will then be echoed in
the journal file and on the screen. If this is the last command in the command
file, the comment will be left on the screen when the command file is complete.

If you prefer to use the name of the cell shortened to 8 characters, use the
SHORT.CELL system macro instead. See page 292.

CELL.BOX.cell_index

This macro contains the coordinates of the bounding box for the cell that has the
indicated cell table index. A bounding box is the smallest rectangle square with
the axes that encloses all of the components in the cell. The coordinates are in

To find out
about a specific
layer, use the
LAYER.BLAN-
KED.ROOT-
.layer_spec
system macro.
See page 274.

The
CELL.ROOT
system macro
contains the
name of the root
cell.

Refer to an
overview of cell
indices on page
252.

System Macros: D

ICED™ Command File Programmer's Reference 259

the coordinate system of the indicated cell. The lower left corner coordinate is
provided first.

Example: $ All root cell components are within the box: %CELL.BOX.1

When this example is typed at the command prompt in the editor, the editor will
report the coordinates of the bounding box of the root cell (i.e. the cell the editor
was launched to edit) on the screen under the command prompt line. The
comment created will look similar to:

$ All root cell components are within the box: (-117.0, 0.0) (8.0, 62.5)

To get the bounding box coordinates for a specific cell name, you can use the
CELL function to get the cell table index. (See page 221.)

Example: LOCAL #CELL_NUM = {CELL("%CELL_NAME")}
LOCAL #CELL_NAME = MYCELL
LOCAL #CELL_BOX = ""

#CELL_BOX = %CELL.BOX.%CELL_NUM

When you omit the cell_index entirely, it refers to the bounding box of the
current cell.

Example: LOCAL #BOUNDS = %CELL.BOX

CELL.DEPTH.cell_index

For the purposes of this system macro, depth refers to how deeply cells are
nested within the specified cell. A cell that contains no other cells has depth 0.
A cell that contains a cell that contains no other cells has depth 1.

This system macro will contain the depth of the specified cell represented as an
integer. The cell is specified by its index into the cell table. The depth
information must have already been created by use of the MARK_SUBCELLS
command.

See page 246
for an example
that uses the X0
and X1
functions to
parse the
CELL.BOX.cell
_index macro.

Refer to an
overview of cell
indices on page
252.

System Macros: D

260 ICED™ Command File Programmer's Reference

Example: MARK_SUBCELLS
LOCAL #CNAME = $PROMPT "Enter cell name."
$Cell Depth for cell %CNAME = %CELL.DEPTH.{CELL("%CNAME")}

The example above uses the CELL function to get the cell table index for the cell
name typed by the user. This function call is evaluated because it is contained in
curly braces. The entire reference in curly braces is replaced by the integer cell
index. The CELL.DEPTH.cell_index system macro reference can then be
resolved. The number of levels of subcell nesting in the indicated cell will be
reported. If the indicated cell contains no subcells, the reference will be "0".

When you omit the ".cell_index" suffix as shown below, the macro refers to the
current cell, the cell you are editing.

Example: LOCAL #MY_DEPTH = %CELL.DEPTH

The values stored in this system macro can be used for sorting cells. You can
sort cells so that no cell in the list will contain a cell that is not earlier on the list.
For example, a depth 3 cell cannot possibly contain a depth 4 cell.

Example: LOCAL #I = 1; LOCAL #J = 1
LOCAL #MAX_DEPTH = 0
LOCAL #THIS_DEPTH = 0
!Determine maximum nesting depth
MARK_SUBCELLS
#MAX_DEPTH = %CELL.DEPTH
!Create list of macros with sorted cell indices
#THIS_DEPTH = 0
WHILE (%THIS_DEPTH <=%MAX_DEPTH) {

#I = 1
WHILE (%I <= %MAX.CELL) {

IF (%CELL.DEPTH.%I == %THIS_DEPTH){
GLOBAL #MYCELL.%J = %I
#J = {%J + 1}

}
#I = {%I + 1}

}
#THIS_DEPTH = {%THIS_DEPTH + 1}

}

The
MARK_SUB-
CELLS
command fills a
table with data
used by this
system macro as
well as others.
See page 197.

This processing
is very similar
to that in the
_LOOP2.CMD
file supplied
with the
installation.
This command
file is designed
to execute an
operation in
every subcell of
the current cell.

System Macros: D

ICED™ Command File Programmer's Reference 261

The lines on the previous page will create an array of global user macros with the
names MYCELL.1, MYCELL.2, etc. Each macro will contain a different cell
table index. The macros will be created so that the cells with the lowest depth
will be first in the array.

If you process these cells later in the order the macros were created, you can be
sure that every subcell of the current cell has already been processed.

CELL.EDIT.cell_index

This macro is used to determine the edit status of cells already loaded. The value
of the macro informs you whether or not you can edit and then save the indicated
cell. Specify the cell by setting cell_index to the positive integer that represents
the index into the cell table.

To determine the edit status for a specific cell name, you must use the CELL
function first to obtain the cell table index. (See page 221.) If the cell it is not
currently loaded, the CELL function also tells you whether or not the cell already
exists in a cell library

See page 252
for a definition
of the cell table,
cell libraries
and cell indices.

See the related
SUBCELL.EDIT
macro for a
more efficient
method of
looping through
only certain
subcells See
page 296.

Value Meaning
0 The cell cannot be edited since it is already open, contains an open

cell, or the cell_index does not refer to a valid cell.
1 The cell is in a read-only library that cannot be edited then saved.
2 The cell is in a copy-edit library so that if you edit and then save it, it

will be saved to the current directory rather than its original library.
3 The cell is directly editable.

Figure 34: Possible values for CELL.EDIT.cell_index macros

System Macros: D

262 ICED™ Command File Programmer's Reference

Example: LOCAL #CELL_NUM = ""
LOCAL #CELL_NAME = $PROMPT = "Enter cell name"

#CELL_NUM = {CELL("%CELL_NAME")}
IF (%CELL_NUM >0) {

IF (%CELL.EDIT.%CELL_NUM == 3) {
EDIT CELL %CELL_NAME

!Missing statements that modify cell
LEAVE

}
ELSE Return "Cell %CELL_NAME cannot be edited then saved."

}
ELSE Return "Cell %CELL_NAME not loaded."}

The CELL.EDIT.cell_index macro is usually used in a loop with cell_index
specified with a counter. See an example on page 264.

CELL.LIB.NUMBER.cell_index

This macro is used to determine the cell library that contains a specific cell. The
cell is specified by its cell table index. The value stored in the macro is the cell
library number where the cell file is saved. To get the cell library name from the
number, use the system macro LIB.lib_index.

Example: LOCAL #MYCELL_NAME = $PROMPT = "Enter cell name."

$Cell %MYCELL_NAME is stored in library &
%LIB.%CELL.LIB.NUMBER.{CELL("%MYCELL_NAME")}
PAUSE

When you omit the cell_index, CELL.LIB.NUMBER refers to the library of the
cell you are currently editing.

The curly
braces are
required around
the call to a
function to
force
evaluation. See
page 48.

Refer to an
overview of cell
indices on page
252.

The function
CELL() returns
the cell table
index from the
cell name. See
page 221.

System Macros: D

ICED™ Command File Programmer's Reference 263

CELL.LIB.TYPE.cell_index

This macro is used to determine the protection status of the cell library that
contains a specific cell. The protection status code determines whether or not the
cell can be edited. The cell is specified by its cell table index.

This macro is very similar to the CELL.EDIT.cell_index system macro. For any
cell_index except for those of open cells, the CELL.LIB.TYPE.cell_index system
macro will have the same value as the CELL.EDIT.cell_index system macro.
When the cell index is that of an open cell, this macro will store the cell library
protection status code, while the CELL.EDIT.cell_index system macro will store
0, since open cells cannot be edited. See the CELL.EDIT.cell_index description
on page 261 for the valid non-zero values stored by the CELL.LIB.TYPE
cell_index system macro.

Example: UNSEL ALL;SEL CELL=* NEAR
IF (%N.SELECT == 1) {

ITEM LOCAL #MYCELL
IF (CMP(%MYCELL.TYPE, "CELL") == 0){

IF (%CELL.LIB.TYPE.%MYCELL.CELL.NO < 3){
RETURN "Cell %MYCELL.CELL.NAME is not directly editable"

}
}

}

The example above uses the ITEM command to obtain the cell table index of a
cell the user selects at the beginning of the command file. The cell table index
will be stored in the %MYCELL.CELL.NO user macro by the ITEM command.
This macro is created only when a cell is selected when the ITEM command is
executed, so we test for this type of component before referring to the
%MYCELL.CELL.NO user macro.

Say that the user selects a cell with a cell table index of 45. Then the
%CELL.LIB.TYPE.%MYCELL.CELL.NO reference will resolve to
%CELL.LIB.TYPE.45. This macro will contain the protection code for the cell
library that contains that cell. If the value is less than 3, then the cell cannot be
edited and saved back into its original cell library.

Cell libraries
and their
protection status
are defined with
the
ICED_PATH
environment
variable. See
page 106.

The N.SELECT
system macro
stores the
number of
selected
components.
The ITEM
command
requires that
exactly one
component is
selected when
the command is
executed.

System Macros: D

264 ICED™ Command File Programmer's Reference

When you omit the cell_index, then it is interpreted as referring to the current
cell, the one you are currently editing. This will provide the protection code of
the cell library that stores the current cell.

CELL.NAME.cell_index

This macro is used to determine the name of a cell from its index into the cell
table.

The example below uses the CELL_NAME.cell_index macros to open by name
each editable cell in the cell table.

Example: WHILE(%N <= %MAX.CELL){
IF(%CELL.EDIT.%N==3){ !Edit cell only if it is directly editable

EDIT CELL %CELL.NAME.%N;
!process this cell
LEAVE !saves the cell only if it was changed

}
#N = {%N +1}

}

When you omit the .cell_index, then it is interpreted as referring to the current
cell, the one you are currently editing. The value stored in CELL.NAME is the
same as that stored in the CELL system macro.

CELL.ROOT

This macro contains the name of the cell ICED™ was launched to edit.

Example: DOS "^COPY %CELL.ROOT^.JOU Q:\MYDIR >NUL"

Refer to an
overview of cell
indices on page
252.

Refer to
_LOOP.CMD
for another way
to execute a set
of commands
on every cell in
the cell table.

MAX_CELL is
described on
page 286.

CELL_EDIT-
.cell_index is
described on
page 261.

The function
CELL() returns
the cell table
index from the
cell name. See
page 221.

See an overview
of DOS
commands on
page 121.

System Macros: D

ICED™ Command File Programmer's Reference 265

The example on the previous page uses a DOS command to copy the current
journal file to the Q:\MYDIR directory. The second '^' character delimits the
name of the system macro from the rest of the string without a space. After
substitution, the command executed by the DOS interpreter will be similar to:

COPY MYCELL.JOU Q:\MYDIR >NUL

CMD.DIR.dir_index

These system macros contain the path(s) of the directory(ies) where ICED™ will
search for command files.

The editor will search for command files in a certain set of directories. The first
directory searched is always the directory of the root cell. The editor will then
search through all of the directories defined with the ICED_CMD_PATH
environment variable. Finally the AUXIL subdirectory of each of the directories
defined with ICED_HOME is searched.

The first valid value for dir_index is 1. The maximum dir_index is the number of
directories in the command file search path. This number is stored in the
N.CMD.DIRS system macro. (See page 288.)

Example: ! search for MYFILE on command file search path and open in text editor
GLOBAL #MYFILE = "BIPOL.TXT"
GLOBAL #N = 1

WHILE (%N <= %N.CMD.DIRS){
$Look for %CMD.DIR.%N^%MYFILE
IF (FILE_EXISTS("%CMD.DIR.%N^%MYFILE")){

SPAWN "-NOTEPAD.EXE %CMD.DIR.%N^%MYFILE"
RETURN

}
#N = {%N + 1}

}
ERROR "File %MYFILE not found!"

Refer to an
overview of
indexed system
macros on page
251

To learn more
about the
command file
search path,
refer to page 14.

See the WHILE
command on
page 212.

See the
FILE_EXISTS
function on
page 227.

Refer to the IC
Layout Editor
Reference
Manual for the
SPAWN
command.

System Macros: D

266 ICED™ Command File Programmer's Reference

When you search for files using commands similar to those on the previous page,
rather than using fully qualified file names based on your installation, then the
code will not need modification when you need to change the command file
search path.

The CMD.DIR.dir_index macros will always end in '\' to make it easy to form
file names. The "^" symbol in the example above is used to delimit the indexed
macro name from the next macro reference without adding a space to the file
name. (See page 44.)

When you omit the dir_index completely, it is the same as typing CMD.DIR.1.
This is the directory of the root cell, the first directory searched for command
files.

DRC.DIR.dir_index

These system macros contain the path(s) of the directory(ies) where ICED™ will
search for rules files used by the DRC (Design Rules Checker) program available
separately from IC Editors, Inc. The editor will search for these files first in the
directories defined on the DRC_PATH environment variable. If the required file
is not found, the AUXIL subdirectory of each HOME directory tree is searched.

The first valid value for dir_index is 1. The maximum dir_index is the number of
directories in the DRC rules file search path. This number is stored in the
N.DRC.DIRS system macro. (See page 288.)

Example: ! search for MYFILE rules file and copy it if not found
GLOBAL #MYDIR = "Q:\MYTECH\MASTER\"
GLOBAL #MYFILE = "BIPOL.RUL"
GLOBAL #N = 1
WHILE (%N <= %N.DRC.DIRS){

$Look for %DRC.DIR.%N^%MYFILE
IF (FILE_EXISTS("%DRC.DIR.%N^%MYFILE")) RETURN
#N = {%N + 1}

}
$File %MYFILE missing. Copying %MYDIR^%MYFILE to %DRC.DIR.1
DOS "^COPY %MYDIR^%MYFILE %DRC.DIR.1^%MYFILE >NUL"

Refer to an
overview of
indexed system
macros on page
251

See the WHILE
command on
page 212.

See the
FILE_EXISTS
function on
page 227.

System Macros: D

ICED™ Command File Programmer's Reference 267

The DRC.DIR.dir_index macros will always end in '\' to make it easy to form file
names.

You should use '^' symbols to delimit one macro reference from the next. This
symbol is used to delimit a macro reference without adding a space to the string.

When you omit the dir_index completely, it is the same as typing DRC.DIR.1.

EXEC.DIR

This system macro contains the path of the directory where the current command
file is stored. This can be useful when other files required by your command file
are stored in the same directory.

When no command file is being executed, the value of this system macro is
"UNDEFINED".

Example: DOS '^%EXEC.DIR^MYPROG.BAT >NUL'

When this command is executed in a command file, the macro reference
'%EXEC.DIR' will be replaced with the drive letter and directory path where the
command file is stored. The '^' that follows this macro reference separates the
macro reference from the name of the file without inserting a space.

After the macro references are resolved, if the current command file is stored in
the directory "Q:\ICED\AUXIL" the command string executed will be:

DOS '^Q:\ICWIN\AUXIL\MYPROG.BAT >NUL'

This macro allows your command file to be more portable. The command file
can be relocated, or sections of code can be reused in command files stored in
different locations, and statements like the one above can still be used without
requiring edits to the command file to specify the directory. This method also
does not require the user to modify the DOS PATH environment variable that
stores the operating system's executable file search path.

The directory of
the root cell is
stored in the
LIB system
macro.

See another ex-
ample of the use
of this system
macro in the
BUSROUTE-
.CMD example
on page 327.

See page 121
for details on
executing DOS
commands.

System Macros: E

268 ICED™ Command File Programmer's Reference

EXEC.FILE

This system macro contains the fully qualified filename of the current command
file. When no command file is being executed, the value of this system macro is
"UNDEFINED".

Example: RETURN "Success. Command file %EXEC.FILE completed successfully."

The reference to EXEC.FILE is replaced in the string before the RETURN
command is executed. The message is left on the screen after control is returned
to the editor. You can add this command to the end of every one of your
command files to provide feedback to the user that the command file has
performed it's function and completed.

HOME.dir_index

These system macros contain the path(s) of the directory(ies) where the ICED™
program files are installed.

Most installations have a single home directory, the Q:\ICWIN10 directory.
However, you can specify more than one directory in the ICED_HOME
environment variable definition (usually stored in the project batch file.) In this
case, each of these directories will have a HOME.n system macro, where n is the
index of the directory in the ICED_HOME environment variable definition. The
maximum dir_index is stored in the N.HOME system macro. (See page 289.)

Example: DOS '^COPY X:\PROJX\TEST.CEL %HOME.%N.HOME^SAMPLES'

Let us assume that the command file fragment above is run by a user who has
defined 3 home directories in the ICED_HOME definition in his project batch
file. The last directory is intended to store his modified files, while the first two
are located on networked drives. The number stored in this case in the N.HOME
system macro is 3. The %HOME.3 macro contains the drive letter and path of
the home directory where he stores his customized ICED™ files.

10 Remember that Q:\ICWIN represents the drive letter and path where you have installed
ICED™.

Refer to an
overview of
indexed system
macros on page
251

To learn more
about home
directories, refer
to the IC Layout
Editor
Reference
Manual or see
Q:\ICWIN\DOC
\TREES.TXT.

See page 121
for details on
executing DOS
commands.

System Macros: H

ICED™ Command File Programmer's Reference 269

The use of the %HOME.%N.HOME^SAMPLES syntax to define the target path
of the copied file in the command on the previous page will allow this command
to work on any user's system regardless of the directory structure they have
defined with ICED_HOME.

The HOME.dir_index macro(s) will always end in '\' to make it easy to form file
names. The '^' symbol in the example above is used to delimit the macro name
without adding a space to the file name.

When you omit the dir_index completely, it is the same as typing HOME.1.

ID.MAX

Each component added to a cell has unique identification number. The id
number assigned to the first component in the cell is 1. The id number for a new
component is always the previous maximum id number plus 1. Id numbers for
deleted components are not reused. These id numbers can be used to select
components.

The ID.MAX system macro contains of the id number assigned to the last
component added to the current cell. This macro can be used as the maximum id
number in a WHILE loop if you need to process each component.

Example: LOCAL #I = 1
WHILE (%I <= %ID.MAX){

UNSELECT ALL; SELECT ID=%I
IF (%N.SELECT == 1) {

ITEM LOCAL #THIS
!process component

}
#I = {%I + 1}

}

The ITEM
command
creates a series
of macros that
contain
information on
a single
component.

System Macros: I

270 ICED™ Command File Programmer's Reference

This macro can also be stored in a local macro to keep track of components
added since a benchmark id was issued.

Example: LOCAL #ID.START = %ID.MAX
LOCAL #RESULT = "SUCCESS"
 ! Assume that this command file is performing some processing
 ! that adds components, but that the results are not always
 ! successful.

!Undo results if the command file was not successful
IF (CMP(%RESULT,"FAILURE")==0) {

UNSELECT ALL
SELECT IDS AFTER %ID.START
XSELECT OFF
DELETE

}

See another example in the ED.CMD and UNED.CMD command files beginning
on page 312.

JOU

This macro contains the fully qualified name of the journal file. This is the file
where all commands executed in the current editor session are logged. It can be
used to recover from crashes or from mistakes. It can also be used to browse the
history of what happened to your layout during an edit session or a command
file.

Let us say that you are developing a complicated command file. If a problem
occurs, you may want to browse the journal file to track what happened as your
command file executed. You can use the following error block to automatically
open a window to browse the journal file and see the exact commands that were
executed.

Example: ERR_HANDLER: DOS "-NOTEPAD.EXE %JOU"

The user would need to close the Notepad editor window to continue the
command file.

The CMP
function
compares two
strings. See
page 224.

The XSELECT
mode
determines how
commands like
DELETE
behave when no
components are
selected. See
page 215.

See page 127 to
learn more
about the
journal file.

See page 125 to
learn more
about error
blocks.

System Macros: L

ICED™ Command File Programmer's Reference 271

LAST.BOX

This macro is used to record the coordinates of the last box digitized with the
cursor.

Example: $ Digitize corners for new BOX.
ADD BOX
ADD BOX OFFSET=(10,10) AT %LAST.BOX
ADD BOX OFFSET=(20,20) AT %LAST.BOX

This command file prompts the user to digitize the corners of a new box
component, then adds two more components that are offset from the box
digitized by the user. Note that the contents of the line with the $ prefix will be
displayed on the bottom of the editor screen while the program waits for the user
to digitize the positions for the first ADD BOX command.

The LAST.BOX macro stores the last pair of digitized coordinates from
commands other than ADD BOX. The VIEW IN and SELECT IN commands
will also set the value of the LAST.BOX macro. However, the ADD POLY
command will not set the value of this system macro.

See the LAST.DISP, LAST.POS, and LAST.RULER.POS.n system macros for
the values of other recently digitized coordinates.

LAST.DISP

This macro stores the last displacement digitized with the cursor. The COPY,
MOVE, and VIEW MOVE commands all set the value of this macro. The
RULER command does not alter the contents of the macro.

The next example makes multiple copies of a single component based on the first
displacement digitized by the user.

You can use the
X0, X1, Y0, and
Y1 functions to
parse this
macro. See
page 247.

The
LAST.RULER.
POS.n system
macros can also
be used to reuse
a previously
digitized
displacement.
See page 273.

System Macros: L

272 ICED™ Command File Programmer's Reference

Example: LOCAL #NUM_COPIES=$PROMPT="How many copies?"
LOCAL #LOOP.N = 2

UNSEL ALL
$ Digitize displacement for multiple copy.
COPY
WHILE (%LOOP.N <= %NUM_COPIES){

SEL NEW
COPY BY %LAST.DISP
UNSEL ALL
#LOOP.N = {%LOOP.N +1}

}
$SUCCESS: {%LOOP.N – 1} copies made

LAST.POS

This macro stores the coordinates of the last single point digitized with the
cursor. All commands that allow the user to digitize positions with the cursor set
the value of this macro.

Let us say that you are routing wires in your layout. You want a label on each
wire. The following command file will automatically add a text component to
each wire as you digitize it.

Example: DEFAULT GLOBAL #WIRE_LABEL $PROMPT="Enter label"
$Digitize wire
ADD WIRE LAYER=M1
ADD TEXT "%WIRE_LABEL" LAYER=M1_TEXT &

OFFSET = (0, -.5) AT %LAST.POS

The origin of the text component will be a slight offset from the last vertex of the
wire digitized by the user. This simple example may add labels that are not well
placed for naming nodes for the NLE or other programs. If the user always
digitizes the wire ending with a horizontal segment digitized left to right, then the
labels should be placed correctly. The origin of the text component should be
covered by the wire to name the wire.

The WHILE
command
allows a
command file to
loop. See page
212.

A more realistic
example using
this system
macro is shown
on page 325.

System Macros: L

ICED™ Command File Programmer's Reference 273

Repeated uses of the example on the previous page will not prompt the user for
the label text. Since the WIRE_LABEL macro is defined with the DEFAULT
GLOBAL keywords, the macro will persist until it is deleted with a REMOVE
command. The user only has to enter the text for the first use of the command
file, then repeated uses of the command file will add the same label.

LAST.RULER.POS.0 and LAST.RULER.POS.1

These macros store the coordinates of the two points digitized by the last
successful RULER command. The points are not reordered, but are the exact
points digitized by the user during the command.

Let us say that your command file needs to remember the coordinates of a
bounding box defined by the user. You could create user macros with the
$[PROMPT="string"]BOX syntax (see page 144), but simply using the RULER
command and the LAST.RULER.POS.n macros is easier to code.

Example: $Digitize the lower-left corner of the bounding box, then the upper-right corner
RULER
!missing processing that includes user digitizing a position MYPOS
IF (X(%MYPOS) < X(%LAST.RULER.POS.0)) {

ERROR Position %MYPOS is out of range
}

The $comment in the example above is left on the screen while the user digitizes
points during the RULER command. The user may digitize many points with
various commands before the values in these macros are used, but they will not
change until a new RULER command is executed.

The values stored in these system macros will remain valid even if the previous
RULER command was executed in a different command file, or outside of any
command file.

The X()
function returns
the X
coordinate from
a coordinate
pair. See page
246.

System Macros: L

274 ICED™ Command File Programmer's Reference

LAYER.BLANKED.CELL.layer_spec

This macro contains a 1 (i.e. TRUE) if layer layer_spec is blanked for
components in nested cells. If the layer is not blanked for nested cells, the value
of this macro is 0 (i.e. FALSE). Specify layer_spec using either a layer name or
a layer number.

Example: LOCAL #MODLAY = "M1"
IF (%LAYER.BLANKED.CELL.%MODLAY){

@_GET_ANS; &
#PROMPT="%MODLAY is blanked in nested cells. Continue?"; &
#CHOICES="yn"

IF (%ret.value !=1) RETURN
ELSE UNBLANK CELL LAY %MODLAY

}

The example above tests to see if a layer is blanked for nested cells. The system
macro LAYER.BLANKED.CELL.%MODLAY is used to test this. The macro
reference %MODLAY is replaced with the string "M1" as the line is interpreted.
So the entire macro reference resolves to "LAYER.BLANKED.CELL.M1". If
this layer is blanked, then user is warned and if he/she does not respond with a
<y> to the prompt, then the command file is terminated immediately with the
RETURN command.

LAYER.BLANKED.ROOT.layer_spec

The macro contains a 1 (i.e. TRUE) if layer layer_spec is blanked for
components in the current cell. If the layer is not blanked, the value of this
macro is 0 (i.e. FALSE). Specify layer_spec using either a layer name or a layer
number.

Set the value of
this macro with
the
[UN]BLANK
command.

The
_GET_ANS
command file is
supplied with
the installation.

If you need the
entire list of
layers, use the
BLANKED.-
CELL.LAYERS
system macro.
See page 257.

Set the value of
this macro with
the
[UN]BLANK
command.

System Macros: L

ICED™ Command File Programmer's Reference 275

Example: LOCAL #REBLANK_NWELL = 0
LOCAL #UNBLANK_PWELL = 0

IF (%LAYER.BLANKED.ROOT.NWELL){ !NWELL blanked
UNBLANK ROOT LAYER NWELL
#REBLANK_NWELL = 1

}
IF (%LAYER.BLANKED.ROOT.PWELL==0){ !PWELL not blanked

BLANK ROOT LAYER PWELL
#UNBLANK_PWELL = 1

}
PROMPT="Select NWELL shape"
SELECT LAYER=NWELL NEAR

!missing statements that manipulate NWELL shape

IF (%REBLANK_NWELL) BLANK ROOT LAYER NWELL
IF (%UNBLANK_PWELL) UNBLANK ROOT LAYER PWELL

The command file above turns off the display of the PWELL layer blanked so
that the user can more easily select an NWELL shape to manipulate. The system
macro LAYER.BLANKED.ROOT.layer_spec is used to test the initial blank
status of both the PWELL and NWELL layers so that the original status can be
restored at the end of the command file.

LAYER.CIF.LAYER.layer_spec

This macro contains the CIF layer name for layer layer_spec. You can specify
layer_spec as either a layer name or layer number.

If no CIF layer name is defined for the specified layer, the value of this macro is
"NO_CIF".

If you need the
entire list of
layers, use the
BLANKED.-
ROOT.LAYERS
system macro.
See page 257.

Set the value of
this macro with
the LAYER
command.

System Macros: L

276 ICED™ Command File Programmer's Reference

Example: LOCAL #LOOP.N = 1
LOCAL #CIF_COUNT = 0
$ CIF layer names currently in use
$ number cif name
WHILE (%LOOP.N <= 255){

IF (CMP(%LAYER.CIF.LAYER.%LOOP.N, "NO_CIF")!=0) {
$ %LOOP.N %LAYER.CIF.LAYER.%LOOP.N
#CIF_COUNT = {%CIF_COUNT +1}

}
#LOOP.N = {%LOOP.N + 1}

}
$ %CIF_COUNT layers have CIF names assigned

The example command file above will record in the journal file the CIF layer
names for all layers that have them defined. Only layers with CIF names
assigned will be listed.

LAYER.COLOR.layer_spec

This macro will contain the color number assigned to layer layer_spec. You can
specify layer_spec as either a layer name or layer number.

Example: LOCAL #LAYER_NAMES = ""
LOCAL #N= 1
@_GET_INT; #PROMPT="color number"; #MIN=1; #MAX=15
LOCAL #COLOR_NUM = %RET.VALUE
WHILE (%N<= 255){

IF (%LAYER.COLOR.%N== %COLOR_NUM) {
#LAYER_NAMES = %LAYER_NAMES %LAYER.NAME.%N

}
#N= {%N+ 1}

}
RETURN "Layers: %LAYER_NAMES use color %COLOR_NUM"

The command file above will loop through all 255 layers and display the names
of those that are drawn with the selected color.

Set this value of
this macro with
the LAYER
command.

A color can also
be selected
using a menu.
See a related
example on
page 277.

System Macros: L

ICED™ Command File Programmer's Reference 277

LAYER.NAME.layer_spec

Use this macro to get the layer name from the layer number. The layer_spec can
be either a layer name or number. While it may seem silly to use a layer name
for layer_spec, when your command file prompts the user to supply a layer, they
may type either a name or a number.

If the indicated layer has no name assigned to it, the layer number is returned.

The example on the previous page demonstrates the use of this macro.

LAYER.NUMBER.layer_spec

This macro contains the layer number for the indicated layer. As with the
previous macro, layer_spec can be either a layer name or a layer number.

Example: LOCAL #LAYER $PROMPT="Enter layer"
LOCAL #LAYER_NUM = %LAYER.NUMBER.%LAYER

The pair of macro definitions above insures that the layer number of the layer
typed by the user is stored in the LAYER_NUM. This is true whether the user
types a layer name or a layer number in response to the prompt.

LAYER.PAT.layer_spec

This macro stores the stipple pattern number used to draw layer layer_spec in the
screen display. You can specify layer_spec as either a layer name or layer
number.

Example: $Select pattern to replace
LOCAL #PAT_STR $MENU=M1:PATTERN1A !Display pattern list menu
IF (LEN("%PAT_STR") == 7) { ! " pat=n"

LOCAL #PAT_NUM = {CHAR(7,"%PAT_STR")}
}

!continued on next page

Set this value of
this macro with
the LAYER
command.

Set this value of
this macro with
the LAYER
command.

The CHAR
function returns
a single
character from a
string.

System Macros: L

278 ICED™ Command File Programmer's Reference

ELSEIF (LEN("%PAT_STR") == 8) {! " pat=nn"
LOCAL #PAT_NUM = {CHAR(7,"%PAT_STR")}{CHAR(8,"%PAT_STR")}

}
ELSE ERROR "Invalid pattern returned from menu"

$Select new pattern
LOCAL #NEW_PAT_STR $MENU=M1:PATTERN1A

LOCAL #LOOP.N = 1
WHILE (%LOOP.N <= 255){

IF (%LAYER.PAT.%LOOP.N==%PAT_NUM) {
LAYER %LOOP.N %NEW_PAT_STR

}
#LOOP.N = {%LOOP.N + 1}

}

This command file demonstrates how to allow the user to select a pattern from a
menu. The user will see the $comment displayed below the command line and a
sample of each pattern next to its number in the menu area. The pattern number
must be parsed from the return string since the PATTERN1A submenu formats
the return string as " pat=n" where n is the pattern number. This format is nice
when building LAYER commands, but awkward when you need only the
number.

Once the old and new patterns are selected, the WHILE loop tests the pattern
number of each layer with the LAYER.PAT.layer_spec system macro and
compares it to the pattern number in PAT_NUM. If the numbers match, the old
pattern is replaced with the new one using the LAYER command.

LAYER.PEN.layer_spec

Use this macro to determine the pen number used to plot layer layer_spec. You
can specify layer_spec as either a layer name or layer number. The
LAYER.PEN.layer_spec macro will have a value of "-1" for layers that have no
pen number assigned to them.

11 Remember that Q:\ICWIN represents the drive letter and path where you have installed
ICED™.

The
PATTERN1A
submenu can be
browsed in the
file
Q:\ICWIN11\-
SAMPLES\-
M1A.DAT. See
page 147 for
more details on
using menus for
macro
definition.

Set this value of
this macro with
the LAYER
command.

System Macros: L

ICED™ Command File Programmer's Reference 279

LAYER.PROTECTED.layer_spec

This macro contains a 1 (i.e. TRUE) if the entire layer layer_spec is protected. If
the layer is not protected, the value of this macro is 0 (i.e. FALSE). (If a layer is
protected, it is still visible, but components on that layer cannot be selected.)
Specify layer_spec using either a layer name or a layer number.

Example: @_GET_LAY
LOCAL #LAYER = %RET.VALUE

IF (%LAYER.PROTECTED.%LAYER) &
RETURN "Layer %LAYER is protected. Cannot continue."

The command file fragment above uses the _GET_LAY.CMD command file to
prompt the user to enter a layer name or number. After verifying that a valid
layer has been entered, this command file stores the layer number in the global
macro RET.VALUE. The example then tests that this layer is not protected. If it
is protected, this command file fragment prints a warning message on the screen
and terminates the command file.

LAYER.SPACE.layer_spec

Use this macro to determine the spacing distance assigned to the layer specified
by layer_spec. You can specify layer_spec as either a layer name or layer
number.

The spacing distance is used primarily by ADD commands when the spacing
cursor is enabled. However, you can use this spacing value in your command
files if desired.

Example: @_GET_REAL; &
#PROMPT="spacing distance"; &
#DEFAULT=%LAYER.SPACE.%USE.LAYER

#MYSPACE = %RET.VALUE

Set the value of
this macro with
the
[UN]PROTECT
command.

See the
PROTECTED_
LAYERS
system macro to
get a list of all
protected layers.
See page 290.

Set this value of
this macro with
the LAYER
command.

The spacing
cursor is
enabled by the
SPACER
command.

System Macros: L

280 ICED™ Command File Programmer's Reference

The example on the previous page uses the system macro USE.LAYER (see page
299) to get the layer number of the current layer. This is then used as the
layer_spec in the LAYER_SPACE.layer_spec system macro reference. The
spacing distance of the current layer then becomes the default value used by the
_GET_REAL.CMD command file which prompts the user for a real number and
verifies the response. If the user does not override the value when the command
file is executed, this value is stored as the value of the MYSPACE user macro.

LAYER.STREAM.DATA.TYPE.layer_spec

Use this macro to determine the stream data type number for layer layer_spec.
You can specify layer_spec as either a layer name or layer number.

Example: $%LAYER.STREAM.DATA.TYPE.M1

Typing the command above at the prompt in the editor will display the stream
data type for layer name M1. (Note that the command "LAYER M1" will also
report this information along with all other layer parameters.)

The LAYER.STREAM.DATA.TYPE.layer_spec macro will have a value of "-1"
for layers that have no stream data type assigned to them. See the next example
for a brief review of how these stream assignments are made.

LAYER.STREAM.LAYER.layer_spec

This macro stores the stream layer number for layer layer_spec. You can specify
layer_spec as either a layer name or layer number. This macro will have a value
of "-1" for layers that have no stream layer number assigned to them.

Example: @%START.CMD
LOCAL #NAMES = ""
LOCAL #N= 1

!continued on the next page

The _GET-
_REAL.CMD
command file is
supplied with
the installation.

Set this value of
this macro with
the LAYER
command.

Set this value of
this macro with
the LAYER
command.

System Macros: L

ICED™ Command File Programmer's Reference 281

WHILE (%N<= 255){
IF (%LAYER.STREAM.LAYER.%N> -1) {

#NAMES = %NAMES %LAYER.NAME.%N
}
#N= {%N+ 1}

}
RETURN "Layers: %NAMES will be exported by STREAM command"

This example begins with the execution of the startup command file. (See the
START.CMD system macro on page 295.) This is done because no stream layer
assignments are saved in a cell file. These definitions should be made in the
startup command file, but they are discarded on purpose at the end of an editor
session to prevent obsolete layer correspondences. The execution of the current
startup command file redefines the stream numbers.

The loop adds the name of each layer with a valid stream layer assignment to the
NAMES macro.

LAYER.STREAM.TEXT.TYPE.layer_spec

This macro stores the text type number for layer layer_spec. You can specify
layer_spec as either a layer name or layer number. Use this macro in the same
manner as the LAYER.STREAM.DATA.TYPE.layer_spec LAYER.STREAM-
.LAYER.layer_spec macros.

LAYER.WIRE.WIDTH.layer_spec

When you do not specify the wire width in an ADD WIRE command, the wire
will be created with the default width assigned to the layer. The default wire
width for layer layer_spec is stored in this macro. You can specify layer_spec as
either a layer name or layer number.

Set this value of
this macro with
the LAYER
command.

System Macros: L

282 ICED™ Command File Programmer's Reference

Example: LOCAL #LAYER_NUMBERS = ""
LOCAL #LOOP.N = 1
LOCAL #MIN_WIDTH = 2
WHILE (%LOOP.N <= 255){

IF (%LAYER.WIRE.WIDTH.%LOOP.N < %MIN_WIDTH) {
#LAYER_NUMBERS = %LAYER_NUMBERS %LOOP.N

}
#LOOP.N = {%LOOP.N + 1}

}
$ These layer(s) have default widths < %MIN_WIDTH: %LAYER_NUMBERS

The command file above will report the numbers of layers that have a default
width less than a certain minimum.

LIB.lib_index

This system macro contains the path of a directory on the cell library search path.
You specify which cell library by an index into the cell library table. Indices are
integers beginning with 1. The maximum index is stored in the N.LIBS system
macro. (See page 288.)

Example: WHILE (%N <= %N.LIBS) {
#PATHS = "%PATHS^%LIB.%N;" !quotes are important here
#N = {%N + 1}

}

The example above will create a string in macro PATHS with all fully qualified
cell library path names delimited with ';'. When complete, the value in PATHS
will look similar to:

"Q:\ICWIN\TUTOR\;Q:\ICWIN\SAMPLES\;"

Note that the path name in each LIB.lib_index macro ends with a trailing '\'. This
makes it easier to build file names.

(Note that in the example above the quotes are required around the #PATHS
macro assignment statement. If they were not used, the trailing ';' would have
been interpreted as a command delimiter and stripped from the string before
execution.)

Indexed system
macros are
explained more
on page 251.

A '^' is used to
delimit macro
names without a
space. See page
44.

The cell library
paths are
defined with the
ICED_PATH
environment
variable. See
page 106.

System Macros: L

ICED™ Command File Programmer's Reference 283

LIB.TYPE.lib_index

This system macro contains a
status code indicating the type
of protection defined for a
specific cell library. Valid
values for this system macro are
shown in Figure 35.

The cell library is specified by
its index into the cell library
table. Valid indices are integers
beginning with 1. The
maximum index is stored in the
N.LIBS system macro. (See
page 288.)

This next example expands the example in the LIB.lib_index system macro
description. It builds a delimited list of all cell libraries with the appropriate
protection character suffixes suitable for use as an ICED_PATH environment
variable definition.

Example: LOCAL #N=1
GLOBAL #PATHS = ""
WHILE (%N <= %N.LIBS) {

#PATHS = "%PATHS^%LIB.%N"
IF (%LIB.TYPE.%N == 2){ !copy-edit library

#PATHS = "%PATHS^/C;"
}
ELSEIF (%LIB.TYPE.%N == 3){ !direct-edit library

#PATHS = "%PATHS^/D;"
}
#N = {%N + 1}

}

Indexed system
macros are
explained more
on page 251. Value Meaning

1 The library is read-only. Cells
cannot be edited then saved.

2 The library is copy-edit. If a cell is
edited, it will be saved to the
current directory rather than its
original library.

3 The library is direct-edit. Cells can
be edited and saved in the original
library.

Figure 35: Possible values for the
CELL.EDIT.cell_index macro

The N.LIBS
system macro
contains the
number of cell
libraries. See
page 288.

A '^' is used to
delimit a macro
name without a
space. See page
44.

System Macros: L

284 ICED™ Command File Programmer's Reference

LIST.EMPTY.list_name

Use this system macro to determine if a list is empty. Specify the list by its
name.

Example: LOCAL #LNAME = MYLIST
LIST GLOBAL %LNAME !puts selected components in list MYLIST
IF(%LIST.EMPTY.%LNAME) RETURN "No items in list."

The example above creates a list with the name MYLIST. The IF command tests
to see if this list is empty. If the list is empty, the command file is terminated by
the RETURN command.

A list can be empty even when the LIST.LEN.list_name macro (see 286) is non-
zero. The value stored in LIST.LEN.list_name does not change when items are
deleted. However, the LIST.EMPTY.list_name macro will become true when
the last component on the list is deleted.

LIST.EOL.list_name

This system macro stores a flag for the indicated list.

• It is set initially to "-1" for a new list.

• It is set to FALSE (the number 0) every time a SELECT LIST command
successfully selects a component.

• It is set to TRUE (the number 1) when a SELECT LIST command fails to
select a component from the list. This is the case when you have passed the
End Of the List.

Example: LIST GLOBAL %LNAME
UNSEL ALL; SEL LIST %LNAME FIRST
WHILE(%LIST.EOL.%LNAME==0) {

!process selected component
UNSEL ALL; SEL LIST %LNAME NEXT

}

See the LIST
command on
page 182 to
learn more
about lists.

Remember that
"==" is required
to test if two
values are
equal.

System Macros: L

ICED™ Command File Programmer's Reference 285

The example on the previous page is a typical loop used when you need to
process all components in a list one at a time. The WHILE condition of
'%LIST.EOL.%LNAME==0' prevents the commands in the WHILE block from
being executed unless a component was successfully selected from the list.

The first time a SELECT command passes the end of the list, this system macro
flag is set to '1'. If another similar SELECT command is executed after the flag
is set, an error occurs and the command file will be terminated.

If you reverse direction with the next SELECT LIST command (e.g. SEL LIST
%LNAME PREV) and a component is successfully selected, then the flag stored
in this macro is reset back to FALSE, '0'.

LIST.INDEX.list_name

The LIST.INDEX.list_name macro stores the current list index for the indicated
list. Use the SELECT LIST (NEXT|PREV|FIRST|LAST) commands to change
the current list index.

Example: IF (%LIST.INDEX.MYLIST <= (%LIST.LEN.MYLIST / 2)) {…

This example will test if the current list index is in the first half of the list, or the
second half.

When a list is created by the LIST command, each component is assigned an
index. The list is sorted by ID number (i.e. the component having the lowest ID
number will have a list index of 1, the second lowest ID number is assigned an
index of 2 etc.) The last has an index of n, where n is the number of components
on the list. (See the LIST.LEN.list_name macro.) Deleting a component on the
list (or otherwise removing it with a MERGE or GROUP command) does not
affect the list indices of any of the remaining components on the list.

For a new list, the value of the macro is 0. SELECT LIST commands change the
value of the macro in the following ways:

SELECT LIST list_name FIRST sets the index macro to 1.
SELECT LIST list_name NEXT adds 1 to the index. Then the

command tests to see that the component with this index exists.

System Macros: L

286 ICED™ Command File Programmer's Reference

If it does it is selected. If it does not, the SELECT command
adds 1 to the index and tries again. Once the index is greater
than n, the LIST.EOL.list_name macro is set to 1.

SELECT LIST list_name LAST sets the index macro to n.
SELECT LIST list_name PREV subtracts 1 from the index. Then the

command tests to see that the component with this index exists.
If it does it is selected. If it does not, the SELECT command
subtracts 1 from the index and tries again. Once the index is set
to 0, the LIST.EOL.list_name macro is set to 1.

LIST.LEN.list_name

This macro will contain the number of components in the indicated list. If
components are deleted after the list was created, the value of the macro does not
change.

See the previous page for an example of this macro.

MAX.CELL

This macro stores the last cell table index used. You can use this macro in a
WHILE loop to test that every cell currently loaded has been processed. See an
example of this on page 109.

MAX.COORD

This macro stores the maximum valid coordinate in user units. If you use a value
outside of the range +%MAX.COORD : -%MAX.COORD in any command that
requires coordinates, an error is generated.

See page 252
for an overview
of the cell table
and cell table
indices.

System Macros: M

ICED™ Command File Programmer's Reference 287

Example: LOCAL #A =249996
IF (%A + 5 > %MAX.COORD) &

PAUSE "End of drawing boundary passed!"
ELSE &

ADD BOX (%A, %A) ({%A + 5},{%A + 5})

The example above demonstrates how MAX.COORD might be used. In a
typical design, MAX.COORD is set to 250,000. (We'll go into the specifics in
just a moment.) So %A + 5 will be greater than MAX.COORD. The command
file will execute the PAUSE command alerting the user to this situation rather
than the ADD BOX command that would generate an error and terminate the
command file.

The actual value of this macro depends on the version of ICED™ and the value of
the NDIV command line parameter. The current version of the layout editor
stores coordinate values as 32-bit integers. A 32-bit integer can represent
numbers in the range from -2,147,483,647 to +2,147,483,647. (Future versions
will support 64-bit coordinates.)

A coordinate is stored as an integer number of database units, where the number
of database units in one user unit is given by the NDIV command line parameter
(1000 by default.)

The current version of ICED™ only allows coordinates in the range of
-250,000,000 to +250,000,000 database units. So a typical design can store
coordinates in the range -250,000 to +250,000 user units, and MAX.COORD will
be set to 250,000.

MENU

This macro contains the name of the currently loaded menu. The name is not
fully qualified with directory or file extension. If a submenu is currently loaded,
then the value of this macro will be of the form menu_name:submenu_name.

When a new menu is loaded with the MENU or SHELL MENU commands, this
changes the value of the MENU system macro.

See the NDIV
command line
option in the IC
Layout Editor
Reference
Manual for
more details on
user units and
database units.

System Macros: N

288 ICED™ Command File Programmer's Reference

N.CMD.DIRS

This system macro contains the number of command file directories. These
directories are searched automatically for command files by the program.

Example: WHILE (%N <= %N.CMD.DIRS) {
IF (FILE_EXISTS(%CMD.DIR.%N^%MYFILE)) {

This example is expanded in the CMD.DIR.dir_index system macro description
on page 265. See that description for more details on how command file
directories are defined and used.

N.DRC.DIRS

This system macro contains the number of directories searched for DRC (Design
Rule Checker) files.

Example: SPAWN "-NOTEPAD.EXE %DRC.DIR.%N.DRC.DIRS^TEMP.RUL"

This example opens a temporary rules file in the last directory on the DRC search
path with the NOTEPAD.EXE text editor.

See another example of this system macro in the DRC.DIR.dir_index description
on page 266. Refer to that description for more details on the DRC file search
path.

N.LIBS

This system macro stores the number of ICED™ cell libraries. These cell library
directories are automatically searched for cell files.

Example: IF (%COUNTER > %N.LIBS) RETURN "All cell libraries processed"

See another example of this system macro in the LIB.lib_index description on
page 282. Refer to that description for more details on cell libraries.

See the WHILE
command on
page 212.

See the
FILE_EXISTS
function on
page 227.

System Macros: N

ICED™ Command File Programmer's Reference 289

N.HOME

This system macro contains the number of ICED™ home directories. These
directories are defined with the ICED_HOME environment variable. These
directories are searched for a variety of program support files.

Most installations have a single home directory, the Q:\ICWIN12 directory.
However, you can specify more than one directory in the ICED_HOME
environment variable definition. In this case, each of these directories will have a
HOME.n system macro, where n is the index of the directory in the
ICED_HOME environment variable definition.

Example: DOS '^COPY X:\PROJX\TEST.CEL %HOME.%N.HOME^SAMPLES'

This example is used in the HOME.dir_index description on page 268. Refer to
that description for an explanation if you desire.

N.SELECT

This macro contains the number of currently selected components. See examples
using this macro on pages 91 and 96.

NEW.CELL

This macro will contain TRUE ("1") if the cell you are currently editing was just
created. It will contain FALSE ("0") if the cell was created in an earlier ICED™
session.

12 Remember that Q:\ICWIN represents the drive letter and path where you have installed
ICED™.

To learn more
about home
directories, refer
to Defining
Environment
Variables in the
IC Layout
Editor
Reference
Manual or see
Q:\ICWIN\DOC
\TREES.TXT.

System Macros: N

290 ICED™ Command File Programmer's Reference

Example: EDIT CELL %MYCELL
IF (%NEW.CELL == 0){

PAUSE "Cell %MYCELL already exists!"
QUIT
RETURN

}

A cell is "new" if it was created by using a new cell name on the command line
when the editor was launched, or when the cell was just created with the EDIT
command.

PROTECTED.LAYERS

The macro contains the list of protected layers. Components on protected layers
cannot be selected or modified, but they remain visible.

The list is stored in layer list format using the layer numbers. (See some
examples of layer lists on page 257.) If there are no protected layers, then value
of the macro will be "(none)". You should check for this value before using the
string in another command.

Example: LOCAL #PROTECTED_LAYLIST = %PROTECTED.LAYERS
UNBLANK ALL; UNPROTECT ALL

!missing processing that requires all layers to be selectable
!restore protected status of layers
IF (CMP("%PROTECTED_LAYLIST","(none)") != 0) &
 PROTECT LAYERS=%PROTECTED_LAYLIST

RES.MODE

This macro stores the resolution mode in effect. The value will be one of the
strings "SOFT" or "HARD". When the resolution mode is soft, vertices
calculated by commands like ADD or CUT will not be forced to lie on the
resolution grid. When the mode is HARD, vertices will be rounded to lie exactly
on the resolution grid. In either mode, ICED™ does not round vertices to lie on

Set the value of
this macro with
the
[UN]PROTECT
command.
Refer to the IC
Layout Editor
Reference
Manual.

To find out
about a specific
layer, use the
LAYER.PRO-
TECTED-
.layer_spec
system macro.
See page 279.

Set the value of
this macro with
the
RESOLUTION
command.

System Macros: R

ICED™ Command File Programmer's Reference 291

the resolution grid when they are explicitly defined in a command. You may
want to use this macro to test whether or not you should round vertices calculated
by your command file to lie on the resolution grid.

Example: ! SPIRAL.CMD Create spiral shape
LOCAL #SP.LAYER $PROMPT="Enter layer."
LOCAL #SP.RADIUS $PROMPT = "Enter radius."
LOCAL #SP.POS_LIST = ""
LOCAL #SP.CENTER = %LAST.POS
LOCAL #SP.VERTEX = ""

#SP.VERTEX = %SP.CENTER
WHILE ….
.
. !Sorry this example does not include real vertex calculation code
.

IF (CMP(%RES.MODE, "HARD")==0){ !True if mode is HARD
#SP.VERTEX = {ROUND(%SP.VERTEX)}

}
#SP.POS_LIST = %SP.POS_LIST %SP.VERTEX

}
ADD POLY LAYER=%SP.LAYER AT %SP.POS_LIST

The fragments of the command file shown above are part of the process to create
a spiral polygon shape. The actual steps to calculate the vertex coordinates are
missing. However, enough of the process is shown to demonstrate how you
would use the RES.MODE macro and the ROUND function to resolve each
calculated vertex to the resolution grid if the resolution mode is HARD.

RES.STEP

This macro stores the step size of the resolution grid. The resolution grid
consists of all coordinates that can be digitized with the mouse. This grid is
usually set by the startup command file according to technology requirements for
the resolution of vertex data. ICED™ does not force vertices to lie on this grid
when you explicitly define coordinate data in a command. You may want to use

See a simple
example that
builds a spiral
on page 148.

ROUND is a
function to
resolve a vertex
to the resolution
grid. See page
235.

Set this value of
this macro with
the
RESOLUTION
command.

System Macros: R

292 ICED™ Command File Programmer's Reference

this value in command files that create or modify components with calculated
vertex data so that the vertices will not be altered by post-processing software.

Example: #X_DISP = { ABS(X(%VERTEX1) - X(%VERTEX2)) }
#Y_DISP = { ABS(Y(%VERTEX1) - Y(%VERTEX2)) }
IF ((%X_DISP < %RES.STEP) || (%Y_DISP < %RES.STEP)){ !Boolean OR

.

. !Processing to remove or recalculate the shape

.
}

This command file fragment shows how the RES.STEP macro might be used to
determine if a shape is less than the minimum resolution in either direction.

Also see the related RES.MODE and SNAP.STEP system macros.

SELECT.BOX

This macro contains the bounding box of all of the currently selected
components. A bounding box is the smallest rectangle square with the axes that
surrounds all of the items.

Example: IF ((%X_COORD < X(%SELECT.BOX)) || &
(%X_COORD > X(%SELECT.BOX)) || &
(%Y_COORD < Y(%SELECT.BOX)) || &
(%Y_COORD > Y(%SELECT.BOX))){

The example above tests if the vertex (%X_COORD, %Y_COORD) is outside of
the box that just contains all of the currently selected components.

When no components are selected, the value of this system macro is "(0,0) (0,0)".

SHORT.CELL

In older versions of ICED™, this system macro contained the name of the current
cell shortened to 8 characters to facilitate naming files in the DOS 8.3 format.

The ABS
function returns
the absolute
value of a
number. See
page 220.

The X and Y
functions return
the X or Y
coordinate of a
coordinate pair.
See page 246.

System Macros: S

ICED™ Command File Programmer's Reference 293

Now that this is no longer required in newer operating systems, this macro now
contains the same string as the CELL system macro. It is retained to support
older command files.

SHORT.ROOT

In older versions of ICED™, this system macro contained the name of the root
cell shortened to 8 characters to facilitate naming files in the DOS 8.3 format.
Now that this is no longer required in newer operating systems, this macro now
contains the same string as the CELL.ROOT system macro. It is retained to
support older command files.

SNAP.ANGLE

SNAP.OFFSET

SNAP.STEP

These macros contain the snap grid settings in effect. When the cursor is used to
define positions, these settings control what positions can be digitized.

ICED™ does not force vertices to lie on this grid when you explicitly define
coordinate data in a command. You may want to use these macros in command
files that calculate vertex positions if you want all of your vertices to lie on the
snap grid.

When you need to temporarily reset the snap grid settings, you can copy one of
these macros to a local macro to store the initial value of a setting. Restore the
value with the SNAP command and the value stored in the local macro at the end
of the command file.

SNAP.ANGLE controls the allowable angles between successive vertices in a
wire or polygon. The possible values of this macro are 90, 45, and 0. When the
snap angle is 0, any angle is allowed.

The root cell is
the cell
ICED™ was
launched to edit.

Set the value of
these macros
with the SNAP
command.

See the
RES.STEP
system macro
for the finest
grid for
coordinate data.

System Macros: S

294 ICED™ Command File Programmer's Reference

SNAP.OFFSET defines the origin of the snap grid. The value in this macro will
always be a coordinate pair.

SNAP.STEP stores the minimum distance between points on the snap grid.
Unlike the RES.STEP system macro, the snap step may be different in the X and
Y directions. This macro is a coordinate pair containing the minimum distance
between digitized points in the X and Y directions.

Example: LOCAL #MULT = 10

#VERTEX1 = %SNAP.OFFSET

IF (%SNAP.ANGLE == 0) {
#VERTEX2 = {%VERTEX1 + (%SNAP.STEP * %MULT)}
#VERTEX3 = ""

}

ELSE { ! (%SNAP.ANGLE equals 90 or 45)
#VERTEX2 = {%VERTEX1 + (0, Y(%SNAP.STEP) * %MULT)}
#VERTEX3 = {%VERTEX2 + (X(%SNAP.STEP) * %MULT , 0)}

}

The command file fragment above demonstrates how you might create vertices
differently depending on the value of the snap angle.

SPACER.ON

SPACER.SPACE

SPACER.STYLE

SPACER.TRACK.LAYERS

These macros store the settings in effect for the SPACER command. (Refer to
the IC Layout Editor Reference Manual for a complete description of this
command.) The macros control how the spacer cursor is drawn while adding
wires, boxes, or polygons.

The X and Y
functions return
a single
coordinate from
a pair. See page
246.

The
LAYER.SPACE
.layer_spec
system macro
contains the
spacer distance
setting for a
specific layer.
See page 279.

System Macros: S

ICED™ Command File Programmer's Reference 295

SPACER.ON "ON", or "OFF", "ON" only when the spacer cursor is
enabled

SPACER.SPACE The current spacing distance in user units

SPACER.STYLE The integer that specifies the spacing cursor style

SPACER.TRACK.LAYERS "ON", or "OFF", "ON" only when the
spacer cursor distance is automatically changed when
the default layer is changed.

You cannot set these values directly. Use the SPACER command to set them.

Example: IF (CMP(%SPACER.TRACK.LAYERS, "OFF") == 0) &
SPACER SPACE = %LAYER.SPACE.%USE.LAYER

The example above changes the spacer guide to the minimum distance assigned
to the current layer. This is done only if automatic spacer tracking is set to
"OFF". Otherwise, ICED™ would have done this automatically when the current
layer was changed.

START.CMD

This macro contains the path and filename of the startup command file. This is
the command file that is executed automatically in every newly created cell. It
often defines layer and grid properties as well as key shortcut definitions and
many other ICED™ settings.

Example: @%START.CMD

This command will execute the current startup command file. Another method to
execute this command is to use the menu option @START.

If no startup command file is defined, then this system macro will contain the
string "DO_NOTHING". It is not a syntax error to execute the command
@DO_NOTHING, but the command will have no effect.

The CMP
function
compares two
strings. See
page 224.

The
USE.LAYER
system macro
contains the
current layer
number.

Set the value of
this macro with
the STARTUP
command line
option when the
editor is
launched.

See the
ALWAYS.CMD
system macro
for the value of
the always
command file.

System Macros: S

296 ICED™ Command File Programmer's Reference

SUBCELL.EDIT.cell_index

This macro is used to determine the edit status of a subcell. The value of each
macro informs you whether or not you can edit the specified cell and then save it.
This macro differs from the CELL.EDIT macro primarily in that non-zero values
are stored only for subcells of the current cell.

Specify the subcell by setting cell_index to the index into the cell table.
cell_index must be greater than or equal to 1.

If you want to use this system macro to get the edit status of a cell by using the
cell name, you must first use the CELL function to obtain the cell index. See an
example on page 262.

The data for this macro must be initialized by execution of the
MARK_SUBCELLS command in the current layout editor session. (See
page 197.) When your command file uses a loop to determine the edit status of
each loaded cell, the SUBCELL.EDIT macro is more efficient than the
CELL.EDIT macro. This is because the MARK_SUBCELLS command creates
a table of the edit status for each loaded cell with one trip through the cell
database. The CELL.EDIT macro interrogates the entire cell database each time
it is used to get current information about the indicated cell. However, the
SUBCELL.EDIT macro uses the information stored by the MARK_SUBCELLS
command, even if that data is no longer current.

See page 104
for a definition
of the cell table.

Refer to an
overview of cell
indices on
page 252.

MARK_SUB-
CELLS can
restrict the cells
marked to those
containing
shapes on
certain layers.

Refer to
page 106 for
definitions of
view-only,
copy-edit and
direct-edit
libraries.

Value Meaning
0 The cell is not a marked subcell of the current cell, the cell is already

open, or the cell_index does not refer to a valid cell.
1 but it is in a read-only library which

cannot be edited.
2 and it is in a copy-edit library so the

modified cell file will be saved to the
current directory rather than its
original library if you edit then save it.

3

The cell is a subcell of the
current cell

and it is directly editable.

Figure 36: Posible values for the SUBCELL.EDIT.cell_index macro

System Macros: S

ICED™ Command File Programmer's Reference 297

Example: ! _LOOP.CMD (Simplified version)
! Execute command string in all subcells of current cell

XSELECT OFF
LOCAL #loop.n = 1; ! define counter macro

! define command string
DEFAULT GLOBAL #loop.op = "VIEW ALL"

MARK_SUBCELLS ! initialize subcell.edit macros
WHILE(%loop.n <= %max.cell){ ! loop through each cell

$ subcell.edit.%loop.n=%subcell.edit.%loop.n ! adds comment to log
IF(%subcell.edit.%loop.n==3){ ! get edit status

EDIT CELL %cell.name.%loop.n; ! edit this cell if status = 3
%loop.op; ! execute command string
LEAVE; ! save cell if data has changed

} ! end of if block
#loop.n = {%loop.n + 1}; ! increment counter

} ! end of loop

This command file will execute the commands in the string stored in the user
macro loop.op in every subcell of the current cell that has its cell file stored in a
direct edit library.

The commands in loop.op will be executed only in cells that have an edit status
of 3 stored for them by the MARK_SUBCELLS command. No open cells will
be modified by this command file since the value of SUBCELL.EDIT.cell_index
macro will always be 0 for open cells. If you execute this command file while
editing a nested cell, all cells at higher levels of cell hierarchy, including the root
cell, will not be modified.

If you want to execute loop.op in all editable subcells of the root cell, be sure
to close all open cells, and execute loop.op on the root cell for this command
file to have the desired effect.

Since loop.op is defined with the DEFAULT keyword, if a different loop.op is
already defined, that command string will be executed instead.

This command
file is supplied
with the
installation.

MAX.CELL is
a system macro
containing the
last valid index
into the cell
table. See page
286.

The LEAVE
command will
save the cell file
only if the cell
has been
modified.

System Macros: S

298 ICED™ Command File Programmer's Reference

Example: @_LOOP;GLOBAL #loop.op = &
"UNSEL PUSH; SEL LAYER M1 ALL; &
SWAP LAYER M1 AND M2; UNSEL POP;";

LOOP.OP !executes the command string in the current cell too

If the _LOOP.CMD command file is executed with the statement above, this
definition of the loop.op macro will be executed in each subcell. The commands
in loop.op in this case are surrounded by a pair of SELECT commands that save
the original selection status of components in the cell and then restore that
original selection status. The "SEL LAYER M1" and "SWAP LAYER M1 AND
M2" commands will result in components on the M1 layer being moved to the
M2 layer.

TIMER

This macro contains the number of seconds since the start of the edit session.

Example: LOCAL #START_TIME = %TIMER

WHILE (1){
IF ((%TIMER - %START_TIME) >= 30) {

RETURN;$ TIMED OUT
}
!missing lengthy processing

}
$SUCCESS

This command file shows an infinite loop that will time out after 30 seconds. In
a real command file, you would have some more realistic condition in the
WHILE statement, and some processing in the loop.

System Macros: T

ICED™ Command File Programmer's Reference 299

TMP

This macro contains the path to the directory used by ICED™ to store temporary
files. If your command file needs to create temporary files, it would be a good
practice to store them in this directory.

See the ED.CMD and UNED.CMD examples on page 312 for an example using
this system macro.

USE.ARC.TYPE

This system macro contains the default wire type for arc components. ADD
ARC commands will use this wire type by default. See the ADD WIRE
command in the IC Layout Editor Reference Manual for more information on
wire types. See the table on page 300 for possible values of this system macro.

USE.LAYER

This system macro stores the layer number of the current layer. This is the layer
used by default in any ADD command that does not specify the layer for a new
component.

Example: $ The default layer number is %USE.LAYER, &
the layer name is %LAYER.NAME.%USE.LAYER

USE.N.SIDES

This system macro contains the N.SIDES parameter set by the USE command.
This value is used by default when an ADD command is used to create a new
CIRCLE, RING, ARC, or SECTOR component. This value determines the
number of sides used to approximate a full circle.

Example: IF (%USE.N.SIDES < 8) USE NSIDES=8

Set the value of
this macro with
the TMP
command line
option.

The USE
command sets
the value of this
macro.

The USE
command or
1:USELAY
menu option
sets the value of
this macro.

See the
LAYER-
.NAME.n
system macro
on page 277.

System Macros: U

300 ICED™ Command File Programmer's Reference

USE.TEXT.JUST

This system macro contains the text justification
parameter set by the USE command. This value is
used as a default when the ADD command is used
to create a new text component. The two-letter code
determines the location on the text component
bounding box used as the origin of the component.

Example: LOCAL #MYCMD = &
'ADD TEXT "MY TEXT" &
JUST=%USE.TEXT.JUST'

If the current value stored in USE.TEXT.JUST is
"CC", then the user macro definition above will
result in the string 'ADD TEXT "MY TEXT" JUST
= CC'.

USE.WIRE.TYPE

This system macro contains the default wire type
set by the USE command. ADD WIRE
commands will use this wire type by default. See
the ADD WIRE command in the IC Layout Editor
Reference Manual for more information on wire
types.

Example: LOCAL #ORIG_WIRE_TYPE = %USE.WIRE.TYPE

USE WIRETYPE 2
.
. ! missing commands that add and manipulate wire components
.
USE WIRETYPE %ORIG_WIRE_TYPE

just_code Default text
justification

LB Bottom Left
LC Center Left
LT Top Left

CB Bottom Center
CC Center
CT Top Center

RB Bottom Right
RC Center Right
RT Top Right

Figure 37: Text
justification codes

Value Wire type
0 Flush ends
2 Extended ends

Figure 38: Valid values
of USE.WIRE.TYPE

System Macros: U

ICED™ Command File Programmer's Reference 301

The command file fragment above will save the default wire type before resetting
it with the USE command. The original value is restored at the end of the
command file.

VIEW.BOX

This macro contains the coordinates of the corners of the current view window.
The first coordinate pair will be the lower left corner of the view window; the
second is the upper right corner.

Any VIEW command, or panning of the screen display, will change the value of
this macro. The VIEW BOX command explicitly sets the value using a pair of
coordinates.

Example: #LL_VIEW_CORNER = {POS1(%VIEW.BOX)} !lower left corner
#UR_VIEW_CORNER = {POS2(%VIEW.BOX)} !upper right corner

#X_COORD = {X(%VERTEX)}
#Y_COORD = {Y(%VERTEX)}

IF ((%X_COORD < X(%LL_VIEW_CORNER)) || &
(%X_COORD > X(%UR_VIEW_CORNER)) || &
(%Y_COORD < Y(%LL_VIEW_CORNER)) || &
(%Y_COORD > Y(%UR_VIEW_CORNER))){

VIEW CENTER %VERTEX !Set center of new view window
}
The command file fragment above tests if the coordinates stored in the local
macro VERTEX are inside the current view window. The Boolean OR operator
("||", see page 56) is used to test that each coordinate is within the view window.
If the vertex is not inside the current view window, the VIEW CENTER
command is used to change the view window so the vertex is at the center of the
view window.

See page 115
for an example
that uses this
macro to save
and restore the
view window.

The POS1 and
POS2 functions
are described on
page 233.
The X and Y
functions are
described on
page 246.

System Macros: V

302 ICED™ Command File Programmer's Reference

VIEW.CENTER

This system macro stores the coordinates of the center point of the current view
window.

Typing the command below at the command prompt will report the coordinates
of the center of the view window.

Example: $%VIEW.CENTER

VIEW.SCALE

This system macro stores the scale of the current view window scale in pixels per
user unit. Use the VIEW command to set this value.

Example: VIEW ON
IF (%VIEW.SCALE < 7.5) VIEW SCALE =7.5

The VIEW ON command is used in this example since most changes made to the
view window in a command file are not reflected on the screen unless the VIEW
mode is on. The view scale is changed only when the view window is zoomed
out too far to digitize coordinates accurately. A view scale of 7.5 is
approximately the minimum scale that allows a 1 user unit display grid visible.

Any VIEW
command, or
panning of the
screen display,
will change the
value of this
macro.

The GRID
command
controls the
settings of the
display grid.

Advanced Examples

ICED™ Command File Programmer's Reference 303

Advanced Examples

Advanced Examples

304 ICED™ Command File Programmer's Reference

The command files described below are supplied with your ICED™ installation.
There are many others in the following locations that you may find useful.

Some of the command files are technology independent. Look for these files in
the Q:\ICWIN13\AUXIL directory.

Other command files are technology dependent. These files are stored in
Q:\ICWIN\TECH\SAMPLES. If you want to use one of these in a project
using a specific technology, follow the following procedure:

1) Create a new subdirectory of the Q:\ICWIN\TECH directory. E.G.
"Q:\ICWIN\TECH\BIPOL5".

2) Copy the desired file from Q:\ICWIN\TECH\SAMPLES to this new
directory.

3) Edit the file as needed to customize it for your technology. The kind of
values that may need editing include layer names, minimum sizes, or
wiring pitches.

4) Add this new directory to the command file search path. See page 14 for
details.

The first example has a command file name that begins with a '_' prefix.
Command files use this prefix to keep them out of the lists of command files that
appear in the 3:@%.cmd menu option. They are intend to be called from other
command files and are not useful when called directly from the layout editor.
Use them as required in your own command files.

The other examples can be called directly from the editor command line, or
selected using the 3:@%.cmd menu option. Some of them are so useful, you
may use them more often than many editor commands. DEEPSHOW.CMD is
right on the menu as the 2:(SHOW)@deep menu option. You may also find
referring to them very useful when writing your own command files.

While these examples have been tested in a variety of situations, we cannot
guarantee that they will work in all situations. If you use these command files,
be sure to verify your results. Please let us know if you find any bugs so that we
can improve the examples in the next version of this manual.

13 Remember that Q:\ICWIN represents the drive letter and path where you have installed
ICED™.

See the table on
page 9 for a list
of examples in
this manual that
you may find
useful your own
command files.

Advanced Examples: _GET_INT.CMD

ICED™ Command File Programmer's Reference 305

_GET_INT.CMD Prompt user for integer and verify value

This command file prompts the user for an integer and loops until it verifies that
a valid integer has been entered.

This command file demonstrates how to make
a command file more useful in different
situations by defining several macros with
default values that can be overridden on the
command line that calls the command file. (An
example of how to override these defaults
follows the command file.) When these
macros are not overridden in the @_GET_INT
statement, defaults are used.

REMOVE RET.VALUE
LOCAL #VALID=0
LOCAL #VALUE=""
DEFAULT LOCAL #PROMPT="integer"

! Add default value to prompt

IF(MACRO_EXISTS(#DEFAULT)==2) &
#PROMPT="Enter %PROMPT [%DEFAULT]:"

ELSE #PROMPT="Enter %PROMPT:"

! If min or max were not passed as arguments,
! use "infinity"

IF(MACRO_EXISTS(#MIN) < 2) LOCAL #MIN=-2000000000
IF(MACRO_EXISTS(#MAX) < 2) LOCAL #MAX=2000000000

! Prompt user for integer

WHILE(%VALID==0){
 #VALUE=$PROMPT="%PROMPT"

See this
command file
used in the
advanced
example
SERIAL.CMD
on page 312.

Local macro
to override

Default
value

MIN -2000000000
MAX 20000000000
PROMPT "integer"
DEFAULT No default

Figure 39: Defaults for
_GET_INT.CMDSee a table of

other similar
command files
on page 88.

Advanced Examples: _GET_INT.CMD

306 ICED™ Command File Programmer's Reference

 IF((CMP("%VALUE", "")==0) && &
(MACRO_EXISTS(#DEFAULT)==2)){

 #VALUE = %DEFAULT;
 }
 #VALID = {VALID_INT("%VALUE")}
 IF(%VALID){
 IF((%MIN > %VALUE) || (%MAX < %VALUE)){
 #VALID=0
 $ Value (%VALUE) out of range [%MIN:%MAX]
 PAUSE 0
 }
 }
 ELSE{
 $Invalid input (%VALUE)
 PAUSE 0;
 }
}
GLOBAL #RET.VALUE=%VALUE

The command file begins by deleting the global macro used to return the integer
at the end of the command file. This macro is removed since the macro
RET.VALUE may still exist from a previous use of the command file. If the
command file fails, or is cancelled by the user, the macro will not exist. You can
test for this by using the SHOW command after control returns to the editor.

The local macros are defined next. VALID is a macro that contains a flag used
to determine whether or not a valid integer has been entered. This macro will be
used to control the WHILE loop.

The PROMPT local macro contains the default description for the value
requested. Since this macro is defined with the DEFAULT keyword, you can
override this default by calling the _GET_INT command file with the following
syntax:

@_GET_INT; #PROMPT = "number of sides"

When you call the command file this way, the user will be prompted with a
message similar to "Enter number of sides:" rather than "Enter integer:".

Advanced Examples: _GET_INT.CMD

ICED™ Command File Programmer's Reference 307

The next block of lines builds the entire prompt message that will be used. How
this message is built depends on whether or not you have defined a local macro
with the name DEFAULT. The MACRO_EXISTS() function returns 2 if the
named macro exists and is defined as a local macro. If some global macro (or a
local macro in a different command file) exists with the same name, that value
will not be used. Only when the macro is local to this command file will the
value stored in DEFAULT be used to build the prompt.

When you call _GET_INT with the following command:

@_GET_INT; #DEFAULT = 12

the prompt will be "Enter integer [12]:". If you do not define DEFAULT on the
same line that calls the command file, then the prompt will be "Enter integer:"

The next block of lines uses the MACRO_EXISTS function to default the MIN
and MAX macros to the equivalent of –∞ and +∞. However, if local macros
with those names do exist, the values in those local macros will be used. You
would define MIN and MAX on the _GET_INT command line in the same
manner as the PROMPT and DEFAULT macros.

The WHILE loop comes next. This loop will continue to prompt the user for the
integer using the prompt line built above until a valid integer is stored in the
macro VALUE.

Note that the $PROMPT keyword allows you to prompt the user to define the
value of a macro with the keyboard in a macro assignment statement.

The next IF block assigns the value stored in the macro DEFAULT to the macro
VALUE if the user presses <Enter> without typing a value and the macro
DEFAULT exists.

The next line verifies that the string stored in the VALUE macro represents a
valid integer. The function VALID_INT will set the macro VALID to 1 if the
macro VALUE contains a single integer. Otherwise VALID_INT sets VALID to
0.

Advanced Examples: _GET_INT.CMD

308 ICED™ Command File Programmer's Reference

The next block of lines tests that the value is within the range defined by the MIN
and MAX macros. If value is outside of this range, VALID is reset to 0. The
PAUSE command allows the comment "Value (%VALUE) out of range
[%MIN:%MAX]" to remain on the screen until the user presses <Enter>.

If VALID is still equal to 0, the WHILE loop will execute again. Otherwise, the
loop is terminated and the string stored in VALUE is used to define the global
macro RET.VALUE. This is the macro you would use to refer to result of the
command file.

Example: @_GET_INT; #MIN = 1; &
 #MAX = 255; &
 #PROMPT = "positive integer less than 255"; &
 #DEFAULT =6

#INT1 = %RET.VALUE

When this example is used to call the _GET_INT.CMD command file, the user
will be prompted with the line "Enter positive integer less than 255 [6]:". The
command file will loop until the user enters an integer in the specified range or
presses <Enter> without entering any value. Since the command line defines the
default value as '6', that value will be stored in INT1 when no value is entered by
the user.

Advanced Examples: RES.CMD

ICED™ Command File Programmer's Reference 309

RES.CMD Create resistor from resistance and width

RES.CMD will add several shapes representing a polysilicon resistor with
contacts to the current cell. The resistor is resized to have a resistance equal to
the value entered by the user of the command file at execution time.

This command file requires the cell RES.CEL distributed with ICED™.

!---
! Set technology dependent parameters
!---
!
LOCAL OHMS_PER_SQUARE = 40;
LOCAL UNSTRETCHED_LEN = 6;
LOCAL UNSTRETCHED_WIDTH = 4;
LOCAL RES$CELL = RES;
LOCAL SCRATCH = RESTMP;
!
!--
! Prompt for parameters for this resistor
!--
!
LOCAL OHMS $PROMPT="Enter target resistance:"
LOCAL WIDTH $PROMPT="Enter channel width:"
LOCAL ROT_CODE -1;
WHILE(CMP(%ROT_CODE, 0)!=0 && CMP(%ROT_CODE, 1)!=0){
 #ROT_CODE $PROMPT="Enter rotation code
(0=>Horizontal 1=>Vertical):"
}
!
!---
! Compute values
!---
!
LOCAL STRETCH.Y = {ROUND(%WIDTH - %UNSTRETCHED_WIDTH)}
LOCAL STRETCH.X = &

Advanced Examples: RES.CMD

310 ICED™ Command File Programmer's Reference

{ROUND(%OHMS * %WIDTH / &
%OHMS_PER_SQUARE - %UNSTRETCHED_LEN)}

!
!---
! Build resistor cell
!---
!
EDIT CELL %SCRATCH
XSELECT OFF;
SELECT ALL; DELETE;
ADD CELL %RES$CELL AT (0, 0)
SELECT CELL * ALL; UNGROUP;
SELECT SIDE IN (0, -10000) (10000, 10000)
MOVE SIDE X %STRETCH.X
UNSELECT ALL
SELECT SIDE IN (-10000, 0) (10000, 10000)
MOVE SIDE Y %STRETCH.Y
UNSELECT ALL
EXIT
!
!---
! Add and ungroup resistor cell
!---
!
UNSELECT PUSH
ADD CELL %SCRATCH R%ROT_CODE
SELECT NEW
UNGROUP
UNSELECT POP

Advanced Examples: RES.CMD

ICED™ Command File Programmer's Reference 311

This command file allows the
user to type in a resistance, a
width and a rotation code to
modify and then add the
simple resistor configuration
shown on the right.

Note the "{}" around the
computations of STRETCH.Y
and STRETCH.X. If these
were not included, the
expression string would be
saved in the macros rather than
the numerical result of the
mathematical expression.

This example could be improved by testing for a very short length since the
resulting resistor may result in a short between the contacts.

POLY M1 VIA

0,0

Figure 40:RES.CEL

Advanced Examples: SERIAL.CMD

312 ICED™ Command File Programmer's Reference

SERIAL.CMD and _CHARn.CMD Add serial numbers to an array

This command file is used to add serial numbers to automatically label the cells
in an array. These serial numbers are created as polygon components in the
current cell.

As provided, this command file can be used to serialize only an array of cells
with the cell name STEST.CEL. This sample cell file is supplied with the
command file. It contains only a single box 7 user units high and 20 user units
wide.

Before you can use this command file to serialize an array built from one of your
own cells, you
must edit the file
to customize it
with a few details
about how you
want the text
created. See the
table for the macro
definitions you
must add to the
command file for a
new cell_name.

This command file will not work for rotated or mirrored arrays. The command
file can recognize when the array is rotated or mirrored, and it will terminate with
an error message. Arrays of cells with names longer than 24 characters are also
not supported.

Macro name Purpose
MAG.cell_name Font magnification,

i.e. text height in user units
OFFSET.cell_name Offset of lower left corner of text

for cell relative to cell origin
LAYER.cell_name Layer for serial number polygons
N.DIGITS.cell_name Number of digits in serial number

Figure 41: Required information for additional cell

Advanced Examples: SERIAL.CMD

ICED™ Command File Programmer's Reference 313

SERIAL.CMD

!
! The font used to label the array elements was taken
! from Steve Stern's PGTEXT routines.
!
!********* Parameters for cell STEST **************
!
LOCAL #MAG.STEST =5.0 !Font magnification =

! text height in microns
LOCAL #OFFSET.STEST =(1, 1)!Offset of lower left

! corner of text in cell
! relative to cell origin

LOCAL #LAYER.STEST = 1 !Text layer
LOCAL #N.DIGITS.STEST = 3 !Number of digits in serial

! number
!
!* Use text editor to add parameters for other cells *!
!
!******** Select array to be serialized ************
!
LOCAL #N.SELECT.POP = %N.SELECT
IF(%N.SELECT!=0) UNSELECT PUSH
VIEW ON
WHILE(%N.SELECT != 1){
 UNSELECT ALL
 PROMPT = "Select array to be serialized"
 SELECT ARRAY * AT
}
ITEM LOCAL #SER
UNSEL ALL
VIEW OFF

IF(CMP("%SER.TRANS", "R0")!=0){
 RETURN; $SERIAL.CMD cannot handle rotated or &

mirrored arrays
}
LOCAL #NAME=%SER.CELL.NAME
!

Advanced Examples: SERIAL.CMD

314 ICED™ Command File Programmer's Reference

!******** Make sure parameters are defined *********
!
IF(MACRO_EXISTS(#MAG.%NAME)==0){
 RETURN; $ MAG.%name undefined. Edit SERIAL.CMD
}
IF(MACRO_EXISTS(#OFFSET.%NAME)==0){
 RETURN; $ OFFSET.%name undefined. Edit SERIAL.CMD
}
IF(MACRO_EXISTS(#LAYER.%NAME)==0){
 RETURN; $ LAYER.%name undefined. Edit SERIAL.CMD
}
IF(MACRO_EXISTS(#N.DIGITS.%NAME)==0){
 RETURN; $ N.DIGITS.%name undefined. Edit SERIAL.CMD
}
@_GET_INT; LOCAL #MIN=0; LOCAL #DEFAULT=1; &

LOCAL #PROMPT="initial serial number"
LOCAL #N.SERIAL = %RET.VALUE
!
! Setup for UNED.CMD -- Part I
!
GLOBAL #ED.ID0 = %ID.MAX
GLOBAL #ED.FILE.NAME = %TMP^SERIAL.OUT
GLOBAL #UNED.FILE.NAME = "DO NOTHING"
!
!!******* Serialize cells in selected array *********
!
LOCAL #OFF0 = {%SER.POS.1 + %OFFSET.%NAME}
LOCAL #ROW = {%SER.N.ROWS - 1}
LOCAL #COL = 0
LOCAL #ROW.OFF = "UNDEFINED"
LOCAL #OFF = "UNDEFINED"
LOCAL #X.OFF = "UNDEFINED"
LOCAL #DIGIT = "UNDEFINED"
LOCAL #REM = "UNDEFINED"
LOCAL #Q = "UNDEFINED"
LOCAL #CHAR = "UNDEFINED"
LOCAL #MAX.SERIAL = &
 {%N.SERIAL + (%SER.N.COLS * %SER.N.ROWS) - 1}

LOG SCREEN=OFF LEVEL=NORMAL

Advanced Examples: SERIAL.CMD

ICED™ Command File Programmer's Reference 315

WHILE(%ROW >= 0){
 #ROW.OFF = {%OFF0 + (0, %SER.ROW.STEP * %ROW)}
 #COL = 0
 WHILE(%COL < %SER.N.COLS){
 #OFF = {%ROW.OFF + (%SER.COL.STEP * %COL, 0)}
 #COL = {%COL + 1}
 #DIGIT = 1
 #REM = %N.SERIAL
$ N.SERIAL = %N.SERIAL / %MAX.SERIAL
 WHILE(%DIGIT <= %N.DIGITS.%NAME){
 #Q = {INT(%REM / 10)}
 #CHAR = {%REM - 10 * %Q}
 #REM = %Q

! FOR THIS FONT CHARACTER WIDTH=.9 * HEIGHT
 #X.OFF = {%MAG.%NAME * .9 * &

(%N.DIGITS.%NAME - %DIGIT)}
@_char%char; &

 LOCAL #LAYER=%LAYER.%NAME; &
 LOCAL #FMAG=%MAG.%NAME; &
 LOCAL #OFF={%OFF + (%X.OFF, 0)}
 #DIGIT = {%DIGIT + 1}
 }
 #N.SERIAL = {%N.SERIAL + 1}
 }
 #ROW = {%ROW - 1}
}
LOG SCREEN=ON LEVEL=NORMAL;
!
! SETUP FOR UNED.CMD -- PART II
!
GLOBAL #ED.ID1 = %ID.MAX
SELECT IDS AFTER %ED.ID0
UNSELECT IDS AFTER %ED.ID1
SHOW FILE=%ED.FILE.NAME
!
! Restore initial select state
!
IF(%N.SELECT.POP!=0) UNSELECT POP
ELSE UNSELECT ALL

Advanced Examples: SERIAL.CMD

316 ICED™ Command File Programmer's Reference

The command file begins by defining the text specifications for arrays of cell
STEST. Add your own cell text specifications below the "*Add parameters
for additional cells here*" comment.

The next block of lines allows the user to select the array to be serialized. The
VIEW mode is temporarily set to ON to insure that the geometry in the view
window is current. The WHILE loop insures that a single array is selected.

The ITEM command is then used to create a variety of macros with information
about the selected array. These macros will all have names that begin with the
string "SER". One of these macros, SER.TRANS, is used to test that the array is
not rotated or mirrored. The name of the cell stored in SER.CELL.NAME is
copied to the new macro NAME.

The block of lines under the heading "* Make sure parameters are
defined *" tests to make sure that the required text specification macros exist.
Remember that these should be defined for additional cell names near the top of
the command file. If any of these macros does not exist, the command file is
terminated with an error message.

The " Setup for UNED.CMD -- Part I" section stores some of the
information required to allow the results of this command file to be reversed with
the UNED.CMD file (see page 318.) The rest of the UNED.CMD information is
stored at the end of the command file.

The statements under the "* Serialize cells in selected array
*" heading define the macros used to calculate the values needed to add the serial
number components. The "WHILE(%ROW >= 0)" loop increments through
each row of the array. The "WHILE(%COL < %SER.N.COLS)" loop
performs the calculations for each cell in the row. The "WHILE(%DIGIT <=
%N.DIGITS.%NAME)" loop makes one call to the CHARn.CMD command file
for each digit in the serial number for a particular cell.

@_CHAR%CHAR is the call to the _CHARn.CMD command file that actually
adds the geometry. The macro reference %CHAR determines which of the
_CHARn.CMD files is executed. If the macro CHAR is set to '0', then after
macro substitution the reference will resolve to:

@_CHAR0
@_CHAR0 will execute the commands in _CHAR0.CMD.

Advanced Examples: SERIAL.CMD

ICED™ Command File Programmer's Reference 317

CHAR0.CMD

This command file adds a polygon in the shape of
the character '0' to the current cell. You must define
three macros to specify the size, layer, and location
for the polygon on the same line as the call to the
command file. See an example in the
SERIAL.CMD file description above.

There are nine other
command files (e.g.
CHAR1.CMD, CHAR-
2.CMD, etc.) that add
characters for other digits.
They are located in the
same directory as the
CHAR0.CMD file.

!
! This character outline was copied from Steve Stern's
! PGTEXT routines
!
ADD POLYGON LAYER=%LAYER OFFSET=%OFF AT &

{%FMAG*(0.35, 0.2)} {%FMAG*(0.25, 0.2)} &
{%FMAG*(0.25, 0.25)} {%FMAG*(0.45, 0.45)} &
{%FMAG*(0.5, 0.45)} {%FMAG*(0.5, 0.25)} &
{%FMAG*(0.45, 0.2)} {%FMAG*(0.35, 0.2)} &
{%FMAG*(0.35, 0.0)} {%FMAG*(0.55, 0.0)} &
{%FMAG*(0.7, 0.15)} {%FMAG*(0.7, 0.85)} &
{%FMAG*(0.55, 1.0)} {%FMAG*(0.35, 1.0)} &
{%FMAG*(0.35, 0.8)} {%FMAG*(0.45, 0.8)} &
{%FMAG*(0.45, 0.75)} {%FMAG*(0.25, 0.55)} &
{%FMAG*(0.2, 0.55)} {%FMAG*(0.2, 0.75)} &
{%FMAG*(0.25, 0.8)} {%FMAG*(0.35, 0.8)} &
{%FMAG*(0.35, 1.0)} {%FMAG*(0.15, 1.0)} &
{%FMAG*(0.0, 0.85)} {%FMAG*(0.0, 0.15)} &
{%FMAG*(0.15, 0.0)} {%FMAG*(0.35, 0.0)} &
{%FMAG*(0.35, 0.2)}

Figure 42: Polygon added
by CHAR0.CMD

Macro Purpose
LAYER Layer
FMAG Height
OFF Location

Figure 43: Required
macros for CHAR0

Advanced Examples: ED.CMD and UNED.CMD

318 ICED™ Command File Programmer's Reference

ED.CMD and UNED.CMD Edit component properties (with undo capability)

These two command files allow the user to modify components by editing their
definitions in ADD command format.

ED.CMD uses the SHOW SELECT command to build a file of ADD commands
for the selected component(s), then the user edits this file with his or her favorite
editor (NOTEPAD.EXE by default.) The original components are deleted, and
the modified components are added to the cell.

UNED.CMD uses the global macros and files created by ED.CMD to reverse the
entire process. The component id numbers stored by ED.CMD are used to delete
the modified components and a backup file created by the SHOW command in
ED.CMD is used to restore the original components.

Repeated calls to UNED.CMD toggle back and forth between the original
components and the modified components.

!*****************

! ED.CMD

!*****************

REMOVE #ED.CMD ! PATCH FOR OBSOLETE .CMD FILES
REMOVE #UNED.CMD ! PATCH FOR OBSOLETE .CMD FILES

GLOBAL #ED.FILE.NAME = %TMP^WORK.CMD
GLOBAL #UNED.FILE.NAME = %TMP^UNWORK.CMD
GLOBAL #ED.ID0=%ID.MAX
GLOBAL #ED.ID1=-1
GLOBAL #UNED.ENABLED=0
DEFAULT LOCAL #EDITOR="-NOTEPAD"
LOCAL #FAILED=0;

The new ITEM
command
allows you to
add a modified
selected
component
without user
interaction. See
page 173.

Advanced Examples: ED.CMD and UNED.CMD

ICED™ Command File Programmer's Reference 319

SELECT PARTS ALL
SHOW FILE=%UNED.FILE.NAME
SELECT NEW
SELECT PARTS ALL
SHOW FILE=%ED.FILE.NAME
DOS %EDITOR %ED.FILE.NAME

LOCAL #ERROR.CMD="#FAILED=1"
@%ED.FILE.NAME
#ED.ID1=%ID.MAX
IF(%FAILED==0){
 #UNED.ENABLED=1
 #ED.ID1=%ID.MAX
 DELETE
 RETURN
}

WHILE(1){
 !
 ! UNDO BOTCHED JOB
 !
 UNSELECT PUSH
 SELECT IDS AFTER %ED.ID0 ALL
 XSELECT OFF
 DELETE
 SELECT POP

 ERROR ! POST ERROR
 PAUSE
 !
 ! ASK IF USER WANTS TO CORRECT ERROR
 !
 @_GET_ANS; &
 #CHOICES="YN"; &
 #PROMPT="DO YOU WANT TO RE-EDIT FILE [YN]?";
 IF(%RET.VALUE!=1) RETURN;
 !
 ! YES, HE WANTS TO

Advanced Examples: ED.CMD and UNED.CMD

320 ICED™ Command File Programmer's Reference

 ! REPOST ERROR SO IT WILL BE VISIBLE DURING EDIT
 !
 ERROR
 DOS "%EDITOR %ED.FILE.NAME"

 #FAILED=0
 LOCAL #ERROR.CMD="#FAILED=1"
 #ED.ID0=%ID.MAX

 @%ED.FILE.NAME
 IF(%FAILED==0){
 #UNED.ENABLED=1
 DELETE
 #ED.ID1=%ID.MAX
 RETURN;
 }
}

The command file begins with a patch to prevent problems when a user has
previously used an older version of these command files.

Next are several macro definitions. Most of these are global macros so that the
related command file, UNED.CMD, can refer to them. The first two macro
definitions use the system macro TMP to create temporary files in the TMP
directory. The ED.ID0 macro uses the system macro ID.MAX to store the last
component id number.

The ED.ID0 and ED.ID1 macros store component id numbers so that the related
UNED.CMD command file can select only the components added by this
command file. UNED.CMD deletes these components and adds copies of the
original components.

The text editor name is stored in the EDITOR macro so that the user can override
it. If the user already has an EDITOR macro defined with the name of their
favorite editor, that editor will be used later on in the command file.

The "SELECT PARTS ALL" insures that any partially selected components will
be fully selected. The "SHOW FILE=%UNED.FILE.NAME" command builds a
file of ADD commands for the unmodified components. (This file can be used
by UNED.CMD, to undo the results of this command file.)

It is always a
good idea to
store temporary
files in the
directory stored
in the system
macro TMP so
that they do not
clutter up, or
corrupt, files in
your working
directory.

Advanced Examples: ED.CMD and UNED.CMD

ICED™ Command File Programmer's Reference 321

If no components are selected when the command file is executed, the SHOW
command will generate an embedded SELECT NEAR command to select the
desired component(s). If an embedded SELECT NEAR command was
generated, the SHOW command automatically unselects the selected
component(s) at the end of the command. The "SELECT NEW" after the SHOW
command is added to reselect the component(s) in this case.

The "SHOW FILE=%ED.FILE.NAME" command builds the file of add
commands that will be modified by this command file. The "DOS %EDITOR
%ED.FILE.NAME" command launches the text editor to edit the file just
created. This allows the user to modify the selected components by directly
editing their ADD commands. Once the file is modified by the user, they must
exit the editor to complete the command file.

The definition of the ERROR.CMD macro creates an error handler. From this
point on in the command file, if a command fails (e.g. the user mistyped
something in the file), then the command stored in the macro will be executed
and the command file keeps going with the next command after the failed
command. In this case an error flag in the FAILED macro is set.

The @%ED.FILE.NAME command execute the modified command file of ADD
commands, thus adding the modified components. The id number of the last
component added is then stored in the ED.ID1 macro.

If there were no errors in the modified command file, the next block of lines
indicates that UNED.CMD can now be used successfully, deletes the original
components (which are still selected), and terminates the command file.

If things went wrong, the command file begins a loop to try and fix the problem.
First, the original components are pushed onto the select stack and unselected.
Then any components added by the bad command file are selected by id numbers
and deleted. The original components are then reselected.

Now the error message from the bad command in the modified command file is
posted to the screen using the ERROR command with no arguments. The user is
given the choice to edit the file and try again using the _GET_ANS.CMD
command file.

Holding down
the <Shift> key
during a
embedded
SELECT
command
allows the user
to select
multiple
components.
Release <Shift>
before selecting
the last
component, or
click in empty
area, to
complete
selection and
return to the
command file.

Advanced Examples: ED.CMD and UNED.CMD

322 ICED™ Command File Programmer's Reference

!*****************
! uned.cmd
!*****************
!
! The following two block-if's are a patch for
! obsolete .CMD files. Do not remove!
!
IF(MACRO_EXISTS(ED.CMD)){
 GLOBAL #ED.FILE.NAME=%ED.CMD
 REMOVE #ED.CMD
}
IF(MACRO_EXISTS(#UNED.CMD)){
 GLOBAL #UNED.FILE.NAME=%UNED.CMD
 REMOVE #UNED.CMD
}
!
! Check uned.enable flag
!
DEFAULT GLOBAL #UNED.ENABLED=0;
IF(%UNED.ENABLED==0) ERROR UNED uninitialized or disabled
!
! Save select state of any components currently selected
!
LOCAL #N.SELECT.POP = %N.SELECT
IF(%N.SELECT.POP!=0) UNSELECT PUSH
!
! Undoing ed.cmd involves the following steps:
!
! 1: Delete components added by %ed.file.name.
! 2: Add the components deleted by ed.cmd by executing
! the commands in %uned.file.name. Update ed.id0 and
! ed.id1 to record the range of id_numbers for the
! added components.
! 3: Update the macros ed.file.name, and uned.file.name,
! i.e. swap the roles of the files named by these macros.
!
IF(%ED.ID1==-1){ ! Implies ed.cmd crashed before
 ! updating ed.id1.
 ! Normally, components with id_numbers in the range:
 !
 ! %ED.ID0 < ID_NUMBER <= %ED.ID1
 !
 ! were added during the execution of ed.cmd.
 ! But we got here because ed.cmd crashed before

Advanced Examples: ED.CMD and UNED.CMD

ICED™ Command File Programmer's Reference 323

 ! updating ed.id1. We must patch things up as best
 ! we can. We will set ed.id1 equal to the current
 ! value of id.max. This means we will delete all
 ! components added after the start of ed.cmd
 ! instead of just deleting components added during
 ! the execution of ed.cmd.
 !
 #ED.ID1=%ID.MAX
 !
 IF(%ED.ID1>%ED.ID0){
 SELECT IDS AFTER %ED.ID0
 !
 ! To prepare for future calls to uned.cmd, we
 ! must create a .CMD file that can replace the
 ! components we are about to delete. The string
 ! "do_nothing" is a flag for the next execution
 ! of uned.cmd.
 !
 IF(%N.SELECT>0){
 SHOW FILE="%ED.FILE.NAME"
 UNSELECT ALL
 }
 ELSE #ED.FILE.NAME=DO_NOTHING
 }
 ELSE #ED.FILE.NAME=DO_NOTHING
}
!
! Step 1: Delete components added by %ed.file.name.
!
SELECT IDS AFTER %ED.ID0
UNSELECT IDS AFTER %ED.ID1
XSELECT OFF
IF(CMP("%ED.FILE.NAME", "UNINITIALIZED")==0){
 #ED.FILE.NAME = %TMP^ED.FILE
 SHOW FILE="%ED.FILE.NAME"
}
DELETE
!
! Step 2: Replace components deleted by ed.cmd.
! Update macros ed.id0 and ed.id1 for use in
! future calls to uned.cmd.
! The macro uned.file.name normally holds a file name.
! It may also contain the words "do_nothing". Executing
! the command "@do_nothing" does nothing.

Advanced Examples: ED.CMD and UNED.CMD

324 ICED™ Command File Programmer's Reference

!
#ED.ID0=%ID.MAX
@"%UNED.FILE.NAME"; LOG SCREEN=OFF
#ED.ID1=%ID.MAX
!
! Step 3: Prepare for future calls to uned.cmd by
! swapping the roles of the files named in
! ed.file.name and uned.file.name.
!
LOCAL #JUNK=%ED.FILE.NAME
#ED.FILE.NAME="%UNED.FILE.NAME"
#UNED.FILE.NAME=%JUNK
!
! Restore state of components selected at beginning
!
IF(%N.SELECT.POP!=0) UNSELECT POP

Advanced Examples: DEEPSHOW.CMD

ICED™ Command File Programmer's Reference 325

DEEPSHOW.CMD Enhance SHOW command for nested components

This command file uses a few extra commands that enhance the SHOW
command to allow it to display component information even for deeply nested
components.

LOCAL POS = NULL;
UNSELECT PUSH;

SELECT LAYERS 1:* NEAR
IF(%N.SELECT==0){
 #POS = %LAST.POS;
 PEDIT VIEW_ONLY=TRUE NEAR %POS;
 #POS = %LAST.POS;
 UNSELECT PUSH;
 SELECT NEAR %POS;
 SHOW FILE=*;
 SELECT POP;
 QUIT;
}
ELSE SHOW FILE=*;
UNSELECT ALL
SELECT POP

The command file begins with the definition of the POS macro that will store a
position.

If components are already selected, the "UNSELECT PUSH" command will
unselect them for later retrieval by the "SELECT POP" command at the end of
the file.

"SELECT LAYERS 1:* NEAR" will wait for the user to digitize a position in the
window. The digitized position defines the center of a near box to select all
components on layers 1 through 255 that are within the near box. Since layer 0 is
not in the layer list, the SELECT command is prevented from selecting nested
cells.

The N.SELECT
system macro
stores the
number of
currently
selected
components.

Advanced Examples: DEEPSHOW.CMD

326 ICED™ Command File Programmer's Reference

If components are selected by the "SELECT LAYERS 1:* NEAR" command, the
commands in the IF block will not be executed. The SHOW FILE=* command
near the end of the command file is executed to display those components. In
this case, the entire command has roughly the same result as a simple SHOW
FILE=* command.

However, if no components in the current cell are within the near box, the
statements in the IF block will be executed.

The system macro LAST.POS is used to retrieve the position just digitized by the
user. The "PEDIT VIEW_ONLY=TRUE NEAR %POS" command will open the
nested cell that directly contains the component near the position. If no cell is
selected by the previous position, PEDIT will automatically issue a SELECT
CELL NEAR command and the user will be given the chance to reposition the
cursor until a cell is selected. The cell is opened and the new position is stored in
the POS macro.

At this point the command file is editing a nested cell in the view-only mode.
This means that even a cell in a protected library can be edited. The cell cannot
be saved.

The current selection status of components in this new cell is stored by the
"UNSELECT PUSH" command. This command also unselects all components.
The "SELECT NEAR %POS" will select components within the near box
defined by the stored position.

The remaining commands in the IF block SHOW the selected components and
then quit the nested cell.

The final commands restore the original selection status of components.

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 327

BUSROUTE.CMD Replace single wide wire with routed bus of wires

This command file uses the SHOW command to create a file with the ADD
command for a single, wide wire that the user is prompted to create. A compiled
program written in the C programming language then manipulates this file to
transform the single wire into a bus of wires that follow the same shape. The
command file then deletes the original wide wire and uses the file created by the
program to add the new bus wires.

You will need to copy BUSROUTE.EXE from the Q:\ICWIN\SAMPLES
directory to the Q:\ICWIN\TECH\SAMPLES directory to make it work.

When you need to perform automatic component manipulation, an alternative
method is the ITEM command (see page 173) or the DRC utility (available
separately from IC Editors, Inc.). The DRC has many advanced features for
automatically manipulating components.

The source files
(written in 'C')
for the
executable
program
BUSROUTE-
.EXE can be
found in the
Q:\ICWIN-
\SAMPLES
directory.

Figure 44: Digitizing wide wire for bus Figure 45: Routed bus

Advanced Examples: BUSROUTE.CMD

328 ICED™ Command File Programmer's Reference

!************BUSROUTE.CMD ***************************
!
DEFAULT GLOBAL #BUS.ADD.MESSAGE.ON = 1;
DEFAULT LOCAL #SCRATCH.LAYER = 251;

!**
!
! Get bus parameters - use old parameters as defaults
!
!**

! ************** Get bus layer: **************

@_GET_LAY; &
 LOCAL #PROMPT="bus layer"; &
 IF(MACRO_EXISTS(#BUS.LAST.LAYER)) &

LOCAL #DEFAULT=%BUS.LAST.LAYER;
LOCAL #LAYER = %RET.VALUE
GLOBAL #BUS.LAST.LAYER = %RET.VALUE

! *********** Get number of wires ************

@_GET_INT; &
 LOCAL #PROMPT="number of wires"; &
 LOCAL #MIN=1; &
 IF(MACRO_EXISTS(#BUS.LAST.N.WIRES)) &

LOCAL #DEFAULT=%BUS.LAST.N.WIRES;
LOCAL #N.WIRES = %RET.VALUE
GLOBAL #BUS.LAST.N.WIRES = %RET.VALUE

! ************** Get wire width **************

@_GET_REAL; &
 LOCAL #PROMPT="wire width"; &
 IF(MACRO_EXISTS(#BUS.WIDTH.%LAYER)) &

LOCAL #DEFAULT=%BUS.WIDTH.%LAYER; &
 LOCAL #MIN=%RES.STEP;
LOCAL #WIDTH = %RET.VALUE
GLOBAL #BUS.WIDTH.%LAYER = %RET.VALUE

The user can
select a layer
from a menu of
valid choices.
See page 147.

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 329

! ************* Get wire spacing *************

@_GET_REAL; &
 LOCAL #PROMPT="wire spacing"; &
 IF(MACRO_EXISTS(#BUS.SPACE.%LAYER)) &

LOCAL #DEFAULT=%BUS.SPACE.%LAYER;
 LOCAL #MIN=%RES.STEP;
LOCAL #SPACE = %RET.VALUE
GLOBAL #BUS.SPACE.%LAYER = %RET.VALUE

!**
!
! Remove old BUSROUTE.OUT
!
!**

! If an old BUSROUTE.OUT exists and BUSROUT.EXE
! crashes then BUSROUTE.CMD will mistake the existing
! file for new output generated by the upcoming call
! to BUSROUT.EXE. We will try to avoid that
! possibility by deleting any existing BUSROUTE.OUT.
! This is not fool proof, since the system will deny
! a request to delete a "protected" file.

DOS "^DEL %TMP^BUSROUTE.OUT > NUL"

!**
!
! Do it
!
!**

LOCAL #PITCH = {%SPACE + %WIDTH}
LOCAL #TOTAL.WIDTH = {%N.WIRES * %PITCH + %SPACE}
LOCAL #N.SELECT.PUSH = %N.SELECT
IF(%N.SELECT.PUSH) UNSELECT PUSH

Advanced Examples: BUSROUTE.CMD

330 ICED™ Command File Programmer's Reference

IF(%BUS.ADD.MESSAGE.ON){
 #BUS.ADD.MESSAGE.ON = 0;
 $Press <Enter> to route bus outline (This message &

will not appear next time)
 PAUSE 0
}
LOCAL #SAVE.SNAP.ANGLE = %SNAP.ANGLE
SNAP ANGLE = 90
VIEW ON; ! Update screen if view changes while adding wire
ADD WIRE LAYER=%SCRATCH.LAYER &

WIDTH=%TOTAL.WIDTH TYPE=0
VIEW OFF;
SNAP ANGLE = %SAVE.SNAP.ANGLE

!**Setup for UNED.CMD once BUSROUTE.CMD
! cannot be cancelled

GLOBAL #UNED.FILE.NAME = %TMP^BUSROUTE.SHO
GLOBAL #ED.FILE.NAME = %TMP^BUSROUTE.OUT
GLOBAL #ED.ID1 = -1 ! flag indicating nothing done

SELECT NEW
SHOW PROG=1 FILE=%UNED.FILE.NAME
DOS "^%EXEC.DIR^BUSROUTE.EXE %TMP &

%SCRATCH.LAYER %LAYER
%USE.WIRE.TYPE %WIDTH %SPACE %N.WIRES"

GLOBAL #ED.ID0 = %ID.MAX
@%TMP^BUSROUTE.OUT; VIEW OFF
#ED.ID1 = %ID.MAX;

DELETE
IF(%N.SELECT.PUSH) SELECT POP;

The macro definition for BUS.ADD.MESSAGE.ON determines later whether
this is the first time the command file is executed. It will determine whether or
not a prompt message is printed. The SCRATCH.LAYER macro defines the
layer used for scratch work. You will need to change this layer if you use layer
251 for real work.

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 331

The first several blocks of code prompt the user for the layer of the bus, the
number of wires in the bus, the width of each wire, and the spacing between the
wires. Each block works in the same manner. The appropriate user prompt
command file _GET_LAY.CMD, _GET_INT.CMD, or _GET_REAL.CMD is
used to prompt the user for the value. If a default has been saved from a previous
execution of BUSROUTE.CMD, then that default is passed into the nested
command file. The value entered by the user is stored in both a local macro and
a global macro that stores the default for the next execution.

Next a DOS command is used to delete an old BUSROUTE.OUT file if one
exists from a previous execution of BUSROUTE.CMD. This is the file created
by the BUSROUTE.EXE program called below.

The next block of lines, below the "Do it" comment, calculate the total width of
the bus. The currently selected components are pushed for later retrieval.

If BUSROUTE.CMD has been executed before, the commands in the next IF
block will not be executed. Otherwise, a prompt message is displayed on the
screen to explain to the user that he must route the bus outline.

The current snap angle is stored in the SAVE.SNAP.ANGLE local macro. Then
the snap angle temporarily set to 90° while the user routes the bus outline on the
layer stored in the SCRATCH.LAYER macro. The original snap angle is then
restored.

Next, the command file sets up some macros that will enable the UNED.CMD
command file to undo the results of this command file. (See page312.)

The routed bus outline wire is selected by the SELECT NEW command. Then
the description of this component is stored in the file name stored in the
UNED.FILE.NAME macro by the SHOW command.

Advanced Examples: BUSROUTE.CMD

332 ICED™ Command File Programmer's Reference

This file is passed as an argument to the DOS program BUSROUTE.EXE. Other
parameters including the wire width, spacing, etc. are also passed to this
program. The program should execute so quickly that the user does not even
realize that control has passed from the editor to a DOS procedure. The program
will place ADD commands for each bus wire in the file BUSROUTE.OUT in the
directory stored in the TMP system macro.

Before the ADD commands in the BUSROUTE.OUT file are executed, the last
component id used is stored in the ED.ID0 macro. This is to enable the
UNED.CMD command file to undo the results of the BUSROUTE.OUT
command file. After BUSROUTE.OUT is executed, the last id used is stored in
ED.ID1 for UNED.CMD.

The final two lines delete the routed outline wire on the scratch layer and restore
the selection status of components before the command file began.

BUSROUTE.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include "showlib.h"

extern int errno;

FILE *fp_sho, *fp_out;
char *sho_file_name, *output_file_name;

typedef struct{ double x, y; } FPOS;
typedef struct{ int dx, dy;} SHIFT_DIR;
SHIFT_DIR shift_table[4][4] =

{{{ 0, 0}, {-1, 1}, { 0, 0}, { 1, 1}},
{{-1, 1}, { 0, 0}, {-1,-1}, { 0, 0}},
{{ 0, 0}, {-1,-1}, { 0, 0}, { 1,-1}},
{{ 1, 1}, { 0, 0}, { 1,-1}, { 0, 0}}};

The BUS-
ROUTE.EXE
program should
be stored in the
same directory
as the command
file so the
system macro
%EXEC.DIR
correctly
indicates the
path to the
program file.

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 333

SHIFT_DIR end_shift_table[4] =
{{ 0, 1}, {-1, 0}, { 0,-1}, { 1, 0}};

/******** Command line arguments ************

File names:

 argv[1] string tmp directory name (ends in \)

 Example: argv[1]=c:\iced\tmp\ =>
 .SHO file is c:\iced\tmp\busroute.sho
 Output file is c:\iced\tmp\busroute.out

Outline wire parameters:

 argv[2] int layer NUMBER for "outline" wire

Bus wire parameters:

 argv[3] int layer number
 argv[4] int wire type
 argv[5] double wire width
 argv[6] double wire spacing
 argv[7] int number of wires in bus

********* End Command line arguments *******/

/*#***/
/* */
/*void main(int argc, char *argv[]) */
/* */
/*******-********-**************************/

void main(int argc, char *argv[])
{
 char *ptr0, *ptr;
 int len, wire_layer, wire_type, n_wires;
 int spine_layer, i, j, dir_code;
 double wire_pitch, wire_width, adjust;
 double wire_spacing, bus_width;

Advanced Examples: BUSROUTE.CMD

334 ICED™ Command File Programmer's Reference

 double offset, x, y, dx, dy;

 /* The following arrays are static to avoid stack
 *overflows when using a 16-bit compiler */

 static FPOS pos[200]; /*Max 200 points in wire */
 static SHIFT_DIR shift_dir[200];
 static char dir[199]; /*Max 199 segments in wire*/

 int n_pos = 0;

 /* Check argument count */

 if(argc != 8){
 crash("Command line error -- Bad arg count\n"
 "Expected 7 args -- found %d", argc-1);
 }
 len = strlen(argv[1]);

 /* Form file names from argv[1] */

 sho_file_name = malloc(len + 20);
 output_file_name = malloc(len + 20);
 if(sho_file_name==NULL || output_file_name==NULL){
 crash("Insufficient memory");
 }
 strcpy(sho_file_name, argv[1]);
 strcpy(sho_file_name+len, "BUSROUTE.SHO");

 strcpy(output_file_name, argv[1]);
 strcpy(output_file_name+len, "BUSROUTE.OUT");

 /* Process argv[]'s 2 thru 7 */

 if(sscanf(argv[2], "%d", &spine_layer)==0){
 crash("Arg 2 error-- Outline layer number\n"
 "Expected integer:found \"%s\"", argv[2]);
 }

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 335

 if(spine_layer < 1 || spine_layer > 255){
 crash("Arg 2 error -- Outline layer number\n"
 "Value \"%s\" out of range [1:255]", argv[2]);
 }

 if(sscanf(argv[3], "%d", &wire_layer)==0){
 crash("Argument 3 error -- Bus layer number\n"
 "Expected integer -- found \"%s\"", argv[3]);
 }
 if(wire_layer < 1 || wire_layer > 255){
 crash("Arg 3 error-- Bus layer number\n"
 "Value \"%s\" out of range [1:255]", argv[3]);
 }

 if(sscanf(argv[4], "%d", &wire_type)==0){
 crash("Arg 4 error -- Bus wire type\n"
 "Expected integer -- found \"%s\"", argv[4]);
 }
 if(wire_type!=0 && wire_type!=2){
 crash("Arg 4 error -- Bus wire type\n"
 "Invalid value \"%s\": expected 0 or 2", argv[4]);
 }

 if(sscanf(argv[5], "%le", &wire_width)==0){
 crash("Arg 5 error -- Bus wire width\n"
 "Expected real number:found \"%s\"", argv[5]);
 }
 if(wire_width <= 0){
 crash("Arg 5 error-- Bus wire width\n"
 "Invalid value \"%s\":must be > 0", argv[5]);
 }

 if(sscanf(argv[6], "%le", &wire_spacing)==0){
 crash("Arg 6 error -- Bus wire spacing\n"
 "Expected real number:found \"%s\"", argv[6]);
 }
 if(wire_spacing<=0){
 crash("Arg 6 error -- Bus wire spacing\n"
 "Invalid value \"%s\": must be > 0", argv[6]);
 }

Advanced Examples: BUSROUTE.CMD

336 ICED™ Command File Programmer's Reference

 if(sscanf(argv[7], "%d", &n_wires)==0){
 crash("Arg 7 error -- Number of wires in bus\n"
 "Expected integer:found \"%s\"", argv[7]);
 }
 if(n_wires < 1){
 crash("Arg 7 error-- Number of wires in bus\n"
 "Invalid value \"%s\": must be > 0", argv[7]);
 }

 /* Open files */

 /* errno is set (and used) by the system.
* Sometimes a non-zero value is left over
* from an internal system call */

 errno = 0;
 fp_sho = fopen(sho_file_name, "r");
 if(fp_sho==NULL){
 sys_crash("Could not open input file \"%s\"",

 sho_file_name);
 }

 fp_out = fopen(output_file_name, "w+t");
 if(fp_out==NULL){
 sys_crash("Could not open output file \"%s\"",

 output_file_name);
 }

 /* Read outline wire spine coordinates */

 /* We will ONLY try to check for obvious errors
* that could be caused by using the wrong SHOW
* command in BUSROUTE.CMD. We will NOT try

 * to check everything. */

 ptr0 = find_line("ADD WIRE");
 if(ptr0==NULL){
 crash("No ADD WIRE cmd in input file \"%s\"",

sho_file_name);
 }

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 337

 ptr = skip_passed(ptr0, "ADD WIRE");
 ptr = skip_passed(ptr, "WIDTH=");
 bus_width = atof(ptr);
 ptr = skip_passed(ptr, "AT ");

 while((ptr = skip_passed(ptr, "("))!=NULL){
 if(sscanf(ptr, " %lg, %lg)", &x, &y)!=2){
 crash("Error reading ADD WIRE command\n"
 "Expected (x, y)... -- found \"%s\"",

ptr-1);
 }
 pos[n_pos].x = x;
 pos[n_pos].y = y;
 n_pos++;
 }

/************ ALGORITHM ********************

Definitions:
 The SPINE wire is the wire used to outline the bus.
 A BUS wire is one of the wires in the bus.

We now have the coordinates of the spine the wire and
we want to use them to compute the coordinates of the
bus wires. The coordinates of a bus wire are computed
by adding a shift_vector to the coordinates of the
spine wire. The shift_vector for the i-th vertex of
the j-th wire is:

 shift_vector.x =
 (j - (n_wires-1)/2.) * wire_pitch * shift_dir.dx
 shift_vector.y =
 (j - (n_wires-1)/2.) * wire_pitch * shift_dir.dy

The direction of the shift vector for a given vertex
depends on the directions of the spine wire segments
that meet at the vertex.

Advanced Examples: BUSROUTE.CMD

338 ICED™ Command File Programmer's Reference

The algorithm has the following steps:

1) Compute direction codes (dir[]) for each segment of
the spine wire.
2) Adjust spine wire endpoints to allow for extended
ends of bus and spine wires.
3) Use these codes and the preprepared look-up tables
to compute shift_dir[]for each spine wire vertex.
4) Compute (and output) the vertexes for the bus
wires.

1) Compute dir[i] for each segment:

 dir[i] = is based on the direction of a vector from
pos[i] to pos[i+1].
 dir[i]=0 => vector points in the + x direction
 dir[i]=1 => vector points in the + y direction
 dir[i]=2 => vector points in the - x direction
 dir[i]=3 => vector points in the - y direction

 The n_pos vertexes are numbered from 0 to n_pos-1.
 There are only n_pos-1 wire segments
 => n_pos-1 dir[]'s.
 We will number them from 0 to n_pos-2.
***/

 for(i=0; i<=n_pos-2; i++){
 dx = pos[i+1].x - pos[i].x;
 dy = pos[i+1].y - pos[i].y;
 dir_code = -1;
 if(dy==0){
 if(dx > 0) dir_code = 0;
 else if(dx < 0) dir_code = 2;
 }
 else if(dx==0){
 if(dy > 0) dir_code = 1;
 else if(dy < 0) dir_code = 3;
 }

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 339

 if(dir_code==-1){
 crash("Bad wire segment connecting points

 (%g,%g) and (%g,%g).\n"
 "Points cannot be connected by a

 horizontal or vertical line.",
 pos[i].x, pos[i].y, pos[i+1].x, pos[i+1].y);
 }
 dir[i] = dir_code;
 }

/* 2) Adjust spine wire endpoints to allow for
 extended ends of bus and spine wires: */

 adjust = 0.5 * (wire_type==2
? (bus_width - wire_width) : bus_width);

 dir_code = dir[0];
 if(dir_code==0) pos[0].x -= adjust;
 else if(dir_code==1) pos[0].y -= adjust;
 else if(dir_code==2) pos[0].x += adjust;
 else if(dir_code==3) pos[0].y += adjust;

 dir_code = dir[n_pos-2];
 if(dir_code==0) pos[n_pos-1].x += adjust;
 else if(dir_code==1) pos[n_pos-1].y += adjust;
 else if(dir_code==2) pos[n_pos-1].x -= adjust;
 else if(dir_code==3) pos[n_pos-1].y -= adjust;

/*3)Compute shift_dir[] for each spine wire vertex:*/

 shift_dir[0] = end_shift_table[dir[0]];
 shift_dir[n_pos-1] = end_shift_table[dir[n_pos-2]];
 for(i=1; i<=n_pos-2; i++){
 shift_dir[i] = shift_table[dir[i-1]][dir[i]];
 }

Advanced Examples: BUSROUTE.CMD

340 ICED™ Command File Programmer's Reference

/*4) Compute and output vertexes for the bus wires:*/

 wire_pitch = wire_spacing + wire_width;
 offset = 0.5 * (n_wires-1) * wire_pitch;
 for(j=0; j<n_wires; j++){
 fprintf(fp_out,

 "ADD WIRE LAYER=%d WIDTH=%g TYPE=%d AT",
 wire_layer, wire_width, wire_type);
 for(i=0; i<n_pos; i++){
 x = pos[i].x;
 if(shift_dir[i].dx==1) x += offset;
 else if(shift_dir[i].dx==-1) x -= offset;
 y = pos[i].y;
 if(shift_dir[i].dy==1) y += offset;
 else if(shift_dir[i].dy==-1) y -= offset;
 fprintf(fp_out, " (%g, %g)", x, y);
 }
 offset -= wire_pitch;
 fprintf(fp_out, "\n", x, y);
 }
 exit(0);
 }

SHOWLIB.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "showlib.h"

/* The following routines form the first draft of a
 simple library that is useful in processing .SHO
 files. Notice that they make use of the following
 external variables: */

extern FILE *fp_sho, *fp_out;
extern char *sho_file_name, *output_file_name;

/* which must be declared and initialized in your

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 341

 program. The external variable: */

extern int errno;

/* is declared and set by the operating system.

Required PROTOTYPES are declared in sholib.h */

/*#**/
/* */
/*char *skip_passed(char *ptr0, char *string) */
/* */
/*****-******************-*************************/

/* Purpose:

 Skip_passed(ptr0, string) searches a show line
starting at ptr0 until it finds a match for string.
If a match is found it returns a pointer to the
character following the matching section of the show
line. If no match is found it returns NULL.
Skip_passed() uses a case dependent compare. A blank
in string matches 1 or more blanks in the show line.
Thus, if string ends in a blank, the returned pointer
will not point to a blank character. */

char *skip_passed(char *ptr0, char *string)
{
 char *ptr = ptr0;
 char *str = string;

 while(*ptr0!='\0'){
 ptr = ptr0; str = string;
 while(*str==*ptr){
 if(*str==' '){
 while(*ptr==' ') ptr++;
 while(*str==' ') str++;
 }
 else if(*str=='\0') return ptr; /* MATCH */
 else{

Advanced Examples: BUSROUTE.CMD

342 ICED™ Command File Programmer's Reference

 ptr++;
 str++;
 }
 }
 if(*str=='\0') return ptr; /* MATCH */
 ptr0++;
 }
 return NULL; /* NO MATCH */
 }
/*#**/
/* */
/* char *find_line(char *string) */
/* */
/*******-******************-***********************/

/* Purpose:

 Reads stream *fp_sho until it finds a line that
starts with "string". It returns a pointer to to the
first non-blank character of the line if a match is
found. It returns NULL for no match. This module
uses a case dependent compare. A blank in string
matches 1 or more blanks in the show file line.

 Side effects:

 Find_line() uses read_show_line() to read *fp_sho.
Read_show_line()reads data into a static buffer. The
pointer it returns points to data in this buffer. Any
call to read_show_line() overwrites the data that was
in the buffer as a result of previous calls.

 The file position for *fp_sho is advanced to the
character following the end of the matching line. If
no match is found the file pos will point to the end
of file. */

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 343

char *find_line(char *string)
{
 char *ptr, *ptr0, *str;

 while(1){
 ptr0 = read_show_line();
 if(ptr0==NULL)

return(NULL); /* RETURN END OF FILE FLAG */
 str = string;
 ptr = ptr0;
 while(*str==*ptr){
 if(*str==' '){
 while(*ptr==' ') ptr++;
 while(*str==' ') str++;
 }
 else if(*str=='\0'){
 return ptr0; /* RET PTR TO MATCHING LINE*/
 }
 else{
 ptr++;
 str++;
 }
 }
 if(*str=='\0')

return ptr0; /* RET PTR TO MATCHING LINE*/
 }
 }
/*#**/
/* */
/* char *read_show_line(void) */
/* */
/***********-******************-*******************/

/* Purpose:

 Read_show_line() reads the next "complete" line
from stream *fp_sho. This routine reads whole lines,
i.e. if a line ends in an '&' (continuation mark) the
'&' is erased and the next line is read and
appended to it. (There are likely to be five or more

Advanced Examples: BUSROUTE.CMD

344 ICED™ Command File Programmer's Reference

blanks separating the two parts of the merged
line.) Any '\t', '\n', or '\r' characters that appear
in the line are replaced by blanks. Trailing blanks
are removed from the end of the line.

 Read_show_line() returns a pointer to to the first
non-blank character of the line. It returns NULL if
it reads the end of file before reading a line.

 Side effects:

 Read_show_line() reads data into a static buffer.
The pointer it returns points to data in this buffer.
Any call to read_show_line() overwrites the data that
was in the buffer as a result of previous calls.

 The file position for *fp_sho is advanced to the
character following the end of the line. If an end of
file (eof) is read, it repositions the file pointer to
the eof so that the next file read will also return
an eof.

 */
char *read_show_line(void)
{
 static char buffer[MAX_SHOW_LINE_LEN+1];
 int len = 0;
 int chr = 0;
 char *ptr;
 int n;

 while(1){
 n = read_show_line0(buffer+len,

MAX_SHOW_LINE_LEN-len+1);
 if(n==-1){ /* End of file flag */
 if(chr=='&'){
 crash("Unexpected end of file \"%s\"\n"
 "The last line ends with an '&' ",
 sho_file_name);
 }

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 345

 fseek(fp_sho, 0, SEEK_END);
 return(NULL); /* RETURN END OF FILE */
 }
 len += n;

 /* Check final non-blank character for '&' */

 if(len==0) continue; /* skip empty line */
 ptr = buffer + len - 1;
 chr = *ptr;

 if(chr!='&'){ /* Skip leading white space */
 ptr = buffer;
 while(*ptr==' ') ptr++;
 if(*ptr=='\0') continue; /*skip empty line */
 return(ptr); /* RETURN COMPLETE LINE **/
 }
 /* chr=='&' */

 len--;
 };
 }
/*#**/
/* */
/*read_show_line0(char *buffer, int buffer_len) */
/* */
/***************-******************-*************/

/* Purpose: Read_show_line0() is used by
read_show_line0() */

int read_show_line0(char *buffer, int buffer_len)
{
 char *ptr;

 /* Read line */

 errno = 0;
 ptr = fgets(buffer, buffer_len, fp_sho);
 if(ptr==NULL){

Advanced Examples: BUSROUTE.CMD

346 ICED™ Command File Programmer's Reference

 if(feof(fp_sho)){
 return(-1);
 }
 sys_crash("Error reading \"%s\"",

sho_file_name);
 }

 /*Replace tab,return,and newline chars with blanks*/

 for(ptr=buffer; *ptr!='\0'; ptr++){
 if(*ptr=='\t' || *ptr=='\n' || *ptr=='\r')

 *ptr = ' ';
 }

 /* Remove trailing blanks */

 while(ptr>buffer && *(ptr-1)==' ') ptr--;
 *ptr = '\0';
 return(ptr-buffer);
 }
/*#***/
/* */
/* crash(char *fmt, ...) */
/* */
/**********-******************-*********************/

/* Purpose: Print message, close and remove output
file, exit */

void crash(char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 vprintf(fmt, ap);
 va_end(ap);
 printf("\n");

 if(fp_out!=NULL){
 fclose(fp_out);

Advanced Examples: BUSROUTE.CMD

ICED™ Command File Programmer's Reference 347

 remove(output_file_name);
 }
 exit(10);
 }
/*#***/
/* */
/* sys_crash(char *fmt, ...) */
/* */
/****************-******************-***************/

/* Purpose: Print message, print system error message,
close and remove output file, exit */

void sys_crash(char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 vprintf(fmt, ap);
 va_end(ap);
 printf("\n");

 if(errno!=0) printf("System reports: %s",
strerror(errno));

 if(fp_out!=NULL){
 fclose(fp_out);
 remove(output_file_name);
 }
 exit(10);
 }

	Table of Contents
	Introduction
	Table of Useful Examples in This Manual
	Creating and Executing a Simple Command File

	Executing Command Files
	Using the @file_name Command
	Command File Search Path
	Where to Store Command Files

	Command File Names
	Methods of Executing Command Files
	From a Menu
	With a Keystroke
	Automatic Execution when Editor Opens
	Automatic Execution when Editor Closes
	Automatic Execution when Subcell is Opened or Closed
	Automatic Execution when Error is Encountered

	Executing a Command File on Many Cells
	Batch Execution
	The BATCH Command Line Option

	Command File Syntax
	Review Of ICED™ Command Syntax
	Commands, Continuation Lines, and Statements
	Comments
	Line Labels
	Delimiters
	Underscores
	Case Insensitivity
	Abbreviating Keywords, Layer Names, and Color Names
	Quotes and Strings
	% Prompts and Position Prompts

	Introduction to Macros
	String Substitution
	Use of the '#' and '%' Characters
	Macro Values are Stored as Strings
	Macro Substitution in Strings
	The Percent Sign '%' In Strings

	Overview of Macro Definition and Assignment
	Macro Scope
	Macro Names
	Macro Substitution in Macro Names.
	Delimiting a Macro Name
	Methods of Assigning Macro Values

	Delayed Substitution
	Overview of System Macros

	Expression Evaluation
	Expressions Should Be Surrounded By {}
	Mathematical Expressions
	Mathematical Operators
	Mathematical Operations on Coordinate Pairs

	Boolean Expressions
	Boolean Values
	Number Comparison Operators
	Boolean Operators
	Compound Boolean Expressions
	Storing the Result of a Boolean Expression
	The NOT Boolean Operation

	Operator Precedence and Associativity (or, when are () required in an expression?)
	Definitions of Precedence and Associativity
	Table of Precedence of ICED™ Operators
	Precedence in Compound Boolean Expressions

	Functions
	Syntax for Function Calls
	Calling a Function in a Command
	Expressions in the Argument of a Function Call
	Calling a Function in a Macro Assignment
	String Comparison Functions

	Calculations in Layout Editor

	Summary of Special Characters
	Review of Statement Parsing

	Overview of Programming Techniques
	Selecting Components
	Selection Status at the Beginning of a Command File
	Embedded Selects and the XSELECT Mode
	The UNPROTECT and UNBLANK Commands
	Selection Criteria
	Selecting Components from a List
	Selecting A Single Component
	Allowing User to Use Multiple SELECT Commands

	Adding Components
	ADD Commands
	Adding Components with ITEM Macros
	Snapping Coordinates to Resolution Grid
	Methods that Enable Undoing ADD Commands
	Adding Components using SHOW Command File

	Deleting Components
	User Interaction
	Verifying User Input
	Displaying Messages to the User
	Conditional Execution
	Nesting Command Files
	Passing Arguments into Command Files

	Opening Other Cells
	The Edit Commands
	Opening Cells in VIEW-ONLY Mode
	Errors and Interruptions during Nested Edits
	The Cell Table and Open Cells
	Determining if a Cell Exists and is Loaded
	Determining if a Cell is Open or Protected
	Looping Through All Subcells
	Allowing Local Copies of Cells
	Creating New Cells with an EDIT Command

	Saving and Restoring Settings
	Saving the Selection Status of Components
	Saving the Editor Settings
	Saving Macros for Future Sessions

	Calling Other Programs
	Shelling Out to a GUI Program
	Shelling Out to a DOS Command
	Using Other Programs to Manipulate Component Data

	Testing, Error Checking, and Recovery from Errors
	Canceling a Command File
	Error Handlers
	Mysterious Errors
	The Journal File
	UNDOing Command Files
	Using the Journal File for Recovery
	Using UNED.CMD to Undo Command File

	Control File Efficiency
	Disable View Window Update
	Disable Command Logging to Screen
	Disable Command Logging to Journal File

	Macro Definition
	Overview
	ITEM Macros
	User Macro Definition Syntax
	[DEFAULT]
	(GLOBAL | LOCAL)
	[#]macro_name
	macro_value
	Arrays
	Keyboard Macros
	Reserved Macros

	Commands Used Primarily in Command Files
	Table of Commands Covered in Other Manual
	@file_name	Execute a command file.
	The @%.cmd Menu Option
	Nested Command Files
	Other Commands in the Same Statement

	$comment	Add comment to journal file and screen.
	Differences Between $comments, $$comments and !comments

	BACK_TO	Force interpreter to go back to a specific line.
	ERROR	Display error message.
	ERROR.CMD Macro Processing

	IF, ELSEIF, ELSE	Conditionally execute statements
	The IF Command
	The ELSE Command
	The ELSEIF Command

	ITEM	Get information on single component
	Using the ITEM Macros
	Referring to ITEM Macros in Conditional Statements
	Using the item_name.LAYER Macro
	Position Lists
	Using the BOX Keyword

	Selecting a Single Component
	Using the ADD.item_name Macro

	LIST	Save a named list of components.
	Selecting Components for a List
	List Names
	Building a Set of Components in a Loop
	Macros Created by the LIST Command
	LIST.EOL. list_name
	LIST.EMPTY.list_name
	LIST.LEN. list_name
	LIST.INDEX. list_name

	Functions Related to Lists
	VALID_LIST_NAME()
	LIST_EXISTS()

	When Lists Are Removed
	Efficiency of Using a List When Looping Through Components

	LOG	Speed command files by controlling how commands are logged.
	Effects of the LOG OFF Command
	Showing Progress Messages During LOG OFF
	Effects of the LOG SCREEN =(ON |OFF) Command
	Effects of the LOG [LEVEL=(BRIEF | NORMAL | DEBUG)] Command

	MARK_SUBCELLS 	Initialize SUBCELL.EDIT system macro
	PAUSE 	Create a pause in a command file.
	Updating the Display Window

	PROMPT 	Change prompt message on the command line.
	REMOVE 	Delete macros
	RETURN 	Terminate command file or exit shell state
	Returning from a Shell

	SHELL 	Suspend command file and execute interactive commands.
	SKIP_TO	Force interpreter to go directly to a specific line.
	VIEW (ON | OFF) 	Control display refresh during command files.
	WHILE 	Execute block of statements more than once
	XSELECT	Enable or disable embedded selects in command files.

	Functions
	Functions Sorted by Purpose
	Functions Alphabetically

	ICED™ System Macros
	Overview
	Indexed System Macros
	Cell Table Indices
	System Macros Sorted by Purpose
	System Macros Alphabetically

	Advanced Examples
	
	_GET_INT.CMD	Prompt user for integer and verify value
	RES.CMD	Create resistor from resistance and width
	SERIAL.CMD and _CHARn.CMD	Add serial numbers to an array
	SERIAL.CMD
	CHAR0.CMD

	ED.CMD and UNED.CMD	Edit component properties (with undo capability)
	DEEPSHOW.CMD	Enhance SHOW command for nested components
	BUSROUTE.CMD	Replace single wide wire with routed bus of wires
	BUSROUTE.C
	SHOWLIB.C

