
Reference Manual

Version 1.xx

IC Editors, Inc.

NLE Circuit Extractor and
LVS Comparison Utility

© 1997-1998 by IC Editors, Inc

No part of the information contained in this manual may be represented in any form
without the prior written consent of IC Editors, Inc.

The software described in this manual is subject to change without notice. Although all
information is given in good faith, neither IC Editors, Inc. nor its agents accept any
liability for any loss or damage arising from the use of the software or from use of any of
the information provided herein.

Acknowledgments:

The majority of this manual was written or revised by Ference Professional Services in
Sonora, CA. The original documentation was created by Richard Brandshaft and Pratapa
Yeddula.

Michael Gentry of MGC, Inc. created the layout that is used on the cover and as an
example in this manual. It is a section of a CMOS simulation of a 74181 4-bit ALU.

Table of Contents

NLE and LVS User Manual 1

Table of Contents

INTRODUCTION... 7

GETTING STARTED .. 13

Program Requirements ... 14

Installation.. 15

Quick Tutorial.. 17
Preparing the Layout Netlist .. 21
Preparing the Schematic Netlist... 25
Preparing the Control File ... 27
Running the Program... 29
Looking at the Results ... 31

NLE BASICS .. 37

NLE Rules Syntax.. 43

Layer Processing .. 49
Layer Definition Rules... 51
Layer Generation Rules ... 60

Panel Processing... 83

Hierarchical Processing... 91

NLE CIRCUIT RECOGNITION ... 93

Electrical Connections ... 95

Device Recognition... 105
The General Purpose DEVICE Rule ... 113
Specific Device Rules.. 125

Table Of Contents

2 NLE and LVS User Manual

Node Labels .. 138
Rules Which Affect Labels.. 141
Uses of the Three Types of Labels .. 145
Placement and Processing of Labels.. 148

ECC Rules .. 152

RUNNING THE NLE ... 159

NLE Rules Compilation... 161
Rules Compiler Command Line Syntax... 161
Rules Compiler Output Files ... 164

Running the Circuit Extractor.. 169
NLE Command Line Syntax.. 169
The Three File Parameters... 171
Input Redirection, Memory, and Scratch Directory Options 172
Logging Options .. 174
Rules File Options ... 176
ECC and Other Optional Test Keywords... 178
Output File Options ... 181

NLE Output files.. 185

LVS BASICS... 197

Overview... 198

LVS Statement Syntax... 201

LVS INPUT FILES .. 203

Schematic Netlists .. 205
The *.SCHMODEL Statement .. 206
Tolerance Parameters .. 208
Device Modifiers ... 208
Device Characteristics ... 209
Default Value Parameters .. 209
Control File Override Parameters.. 212
Adding *.SCHMODEL Statements to the Schematic Netlist 216

Table of Contents

NLE and LVS User Manual 3

Device Statement Restrictions ... 217
Commands Supported in the Schematic Netlist... 220
Parameter Passing and Syntax Restrictions ... 224
Node Names .. 226
Inserting a Top-Level Subcircuit ... 227
Summary of How to Prepare a Schematic Netlist for the LVS.............................. 228

Layout Netlists ... 229
The *.LAYMODEL Statement.. 229
Tolerance Parameters .. 233
Device Modifiers ... 235
Layout Restrictions.. 241
Device Characteristics ... 242
Default Value Parameters .. 243
Control File Override Parameters.. 245
Preparing the Model File ... 245
Commands Supported in the Layout Netlist .. 247
Review of Node Labels ... 248
Summary of How to Prepare a Layout Netlist for the LVS 250

The LVS Control File .. 251
DIRECTORY PATH & FILE NAME EXTENSION ... 256
COMPARISON TYPE & FILE FORMAT ... 257
LVS RUNTIME OPTIONS .. 259
OPTIONAL OUTPUT FILES... 271
OUTPUT FILES.. 281
INDIVIDUAL DEVICE OPTIONS.. 283
Summary of How to Prepare the Control File for the LVS.................................... 301

RUNNING THE LVS CIRCUIT COMPARISON 303

Command Line Syntax .. 304

Runtime Errors .. 311

Overview of Matching Algorithm... 313

Device Transformations .. 315
Terminal Swapping.. 316
Device Merges... 318
Merges of Devices in Chains ... 320
Series Logic Collapses... 322

Table Of Contents

4 NLE and LVS User Manual

Parallel Logic Collapses .. 323
Pull-Up and Pull-Down Pseudo Devices ... 324
Parameter Value and Signal Order Verification of Collapsed Circuits.................. 328
Multiple Emitter or Collector Devices... 331

Pad Connection Verification... 335
Defining Pads in Schematic Netlist ... 336
Defining Pad Devices in Layout Netlist .. 337
Diagnosing Pad Misconnections.. 339
Variable Pad Types ... 340
Pad Protection Circuitry .. 340
Ignoring Testpoint Pads... 342

Parameter Calculation... 343
Resistors .. 344
Capacitors.. 346
Inductors and Other Devices for Which the NLE Cannot Calculate a Value. 346
Scaling and Tolerances.. 347

Advanced Uses of Node Labels ... 349
Forced Points of Correspondence.. 349
Virtual Connections in the Layout ... 350
Node Labels Which Prevent Device Collapses ... 351

Using a Node Correspondence File... 355
Purpose of the File... 355
File Syntax... 355
Setting the Control File Options .. 356
Using +/- Flags .. 357
Assigning Virtual Connections .. 358

Using Node Label Overrides ... 361

Symmetric Circuits .. 365

LVS OUTPUT FILES .. 369

Reports Generated by the LVS... 370
LVS.LOG .. 370
Non-Optional Output Files .. 371
Optional Output Files .. 380

Table of Contents

NLE and LVS User Manual 5

Using the Node Outliner Commands.. 389

THE LPE UTILITY .. 395

LPE Command Line Syntax.. 397

The LPE Control File .. 402

ADVANCED TUTORIAL ... 406

APPENDIX: TUTORIAL SCHEMATICS 434

INDEX ... 448

Table Of Contents

6 NLE and LVS User Manual

Introduction

NLE and LVS User Manual 7

Introduction

Introduction

8 NLE and LVS User Manual

The LVS program from IC Editors, Inc. is a fast netlist-netlist comparison
program. It is used to verify whether or not two netlists represent the same
semiconductor circuit. Usually, one of the netlists is generated from the physical
circuit layout and the other corresponds to a schematic used for circuit
simulation. We refer to this type of comparison as an LVS (Layout Vs.
Schematic) comparison. The LVS can also be used to compare two schematic
netlists (SVS) or two layout netlists (LVL).

When you want to perform either an LVS or LVL comparison, you create the
layout netlist by running the NLE (Net List Extractor) program on the data
created with the ICED32™ layout editor.

The NLE creates the layout netlist from the shapes in an ICED32™ cell by using
rules you define in an ASCII rules file. These rules direct the circuit recognition
process. Other rules direct the optional ECC (Electrical Connections Checks)
which can easily find problems such as shorts between nets and open circuits.

This manual is organized into the following sections:

"Getting Started" covers the program requirements and installation. This
section also includes a brief tutorial covering the basic steps for preparing the
input files and running the NLE and LVS programs.

"NLE Basics" describes how the NLE program operates. The NLE and the
DRC program (available separately from IC Editors, Inc.) have many
similarities. Both are rules-driven programs that manipulate layout data. Many
of the rules described here are also covered in the DRC manual. If you are not
familiar with the DRC, you should read this section carefully.

"NLE Circuit Recognition" covers the rules the NLE uses to build the layout
netlist from the layout data.

"Running the NLE" contains details on executing the NLE rules compiler and
the NLE program.

Introduction

NLE and LVS User Manual 9

"LVS Input Files" explains the format of the input files for the LVS
comparison. The LVS requires three input files: two netlist files and a control
file. A netlist can be either a schematic netlist or a layout netlist.

"Schematic Netlists" contains details on preparing a schematic netlist
for comparison. The LVS accepts schematic netlists written in the
PSPICE, HSPICE, SPICE, or CDL (Cadence1 Circuit Description
Language) formats. Your original schematic netlist file must be
combined with models for each unique type of device found in the
netlist.

"Layout Netlists" describes how to combine the binary layout netlist
generated by the NLE with the other information required by the LVS.
Device models, similar to those required in schematic netlist, are also
required in layout netlists.

"The LVS Control File" explains the importance of each option in this
file. Options in this file control the behavior of the LVS matching
algorithm and determine which reports are generated. You should be
familiar will all of the options in this file to insure that the LVS performs
a valid comparison of the two netlists.

"Running the LVS Circuit Comparison" contains a variety of information on
using the LVS effectively.

"Command Line Syntax" describes the syntax used to launch the LVS
program from DOS.

"Runtime Errors" explains the format of error messages generated
when there are syntax errors in the command line, or in the input files.

"Overview of Matching Algorithm" provides a quick summary of how
the LVS matches circuits.

1 Cadence is a registered trademark of Cadence Design Systems, Inc.

Introduction

10 NLE and LVS User Manual

"Device Transformations" describes how the LVS can optionally
transform netlists before comparison. Device level circuits can be
transformed into higher-level circuits before comparison. This allows
circuits that are logically equivalent but physically dissimilar in each
netlist to be matched. The simplest transformations include merging
parallel or series devices into single devices. Control file options and
device models in each netlist control the device transformations
performed.

"Pad Connection Verification" describes how to verify pad
connections in your layout. This is a problem often overlooked by chip
designers since pads are not usually included in a schematic netlist.
However, an error in a pad connection can be just as catastrophic as any
other type of layout error.

"Parameter Calculation" explains how the LVS can optionally verify
the size or value of matched devices. This chapter describes the
calculation of device values, how tolerances are defined, and how to
enable parameter checking.

"Advanced Uses of Node Labels" covers how node labels in the layout
can affect the LVS comparison. Labeled nodes in the layout can be used
to define points of equivalence between the netlists before the LVS
proceeds with the comparison, however this is not required. Node labels
can also be used to define virtual connections. Special characters in
node labels can prevent transformations of circuits.

"Using a Node Correspondence File" describes how a set of node
equivalences (which usually make use of labeled nets in the layout) can
be used to insure that the comparison progresses after a few known
points of correspondence have been matched. This is not required,
however convergence may be slow if the two circuits have inherent
symmetry, or if they are substantially different.

"Using Node Label Overrides" describes how to add or modify node
labels in your layout netlist without re-executing the NLE.

Introduction

NLE and LVS User Manual 11

"Symmetric Circuits" covers several features of the LVS that allow
you to verify highly symmetric circuits efficiently. Some examples of
symmetric circuits are included.

"LVS Output Files" includes a description of each report generated by the
program. The LVS always generates a report that lists all unmatched devices and
unmatched nets. Several other types of reports can be generated according to
options in the control file. Tables are included which describe the data in each
report and the relevant control file options that enable it and determine the name
of the file. Included in this section is the "Using the Node Outliner
Commands" chapter that describes the commands for the ICED32™ layout
editor used to highlight specific devices and nets in the layout.

"The LPE Utility" describes how to translate a layout netlist into a schematic
netlist. The layout netlist generated by the NLE is a binary file. One of the
optional output files from the LVS is an ASCII schematic netlist generated from
the layout. If your only purpose in running the LVS is to generate this file, you
can run the LPE utility instead.

The "Advanced Tutorial" uses the examples provided on the installation
diskettes to take you through all the steps in diagnosing several different types of
discrepancies in an LVS comparison.

Introduction

12 NLE and LVS User Manual

Getting Started

NLE and LVS User Manual 13

Getting Started

Getting Started: Program Requirements

14 NLE and LVS User Manual

Program Requirements

The NLE and LVS programs may run with as little as 8 Megabytes, but run times
are likely to be long.

We recommend that the NLE program be run on a computer with at least 16
Megabytes of memory. The NLE does create swap files for virtual memory,
however this disk swapping will slow the program down.

The LVS requires less memory in general than the NLE, however it does not
support virtual memory. The amount of memory required for the LVS varies
greatly with the number of devices in your netlists. For a chip with 100,000
devices we recommend that you have 64 Megabytes of memory available. Small
circuits can be compared successfully with as little as 8 Megabytes of memory.

The swap files created by the NLE can grow very large. We have seen swap
files over 1 Gigabyte in size for large chips. If you have limited memory for the
NLE, you will need plenty of free disk space.

Both of these programs run in DOS, outside of the ICED32™ layout editor.

The NLE requires a key on your printer port. Install the key on the LPT1 port,
then connect your printer cable to the key. The key should not interfere with
normal printer operations.

See Panel
Processing to
reduce the
amount of
memory
required for the
NLE.

Getting Started: Installation

NLE and LVS User Manual 15

Installation

The LVS and NLE programs and their related files are installed at the same time
as the ICED32™ layout editor. Place diskette 1 in floppy drive A: or B: and type
at the DOS prompt:

A:INSTALL
or

B:INSTALL

You will need to specify the name of the installation directory. All executable
files, including LVS.EXE, NLE.EXE, and ICED32.EXE will be stored here. We
refer to this directory throughout this manual as Q:\ICED. Whenever you see
"Q:\ICED", replace the 'Q' with the drive letter you chose during installation.
Replace "ICED" with the name of the installation directory.

When the installation routine has copied all files, you will see a message about
the fact that you should edit your AUTOEXEC.BAT file to add the installation
directory to the DOS PATH environment variable. A copy of your
AUTOEXEC.BAT file, with this simple change already made, will be stored in
the Q:\ICED\SAMPLES directory.

If changes to your CONFIG.SYS file are required, the installation routine will
inform you and store a modified copy of this file in the same directory.

You should look carefully at these files and either copy the modified files to the
root directory of your boot disk, or make equivalent edits to your existing files.

The NLE
requires a key
on your printer
port. Install the
key on the
LPT1 port, then
connect your
printer cable to
the key.

Getting Started: Installation

16 NLE and LVS User Manual

Some useful examples are included during installation. A sample schematic
netlist and a control file are located in the Q:\ICED\SAMPLES\74181\LVS
directory. The files stored in Q:\ICED\SAMPLES\74181\CLEAN contain layout
data that match the sample schematic file. We will be using these files in the
tutorial below.

The files in Q:\ICED\SAMPLES\74181\BAD contain a version of the same
layout with several errors. The Advanced Tutorial, beginning on page 406,
demonstrates how you use the LVS program to diagnose the errors in this layout.

Getting Started: Quick Tutorial

NLE and LVS User Manual 17

Quick Tutorial

To execute the LVS program, you must prepare a control file and two netlists.
These netlists can be either layout netlists; created from circuit layout data, or
schematic netlists; created using a circuit simulation language such as SPICE.

This tutorial will cover all steps in performing a comparison of a layout netlist to
a schematic netlist. This is referred to as an LVS (Layout Vs. Schematic)
comparison. The circuit used will be the ONEBIT subcircuit of the 74181 cell
that is provided with the installation.

This example contains no errors. The reports the LVS will generate will show
you that the two netlists represent exactly the same circuit. If you wish to see
how errors are reported, you can add errors to either netlist and view the results.
We suggest that you copy all files to a different directory before you begin
adding errors.

The flow of data to prepare the input files is shown in Figure 1.

See the
Advanced
Tutorial, at the
end of this
manual, for
examples with
design errors.

Getting Started: Quick Tutorial

18 NLE and LVS User Manual

The layout netlist is created using the NLE circuit extractor. To use the NLE,
you must have two input files. The first contains layout data generated by the
DRC command in the ICED32™ layout editor. The second file contains rules for
electrical connection of the layers and for device recognition.

NLE Rules File
.RUL

Layout File
.CEL

ICED32
Layout Editor

NLE Rules
Compiler

Compiled Rules
.LL

Binary
Layout Data

.POK

NLE
Circuit Extractor

Binary
Layout Netlist

.EXT

*.LAYMODEL
Device ModelsControl File Schematic

Netlist
*.SCHMODEL
Device Models

LVS

File

Program

Figure 1: The flow of data in an LVS comparison.

Getting Started: Quick Tutorial

NLE and LVS User Manual 19

The binary output from the NLE is combined with an ASCII file that contains
models of all devices included in the layout netlist. Each device model begins
with the *.LAYMODEL keyword. These models define default values,
tolerances, and options which control how devices can be combined into higher
level devices before the LVS comparison is performed.

The schematic netlist must also have device models added to it. These models
perform a similar function to the layout device models. Schematic netlist device
models begin with the keyword *.SCHMODEL.

The control file is usually created by editing a sample control file provided with
the LVS installation. This tutorial will show you how to perform a few simple
changes to a copy of the sample control file.

We will copy the following files to a new, empty working directory before
starting this tutorial:

From Q:\ICED\2SAMPLES\74181\LVS
CONTROL.LVS Sample control file
TOP181.CIR Original schematic netlist
SCHMODEL.NET Schematic netlist models
LVS_SCH.NET Schematic netlist including models
S181.RUL NLE rules file for layout circuit extraction
LAYMODEL.NET Layout netlist device models
LVS_LAY.NET ASCII layout netlist including models

From Q:\ICED\SAMPLES\74181\CLEAN
*.CEL Cell files for layout

2 Remember that Q:\ICED represents the drive letter and path where you have installed
ICED32™.

Getting Started: Quick Tutorial

20 NLE and LVS User Manual

Before we create the new directory, we need to make the current DOS drive a
drive with plenty of available space. Replace the drive letter in the following
command to a disk drive with free space and type at the DOS prompt:

C:

Now create the new directory with the command:

MD ICEDTUTR

Make this new directory the current DOS directory with the command:

CD ICEDTUTR

Now copy the required files from your ICED directory with the following
commands:

COPY Q:\ICED\3SAMPLES\74181\LVS*.*
COPY Q:\ICED\SAMPLES\74181\CLEAN*.*

3 Remember that Q:\ICED represents the drive letter and path where you have installed
ICED32™.

The exact
location and
name of the
tutorial
directory is not
important.
Create it
wherever it is
convenient.

Getting Started: Quick Tutorial

NLE and LVS User Manual 21

Preparing the Layout Netlist

The first step for creating a layout netlist is to prepare an NLE rules file for your
technology. This file controls how the NLE will recognize devices and electrical
connections. The NLE rules file we will be using for this example is a simple
one for the CMOS technology which is supplied with the installation. See
Figure 2.

input layer{
 2 n0_diff;
 3 p0_diff;
 41 p_well;
 46 poly_in;
 47 cont_to_poly;
 48 cont_to_active;
 49 metal1_in;
 50 via;
 51 metal2_in;
 60 n_text;
};

scratch layer{
 n_well; p_diff; n_diff; metal1; metal2;
poly;
}

metal1 = metal1_in;
metal2 = metal2_in;
poly = poly_in;

output layer{
 100 p_gate; 101 n_gate;
}

output layer{
 110 bad_p_gate; 111 bad_n_gate;
}

n_well = not p_well;

p_diff = p0_diff and not poly;
n_diff = n0_diff and not poly;
p_gate = p0_diff and poly;
n_gate = n0_diff and poly;

attach text n_text n_well;
connect p_diff p_well;
connect n_diff n_well;
connect poly metal1 by cont_to_poly;
connect metal1 p_diff by cont_to_active;
connect metal1 n_diff by cont_to_active;
connect metal1 metal2 by via;

transistor pmos id=p_gate, err=bad_p_gate{
 gate=poly;
 s$d=p_diff /poly;
 bulk=n_well;
}

transistor nmos id=n_gate, err=bad_n_gate{
 gate=poly;
 s$d=n_diff /poly;
 bulk=p_well;
}

Figure 2: NLE rules file for a
CMOS technology, S181.RUL.

NLE Rules File
.RUL

NLE Rules
Compiler

Compiled Rules
.LL

Getting Started: Quick Tutorial

22 NLE and LVS User Manual

This rules file is compiled by the NLE rules compiler before the NLE circuit
extraction takes place. The DOS command for rules compilation is:

RULESNLE S181

Where RULESNLE is the name of the program and the rules file is S181.RUL.
This program will create the compiled rules in a file named S181.LL. We will
use this file later when we run the NLE.

Now that we have the rules for circuit extraction, it is time to prepare the layout
data for extraction. This is performed in the ICED32™ layout editor with the
DRC command.

We need to launch the ICED32™ layout editor to edit our cell with the DOS
command:

IC32 ONEBIT

Once in the editor, we create the binary layout data for the NLE using the DRC
command without any parameters.

DRC

This will export the entire layout contained in the cell ONEBIT, and its nested
cells, to the file ONEBIT.POK. Once the command is completed, we can use the
QUIT command to terminate the editor and return to DOS.

Layout File
.CEL

ICED32™
Layout
Editor

Binary Layout
Data
.POK

Getting Started: Quick Tutorial

NLE and LVS User Manual 23

Now we are ready to perform the NLE circuit extraction.
The NLE command line is:

NLE S181 ONEBIT ONEBIT

This command will create several files. ONEBIT.EXT is the
binary layout netlist we will be using for our LVS
comparison.

All devices found by the
circuit extractor must have
device models defined for

them. The devices in ONEBIT.EXT have model
names that correspond to the model names used in
the NLE rules file on page 21; PMOS and NMOS.
Model statements for these devices must be added
to the layout netlist. These models are created in a
separate file. This file is often called
LAYMODEL.NET. The model file will need one model statement for the
PMOS device model, and one for the NMOS device model. The *.LAYMODEL
statement is used to define device models for the layout netlist. For this
example, we need only to match the device model names to the physical device
types they represent. This file has already been prepared for you. See Figure 3.

The model file is combined with the
binary layout netlist in the file
LVS_LAY.NET. See Figure 4. The
model file is added to the netlist with
the statement:

.include laymodel.net

The binary output from the NLE circuit extractor is
added to the netlist with the statement:

*.layout onebit.ext

Compiled Rules
.LL

Binary
Layout Data

.POK

NLE
Circuit Extractor

Binary
Layout Netlist

.EXT

*
*.laymodel pmos pmos
*.laymodel nmos nmos

Figure 3: Layout netlist
model file,
LAYMODEL.NET.

*
.include laymodel.net
*.layout onebit.ext
.end

Figure 4: Layout
netlist,
LVS_LAY.NET.

Binary
Layout Netlist

.EXT

*.LAYMODEL
Device Models

Getting Started: Quick Tutorial

24 NLE and LVS User Manual

Edit the LVS_LAY.NET file in your tutorial directory and change the
*.LAYOUT statement to look like the line above. The unmodified
LVS_LAY.NET file assumes that you want to compare the entire TOP181
circuit (which contains ONEBIT as a subcircuit). The *.LAYOUT statement
above includes the binary layout netlist for the ONEBIT circuit we created from
ONEBIT.CEL instead of a binary netlist created from the TOP181 cell.

The layout netlist is now ready for comparison. The LVS_LAY.NET file is the
file we will refer to in the LVS command line.

If you are not
already familiar
with a DOS
ASCII file
editor, use the
editor that
comes with your
DOS
installation,
EDIT.

Getting Started: Quick Tutorial

NLE and LVS User Manual 25

Preparing the Schematic Netlist

We will use a schematic
netlist based on a CDL file
as the other netlist in our
example. This file was
created from the circuit
schematics included at the
end of this manual. A CDL
file created from these
schematics for the ONEBIT
circuit will look like Figure
5.

The schematic netlist
provided with the
installation, TOP181.CIR,
represents the entire higher
level circuit, TOP181. We
will not have to edit this file
at all to compare only the
ONEBIT subcircuit. We
will override the top-level
subcircuit the LVS will use
in the control file later.

Note that the device models
used in the schematic netlist
in Figure 5 are MN and
MP. We need to add device
model statements for these
models to the schematic
netlist just as we added
device models to the layout

* CDL FILE FOR SIMULATION OF ONEBIT
.SUBCKT ONEBIT A B OT1 OT2 S0 S1 S2 S3 VDD VSS
XIN1 VDD VSS B 10062 INV1
XNA2 VDD VSS B S3 A 10055 NAND3
XNA3 VDD VSS A S2 10062 10060 NAND3
XNA4 VDD VSS 10055 10060 10058 NAND2
XIN5 VDD VSS 10058 OT1 INV3
XNA6 VDD VSS 10062 S1 10063 NAND2
XNA7 VDD VSS S0 B 10065 NAND2
XNA8 VDD VSS 10063 10065 A 10066 NAND3
XIN9 VDD VSS 10066 OT2 INV3
.ENDS
.SUBCKT INV1 VDD VSS IN OUT
MN1 OUT IN VSS VSS MN W=2U L=1.0U
MP1 OUT IN VDD VDD MP W=4U L=1.0U
.ENDS
.SUBCKT INV3 VDD VSS IN OUT
MN1 OUT IN VSS VSS MN W=6U L=1.0U
MP1 OUT IN VDD VDD MP W=12U L=1.0U
.ENDS
.SUBCKT NAND2 VDD VSS IN1 IN2 OUT
MP2 OUT IN2 VDD VDD MP W=4U L=1.0U
MP1 OUT IN1 VDD VDD MP W=4U L=1.0U
MN1 OUT IN1 10091 VSS MN W=2U L=1.0U
MN2 10091 IN2 VSS VSS MN W=2U L=1.0U
.ENDS
.SUBCKT NAND3 VDD VSS IN1 IN2 IN3 OUT
MP3 OUT IN3 VDD VDD MP W=4U L=1.0U
MP2 OUT IN2 VDD VDD MP W=4U L=1.0U
MP1 OUT IN1 VDD VDD MP W=4U L=1.0U
MN1 OUT IN1 10086 VSS MN W=3U L=1.0U
MN2 10086 IN2 10087 VSS MN W=3U L=1.0U
MN3 10087 IN3 VSS VSS MN W=3U L=1.0U
.ENDS
.END

Figure 5: CDL schematic netlist for the
ONEBIT circuit.

The schematics
for this example
are provided on
page 434.

*
*.schmodel mn nmos
*.schmodel mp pmos

Figure 6: Schematic
netlist model file,
SCHMODEL.NET.

Getting Started: Quick Tutorial

26 NLE and LVS User Manual

netlist. Schematic netlist models are defined with the *.SCHMODEL statement.
The sample file provided with the installation uses simple statements that only
match the model names to the physical device type. See Figure 6.

The model file is combined with the CDL
schematic netlist in the file
LVS_SCH.NET. See Figure 7. The
device model file is added to the
schematic netlist with the statement:

.include schmodel.net

The CDL file is added to the schematic netlist with the
statement:

*.schematic top181.cir

Note that the schematic netlist is arranged in a manner very similar to the layout
netlist. The format of each file has been defined to make the two netlists as
similar as possible.

The schematic netlist is ready for comparison. The LVS_SCH.NET file is the
file we will refer to in the LVS command line.

*
.include schmodel.net
*.schematic top181.cir
.end

Figure 7: Schematic
netlist file,
LVS_SCH.NET.

Schematic
Netlist

*.SCHMODEL
Device Models

Getting Started: Quick Tutorial

NLE and LVS User Manual 27

Preparing the Control File

The control file we will use for this example requires a few changes to the
sample LVS control file supplied with the program, CONTROL.LVS. This
sample file contains all available options. You will always use copies of this
file, then modify the default values of options only where required. Never delete
lines from this file.

Edit the following line in the "COMPARISON TYPE & FILE FORMAT"
section:

TOP_LEVEL_SUBCKT_IN_SCHEMATIC_FILE = top181

The top level subcircuit needs to be "onebit" instead of "top181". This name
corresponds to the name of the subcircuit we want to compare. Only this
subcircuit of the larger TOP181.CIR file will be parsed by LVS.

The new line in your control file should look like this:

TOP_LEVEL_SUBCKT_IN_SCHEMATIC_FILE = onebit

We must also account for the fact that the sizes of the devices in the CDL file are
given in meters instead of microns. Note that each of the device sizes in Figure 5
is followed by a "U". For example, the last device in the file, device MN3 in
subcircuit NAND3, is represented with the following line:

MN3 10087 IN3 VSS VSS MN W=3U L=1.0U

As LVS parses this line, it will store the width of the device as 3.0e-6 and the
length as 1.0e-6. Since the device dimensions in our layout are expressed in
microns, this will cause parameter mismatches for every device. The devices
would still be matched, but a parameter mismatch error message would be listed
for each device.

Control File

Getting Started: Quick Tutorial

28 NLE and LVS User Manual

To correct the schematic netlist device sizes so that they are expressed in
microns, we can use a control file option. Under "MOSFETS" in the
"INDIVIDUAL DEVICE OPTIONS" section is the option:

SCALE_MOSFET_LENGTH_AND_WIDTH = 1

You should change the scale value so the line reads:

SCALE_MOSFET_LENGTH_AND_WIDTH = 1e6

This will multiply each length or width parameter by 106, or 1,000,000. This
will convert all sizes in the schematic netlist to microns.

We will leave the remainder of the control file intact. Do not delete any lines,
even those referring to device types not used in this example.

Getting Started: Quick Tutorial

NLE and LVS User Manual 29

Running the Program

Now that we have our three input files prepared, we can execute LVS to perform
the comparison. The command line is:

LVS CONTROL.LVS LVS_SCH.NET LVS_LAY.NET

The first parameter is the name of the control file. The second parameter,
LVS_SCH.NET, is the name of the schematic netlist file. The third parameter is
the name of the layout netlist file. The order of these two netlist file names is
important. You can not reverse the order of the schematic and layout netlist
files in a LVS comparison.

The LVS command should execute very quickly. The information it prints to
your screen may scroll so quickly that you do not see it all. However, all screen
output is echoed in the file "LVS.LOG" in the current directory. The contents of
this file should be similar to Figure 8.

Binary
Layout Netlist

.EXT

*.LAYMODEL
Device ModelsControl File Schematic

Netlist

LVS

*.LAYMODEL
Device Models

Getting Started: Quick Tutorial

30 NLE and LVS User Manual

% lvs control.lvs lvs_sch.net lvs_lay.net

! ICED: LVS beta version 601.40
! (C)Copyright 1995-1996 IC Editors, Inc., ALL RIGHTS RESERVED
!
! Use and sale of this software is restricted by United States and
! Canadian government export regulations. If you are in another
! country, your organization agreed to abide by these regulations
! prior to licensing this software.
!

Parsing first netlist....
Parsing second netlist....
Running flat on first netlist....
Preprocessing first netlist....
Running flat on second netlist....
 LABEL <<VDD:>> in the layout is recognised. Attached to net 2.
 LABEL <<VSS:>> in the layout is recognised. Attached to net 1.
Checking virtual connections....
Preprocessing second netlist....
Pass #1 : Devices matched: 0 of 72 Nets matched: 6 of 52
Pass #2 : Devices matched: 34 of 72 Nets matched: 44 of 52
Pass #3 : Devices matched: 72 of 72 Nets matched: 52 of 52
Pass #4 : Devices matched: 72 of 72 Nets matched: 52 of 52
Checking for suspicious matches
Pass #4 : Devices matched: 72 of 72 Nets matched: 52 of 52
Done

Printing results to output files
Generated <<onebit.p8k>> file.
Check <<results\results.lvs>> for summary of netlist comparison.

Figure 8: LVS console output, LVS.LOG

A log like this indicates that the comparison found no mismatches in the device
connections of the two netlists. Note that the last line tells you where to look for
the reports generated by the LVS program. Exactly which reports are generated
is determined by the options in the control file.

Getting Started: Quick Tutorial

NLE and LVS User Manual 31

Looking at the Results

The log file above directed us to the "results" directory to find the report files
generated by the LVS. There should be at least twelve files in this directory, but
the number and content may vary slightly with your version of the LVS. Most of
the reports list the names of the input files, the date of the run, and LVS version
information at the top of the report.

Here is a list of the report files created in our example:

RESULTS.LVS This report is a summary of the comparison results. The
number of devices and nets before and after pre-
processing is listed, along with the number matched.
The number of devices with parameter mismatches is
also listed here. Also included is a summary of totals of
devices and nets in various categories, such as how
many devices were filtered by preprocessing and how
many nets are unconnected.

This is followed by a summary of devices of each device
type. Then, the report lists the control file options used.
This includes a list of the names of all other reports.

UNMATCH.LVS All devices and nets that were not matched in the two
netlists will be listed here. Since all devices matched in
our example, this report lists no devices or nets.

MATCH.LVS Every matched device is listed here. The device name in
each netlist is provided along with the device
coordinates in the layout, the model name, and
parameter values. If you did not change the SCALE-
_MOSFET_LENGTH_AND_WIDTH option in the
control file, as discussed on page 28, the device size
mismatches would be indicated with the string "**
PARAMETER ERROR **" above each device with a
device size mismatch. (This information would also be
listed in the PARAM.LVS report listed below.)

Refer to LVS
Output Files to
see which
control file
options control
report file
names.

Getting Started: Quick Tutorial

32 NLE and LVS User Manual

After the list of matched devices is a list of matched
nets. The netname in each netlist is provided. The two
nets labeled in the layout are listed at the bottom.

PARAM.LVS All parameter mismatches, such as device size
mismatches, are listed here. Since our example has no
device size mismatches, this report lists no devices. If
you execute the example again after changing the size of
a single device in the schematic netlist, you will see the
device listed in this report.

EQUIV.LVS This file lists all labeled nets in the layout. Matched
nets will include the name of the corresponding net in
the schematic netlist. You can look in this file to see
that net "VDD" in the schematic netlist was matched to
the net labeled "VDD:" in the layout netlist.

FILTER.LVS If devices had been filtered out of either netlist due to
options in the control file, they would be listed here. No
devices were filtered, so this report lists no devices.

COLLAPSE.LVS This report lists details on circuits that have been
collapsed by the LVS into pseudo devices. This
example did not allow the generation of pseudo devices,
so the file contains no useful information for this run.

NETDEG.LVS This report lists nets and their degrees. The degree of a
net is defined as the number of devices to which it
connects. A summary is provided of how many nets of
each degree are in each netlist. No details on specific
nets are listed since we used the control file option
PRINT_ALL_NETS_WHOSE_DEGREE_GREATER-
_THAN = 40, and none of the nets in our example has a
degree this large.

Getting Started: Quick Tutorial

NLE and LVS User Manual 33

If you want to see details on some specific nets, set the
control file option PRINT_ALL_NETS_WHOSE_DEG-
REE_GREATER_THAN to 10 and run the example
again. VDD and VSS will now be listed since they are
the only two nets with a degree greater than 10.

NETONE.LVS This report lists floating nets. A floating net connects to
a single device or to no devices. Since no nets in our
example meet these criteria, no nets are listed.

SMETRIC.LVS This report lists devices and nets that were forced to
match to allow the netlists to be compared. This report
should list no forced matches since the circuit is not
very symmetric.

SPICE.LVS This file is a flat (i.e. no subcircuits) spice netlist created
from the layout. If this type of output is not desired, it
can be turned off with the GENERATE_SPICE-
_NETLIST_FROM_THE_EXTRACTOR_OUTPUT =
NO option in the control file.

LABELS.LVS This file lists the node numbers of all labeled nets in the
layout netlist. You can edit this file to add or modify
node labels in the layout netlist for the next time you run
the LVS. Thus, you will not have to execute the NLE
circuit extractor again to add labels to the layout netlist.

Now we can use the outliner commands in the ICED32™ layout editor to find
devices and nets listed in the reports. These commands are the easiest way to
locate errors in your layout.

Symmetric
circuits and
forced matches
are defined on
page 365.

Getting Started: Quick Tutorial

34 NLE and LVS User Manual

The MATCH.LVS file should contain a report for the first device matched which
looks like Figure 9. To find this specific device in the layout, open the cell with
the ICED32™ layout editor using the following DOS command:

IC32 ONEBIT

In the editor, type the following commands:

@NODES
N0 284

where you have replaced 284 with the actual number in your report under the
LAYOUT column. (The command is "N0" with a zero not the letter 'O'.) The
device should light up on your screen and blink for a few seconds. If you do not
see a white rectangle blinking, it may be outside of the current view window.
Try the following commands:

VIEW ALL
BLINK

SCHEMATIC | LAYOUT
|
|

:1 | # :1
XIN1.MN1 | 284
X :0 Y :0 | X :64 Y :32
MODEL :MN TYPE :NMOS | MODEL :NMOS TYPE :NMOS
LENGTH :1 WIDTH :2 | LENGTH :1 WIDTH :2

|

Figure 9: Fragment of matched devices report.

See Using the
Node Outliner
Commands for
more details on
how to use
these
commands.

If you get the
message
"Insufficient
memory" when
you try to
execute the N0
command, you
will have to
reserve memory
for it. See page
389 for
instructions.

Getting Started: Quick Tutorial

NLE and LVS User Manual 35

The matched devices report will list the
matched nets at the end of the file. This
section of the report should contain lines
that look similar to Figure 10. To locate
this net in the layout, type the following
commands:

ND
N0 VDD:

The N0 command creates shapes on layer 250 of the current cell. You usually
want to delete the shapes on this layer before using N0 again. The ND command
above deletes the outline shapes created by the previous use of N0. The second
N0 command then outlines all shapes on the net "VDD:". If you did not execute
the ND command, both node 284 and node VDD: would be outlined.

This concludes the tutorial. You can continue to experiment with this example
by editing the netlists or control file as you learn more about the LVS.

If you fail to see
any nodes
blinking, it may
be that you have
launched
ICED32™ with
the COLORS=8
command line
parameter.
These
commands
require
COLORS=16.

SCHEMATIC |LAYOUT

:3 | # :3
VDD | 2

| LABEL :VDD:

Figure 10: Fragment of matched
devices report listing a matched
net.

Getting Started: Quick Tutorial

36 NLE and LVS User Manual

NLE Basics

NLE and LVS User Manual 37

NLE Basics

NLE Basics

38 NLE and LVS User Manual

The NLE is a Net List Extractor utility that performs circuit recognition on the
layout data in an ICED32™ cell. This utility runs in DOS outside of the ICED32™
layout editor. The netlist the NLE generates is in a binary form. This layout
netlist can be compared to a schematic netlist with the LVS utility.

In addition to generating the layout netlist, the NLE can optionally perform
electrical connection check (ECC) tests to find problems like shorts and opens
before you run the LVS utility.

This chapter, which describes the basics of how the NLE works, contains mainly
information that is also covered in the DRC (Design Rules Checker) manual. The
NLE uses many functions identical to those used by the DRC to process the
layout data. The layer generation rules are almost identical in both programs, as
are the algorithms that divide the layout into panels for processing.

The rules unique to NLE circuit recognition are covered beginning on page 93.
See the table on the next page to see which rules are supported by the NLE and
which are supported by the DRC.

The DRC program uses the layer generation algorithms in combination with size,
spacing, and shape rules to verify that your design meets technology specific
design criteria like spacing groundrules. The NLE program uses the same layer
generation algorithms in conjunction with electrical connection and device
recognition rules to perform circuit recognition.

NLE Basics

NLE and LVS User Manual 39

Rule Use Supported
by DRC4

Supported
by NLE

Page #

ALL_DANGER Control hierarchical processing Yes* No

ALL_SAFE Control hierarchical processing Yes* No

AND Boolean AND of two layers Yes Yes 63

ASPECT_RATIO Classify shapes by relative dimensions Yes* Yes 78

Assignment Rule Copy layer or inverse of layer Yes Yes 62

ATTACH TEXT Move text labels to another layer No Yes 141

BLOAT Expand shapes Yes Yes 67

BLOAT_ANGLE Define angle for BLOAT rule Yes Yes 69

BORDER Explicitly define panel overlap Yes Yes 89

BOUNDS Classify shapes by size Yes* Yes 77

BRIDGE Recognize air bridges Yes* Yes 80

CAPACITOR Recognize capacitor devices No Yes 130

COMMENT Define polygon id label prefix No Yes 143

CONNECT Electrically connect layers Yes* Yes 96

CONST Define constant value Yes Yes 46

DANGER_CELL Control hierarchical processing Yes No

DEVICE Recognize devices No Yes 113

DISJOINT Allow virtual connections in ECC No Yes 155

ERROR_LAYER Set layer number for ECC error shapes No Yes 154

IN_CELL Classify shapes in certain cells Yes* Yes 66

INCLUDE Allow rules file nesting Yes Yes 47

INPUT LAYER Define input layer Yes Yes 53

IS_BOX Classify shapes by size Yes* Yes 75

ISLANDS Find holes Yes* Yes 74

LABEL Indicate that layer contains ECC labels No Yes 142

MAXIMUM ANGLE Find sharp points in notches Yes No

4 * indicates that rule is not supported in DRC version 2.xx, but is supported in version 3.xx.

NLE Basics

40 NLE and LVS User Manual

Rule Use Supported
by DRC

Supported
by NLE

Page #

MINIMUM ANGLE Find sharp points Yes No

MINIMUM AREA Find small shapes Yes No

MINIMUM NOTCH Find small notches Yes No

MINIMUM SIDE Find shapes with at least one small side Yes No

MINIMUM SPACE Find shapes too close together Yes No

MINIMUM WIDTH Find shapes with small width Yes No

NO_ECC Turn off ECC checking No Yes 153

NO_SAVE Restrict layers in node outliner file No Yes 144

OFF_GRID Find vertices not on resolution grid Yes* No

OR Boolean OR of two layers Yes Yes 64

OUTPUT LAYER Define layer for output Yes Yes 57

OVERLAPPING Find shapes with common area Yes Yes 73

PADSIZE Define size for UNCONNECTED rule No Yes 156

PANELX Define maximum panel size in X direction Yes Yes 88

PANELY Define maximum panel size in Y direction Yes Yes 88

PATH_LAYER Set layer number for path trace of shorts No Yes 154

SAFE_CELL Control hierarchical processing Yes No

SAVE Restrict layers in node outliner file No Yes 144

SCRATCH LAYER Define temporary layer Yes Yes 59

SHRINK Shrink shapes uniformly Yes Yes 68

SNAP Relocate vertices on resolution grid Yes No

STAMP Electrically connect poor conductors No Yes 102

TOUCHING Find touching shapes on different layers Yes* Yes 71

TRANSISTOR Recognize transistor devices No Yes 125

UNCONNECTED Verify that shapes are not electrically
connected to any other node

No Yes 155

XOR Boolean exclusive OR Yes Yes 65

Figure 11: Table of NLE rules vs. DRC rules

NLE Basics

NLE and LVS User Manual 41

We suggest that you avoid performing design rules checks for device layout in
your NLE rule set. Design rules can be more completely checked using the
additional rules in the DRC, and you will save time every NLE run if you keep
your NLE rule set simple.

The rules for the NLE can be written with any ASCII text editor. The rules file
is then compiled with the NLE rules compiler. The compiled rules file is used
by the NLE circuit extractor along with the binary layout data file created by the
DRC command in the ICED32™ layout editor.

NLE Basics

42 NLE and LVS User Manual

NLE Basics: Rules Syntax

NLE and LVS User Manual 43

NLE Rules Syntax

The syntax restrictions for NLE rule statements vary greatly from rule to rule.
You must read the rule statement descriptions to determine the syntax of each
rule. However, there are some general syntax restrictions which all rules have in
common. We will cover these syntax issues here so we don't have to repeat them
too often.

Each rule has a keyword that is considered the name of the rule. The underscore
character '_', present in many of the keywords, is optional and can be left out of
the keywords. The underscore is included for readability only and is stripped
during preprocessing.

Example: NO_ECC
NOECC

Both of these ways of typing the NO_ECC rule are equally valid.

NLE rules are case-insensitive. This means that you can type the rule set in
upper case, lower case, or any combination of the two. All text is transformed
into upper case as it read by the rules compiler.

Each rule should be typed on one line. There are several exceptions to this
restriction which are indicated in the rule descriptions. The rules that may be
typed over several lines use curly brackets '{}' (a few rules use parentheses '()')
to enclose the text on the extra lines.

You can add comments on lines of their own, or at the end of any line. The
comment indicator is the exclamation mark '!'. Any text encountered after the
exclamation mark, up to the end of the line, is ignored by the rules compiler.

The syntax of individual NLE rules is described in this manual using the notation
described in the ICED32™ Reference Manual with one exception. Since
parentheses are used so frequently in NLE rules, we will not use them to indicate
a choice between keywords. Instead, where a choice between keywords or
parameters is allowed, we will indicate this with smaller text listing the choices
near the rule syntax heading.

The only
exception to this
use of case in
the rules file is
when you type a
node name in a
rule and the
USE_CASE
rule is present.

NLE Basics: Rules Syntax

44 NLE and LVS User Manual

The syntax headings use the following notation:

KEYWORD Bold type in the syntax section will be used to indicate the rule
name keyword.

parameter value Lower case italic type will be used to indicate where a value
should be entered in a rule statement. The value could be a
number or a string. The valid values for the parameter will be
indicated in the description.

CONST const_name = const_value

The above line is used to indicate the syntax for the CONST
rule on page 46. This rule is used to assign a value to a named
constant that can be used in other rules instead of typing in the
parameter value. When you type a CONST rule, substitute a
string for const_name and a number for const_value.

CONST MY_VAL = 2.45

[KEYWORD] Square brackets indicate that the keyword or parameter is
optional. Do not type the brackets in the rule.

result_layer = [NOT] layer1 AND [NOT] layer2

This is the syntax description for the AND rule. The NOT
keywords are optional. The parameters result_layer, layer1
and layer2 should all be replaced with layer names when the
rule is typed. If the second optional NOT keyword is used, as
in the following rule:

SRC_DRN = DIFF AND NOT POLY

the inverse of layer POLY will be used in the Boolean AND
operation rather than layer POLY itself.

NLE Basics: Rules Syntax

NLE and LVS User Manual 45

... Three dots at the end of a line of sample code, or in the syntax
section, indicate that the line is continued on the next line.
Three dots will also precede the continuation on the next line.
When you type the rule, type it all on one line without the
dots.

Three dots in the middle of a line in a syntax description mean
that several additional parameters are allowed but are not
explicitly specified in the syntax description.

PINS = pin_layer_1 [, pin_layer_2 [..., pin_layer_n]]

This is part of the syntax description for the DEVICE rule.
You may have up to 25 pin layers specified after the PINS
keyword, but it would be rather verbose to list all 25
parameters. The dots take the place of the missing parameters.

Two miscellaneous NLE rules are best described here in the syntax section. The
CONST rule mentioned above is used to create named constants which you can
use in other rules as parameter values. The INCLUDE rule allows you to refer to
a file of NLE rules which will be inserted into the rules file containing the
INCLUDE rule.

NLE Basics: Rules Syntax

46 NLE and LVS User Manual

CONST const_name = const_value

or

CONST {
const1_name = const1_value

...
constn_name = constn_value

}

You can use a CONST rule to define a certain number as a constant that you can
refer to by name in other rules rather than typing the number itself. The
const_value must be a real number. You may not use exponential notation (e.g.
1.478E-9) when typing const_value. You may not use layer names or other
strings for const_value.

Example: CONST M1_EXPANSION_VALUE = .246
M1 = BLOAT (M1_IN, M1_ EXPANSION_VALUE)

The CONST rule above defines the string "M1_EXPANSION_VALUE" as a
constant with the value .246. When this constant is used in the BLOAT rule, the
rules compiler will substitute ".246" for the string
"M1_EXPANSION_VALUE".

You can have many CONST rules in your rule set. This allows you to define
technology dependent parameters together in one place where they are easy to
find and edit. When the CONST rule is not used, it will be difficult to update an
old rule set with new values since they will be scattered through the rule set.

If you have multiple constants to define, you can use the multiple line syntax to
define all of them with a single CONST rule. Place each constant definition on
it's own line. Surround the lines with curly brackets.

NLE Basics: Rules Syntax

NLE and LVS User Manual 47

Example: CONST {
M1_EXPAND = .246
M2_EXPAND = .246
MIN_DEV_W = 1.9
MIN_DEV_L = 4.5

}

INCLUDE [dir_path\]file_name

This rule allows you to nest rules files. An INCLUDE rule in one rules file will
result in another rules file being inserted at that point. The file_name parameter
is used to specify the name of the file. The file extension (if any) must be
included in file_name. You may optionally supply a directory path with the file
name.

Example: INCLUDE MOSCONST.RUL

This rule will cause the text in the file MOSCONST.RUL to be added to the
current rules file at the point where the INCLUDE rule is found. Since no
dir_path parameter is used, the file MOSCONST.RUL must exist in the current
directory.

You cannot use the INCLUDE rule in the middle of another rule. You may nest
rules files up to 10 deep with the INCLUDE rule.

NLE Basics: Rules Syntax

48 NLE and LVS User Manual

NLE Basics: Layer Processing

NLE and LVS User Manual 49

Layer Processing

All layers in an NLE rule set must be defined before they are used in a rule. The
layer definition rules (INPUT LAYER, OUTPUT LAYER, and SCRATCH
LAYER) are used to define layers.

Input layers (defined with the INPUT LAYER rule) correspond to layers in the
input ICED32™ cell. Only layers in an INPUT LAYER rule will be read in from
the ICED32™ cell. Other layers in the cell are ignored.

Shapes can be created by the NLE on output layers (defined with the OUTPUT
LAYER rule). Shapes on output layers will be created in a file you can later
read into an ICED32™ cell. This can be useful for diagnosing problems with your
rule set as well as finding errors in your layout.

The layer names used in the ICED32™ cell are ignored by the NLE. Both the
INPUT LAYER and OUTPUT LAYER rules use only the layer number in the
ICED32™ cell to identify the layer. This layer number is associated with an NLE
layer name in the INPUT LAYER and OUTPUT LAYER rules. The NLE layer
name is used throughout the rest of the NLE rules to represent the layer.

One of the first preprocessing steps the NLE performs on your layout data is to
convert all shapes to polygons. All touching polygons on the same layer are then
merged into single polygons. This is done before any rules are processed.

Only shapes in
the current
panel are
merged. To
learn more
about panels,
see page 83.

Figure 12: Layer before NLE
preprocessing.

Figure 13: Layer after NLE
preprocessing.

NLE Basics: Layer Processing

50 NLE and LVS User Manual

The two boxes on the left in Figure 12 are converted into the polygon on the left
in Figure 13. The wire on the right in Figure 12 is converted to a polygon and
merged with the triangle to create the polygon you see on the right in Figure 13.

The topology of the original shapes is not used by the NLE. The topology and
dimensions of the merged shapes will be used by the program.

Some shapes cannot be represented in the ICED32™ editor as simple polygons.
For example, the ICED32™ editor will not allow shapes with holes or shapes with
more than 199 vertices. However, the NLE does not have these limitations.
When the NLE creates polygons like these, they are processed internally without
modification. It is only at output that these shapes are modified to be valid
ICED32™ polygons.

Shapes that cross panel boundaries are broken at the boundaries during the NLE
run. If a shape crosses the vertical or horizontal panel boundary at a skewed
angle, there may be a tiny displacement of the vertex coordinates where the
shape is cut by the boundary to keep the vertices on grid. Shapes that have been
cut at the panel boundaries are not merged before output.

The NLE rules compiler will optimize layer processing rules to minimize the
number of NLE passes required. The compiler will also remove rules that are
redundant or unused. Let us say that you write several rules to generate a layer
that you use in a specific rule. You then remove the rule that uses that layer.
You do not need to search backward to remove the rules which created the layer.
The compiler will do this automatically to optimize your rule set.

Panel
boundaries are
explained in
detail in Panel
Processing on
page 83.

NLE Basics: Layer Definition Rules

NLE and LVS User Manual 51

Layer Definition Rules

As mentioned above, a layer referred to in an NLE rule must be defined before it
is used. Layer definitions are usually grouped together at the top of the file, but
this is not required.

NLE layer names may be up to 30 characters long. The first character must be a
letter. The remaining characters can be letters, digits, or any of the following
special characters: '_', '~', '$', '.', or '#'.

Layers are referred to by name in the NLE rules. ICED32™ layers are referred to
by number. All layers in an ICED32™ cell which will be processed by the NLE
must be defined with INPUT LAYER rules which associate the ICED32™ layer
number with the NLE layer name.

Layers which will be created by the NLE to be viewed or used in the ICED32™
layout editor must be defined in OUTPUT LAYER rules which associate the
NLE layer names with ICED32™ layer numbers. At the end of the NLE run, all
shapes on output layers will be written to a command file that can be read into an
ICED32™ cell.

If an OUTPUT layer has shapes stored on it by one of the rules which stores
shapes on an error layer, the number of shapes on the layer will be reported in
the "Error Layer Outputs" section of the NLE log.

Any shapes that are created to highlight ECC (Electrical Connection Checks)
errors will be created on special output error layers. You do not need to
explicitly mention these layers in an OUTPUT LAYER rule. The ECC creates
shapes on ICED32™ layers 98 and 99 by default. You can change these error
layer numbers with the ERROR_LAYER and PATH_LAYER rules. Shapes on
these layers will also be reported as errors in the NLE log.

To determine
the ICED32™
layer number
from the
ICED32™ layer
name, use the
LAYER or
TEMPLATE
commands in
the editor.

The layer names
in the ICED32™
cell are
completely
ignored by the
NLE.

NLE Basics: Layer Definition Rules

52 NLE and LVS User Manual

Any layers you use to create or modify shapes, which are not output layers, must
be defined in a SCRATCH LAYER rule. These layers are defined only by name
since they are never output to an ICED32™ cell as numbered layers.

Layers defined in an INPUT LAYER rule cannot be modified. If you want to
modify the shapes on an input layer, you must first copy the input layer to a layer
defined in an OUTPUT LAYER or SCRATCH LAYER rule.

Use the
assignment rule
to copy a layer.
See page 62 for
details.

NLE Basics: Layer Definition Rules

NLE and LVS User Manual 53

INPUT LAYER iced_layer_number_1 ...
... [+ iced_layer_number_2 [... + iced_layer_number_5]] ...
... [[NOT] INCELL cell_name] ...
... nle_layer_name ...
... [NOT nle_not_incell_layer_name] ...
... [TEXT iced_text_layer_number] ...
... [ID iced_id_layer_number]

All layers in an ICED32™ cell that will be used in your NLE rule set must be
defined in an INPUT LAYER rule. The only required parameters for the INPUT
LAYER rule are iced_layer_number_1 and nle_layer_name. The
iced_layer_number parameters correspond to the layer numbers in the ICED32™
cell. (The layer names used in the ICED32™ cell are ignored by the NLE.) A
specific iced_layer_number can be referred to only once in your set of INPUT
LAYER rules.

The shapes on NLE layers created with the INPUT LAYER rule cannot be
modified by other rules. If you need to modify an input layer, see page 62 for an
example of how to get around this problem.

The nle_layer_name is the name of the layer you will use in succeeding rules.
The name does not need to be identical to the layer name in the ICED32™ cell. A
specific nle_layer_name can appear only once in your set of INPUT LAYER
rules.

Example: INPUT LAYER 2 M1

When this rule is used, all components on layer 2 in the ICED32™ cell, and its
subcells, will be copied to layer M1 in the NLE database. The layer name M1 is
what you use in other NLE rules to refer to this layer.

If you need to
copy an input
layer to more
than one NLE
layer, you can
use the
assignment rule
to copy the NLE
layer.

NLE Basics: Layer Definition Rules

54 NLE and LVS User Manual

If you want to combine shapes on several ICED32™ layers into one NLE layer,
specify several iced_layer_number parameters separated with plus signs ('+').
You can combine up to five ICED32™ layers into one NLE layer.

Example: INPUT LAYER 2 + 12 + 22 M1

This rule will combine the ICED32™ layers 2, 12, and 22 into the NLE layer M1.

The INCELL options, [[NOT] INCELL cell_name] and [NOT
nle_not_incell_layer_name], are used to classify components on an input layer
by whether or not they are in specific subcells.

Example: INPUT LAYER 2 INCELL INDUCTOR_CELL INDUCTOR_M1

This rule will copy all components on layer 2 contained in instances of cell
INDUCTOR_CELL (but not its subcells) to NLE layer INDUCTOR_M1.

The NOT keywords are used to indicate that the layer contains only shapes on
layer iced_layer_number which are not contained in the specified cells. Only
one NOT keyword is allowed.

You would use the first optional NOT keyword to restrict nle_layer_name to
shapes that are not contained in the cells indicated after the INCELL keyword.
You would use the second optional NOT keyword when you need one NLE layer
for shapes in the cells, and another NLE layer for those shapes which are not in
the cells. When the second optional NOT keyword is used, nle_layer_name is
restricted to shapes which are contained in the cells indicated after the INCELL
keyword, and layer nle_not_incell_layer_name will contain shapes which are
not in the indicated cells.

Example: INPUT LAYER 2 INCELL INDUCTOR_CELL IND_M1
INPUT LAYER 2 NOT INCELL INDUCTOR_CELL M1 !Error

These 2 statements together would cause a compiler error since each
iced_layer_number can occur in only one INPUT LAYER rule. You can
achieve the desired result with the following single statement:

Example: INPUT LAYER 2 INCELL INDUCTOR_CELL IND_M1 NOT M1

The IN_CELL
rule, which also
classifies shapes
by cell, will
include shapes
in subcells of
the specified
cells.

NLE Basics: Layer Definition Rules

NLE and LVS User Manual 55

Layer 0 in an ICED32™ cell is used to store subcell bounding boxes. Ordinary
shapes are never stored on that layer. In an INPUT LAYER statement, layer 0
can be used to store a rectangle that covers a subcell. This may be useful in
some types of layer processing.

Example: INPUT LAYER 0 INCELL INDUCTOR_CELL IND_MASK
INPUT LAYER 2 M1_IN
M1 = M1_IN AND NOT IND_MASK
IND_M1 = M1_IN AND IND_MASK

When this set of statements is used to classify layer M1 instead of the example
above, there is an important side effect you must be careful with. In this
example, the processing on M1 is performed after the cell is flattened
hierarchically. Shapes on M1 in subcells of INDUCTOR_CELL (or in the main
cell, or any other cell) which happen to be located within the bounding box of
INDUCTOR_CELL will also be classified as IND_M1. This can be desirable or
not, depending on how your design is organized.

Whenever you remove material from a conductive layer, you must be careful not
to prevent real shorts from being found. See page 100 for important examples of
how real design errors can be hidden by using INCELL or layer 0 processing.

The cell_name in the INCELL parameter can contain wildcard characters ('*').
A vertical bar, '|' can be used as well to indicate a list of valid cell names. More
than one '|' delimiter can be used. Do not use any blanks when entering the
cell_name parameter.

Example: INPUT LAYER 2 INCELL IND*|*NH IND_M1

This input layer specification will copy to layer IND_M1 all components on
layer 2 contained in cells which begin with the string "IND", or which end in the
string "NH".

NLE Basics: Layer Definition Rules

56 NLE and LVS User Manual

The optional [TEXT iced_text_layer_number] parameter is used to identify a
layer (other than iced_layer_number) which will be used to label components on
iced_layer_number. The layer iced_text_layer_number should contain text
components that will be interpreted as node labels for components on
iced_layer_number.

When the TEXT keyword is not used, text components on the design layer
iced_layer_number will be interpreted as node labels for that layer. If the
TEXT keyword is used, text components on layer iced_layer_number will be
ignored.

Example: INPUT LAYER 2 M1 TEXT 102

This statement will cause text components on layer 102 of an ICED32™ cell to be
moved to NLE layer M1. These text components will then be used to label
nodes on layer M1. All text components on layer 2 will be ignored.

The optional [ID iced_id_layer_number] parameter is also used to move text
components to an NLE layer. However text components on
iced_id_layer_number will be interpreted by the NLE as polygon id labels rather
than node labels. A polygon id label is used to identify only single polygons
rather than entire electrically connected nodes. These identifiers are used only in
ECC error messages. They are not used in the netlist generation.

When you need to define many input layers, you can list several input layers in
one INPUT LAYER rule. Separate the layers with semicolons (';').

Example: INPUT LAYER 1 A; 2 B TEXT 102 ID 202; 3 C

When an input layer definition is split over more than one line, you must
surround the layer definition with curly braces {}. If you type one layer
definition on each line, semicolons are not required.

Example: INPUT LAYER {
1 A
2 B TEXT 102 ID 202
3 C
}

The ATTACH
TEXT rule can
also be used to
move text
components to a
design layer.
See page 141.

See page 138
for important
information on
how to use node
labels and
polygon id
labels.

NLE Basics: Layer Definition Rules

NLE and LVS User Manual 57

OUTPUT [ERROR] [OUTLINE] LAYER iced_layer_number nle_layer_name

Output layers will be included in the command file the NLE generates. This file
can be used to create shapes in an ICED32™ cell. Use OUTPUT LAYER rules to
define layers you wish to inspect using the ICED32™ layout editor. Use
SCRATCH LAYER rules to define all other layers the NLE will create or
modify.

The only required parameters for the OUTPUT LAYER rule are the
iced_layer_number and the nle_layer_name. The iced_layer_number will be the
number of the layer created in the ICED32™ cell when you execute the command
file created by the NLE.

The nle_layer_name is the name of the layer used in the other NLE rules. The
name will not be used in the ICED32™ cell. Only the layer number is preserved
as you import the shapes into ICED32™.

The data is created after all rules are executed at the conclusion of the NLE run,
regardless of where the rule appears in the rules file.

Example: OUTPUT LAYER 101 GATE

This example will cause the NLE to copy all shapes on layer GATE in the NLE
database to a command file which can create the shapes in an ICED32™ layout
editor session. The layer number in the ICED32™ cell will be 101. (The layer in
the ICED32™ cell will not automatically have the name GATE. Whatever name
was assigned to this layer number, if any, will remain the name of the layer.)

You can use the same iced_layer_number for both an input layer and an output
layer, but you will receive a warning from the compiler.

You can output more than one nle_layer_name to one iced_layer_number. In
this case, shapes from several NLE layers will all be created on one ICED32™
layer.

To see how to
read these layers
into the
ICED32™
layout editor,
see page 189.

To assign a
name to a layer
in the
ICED32™
layout editor,
use the LAYER
command.

NLE Basics: Layer Definition Rules

58 NLE and LVS User Manual

Example: OUTPUT LAYER 10 POLY
OUTPUT LAYER 10 RESISTOR_POLY

This pair of rules will cause the NLE to generate a command file that can be
used to create shapes on layer 10 in the ICED32™ editor. All shapes on both NLE
layers POLY and RESISTOR_POLY at the conclusion of the NLE run will
result in shapes on layer 10 in the ICED32™ cell. The name assigned to layer 10
in the ICED32™ cell (if any) will be used as the name of the layer.

The optional ERROR keyword will cause error messages to be printed to your
screen and to the log file if shapes on the indicated layer exist at the end of the
NLE run. The total number of shapes on all error layers will be reported in the
"Error Layer Outputs" section of the log file.

By default, the NLE will generate an ADD POLYGON command in the output
command file for each shape on an output layer. The optional OUTLINE
keyword can be used to change this behavior. Use the OUTLINE keyword to
generate wire components that follow the outlines of the polygons rather than the
polygon components themselves.

You can use semicolons and curly braces to allow more than one layer definition
in one OUTPUT LAYER rule. The syntax is the same as that used in the INPUT
LAYER rule. See page 56 for details.

The iced_layer_number 0 is treated differently than other output layers.
Commands that create shapes on layer 0 will not be included in the output
command file. Instead, the layer is treated as a scratch layer. This feature is
used to facilitate diagnosing problems.

Let us say that you have an intermediate layer you need to look at occasionally to
diagnose problems with device recognition. This layer is really a scratch layer
and is not usually output. However you do want to include it in the output file
occasionally. You should define this layer as an output layer with the layer
number 0. When you do want to see this layer in the output, simply edit the
layer number to a number other than 0 and the layer will be included in the
output. This is much easier than editing the rules file to move the layer back and
forth from an OUTPUT LAYER statement to a SCRATCH LAYER statement.

The device
recognition
rules will
automatically
classify layers
specified with
the ERR
keyword as
error layers.
See page 115.

NLE Basics: Layer Definition Rules

NLE and LVS User Manual 59

SCRATCH LAYER nle_layer_name

All layers used in the rules file must be defined before they are used in a rule. If
a layer is not defined with the INPUT LAYER or OUTPUT LAYER rules, you
must define it as a scratch layer using this rule.

The use of semicolons and curly braces to allow more than one layer definition
in one statement is the same as their use in the INPUT LAYER rule. See page
56 for details.

Examples: SCRATCH LAYER SRC_DRN; GATE; POLY_WIRE;

SCRATCH LAYER {
SRC_DRN;
GATE;
POLY_WIRE;

}

SCRATCH LAYER {
SRC_DRN
GATE
POLY_WIRE

}

All three of these examples are exactly equivalent. The semicolons are not
required when you use curly braces to split the SCRATCH LAYER rule across
several lines.

See previous
page for hint on
easily switching
a layer from a
scratch layer to
an output layer

NLE Basics: Layer Generation Rules

60 NLE and LVS User Manual

Layer Generation Rules

Layer generation rules create polygons on an output or scratch layer based on the
contents of existing layers.

Boolean operations (the XOR, OR, and AND rules as well as the NOT feature of
the assignment rule) create layers from logical combinations of other layers.

The INCELL rule is used to classify a layer based on the ICED32™ cell in which
it is contained.

The SHRINK or BLOAT rules are used to resize layers.

The TOUCHING and OVERLAPPING rules create layers based upon how
shapes on a given layer relate to shapes on other layers.

The ISLANDS rule copies holes or disconnected polygons to a new layer.

The IS_BOX, BOUNDS, and ASPECT_RATIO rules segregate shapes on a
given layer by shape or size.

The BRIDGE rule is used to recognize which shapes on a given layer form air
bridges. (The BRIDGE rule is utilized primarily by users of the Gallium
Arsenide technology.)

All layers used in these rules must be defined using layer definition rules. These
rules are described beginning on page 51. You cannot use a layer defined as an
input layer as the result_layer on the left of the '=' in any of the layer generation
rules.

The result_layer will always be cleared of its previous contents and replaced
with the result of the operation. The result_layer can be the same layer as one of
the layers to the right of the '='. The following is a valid rule:

Text
components
(i.e. labels) will
be copied or
moved by
Boolean
operations in
the same
manner as
polygons.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 61

Example: SUBSTRATE = SUBSTRATE AND NOT PWELL

Several Boolean operations cannot be combined into a single rule (other than the
use of the NOT keyword). Complex Boolean processing must be broken down
into separate rules.

Example: POLY_IN = POLY_WIRES OR DEV_POLY
RESISTOR_POLY = POLY_IN AND RESISTOR_MASK
POLY = POLY_IN AND NOT RESISTOR_MASK

Parentheses are not allowed in Boolean expressions. "C = (NOT A) OR B" may
seem like the natural way to write a rule, but it will generate syntax errors. In an
NLE rule, the NOT keyword always applies only to the layer it precedes.

Example: C = NOT A AND NOT B

This rule will be interpreted by the NLE compiler as:

C = (NOT A) AND (NOT B)

NLE Basics: Layer Generation Rules

62 NLE and LVS User Manual

The Assignment Rule: result_layer = [NOT] layer1

This rule is used to copy a layer or to create the inverse of a layer.

Example: M1 = M1_IN

This rule will copy all polygons on layer M1_IN to layer M1. This can be useful
if M1_IN is an input layer that cannot be modified. The new layer, M1, can be
modified as required.

The optional NOT keyword will create a layer which is the inverse of layer1.

Example: NWELL = NOT PWELL

This rule will create the inverse of the PWELL layer. The outer boundary of the
inverse layer is the slightly bloated bounding box of your design. When the
NWELL layer is used by other rules in the NLE, it will remain one large polygon
with holes in it. If the NWELL layer is an output layer, before the NLE can
output the layer as ICED32™ components, the shape must be divided into several
polygons. Polygons with holes are not valid components in ICED32™. The
somewhat arbitrary boundaries of the polygons (where the NWELL shape is cut
to create valid polygon shapes) will have no effect on processing in the NLE.

Figure 14: Layer PWELL Figure 15: Layer NWELL =
NOT PWELL

A bounding box
is the smallest
rectangle,
square with the
axes, which
encloses the
design.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 63

result_layer = [NOT] layer1 AND [NOT] layer2

This rule will create on result_layer the intersection of all shapes on layers
layer1 and layer2.

Example: C = A AND B

The optional NOT keyword will perform the
operation with the inverse of the layer.

Example: C = A AND NOT B

This rule will perform a Boolean AND of the
inverse of layer B with layer A. In other
words, layer B is used to etch layer A.

Figure 16: Polygons on layers
A and B

Figure 17: C = A AND B

Figure 18: C = A AND NOT B

NLE Basics: Layer Generation Rules

64 NLE and LVS User Manual

result_layer = [NOT] layer1 OR [NOT] layer2

This rule will create the union of all shapes on layers layer1 and layer2.

Example: C = A OR B

The optional NOT keywords will perform the
operation with the inverse of the layer instead of the original layer.

Figure 19: Polygons on layers
A and B

Figure 20: C = A OR B

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 65

result_layer = [NOT] layer1 XOR [NOT] layer2

XOR stands for "exclusive or". Use the XOR rule to create the union of the two
layers and then subtract their intersection.

Example: C = A XOR B

The optional NOT keywords work in exactly
the same manner as they do in the AND rule.

Figure 21: Polygons on layers
A and B

Figure 22: C = A XOR B

NLE Basics: Layer Generation Rules

66 NLE and LVS User Manual

result_layer = layer1 IN_CELL cell_name

This rule will classify shapes on a layer by whether or not they are contained in
specific cells. It works in a similar manner to the IN_CELL parameter of the
INPUT LAYER rule. The INCELL rule processes the data differently in two
ways:

layer1 can be any layer in the NLE database

and

layer1 shapes in subcells of the specified cells will be included on
result_layer.

There are no optional NOT keywords in this rule. For other details on the use of
the INCELL rule, including using wildcards to specify several cells with the
cell_name parameter, see page 54.

Whenever you remove material from a conductive layer, you must be careful not
to prevent real shorts from being found. See page 100 for important examples of
how real design errors can be hidden by using INCELL processing.

The INCELL
keyword of the
INPUT LAYER
rule will not
include shapes
in subcells of
the specified
cells.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 67

result_layer = BLOAT (layer1, offset_val)

Use the BLOAT rule to expand polygons
on layer1 and store them on result_layer.
All sides of the polygons will be shifted
outwards in a parallel manner by
offset_val. offset_val must be a positive
real number in ICED32™ user units.

Example: A = BLOAT (B, 1.2)

Note that the parentheses and comma are
required in the BLOAT rule.

Bloating can remove features of
complex polygons. Notches or holes
can disappear.

If you are using BLOAT on polygons
with acute angles, you should refer to
the BLOAT_ANGLE rule on page 69
for important information on the side
effects of bloating sharp angles.

Figure 23: A = BLOAT (B, 1.2)

The LVS
*.LAYMODEL
device models
can adjust the
dimensions of
devices for
shrinking or
bloating without
the use of this
rule in the NLE
run.

Figure 24: Note that the notch in
layer B disappears after bloating.

NLE Basics: Layer Generation Rules

68 NLE and LVS User Manual

result_layer = SHRINK (layer1, offset_val)

Use the SHRINK rule to store on
result_layer polygons on layer1 which
have been shrunk by offset_val. All
sides of the polygons will be shifted
inwards in a parallel manner by
offset_val. offset_val must be a positive
real number.

Example: B = SHRINK (A, 1.2)

Note that the parentheses and comma are
required in the SHRINK rule.

Polygons can change shape significantly
when being shrunk. Thin sections that
become a width of zero or less will
simply disappear. Small polygons with either dimension less than twice
offset_val will disappear entirely.

The NLE processes a SHRINK
operation as a BLOAT of the inverse
of a layer. When you shrink a shape
with an acute angle notch, you are
really bloating a shape with an acute
angle. The bloat of an acute angle
can result in significant distortion of
your shape. This is why the default
behavior of the NLE blunts acute
angles before shrinking or bloating.

If you are using SHRINK on
polygons with angular notches, you
should refer to the BLOAT_ANGLE
rule (covered next) for important
information on the effects that acute
angles can have on this rule.

Figure 25: B = SHRINK (A, 1.2)

The LVS
*.LAYMODEL
device modifier
parameters can
adjust the
dimensions of
devices for
shrinking or
bloating without
the use of this
rule.

Figure 26: A single polygon on layer A
becomes two polygons on layer B after
shrinking.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 69

BLOAT_ANGLE = bloat_angle

This rule is important only if your layout contains polygons with sharp points. It
controls how shapes with sharp points are bloated. Points with angles more
acute than bloat_angle will be blunted before they are bloated. The bloat_angle
parameter must be a real number in the range 1:45. When the BLOAT_ANGLE
rule is not used, the NLE uses a default of 45° for the bloat angle.

To see why bloating sharp
points can be a problem, see
Figure 27. The inner triangle
has a sharp point with an
acute angle of 30°. If this
bloat is not constrained, the
bottom dimension of the
polygon will more than
double when it is bloated by
an offset_val of 2.

If you do not
have acute
angles in your
design, you
should not use
the BLOAT-
_ANGLE rule.
The default of
45° will prevent
excessive run
times.

30°

Figure 27: Unconstrained bloat of a 30°
angle.

NLE Basics: Layer Generation Rules

70 NLE and LVS User Manual

To avoid this type of expansion for
relatively small bloats, the NLE
defaults to constraining bloats on any
angle less than 45°. The bloated
shape is cut by a line perpendicular to
the line that bisects the acute angle.
The cut will be made at a distance
equal to the bloat offset_val along the
bisecting line. It is as though the point
at the acute angle is blunted by an
infinitesimal line segment before the
bloat.

If this is not how you want your acute angles bloated, you must use the
BLOAT_ANGLE rule in your rule set. Set bloat_angle to a small enough angle
to remove the constraint for critical polygons. However, you should be aware
that as the bloat angle gets smaller, the NLE run time gets longer. This is due to
panel processing and borders which is a subject not covered here. To understand
how the bloat angle affects run times, see Panel Processing on page 83.

The bloat angle affects the SHRINK rule as well, since a shrink is really
processed as a bloat of the inverse of a layer.

15°

2

Figure 28: Constrained bloat of a 30°
angle.

Figure 29: Unconstrained
SHRINK of polygon with
acute angle notch.

Figure 30: Constrained
SHRINK of same polygon.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 71

You can use the BLOAT_ANGLE rule more than once in a rule set.

Example: B = BLOAT (A, 2)
BLOAT_ANGLE = 10
C = BLOAT (A, 2)
BLOAT_ANGLE = 45
D = BLOAT (A, 5.1)

In the example above, a bloat angle of 45° will constrain the bloats that create
layers B and D. A bloat angle of 10° will constrain the bloats that create layer C.
However, since one of the layers uses such a small bloat angle, the run time will
be much longer than if all layers used the default.

result_layer = layer1 [NOT] TOUCHING [n1 [:n2]] layer2 [NOT = result_layer2]

This rule is used to classify polygons on layer1 based on
whether or not they touch polygons on layer2 along a
finite line or area. Polygons touching only at a point, as
shown in Figure 31, are not considered to be touching.

Example: C = A TOUCHING B

In this example, layer C will contain all polygons on A
which touch at least one polygon on layer B

Only one optional NOT keyword can be used in the
TOUCHING rule.

Example: D = A NOT TOUCHING B

In this case, layer D will contain all polygons on layer A which do not touch any
polygons on layer B.

You can see the
bloat angle used
for each
BLOAT rule in
the rules
compiler log.

Figure 31: Polygons
that do NOT touch.

NLE Basics: Layer Generation Rules

72 NLE and LVS User Manual

Example: C = A TOUCHING B NOT = D

Layer C will contain all polygons on layer A that touch at least one polygon on
layer B. Layer D will contain all remaining shapes on layer A, i.e. all shapes not
touching layer B.

The optional n1 and n2 parameters can be used to specify how many polygons on
layer2 the polygons on layer1 must touch. Use n1 alone to specify an exact
number. Use both n1 and n2 to specify a range.

Example: C = A TOUCHING 2 B

In this case, layer C will contain all polygons on layer A that touch exactly two
polygons on layer B.

Example: C = A TOUCHING 2:4 B

When you use this rule, layer C will contain all polygons on layer A which touch
exactly two, three, or four polygons on layer B.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 73

result_layer = layer1 [NOT] OVERLAPPING [n1 [:n2]] layer2 [NOT=result_layer2]

This rule is used to classify polygons on layer1 based on whether or not they
overlap polygons on layer2 with a finite area. Polygons touching only at a point,
or sharing only an edge, are not considered to be overlapping. All shapes that
overlap also touch (see the previous rule).

Example: C = A OVERLAPPING B

In this example, layer C will contain all polygons on A which overlap with a
finite area at least one polygon on layer B

Only one optional NOT keyword can be used in the OVERLAPPING rule. The
NOT keywords and the n1 and n2 parameters work in exactly the same manner
as they do in the TOUCHING rule. See page 71 for examples.

Overlapping
and Touching

Overlapping
and Touching

Touching only Not Overlapping
or Touching

Figure 32

NLE Basics: Layer Generation Rules

74 NLE and LVS User Manual

result_layer = ISLANDS (layer1)

This rule is used to find holes or unconnected polygons on a specific layer. All
shapes on layer1 that are not connected to the upper left polygon on layer1 will
be copied to result_layer. By connected, we do not mean electrical connections
through use of the CONNECT rule. For this rule, connected means shapes on
one layer which touch other shapes on the same layer.

To find holes in a layer, you use this rule to find islands in the inverse of the
layer.

Example: NOT_A = NOT A
B = ISLANDS (NOT_A)

This pair of rules will result in polygons on layer B created for all holes in layer
A. Note that the parentheses are required in the ISLANDS rule.

If you want to
insure that a
shape is not
electrically
connected to
other shapes,
see the
UNCON-
NECTED rule
on page 155.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 75

result_layer = [NOT] IS_BOX (layer1, size1 [, size2 [..., sizen]]) [NOT=result_layer2]

This rule is used to classify polygons on layer1 based on whether or not they are
rectangles in a range of sizes. To be recognized by this rule, rectangles must be
square with the axes (i.e. the sides must be vertical and horizontal).

(Remember that all shapes on the same layer are merged by the NLE.
Rectangles that touch another shape on the same layer will be merged during
preprocessing. When a rectangle is merged with touching shapes, the resulting
shape may no longer be rectangular.)

The syntax of each sizen parameter is:

(xmin [: xmax], ymin [: ymax])

To allow the dimensions of the rectangles to be in a range, specify both the
minimum dimension and the maximum dimension separated by a colon (':'). To
specify an exact dimension, type only the minimum value. When the maximum
value is not included, it is assumed to be equal to the minimum. Each dimension
must be a positive real number. The units of each dimension are the user units in
the ICED32™ cell.

You can enter up to ten sizen parameters. You must enter at least one.

Example: B = IS_BOX (A, (10,5))

This rule will collect on layer B all rectangles on layer A which are 10 units
wide in the x-direction and 5 units high in the y-direction.

Note that orientation is important. To collect non-square rectangles which may
be in either orientation you must specify two sizes.

Example: B = IS_BOX (A, (10,5), (5,10))

This rule will collect on layer B all rectangles on layer A which are 10 units
wide by 5 units high in either orientation.

See the
BOUNDS rule
(covered next)
for a similar
rule for non-
rectangular
shapes.

NLE Basics: Layer Generation Rules

76 NLE and LVS User Manual

Example: B = ISBOX (A, (10:12, 5:7))

Here, layer B will consist of all rectangles on layer A which are from 10 to 12
units wide in the x-direction and from 5 to 7 units high in the y-direction.

(Note that the underscore in the IS_BOX keyword is optional. The underscore
character is simply ignored when it is present. This is true of all keywords.)

Example: B = IS_BOX (A, (10:12, 6.4))

This rule will collect on layer B all rectangles on layer A which are from 10 to
12 units wide in the x-direction and exactly 6.4 units high in the y-direction.

The optional NOT keywords are used to restrict the output layer to all shapes
which do not meet the size criteria. Only one optional NOT keyword is allowed.

Example: C = NOT IS_BOX (A, (10, 2), (11, 3))

This above rule will collect on layer C all shapes on layer A which are not
rectangles 10 units wide and 2 high or 11 units wide and 3 high.

When typing this rule, you may start a new line between sizes. You cannot split
a single sizen parameter between lines. (The final optional NOT keyword must
be on the same line as the closing parentheses.)

Example: B = IS_BOX (A,
(10, 2), (2, 10),
(5, 1), (1, 5)) NOT = C

This above rule will collect on layer B all shapes on layer A which are rectangles
10 units wide and 2 high or 5 units wide and 1 high in either orientation. Layer
C will consist of all other shapes on layer A, including non-rectangular shapes.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 77

result_layer = [NOT] BOUNDS (layer1, size1 [, size2 [..., sizen]]) [NOT=result_layer2]

This rule is very similar to
IS_BOX, (see the pre-
vious rule) except that the
size criteria applies to the
bounding box of any
shape rather than to the
dimensions of only rec-
tangles. The bounding
box of a shape is the
smallest rectangle, square with the axes, which will enclose the shape. The
bounding box of a rectangle square with the axes has the same dimensions as the
rectangle itself.

Example: B = BOUNDS (A, (10,5))

This rule will collect on layer B all shapes on layer A which have bounding
boxes 10 units wide in the x-direction and 5 units high in the y-direction.

The syntax of the sizen parameters, and the use of the optional NOT keywords, is
exactly the same as the IS_BOX rule. See that rule (starting on page 75) for
details.

Figure 33: Bounding boxes of non-rectangular
shapes.

NLE Basics: Layer Generation Rules

78 NLE and LVS User Manual

result_layer = [NOT] ASPECT_RATIO (layer1, max_size, size1 [,size2 [...,size10]])...
... [NOT = result_layer2]

This rule is used to classify polygons on layer1 based on their aspect ratios. An
aspect ratio is the ratio of the dimensions of the bounding box. For example, if
you have a bounding box 10 units wide (in the x-direction) and 5 units high (in
the y-direction), it would have an aspect ratio of:

5 1
10 = 2

 or 2 to 1.

The required max_size parameter is used specify the maximum size of a
bounding box guaranteed to be classified correctly. This relates to the problem
of panels and panel borders. The NLE verifies large designs one panel at a time.
Shapes which cross the edge of a panel must lie within a border around the panel
to be verified correctly with a rule. Usually the border is determined by
calculating the reach of each rule. The reach is the minimum border required for
a rule to guarantee it will process shapes which cross the border properly. Since
no maximum dimension is included in this rule (only the ratio of dimensions)
there is no way for the rules compiler to calculate the reach. You must specify
the reach explicitly with max_size.

Specifying too large a value for max_size may slow processing. However, you
should be aware that shapes with a bounding box dimension larger than max_size
may be classified incorrectly when the NLE uses panel processing.

The sizen parameters are specified in the same manner as the IS_BOX and
BOUNDS rules. The first real number of each pair is the relative dimension in
the x-direction while the second is the relative dimension in the y-direction.

See page 83 for
a thorough
explanation of
panels and
borders.

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 79

Example: B = ASPECT_RATIO (A, 20, (10, 1))

This rule will collect on layer B all shapes on layer A which have bounding
boxes with an aspect ratio of exactly 10 to 1. (10 in the x-direction to 1 in the y-
direction.) Shapes with a bounding box dimension larger than 20 user units may
be incorrectly classified.

To expand the above rule to include shapes which have the same ratio, but which
are longer in the y-direction, you need to add a size2 parameter that specifies a 1
to 10 aspect ratio.

Example: B = ASPECT_RATIO (A, 20, (10, 1), (1, 10))

You can specify up to 10 sizen parameters. You may specify a range instead of
an exact ratio for sizen. The syntax for this is the same as the IS_BOX and
BOUNDS rule. You specify a range of valid ratio values in the form min:max

The NOT keyword is used to collect all shapes on layer1 which do not meet the
aspect ratio criteria.

Example: B = ASPECT_RATIO (A, 20, (5:6, 1), (7, 1:2)) NOT = C

Layer B will consist of all polygons on layer A whose bounding boxes have
aspect ratios between 5 to 1 and 6 to 1 or between 7 to 1 and 7 to 2. Layer C will
consist of all shapes on layer A that do not meet the criteria.

NLE Basics: Layer Generation Rules

80 NLE and LVS User Manual

BRIDGE {
BRIDGE = bridge_layer
POSTS = post_layer
LENGTH = min_length [: max_length]
WIDTH = min_width [: max_width]

IS_BRIDGE = result_layer
NOT_BRIDGE = result_layer_2

[L/W =min_ratio [: max_ratio]]
[POINT_TOLERANCE = tolerance_1]
[POST_TOLERANCE = tolerance_2]

}

The BRIDGE rule is used to find air bridges. If you don't know what an air
bridge is, it is unlikely that you will ever need this rule. It is of interest primarily
to users of the gallium arsenide technology.

The BRIDGE, POSTS, LENGTH, and WIDTH keywords are required. At least
one of the IS_BRIDGE or NOT_BRIDGE keywords must be used. You can use
both. The other parameters are optional conditions that must be met for the
shapes on bridge_layer to be considered air bridges.

To be a valid air bridge, a polygon must meet the following conditions:

The polygon on bridge_layer must be rectangular. The rectangle does not
need be square with the axes.

The polygon on bridge_layer must share opposite end-sides with polygons
on post_layer, one at each end. Each end-side of the air bridge must be
coincident with a side of the post. The post may be wider than the bridge,
but the entire end-side of the bridge must be touching the post.

The bridge must fall within a certain range of lengths, widths, and aspect
ratios (length/width). The length is the distance between end-sides shared
with a post. The width is the distance between the other two sides.

must use one,
can use both

NLE Basics: Layer Generation Rules

NLE and LVS User Manual 81

When the IS_BRIDGE keyword is used, the result_layer will contain all shapes
that meet the air bridge criteria. When NOT_BRIDGE is used, result_layer_2
will contain all shapes on bridge_layer which are not air bridges.

When entering the LENGTH and WIDTH parameters, you can enter either a
single size or a range. To enter a range, use a colon (':') to separate the maximum
value from the minimum value.

Example: INPUT LAYER 5 METAL; 6 POST
OUTPUT LAYER 38 BRIDGE_OUT
SCRATCH LAYER BRIDGE_IN

BRIDGE_IN = METAL AND NOT POST
BRIDGE {

BRIDGE = BRIDGE_IN
POSTS = POST
WIDTH = 2
LENGTH = 5:20
IS_BRIDGE = BRIDGE_OUT

}

This set of rules will recognize bridges
from 5 to 20 units long where layer
METAL is crossed by shapes on layer
POST. Note that the AND rule which
etches METAL with the POST layer is
required. The layer BRIDGE_OUT will
contain rectangles for bridges 1 and 2 as
shown in Figure 34.

Candidate 3 is a special case since it is not
square with the axes. You cannot predict
the exact length or width of air bridges that are not square with the axes due to
vertex approximations. Unless all air bridges are horizontal or vertical, enter a
range of lengths and widths. To modify the above rule to recognize candidate 3
as a valid air bridge, change the WIDTH parameter to:

WIDTH = 1.99 : 2.01

1

2

3

METAL

POST

Figure 34: 3 Air bridges.

NLE Basics: Layer Generation Rules

82 NLE and LVS User Manual

Use the optional L/W keyword to add an additional length to width ratio
constraint. You can enter a single ratio by using only min_ratio, or specify a
range by using max_ratio as well. Either ratio can be entered in fraction form
(e.g. "5/3") or as a single number in decimal form (e.g. "1.6667").

Example: L/W = 5/1 : 6/1

Add this parameter to the BRIDGE rule to restrict the valid bridges to those with
aspect ratios between 5 to 1 and 6 to 1. Adding this parameter to the BRIDGE
example above will result in only bridge 1 (see Figure 34) on the BRIDGE_OUT
layer.

The optional POINT_TOLERANCE parameter defines the spacing tolerance for
the corners of the air bridge. This accounts for small round-off errors in air
bridge corners where the air bridge is not square with the axes. Each corner of
the bridge must be within tolerance_1 units in both the X and Y directions of
where it would be if the bridge were exactly a rectangle.

Use the optional POST_TOLERANCE parameter to allow a small overlap or
misalignment between the post sides and the bridge layer sides. The point at one
end of a bridge_layer side must be within tolerance_2 units in both the X and Y
directions of the equivalent point on the post edge. However, if the bridge shape
does not touch the post shape, the bridge shape will not be considered a bridge.
The touching criterion (i.e. the bridge shape must touch 2 shapes on the post
layer) must be met before the BRIDGE rule will examine the other criteria to
determine if the shape is a bridge.

You can enter more than one parameter on a line if you separate the parameters
with commas.

NLE Basics: Panel Processing

NLE and LVS User Manual 83

Panel Processing

The NLE can process small designs as a unit; however, larger designs may need
to be divided into panels and processed one panel at a time. If you do not
specify the panel size with the PANELX and PANELY rules, the NLE will first
attempt to process the entire design as a unit. This can be very expensive in
terms of memory requirements and running time. If the NLE runs out of
memory, it will begin the entire process again after dividing the design into
panels half the size of the entire design. This process may be repeated with
smaller and smaller panels. This type of thrashing may waste considerable time.

Since the memory requirements are so high when the NLE processes a large
design as one unit, the NLE may be forced to swap data to disk. Disk swapping
will result in long run times.

If you have a small amount of memory on your computer (less then 16Meg), then
dividing your design into panels may allow the NLE to run to completion when it
has run out of memory trying to process the entire design as one panel. Even if
you have a large amount of memory on your computer, dividing the design into
panels may speed up the NLE run by over an order of magnitude.

For example, a chip that took over 8 hours to process as a single panel took only
and hour and a half to process when divided into "reasonable" panels. When you
have long run times, you should use the PANELX and PANELY statements to
divide the design into smaller panels.

Panel
processing can
also isolate
shorts. See
page 192 for an
example.

NLE Basics: Panel Processing

84 NLE and LVS User Manual

One indication that the NLE will run faster if you specify smaller panels, is when
the log file from your first run reports that the NLE is swapping data to disk.
The NLE reports at the end of the log file the size of the scratch file, the number
of times it was used, and the percentage of processing time spent on swapping.
If these numbers are large, trying a smaller panel size will probably result in a
shorter running time. (In the testcase mentioned above, the log stated that 81% of
the 8 hours was spent on disk swapping.)

If you will be running the NLE many times on your design, you should
experiment with different panel sizes to find an optimum panel size. This can
speed up the NLE processing time dramatically.

The optimum panel size varies greatly depending on the size of your design, the
dimensions of your shapes, and on the type of rules you are processing.
However, a rough rule of thumb, if most of your shapes and rules involve
dimensions on the order of a few ICED32™ units, is to use panels on the order of
300 by 300 units. (If you have less than 32 Megabytes of memory in your
computer, you may want to start with panels smaller than this.)

The NLE attempts to divide the design into roughly equal panels. The
dimensions you specify with the PANELX and PANELY rules are really the
maximums rather than the exact dimensions used. If you specify PANELX =
100 and PANELY = 200 and your chip is 190 by 489 units, the chip will be
divided into six 95 by 163 unit panels.

During preprocessing, touching shapes on the same layer are merged. When
multiple panels are used, only shapes from a single panel are merged. If there
was no overlap of panels, many rules would miss errors due to touching
polygons not being merged, or because nearby shapes would not be considered.

In order for shapes near or crossing a panel border to be processed correctly, the
NLE must include a border around all sides of each panel. Shapes in the border
area will be processed at least twice (at least four times near the corners of
panels). Very small panels or very large borders will result in some shapes being
processed many times. However, borders that are too small may allow errors to
go undetected.

NLE Basics: Panel Processing

NLE and LVS User Manual 85

The panel border is
calculated by the
NLE based on the
reach of each layer as
determined by the
rules. Reach is de-
fined as the minimum
border distance that
will insure that no
polygon is incorrectly
classified by the rules
that generate that
layer.

Rules that involve a
touching criterion
have a reach of 0 due
to the way the NLE
processes touching
shapes. Rules that
involve dimensions
and rules that involve
changing the
dimensions of shapes
(like the BLOAT
rule) require a reach
to insure that shapes
are processed correctly. The reach affects only passes in which the non-zero
reach rules are processed.

Each layer is initially assigned a reach of 0. Rules may increase this reach. The
reach of a result_layer is often greater than the reach of the layers used to create
it. The border is defined as the maximum reach of all layers plus one extra NLE
internal unit (much smaller than an ICED32™ user unit) for an extra safety factor.

The ASPECT_RATIO rule cannot compute reach, so you must specify it
explicitly in the rule using the max_size parameter.

Rule Reach of result_layer
AND max (Reach(layer1), Reach(layer2))
ASPECT_RATIO max_size parameter
Assignment Rule Reach(layer1)
BLOAT Reach(layer1) + offset_val

sin(bloat_angle / 2)
BOUNDS Reach(layer1) + max (sizen dimension)
BRIDGE 0
CAPACITOR 0
CONNECT 0
DEVICE 0
IN_CELL Reach(layer1)
IS_BOX Reach(layer1) + max (sizen dimension)
ISLANDS 0
OR max (Reach(layer1), Reach(layer2))
OVERLAPPING 0
SHRINK Reach(layer1) + offset_val

sin(bloat_angle / 2)
TOUCHING 0
TRANSISTOR 0
XOR max (Reach(layer1), Reach(layer2))

Figure 35: Reach calculation for each rule.

Add the
SHOW-
_BORDER
option to the
NLE command
line to see how
the border is
calculated by
the NLE.

NLE Basics: Panel Processing

86 NLE and LVS User Manual

The SHRINK and BLOAT
rules can increase reach
dramatically if you allow
bloats of acute angles in your
design.

For example, look at the small
polygon with the 30° angle in
Figure 36. When this
polygon is bloated by 2
without constraints, the
bottom dimension expands
from 10 to more than 20.

The reach of a bloated layer is defined as:

Reach(layer1) + offset_val / sin (αααα / 2)

Where α is the bloat_angle parameter defined with the BLOAT_ANGLE rule.
If the reach of layer1 is 0, the offset_val is 2, and the bloat_angle is 30, the reach
of the bloated layer will be:

0 + 2 / sin (30 / 2) = 7.27

The reach increases dramatically as the bloat angle decreases. If the bloat angle
is set to 1 for the example above, allowing unconstrained bloats of angles as
small as 1°, the reach of the bloated layer goes up to 229.

The BOUNDS and IS_BOX rules add a reach to the result_layer equal to the
amount of the maximum dimension you are verifying. If we use a BOUNDS rule
with a maximum dimension of 10 units on a bloated layer with a reach of 7.27,
the reach of the result_layer created by the BOUNDS rule is now 17.27.

If you use the layer created by the BOUNDS rule in other rules, the reach may
go up even more. A reach this large is required to be absolutely sure that no
polygons are improperly processed with these rules. However, this reach may be
excessive for the other layers. Many polygons will be processed multiple times
due to the large border.

30°

Figure 36: Unconstrained bloat of a 30°
angle.

See the
BLOAT-
_ANGLE rule
on page 69 for
more details on
bloating acute
angles.

If you do not
have acute
angles in your
design, you
should always
use the
maximum
BLOAT-
_ANGLE of 45°
(the default) to
avoid excessive
reaches.

NLE Basics: Panel Processing

NLE and LVS User Manual 87

The panel border used by the NLE is reported in the log file. Search for the
phrase "Panel Border". You can use the SHOW_BORDER option on the NLE
command line to report the reach and border calculations performed by the NLE.
You can sometimes rewrite rules to reduce the reach. If you are including a few
rules not required for circuit recognition or ECC checks which are resulting in a
large reach, you may want to move them to a different rule set you run less often.

If you are an NLE expert, and your rule set creates a border that you know is
excessive; you can override the border calculated by the NLE with the BORDER
rule. However, if you don't know exactly what you are doing, you can easily
prevent real errors from being found by tampering with the border.

If you have a large border and a small panel size, your run may be aborted with
the message, "Panel is too small to subdivide further -- check aborted". This
means that the border is at least one half the size of a panel. You will need to
reduce the border by rewriting your rules or increase the panel size. You can
modify the border explicitly with the BORDER rule, but remember that you can
corrupt the validity of the NLE tests by doing this.

In no case will border or panel processing cause a device to be recognized twice.

NLE Basics: Panel Processing

88 NLE and LVS User Manual

PANELX [=] panel_x_dimension

and

PANELY [=] panel_y_dimension

These rules can be used to set the maximum panel size the NLE will use. You
should use these rules if your design is large and your NLE run has an excessive
run time. The NLE always defaults to attempting to process the entire design as
one panel when you do not use these rules in your rule set.

Even when your run time is acceptable, you can force the NLE to process the
design in panels to isolate problems like shorts. (See page 192.)

The NLE reports the amount of time spent disk swapping near the end of the log
file. If the NLE is spending a majority of the processing time in disk swapping,
you should try reducing run time by using the PANELX and PANELY rules to
force the NLE to process your design in smaller portions.

Both panel dimensions should be positive real numbers in user units. Since the
NLE will divide your design into roughly equal panels, the actual size of your
panels will probably be somewhat smaller than the values you set with these
rules.

Example: PANELX = 300
PANELY = 300

Let us say that your design is 720 user units in the x-direction and 580 user units
in the y-direction. When the above rules are used to set the panel size, the design
will be divided into six 240 by 290 panels.

To understand
how panels are
used, you
should read
Panel
Processing on
page 83.

NLE Basics: Panel Processing

NLE and LVS User Manual 89

BORDER [=] border_dimension

Use this rule to override the panel border calculations that the NLE performs and
set the panel border directly. This rule should be used only when you need to set
the panel border to a smaller dimension than that calculated by the NLE. Make
sure that you know what you are doing before you use this rule.

It is dangerous to set the panel border to a value smaller than the value calculated
by the NLE. You can cause real errors to be missed since the reach of some
layers will now be greater than the border.

It is very
important to
read Panel
Processing on
page 83 before
using this rule.

NLE Basics: Panel Processing

90 NLE and LVS User Manual

NLE Basics: Hierarchical Processing

NLE and LVS User Manual 91

Hierarchical Processing

Future versions of the NLE will perform circuit recognition in a true hierarchical
manner. (Device recognition and electrical connections would be performed
once in a cell then used over and over when many copies of the cell exist in the
main cell.) However, this version of the NLE flattens nested cells in the layout
so that one main flat cell is used for circuit recognition.

Cells which occur in the INCELL parameter of an INPUT LAYER rule or in an
INCELL rule will remain nested during some of the NLE preprocessing passes.
However these cells are flattened before circuit recognition or ECC checking is
performed.

The ALL_SAFE, DANGER_CELL, etc. rules which are used in the DRC are not
used by the NLE since all processing is performed on flattened data.

NLE Basics: Hierarchical Processing

92 NLE and LVS User Manual

NLE Circuit Recognition

NLE and LVS User Manual 93

NLE Circuit Recognition

NLE Circuit Recognition

94 NLE and LVS User Manual

Circuit recognition in the NLE is performed through a combination of:

Layer generation rules that combine input layers and classify shapes
by certain criteria,

CONNECT rules that define how shapes on different layers
form electrically connected nets,

and

Device recognition rules that identify device nodes and the nets which
connect to the terminals or pins.

The layer generation rules were already covered beginning on page 60. The
CONNECT rule is covered next. The device recognition rules are covered
beginning on page 105.

You can label nets or device nodes in your design that will allow shorts and
opens to be found by the NLE. Labels make the layout netlist easier to use when
you execute the LVS. The details on how to add these labels are covered
beginning on page 138. The few rules that control the ECC checks (used mainly
to find opens and shorts) are covered beginning on page 152.

NLE Circuit Recognition: Electrical Connections

NLE and LVS User Manual 95

Electrical Connections

Electrical connections between layers are formed by the NLE using the
CONNECT rule.

The nets are formed by assigning node numbers. Initially, each polygon in the
NLE database is assigned a unique node number. As new polygons are formed
from other layers, the new polygons are assigned new node numbers. When the
CONNECT rules are processed, two touching polygons on layers which are
defined as electrically connected will both be assigned the lower node number of
the pair. Eventually, all polygons in an electrically connected net are assigned
the same node number. (You can use this node number to highlight the entire
node in the ICED32™ layout editor using the node outliner commands after the
NLE run.)

Layers which are used in CONNECT rules form groups. All layers that are
connected to each other are collected into a single group. When layers form
more than one group, there is no way to electrically connect a shape on a layer in
one group to a shape on a layer in separate group. This is almost always a
mistake.

The number of groups is reported in the log file created by the rules compiler. If
you have more than one group, you should look carefully at the log file where
the layers in each group are listed to be sure that you are not forgetting to
connect some layers.

You can specify electrical connections to layers that are poor conductors with
the STAMP rule. This rule insures that each shape on a poor conductor layer
electrically connects to exactly one node. A shape on a poor conductor layer
cannot short together two shapes on conductive layers.

See page 389 to
learn how to use
the node
outliner
commands.

The STAMP
rule is described
beginning on
page 102.

NLE Circuit Recognition: Electrical Connections

96 NLE and LVS User Manual

CONNECT layer1 layer2 [BY layer3]

The CONNECT rule will form electrical connections between touching shapes
on the given layers. When the BY keyword is not used, shapes on layer1 which
touch shapes on layer_2 are considered to be electrically connected for purposes
of building the netlist and for ECC shorts and opens checking. All shapes that
are electrically connected will be considered the same node and will be assigned
the same node number.

The touching criterion for the CONNECT rule is
the same as that used for the TOUCHING rule.
Two shapes are considered touching if they share
a finite area or if their edges share a finite length.
Shapes that touch only at a point are not
considered electrically connected.

Example: CONNECT M1 M2

When this CONNECT rule is used, any shape on
M1 which overlaps or shares a finite portion of
an edge with a shape on M2 will be considered
electrically connected to the shape on M2. If this
rule is executed on the shapes in Figure 37, the
shape on M2 and the top two wires on M1 would
all be electrically connected and stamped with
the same node number. The bottom wire on M1,
which touches M2 only at a point, would be a
separate node.

See the STAMP
rule to form
electrical
connections to
layers that are
poor
conductors.

M2

M1

Figure 37: The top two M1
wires will be electrically
connected to the M2 wire.

Do not
electrically
connect layers
that are used as
device id layers.
These electrical
connections are
formed by the
device
recognition
rules.

NLE Circuit Recognition: Electrical Connections

NLE and LVS User Manual 97

The BY keyword is used to simulate
connections between layers which are formed
by vias or other contact layers. When the BY
keyword is used, the touching criterion
changes. For a shape on layer1 to be
electrically connected to a shape on layer2, the
shape on layer1, the shape on layer2, and a
shape on layer3 must all share a common area.

Mere touching or overlapping of these layers is
not enough to connect the shapes.

Example: CONNECT M1 M2 BY VIA

When the above rule is used to connect the M1
and M2 layers shown in Figure 38, only the M1
wire with the label "THREE" will be connected
to the vertical M2 wire. Wire "ONE" overlaps
the M2 wire and both touch the via shape, but
the via shape does not overlap the common
area where the metal layers overlap. Wire
"TWO" fails to connect for the same reason
even though the via overlaps both wires. Wire
"FOUR" does not overlap the M2 wire at all, so
it does not connect to it even though the via shape overlaps both.

You combine layer generation rules with CONNECT rules to simulate the
fabrication process and electrical connectivity. You may need to process
conductive layers carefully before adding the CONNECT rules.

VIAM2

M1

Figure 38: Only M1 wire
THREE is connected to the
vertical M2 wire.

NLE Circuit Recognition: Electrical Connections

98 NLE and LVS User Manual

Example: INPUT LAYER 1 N_PLUS; 2 P; 3 N; 10 M1; 8 CONTACTS;
SCRATCH LAYER EMITTER; COLLECTOR; BASE;
SCRATCH LAYER N_AND_N_PLUS; CONT_TO_BASE;

N_AND_N_PLUS = N AND N_PLUS
EMITTER = N_AND_N_PLUS AND P
COLLECTOR = N_AND_N_PLUS AND NOT P
BASE = P

CONT_TO_BASE = CONTACTS AND NOT EMITTER

CONNECT COLLECTOR N
CONNECT M1 COLLECTOR BY CONTACTS
CONNECT M1 EMITTER BY CONTACTS
CONNECT M1 BASE BY CONT_TO_BASE

Refer to Figure 39 and Figure 40 as we discuss this example. The layer
generation and connection rules for NPN transistors demonstrate how you must
be careful not to short layers. (We have left out the buried layer to simplify the
discussion.)

The order in which the layers are laid down should be considered when you
write your rule set. The P layer in a NPN transistor prevents the N_PLUS layer
from contacting the N layer. The N_PLUS layer prevents contacts from
connecting M1 to the P layer.

If you created the COLLECTOR layer as follows:

COLLECTOR = N AND N_PLUS

then the shapes that make the emitter will also wind up on the COLLECTOR
layer. In this case, the N layer will short the collector and the emitter. You must
be careful to separate the COLLECTOR layer from the EMITTER layer by using
the P layer.

NLE Circuit Recognition: Electrical Connections

NLE and LVS User Manual 99

You must classify the contacts that are over the P or BASE layer because the
emitter is also over the P layer. Contacts over the emitter do not connect to the P
layer, since the N_PLUS layer is in between. If the BASE layer is connected to
M1 by CONTACTS, the emitter contact will short to the base since the emitter is
on top of the BASE layer.

CONTACTS

M1

N_PLUS

P

N

Figure 39: Simplified layout for a NPN device.

Figure 40: Simplified cross section of a NPN transistor.

NLE Circuit Recognition: Electrical Connections

100 NLE and LVS User Manual

Whenever you remove material from conductive layers to recognize a device that
is really composed of conductive material, you must use caution to avoid hiding
real design errors. The problem is that the area must be removed from the
conductive layer to prevent shorts between the terminals of the device, but this
may prevent genuine shorts from other pieces of conductive material from being
found.

There are four primary methods for changing the area that represents a device
from a conductive layer to a device id layer:

1) Use the AND rule to remove the device area from the conductive layer.

Example: GATE = DIFF AND POLY
SRC_DRN = DIFF AND NOT POLY

In this example, the DIFF layer will not be used as a conductive layer in
the CONNECT rules. Instead, the SRC_DRN layer is used as the
conductive layer.

2) A shape on a dummy layer is added to the design. This layer is then
used to etch the conductive layer, or the TOUCHING rule is used to
find shapes that touch the dummy layer and these are removed from the
conductive layer. (See an example on page 131.)

3) The IN_CELL rule (or the IN_CELL keyword of the INPUT LAYER
rule) changes the all shapes on a conductive layer contained in certain
cells to a different layer. In this case, shapes in the main cell which
travel over the same area will remain on the conductive layer. (See an
example on page 118.)

4) IN_CELL processing is used to save layer 0 (which represents the
bounding box of a cell) in certain cells to a scratch layer, which is then
used to remove area from the conductive layer. In this case, shapes in
the main cell which travel over the same area will be removed from the
conductive layer.

NLE Circuit Recognition: Electrical Connections

NLE and LVS User Manual 101

When methods 2, 3, or 4 are used, you should add rules to a separate rule set that
test for the presence of accidental shorts and other potential problems. These
rules can be added to the DRC rule set, or to a separate rule set you run less
often than the NLE rule set you use for circuit extraction. The addition of extra
rules to your circuit extraction rule set will add to your run time.

Method 3 is usually used when the device id layer is nested in a cell on a
conductive layer. Shorts in the main cell on the same layer will not be found in
most circumstances. You should add a rule like the following to test for shorts:

Example: RES_ERROR = POLY TOUCHING RES_POLY

Do not use an AND rule to test for shorts, or errors where shapes on POLY share
only an edge with RES_POLY will not be found.

(If your device rule is written with the conductive layer as one of the touching
layers, you may be able to avoid the extra test since the device rule will then test
for how many shapes on the conductive layer touch the device id shape. Device
id shapes that touch too many shapes on the conductive layer will not be
recognized as valid devices.)

When you use method 2, you should consider the dummy layer as important as
your design layers. You should add rules to a separate rule set which verify that
the shape is in the right place, is the correct size, does not overlap the wrong
shapes, etc. Mistakes on the dummy layer may cause problems just as severe as
mistakes on the design layers.

Accidental connections may not be found if you fail to use caution when
removing area from a conductive layer.

You cannot modify a layer after it is used in a CONNECT rule. This restriction
is enforced by the rules compiler. If a layer could be modified after being used
in a CONNECT rule, there would be no way to guarantee that the electrical
connections made by the CONNECT rule would be valid by the time the device
recognition passes and ECC checks are run.

You do not have to add extra rules to connect nodes that cross panel boundaries.
The rules compiler will generate CONNECT rules which form electrical

NLE Circuit Recognition: Electrical Connections

102 NLE and LVS User Manual

connections between shapes on the same layer where they cross panel
boundaries.

STAMP layer1 BY stamping_layer MULTI = error_layer1 [NONE = error_layer2]

The STAMP rule is used to form electrical connections to layers that are poor
conductors. Shapes on layer1 which touch a shape on stamping_layer will be
assigned the node number of the shape on stamping_layer. However, even when
the shape on layer1 touches other nodes on the stamping_layer, the NLE will not
assign the node number of the layer1 shape to shapes on the stamping_layer.

In other words, layer1 is treated as a non-conductive material which can be
"stamped" with a node number, but it cannot "stamp" any conductive layers.
Electrical connections on the stamping_layer do not pass through layer1.

The NLE keeps track of how many times a shape on layer1 is assigned a node
number by shapes on the stamping_layer. If the shape on layer1 is "stamped" by
more than one node, it will be copied to an error layer. You can optionally use
the NONE keyword to collect on a different error layer all shapes on layer1
which are not "stamped" at all.

We can demonstrate the
importance of not using the
CONNECT rule for poor
conductors with Figure 41. Let
us assume that the GND wire on
the right connects to the metal
GND bus and from there to a
pad on the chip. However, the
GND wire on the left does not
connect to the bus. You meant
to connect these two wires, but a
gap exists by accident.

If you use the STAMP rule to
connect PDIFF to WELL, the
WELL layer will be assigned the same node number as one of the wires, but the

CONTACTS

PDIFF

M1

WELL

Figure 41: Open on GND node that
connects only through WELL layer.

NLE Circuit Recognition: Electrical Connections

NLE and LVS User Manual 103

other wire will not be assigned the same node number. However, if you use a
CONNECT rule to connect the WELL layer to the PDIFF layer, the open will
not be found since the NLE will assign the same node number to all three
shapes.

The STAMP rule can be used to verify that every shape on layer1 is electrically
connected to exactly one node. Any shapes on layer1, which touch more than
one node on the stamping_layer will be copied to error_layer1. All shapes on
layer1 which do not connect to any nodes on stamping_layer can optionally be
copied to error_layer2 by using the NONE keyword. The error layers should
be defined with an OUTPUT LAYER rule so that the presence of shapes on
those layers will be reported as errors in the NLE log.

Example: INPUT LAYER 1 NDIFF; 2 POLY; 3 PWELL; 4 PDIFF;
INPUT LAYER 10 M1; 8 CONTACTS;
SCRATCH LAYER GATE; SRC_DRN;
OUTPUT LAYER 101 OVER_STAMPED_WELL;

GATE = NDIFF AND POLY
SRC_DRN = NDIFF AND NOT POLY

CONNECT M1 PDIFF BY CONTACTS
CONNECT M1 SRC_DRN BY CONTACTS

STAMP PWELL BY PDIFF MULTI= OVER_STAMPED_WELL

If this set of rules is run on the layout shown in Figure 41, the WELL shape will
be copied to the OVER_STAMPED_WELL since it will be stamped by two
different nodes on layer PDIFF. The two GND net fragments will not be shorted
together and will be recognized by the NLE as two separate nets.

NLE Circuit Recognition: Electrical Connections

104 NLE and LVS User Manual

NLE Circuit Recognition: Device Recognition

NLE and LVS User Manual 105

Device Recognition

When using the NLE for device recognition, the general
definition of a device is a polygon on an id_layer that
touches a certain number of polygons on other layers. For
most devices, the touching criterion is the same as that for
the TOUCHING rule. (See page 71.) The only time the
touching criterion is more restrictive, is when you need to
extract a width for the device. (This will be discussed in
more detail later.)

In the case of the CMOS device shown in Figure 42, the
id_layer is the DEV layer. We can write a DEVICE rule
that defines CMOS devices as shapes on layer DEV that
must touch:

1 polygon on layer POLY
2 polygons on layer SRC_DRN

and
1 polygon on layer WELL

While the shape on
layer DEV in Figure
42 does meet the
criteria for a CMOS
device, the shapes in
Figure 43 do not.
DEV shape number 1
does not touch a
shape on WELL.
Number 2 fails since
both shapes on layer
SRC_DRN are joined by the NLE preprocessing into one shape, therefore the
shape on DEV touches only one shape on SRC_DRN. DEV shape 3 also
touches only one shape on layer SRC_DRN. Number 4 is invalid since the DEV
shape touches two shapes on layer POLY.

See page 100
for hints on
removing the
device id layer
from conductive
layers.

POLY

SRC_DRN

DEV

WELL

Figure 42: Valid
CMOS device

SRC_DRN POLY DEV WELL

3 41 2

Figure 43: Invalid CMOS devices

NLE Circuit Recognition: Device Recognition

106 NLE and LVS User Manual

Usually, the only criterion for recognizing shapes on the id_layer as devices is
that they touch the right number of shapes on other layers. The manner in which
they touch is not part of the criteria used by NLE device recognition. (When
width is extracted for a device, additional constraints are added to the simple
touching criterion. Details on this follow later.)

Look at the devices in
Figure 44. DEV shape
number 1 is valid even
though it is not covered
or even overlapped by
layer WELL. Device
number 2 is valid
despite the fact that the
DEV shape does not
share entire sides with
the SRC_DRN shapes.
Device number 3 is
valid even though the

shapes overlap. Device 4 meets the touching criterion and will be recognized as
a device even though it certainly does not meet technology requirements for a
CMOS device.

It is dangerous to assume that the NLE device recognition will insure any
relationship, other than simple touching, between the shape on id_layer and the
other layers. If your technology requires more stringent requirements for devices
than a simple touching rule, you should write rules that test these requirements.
You should usually put these rules in a different NLE rule set that you run
separately to avoid long run times every time you run the NLE to extract the
netlist. (To create better technology rules tests, you should perform these checks
using the DRC, the Design Rules Checker available from IC Editors, Inc.)

To insure that the SRC_DRN layer does not overlap the id_layer, or shapes on
layer POLY, you could build it with rules similar to:

DEV = DIFF AND POLY
SRC_DRN = DIFF AND NOT POLY

SRC_DRN WELLDEVPOLY

2 31 4

Figure 44: Valid but unusual CMOS devices

NLE Circuit Recognition: Device Recognition

NLE and LVS User Manual 107

If you want to insure that entire shapes on the id_layer are covered by shapes on
layer WELL, you have to verify this with another rule similar to:

ERROR_DEV = DEV AND NOT WELL

However, this type of test does not belong in the NLE rule set you run every time
you perform circuit recognition. It is best that you test groundrules in a separate
rule set before running the NLE, so that devices which are designed incorrectly
can be found and corrected before circuit recognition. Device design errors may
lead to in incorrect device sizes or circuit recognition problems that are difficult
to diagnose with the LVS.

You cannot modify a layer after it is used in any of the device recognition rules.
This restriction is enforced by the rules compiler. The circuit recognized by the
device recognition rules could be made invalid if you were allowed to modify
device layers afterwards.

Be careful about how you use the CONNECT rules to define electrical
connectivity. Write the CONNECT rules after the layer generation rules that
create the device id layers. Then write the device recognition rules after the
CONNECT rules.

The CONNECT rules can not be used to short the device id layers to other
layers. This is enforced by the rules compiler. All relationships between the
device id layers and the other layers should be defined by the device recognition
rule. The node numbers of each shape on a device id_layer should be unique
and distinct from the node numbers of the terminals of the device.

See Electrical
Connections on
page 95 for
details on how
electrical
connections are
formed from the
propagation of
node numbers
through
touching shapes
on layers which
appear in
CONNECT
rules.

NLE Circuit Recognition: Device Recognition

108 NLE and LVS User Manual

Example: INPUT LAYER {
1 DIFF
2 POLY
10 WELL
3 WIRES
6 CONTACTS

}
SCRATCH LAYER {

SRC_DRN
GATE

}
GATE = DIFF AND POLY;
SRC_DRN = DIFF AND NOT POLY;

CONNECT WIRES SRC_DRN BY CONTACTS
CONNECT WIRES POLY BY CONTACTS

The example above is a typical set of layer generation and connection rules for
NMOS device recognition. GATE will be used as the device recognition
id_layer. Note that the GATE layer is not used in a CONNECT rule.

The POLY layer does not have the DIFF layer subtracted from it. The POLY
layer remains a conductor even where it is crossed by a shape on DIFF. The
POLY layer is not connected to GATE in a CONNECT rule, the electrical
relationship will be defined by the device recognition rule.

Note also that the SRC_DRN layer is used in a CONNECT rule instead of DIFF.
Once the GATE and SRC_DRN layers are generated from DIFF, the DIFF layer
will not be used for any further processing. If DIFF was considered a conductive
layer, the source and drain of each NMOS device would be shorted.

If you are recognizing more than one type of device, the order in which you write
the device rules usually does not matter. Shapes on id_layer recognized as one
device type are not removed from consideration for other device rules. However,
when a single polygon on id_layer is used to form two different devices, you will
get an error message.

AfterBefore

SRC DRNDIFF

POLYPOLY

WELL

GATEWELL

Figure 45: Device layers before
and after layer processing.

See the
corresponding
NMOS device
recognition rule
on page 115.

NLE Circuit Recognition: Device Recognition

NLE and LVS User Manual 109

The other layers the id_layer has an electrical relationship to must be listed in
the device rule layer definition lines and in a pin (i.e. terminal) list which defines
how connections to these other layers are stored as the pins of the device. The
node numbers of the shapes on the other layers will be listed as the pins of the
device in the binary layout netlist that is passed to the LVS.

It is highly recommended that you write the layer processing rules so that each
unique device type has its own id_layer. Then you can verify that all shapes on
each id_layer form valid devices by using the [ERR = error_layer] parameter
in the device rules.

You must use an OUTPUT LAYER rule to define error_layer, if you want the
presence of shapes on the layer to be reported in the log as errors. If error_layer
is defined with a SCRATCH LAYER rule, shapes on id_layer which do not form
valid devices will still be copied to error_layer, but no errors or warnings will be
mentioned in the log file. You can use error_layer in other rules, including
other device recognition rules. If the error_layer is a scratch layer, and you do
not use it in some subsequent rule, the rules compiler will warn you when you
compile the rules file.

If you do not use the [ERR = error_layer] parameter in your device rules,
shapes on id_layer which do not form valid devices will simply be ignored, and
usually no warning messages will be created. However, if you add the
LOGBAD keyword to the NLE command line, the log file will have a message
printed for each shape on id_layer that does not form a valid device. See page
175 for details.

The NLE does not extract the dimensions of devices recognized by the general-
purpose DEVICE rule unless you use the WIDTH or AREA keywords. If the
dimensions of the device are not recognized by the NLE, and the value of the
device is not specified with a label (see page 346), the NLE will record a value
of 0 for the device in the layout netlist. When this is the case, the default value
in the corresponding device model will be used as the value of the device by the
LVS.

It is possible,
but almost
always an error,
to have one
shape on
id_layer form
two different
devices. See
the NO_DUP-
_ID_CHECK
command line
option to see
how the NLE
tests for this
problem.

See page 243
for details on
setting default
values in a
device model.

NLE Circuit Recognition: Device Recognition

110 NLE and LVS User Manual

If the NLE is instructed to recognize area, the area and perimeter of the polygon
will be recorded in the layout netlist. The LVS will use the area and perimeter in
combination with device characteristic parameters in the device model to
calculate the value of the device.

When you instruct the NLE to recognize
device width and length, the NLE must
be able to recognize 2 end-sides of the
polygon on id_layer. End-sides are
defined as the sides of the id_layer
polygon that touch polygons on an
end_layer. Figure 46 demonstrates this
concept. The id_layer is GATE and the
end_layer is SRC_DRN. The width is
the average length of the two end-sides.

To enable end-sides to be recognized, the
touching rule is more restrictive when the
width and length are extracted. Three
additional constraints are imposed:

Exactly two polygons
on end_layer must touch the polygon on id_layer. (If you
define 2 different end layers, the polygon on id_layer must
touch exactly 1 polygon on end_layer_1 and 1 polygon on
end_layer_2.)

The polygon on id_layer must not overlap the polygons on
the end_layer (or end layers).

The entire end-sides of the polygon on id_layer must be
touching sides of the polygons on end_layer.

See the
descriptions of
the device rules
below to learn
when width or
area will be
extracted.

POLY

SRC_DRN

GATE

width

end-sides

length

Figure 46: Width recognition of
device.

NLE Circuit Recognition: Device Recognition

NLE and LVS User Manual 111

Devices 1, 2, and 3 in Figure 47 meet the above criteria. Device 4 is invalid
because the entire end-sides of the polygon on the DEV layer are not touching
the sides of the polygons on layer END. Device 5 is invalid because the polygon
on layer DEV overlaps the polygons on layer END. While device 6 is more
complex, the problem is similar to device 4. There is no way to determine end-
sides of the polygon on DEV that are coincident with sides of polygons on END.

When width is recognized, the device dimensions are calculated as follows:

width = (sum of the length of the end-sides of the id_layer polygon) / 2

length = area of id_layer polygon / width.

If the polygon on id_layer is rectangular, both end-sides are equal, and width is
equal to the end-side length.

DEV END

Valid Valid Valid Invalid Invalid Invalid
1 2 3 4 5 6

Figure 47: Examples of valid and invalid devices when device width and length are
extracted.

See page 118 to
learn how to
extract a width
for devices like
number 6.

NLE Circuit Recognition: Device Recognition

112 NLE and LVS User Manual

The polygon on
id_layer does not
need to be rec-
tangular to extract a
length and width.
No warning mes-
sage will be
reported for non-
rectangular devices.
The width will be
calculated as the
average side length
instead of the
length of one of
two equal sides.

The non-rectangular transistor
shown in Figure 49 has two end-
sides that are 25 units each. The
width of the device will be 25.
Since the area of the device is
50, the length will be:

50
25 = 2

There are 3 device recognition
rules. The general-purpose
DEVICE rule can be used to
recognize a wide variety of
combinations of layers,
especially when combined with
layer processing to restrict the
id_layer. The TRANSISTOR
and CAPACITOR rules are really just shorter ways to write DEVICE rules for
these types of devices. Both the TRANSISTOR and CAPACITOR rules will
perform the same processing as a DEVICE rule, they are just easier to write.

end-side length =

 5 + 5 = 7.071
2 2

width =
7.071 + 5
 2 = 6.0355

length =
 37.5
6.0355

area = 37.5

= 6.2132

DEV END

5

Figure 48: Length and width calculation for non-
rectangular device.

If you have very
unusual non-
rectangular
devices, the
NLE may
calculate the
dimensions
incorrectly.
You can prevent
the LVS from
using the
dimensions of
these devices by
using the
REST=NO
parameter on
the device
model. See
page 241.

ENDDEV

end-side
length = 25

Figure 49: Non-rectangular transistor

You can adjust
the width of
non-rectangular
devices for the
LVS with the
BENDS
keyword in the
layout device
model.

NLE Circuit Recognition: The DEVICE Rule

NLE and LVS User Manual 113

The General Purpose DEVICE Rule

DEVICE model_name ID = id_layer [/AREA] [ERR = error_layer] {

layer_n number_touching/NODE multiple lines OK

or
layer_n number_touching/POLYGON multiple lines OK

or

end_layer [2]/WIDTH [/EPS=spacing_tolerance] at most 1 line

or
end_layer_1 1/WIDTH [/EPS=spacing_tolerance]
end_layer_2 1/WIDTH

or
active_layer [1]/AREA at most 1 line

PINS = pin_layer_1 [, pin_layer_2 [..., pin_layer_n]]
}

A device is defined as a polygon on id_layer touching the right number of
objects on other specified layers. The objects can be counted one of two ways:
by polygon or by node.

When you use the POLYGON keyword, every physically separate polygon on
layer_n is counted as an object. The NODE keyword is used when you want to
count separate polygons as the same object if they are electrically connected
(according to the electrical connection rules used in the rule set). The NODE
keyword can be useful when you want to exclude or identify devices with
shorted terminals.

when used,
only one
dimension
specification
is allowed

at most 1 pair

You should
read Device
Recognition,
beginning on
page 105, to see
how device
recognition
depends only on
which shapes
touch each
other.

NLE Circuit Recognition: The DEVICE Rule

114 NLE and LVS User Manual

You can use multiple lines to define several different layer specifications. If you
prefer to write the DEVICE rule all on one line, you must use semicolons (';') as
delimiters between the layer specifications. When each layer specification is on
a separate line, no semicolons are required. The order of the layer specification
lines is unimportant. The order of the terminals is determined by the parameters
after the required PINS keyword.

In a single DEVICE rule, you can use several layer specification lines with the
NODE or POLYGON keywords. In addition, you can add a layer specification
using the AREA or WIDTH keywords to extract device dimensions. Only one
dimension specification is allowed. Details on dimension specifications will be
covered a little later.

The PINS keyword is required. You must specify at least one pin layer.
Specify layers used in the layer specification lines. There is no upper limit for
the number of pins for a device. Each layer_n can be mentioned up to
number_touching times in the PINS statement. For example, if you have defined
the device as touching 2 shapes on the SOURCE_DRAIN layer, you can mention
SOURCE_DRAIN twice in the terminal list defined with the PINS keyword.

The nodes electrically connected to the polygons on the indicated layers will be
listed as the terminals for the device in the layout netlist. If a layer is mentioned
more than once in the PINS list, the order of the terminals connected to that layer
is arbitrary.

You do not need to list every layer used in the device rule as a pin_layer. Nodes
connected to polygons on layers not in the list after the PINS keyword will be
ignored.

For an example
of the use of the
NODE
keyword, see
page 135.

You can use the
NUMBER_OF-
_PINS_FOR-
_device LVS
control file
option to
compare
devices with
different
numbers of
terminals in the
two netlists.

NLE Circuit Recognition: The DEVICE Rule

NLE and LVS User Manual 115

Example: INPUT LAYER {
1 DIFF
3 POLY
10 WELL

}
SCRATCH LAYER SRC_DRN; GATE;

GATE = DIFF AND POLY
SRC_DRN = DIFF AND NOT POLY

DEVICE NMOS ID = GATE {
POLY 1/POLYGON
SRC_DRN 2/POLYGON
WELL 1/POLYGON
PINS = SRC_DRN, POLY, SRC_DRN, WELL;

}

This set of rules will recognize typical
NMOS devices. An NMOS device is
defined as a polygon on the id_layer
GATE that touches:

1 polygon on layer POLY
2 polygons on layer SRC_DRN

and
1 polygon on layer WELL

These NMOS devices will have 4 ter-
minals. The terminals will be stored in
the order indicated. It is arbitrary which
polygon on SRC_DRN is used for ter-
minal 1 and which is used for terminal 3.

The optional [ERR = error_layer]
parameter is used to store all shapes on id_layer which do not meet the device
specifications. If error_layer is defined by an OUTPUT LAYER rule, rather
than a SCRATCH LAYER rule, all shapes on error_layer will be reported as
errors in the summary in the log file.

AfterBefore

SRC DRNDIFF

POLYPOLY

WELL

GATEWELL

Figure 50: Device layers before
and after layer processing.

See page 109
for more details
on using the
ERR keyword.

NLE Circuit Recognition: The DEVICE Rule

116 NLE and LVS User Manual

If we add the [ERR=error_layer] parameter to the device rule in the previous
example, the first line would look like:

Example: DEVICE PMOS ID=GATE, ERR=BAD_GATE {

In this case, the invalid device shown
in Figure 51 will be flagged as an
error. The shape on GATE will be
copied to the BAD_GATE layer in
the output command file. This is due
to the fact that this GATE shape
touches only one SRC_DRN shape.

When you want to recognize device
width and length, you must use the
WIDTH keyword. In order to
calculate device width, the NLE must
be able to recognize 2 end-sides of
the polygon on id_layer. End-sides
are defined as the sides of the
id_layer polygon where it touches the
edges of polygons on an end_layer.
See page 110 for details on the
restrictions added to the touching rule
to allow end-sides to be recognized
when the WIDTH keyword is used.

You can use the 2/WIDTH option on one layer specification to indicate that the
shape on id_layer should share 2 end-sides with separate polygons on a single
end_layer. You can instead define 2 different end layers by using the 1/WIDTH
option on exactly two layer specification lines. (See an example on page 117.)

If you use the end_layer [2]/WIDTH syntax for one layer specification, the
optional '2' before the slash is for readability only. Even when no number is
provided, the rules compiler assumes that the 2 is present if only one WIDTH
keyword is used in the DEVICE rule. In this case, the id_layer polygon must
touch 2 polygons on end_layer.

WELL

SRC DRN

POLY

GATE

DIFF

POLY

WELL

AfterBefore

Figure 51: Invalid PMOS device
before and after layer processing.

See page 189
for details on
using the
ICED32™ editor
to locate shapes
on error layers.

You can add a
tolerance to
relax these
constraints.
Read about the
EPS keyword
below.

You can use the
LOFFSET and
WOFFSET
keywords in the
LVS device
models to
account for
technology
shrinking or
bloating of
device
dimensions.

NLE Circuit Recognition: The DEVICE Rule

NLE and LVS User Manual 117

Layer specifications using the WIDTH keyword can be combined with any
number of layer specifications using the POLYGON or NODE keywords.

Example: DEVICE NMOS ID=GATE, ERR=BAD_GATE {
POLY 1/POLY
SRC_DRN 2/WIDTH
PWELL 1/POLY
PINS=SRC_DRN, POLY, SRC_DRN, PWELL;

}

The DEVICE rule above will recognize
NMOS devices and extract their length
and width. Polygons on layer GATE that
do not form valid devices will be copied
to layer BAD_GATE and will be
reported as errors in the NLE log file.
Note that the POLYGON keyword can be
shortened to POLY.

The following example demonstrates a
device with two different end_layers. If
the source and drain of a NMOS device
are on different layers, you must use the
1/WIDTH syntax on both of these layer
lines to identify the two end-layers.

Example: DEVICE SD_NMOS ID=GATE {
POLY 1/POLY
SOURCE 1/WIDTH
DRAIN 1/WIDTH
WELL 1/POLY
PINS= SOURCE, POLY, DRAIN, WELL

}

The next two examples demonstrate different methods of recognizing resistors.
There are two common problems for recognizing resistors. The first problem is
that resistors are often formed from conductive material. If the shape that forms
the resistor is not removed from the conductive layer, the resistor shape will
short the terminals.

The error_layer
must be defined
as an output
layer for shapes
on that layer to
be reported as
errors in the log
file.

POLY

SRC_DRN

GATE

width

end-sides

length

Figure 52: Width recognition of
device.

NLE Circuit Recognition: The DEVICE Rule

118 NLE and LVS User Manual

The other problem is that the resistor shape usually extends around the contacts
that form the terminals of the device. If the NLE cannot find end-sides of the
resistor shape, it cannot extract a width.

Look at Figure 53. This
resistor has a typical layout.
A POLY_IN rectangle has a
contact at each end.
However, the NLE cannot
extract a width for the
POLY_IN rectangle because
the CONTACTS shapes are
covered by POLY_IN. There
are no end-sides coincident
with an end-layer.

The first method to recognize
this resistor requires no extra shapes on non-design layers to allow end-sides to
be formed. The IN_CELL rule will be used to separate layer POLY from the
resistor layer. This method makes use of the fact that the contacts are exactly 2
units away from the edges of the POLY_IN layer.

POLY_IN

CONTACTS

Figure 53: Cell RESCELL

NLE Circuit Recognition: The DEVICE Rule

NLE and LVS User Manual 119

Example: INPUT LAYER 3 POLY_IN; 6 M1; 8 CONTACTS
OUTPUT LAYER 100 POLY; 102 POLY_RES;
SCRATCH LAYER POLY_RES_TEMP; CONT_BLOAT

CONT_BLOAT = BLOAT (CONTACTS, 2.0)

POLY_RES_TEMP = POLY_IN IN_CELL RESCELL
POLY_RES = POLY_RES_TEMP AND NOT CONT_BLOAT
POLY = POLY_IN AND NOT POLY_RES

CONNECT POLY M1 BY CONTACTS

DEVICE PRES ID=POLY_RES
POLY 2/WIDTH
PINS = POLY, POLY

}

When the above set of rules is run on a copy of RESCELL added to a design cell
with metal wires, the layers used for the CONNECT and DEVICE rules will
look like Figure 54.

Note that the rule set removes the resistor layer, POLY_RES, from the POLY
layer. This prevents the resistor from forming a short between NETA and
NETB.

You use the
R_CONTACT
and
OHMS_PER-
_SQUARE
keywords in the
layout netlist
device models
to allow the
LVS to
calculate
resistance from
the resistor
dimensions.

NLE Circuit Recognition: The DEVICE Rule

120 NLE and LVS User Manual

The shape on POLY_RES
now has end-sides the NLE
can recognize for device
dimensions. Since this
resistor is rectangular, the
length of the resistor is the
distance between the end-
sides. (Note that you may
want to correct the length for
the LVS. See below.)

When the contacts are bloated
by 2.0, they cover the ends of
the POLY_IN rectangle
exactly, leaving an exact
rectangle of POLY_RES
when they are used to etch the POLY_RES_TEMP layer.

Since each end-side of the POLY_RES shape is now 2 units distant from the
contacts, you must correct the resistor length in the LVS device model to get
accurate device dimensions. The LOFFSET keyword is used to correct device
length before the value of the resistor is calculated. The value supplied with the
LOFFSET keyword is added to the length the NLE reports. Use a value of 4 to
account for the fact that the NLE will measure the length 4 units too short (2
units on each end).

*.LAYMODEL PRES RES LOFFSET=4.0
*+ R_CONTACT=10 OHMS_PER_SQUARE=1000

M1

CONTACTS

POLY
POLY_RES

end-sides

Figure 54: Cell RESCELL added to main cell
after layer processing.

See page 235
for complete
details on how
to use the
LOFFSET
keyword.

NLE Circuit Recognition: The DEVICE Rule

NLE and LVS User Manual 121

The other method for resistor
recognition avoids the length
miscalculation, but you must
add a shape on a dummy
layer to RESCELL. Add this
shape carefully, since it will
affect device dimensions. An
error on this layer may cause
errors in your layout netlist.

The following rule set uses
the shape on RES_MASK to
separate the POLY layer from
the POLY_RES layer.

Example: INPUT LAYER 3 POLY_IN; 6 M1; 8 CONTACTS; 50 RES_MASK
OUTPUT LAYER 100 POLY; 102 POLY_RES;

POLY_RES = POLY_IN AND RES_MASK
POLY = POLY_IN AND NOT RES_MASK
CONNECT POLY M1 BY CONTACTS

DEVICE PRES ID=POLY_RES
POLY 2/WIDTH
PINS = POLY, POLY

}

This rule set is much simpler,
but since a shape on a non-
design layer is used, errors on
that layer will create false
errors in the layout netlist.
For example, if you stretch
the design layers in the resis-
tor, but forget to stretch the
RES_MASK shape, the NLE
dimensions of the modified
resistor will remain un-
changed, even though the true dimensions have changed.

POLY_IN

RES_MASK

CONTACTS

Figure 40: Cell RESCELL with shape on
RES_MASK layer

M1

CONTACTS

POLY

POLY_RES

end-sides

Figure 55: Modified RESCELL added to main
cell after layer processing.

You should
verify non-
design layers
that affect
device
recognition as
carefully as
design layers.

NLE Circuit Recognition: The DEVICE Rule

122 NLE and LVS User Manual

When you need to move the area that represents a device from a conductive layer
to a device id_layer, you must be careful to avoid preventing shorts from being
found. Picture a piece of POLY wire passing across a resistor in error. This
would form a short between the resistor and the POLY wire. Either of the
methods for resistor recognition we just covered would prevent the netlist from
indicating the short, since the POLY wire would touch the POLY_RES layer, not
the POLY layer. However, the error would still be caught. The POLY_RES
shape would now touch the wrong number of shapes on POLY. The
POLY_RES shape would not form a PRES device. If you do not use the ERR
keyword in the DEVICE rule, no error message would be generated, but the
device would be missing from the layout netlist and the LVS would fail to match
the circuit. It may take some investigative work at this point to find the problem
in the layout.

To insure that such obvious layout problems are not so difficult to find, you
should always add the ERR keyword to your device rules. Always be very
cautious when removing material from a conductive layer to insure that
accidental shorts will be reported.

The polygon on
id_layer does not need
to be rectangular to
extract a length and
width. No warning
message will be
reported for non-
rectangular devices. (If
the end-sides are not
equal, the width will be
calculated as the
average end-side length
instead of the length of
one of two equal end-
sides.)

See page 100
for more infor-
mation on
removing area
from conductive
layers.

If you do not
consider the
length of the
centerline to be
the length of a
device with
bends, use the
BENDS_CR
keyword in the
LVS device
model.

end-sides

length
of
center-
line is
 area
width

RES_MASK POLY_RESPOLY CONTACT
S

width
is
length
of end-
side

Figure 56: Non-rectangular resistor.

NLE Circuit Recognition: The DEVICE Rule

NLE and LVS User Manual 123

The optional [/EPS = spacing_tolerance] parameter used with the WIDTH
keyword allows you to relax the requirement that the entire end-sides of the
polygon on id_layer must be touching sides of the polygons on an end_layer.
The EPS keyword is intended to ease recognition of non-rectangular devices or
rectangles that are not square with the axes (non-manhattan layouts). Shapes
like these may fail to meet the exact touching rule due to errors introduced
through floating point calculations or vertex approximations.

When the EPS keyword is used, the end-sides of the shape on id_layer must be
within spacing_tolerance ICED32™ units of the shapes on an end_layer.

Example: DEVICE TEST_WIDTH ID=DEV, ERR=BAD_DEV {
END 2/WIDTH, EPS= .6
PINS= END, END;

}

This rule will allow
devices with small
spacing problems like
those shown in Figure 57
to be recognized as valid
devices. However,
device number 1 will not
be recognized because it
does not meet the primary
criteria for device
recognition, the DEV
shape does not touch the
right number of shapes on layer END. The shape on layer DEV must touch two
shapes on layer END to be a candidate for device recognition by the above rule.

The AREA keyword is used to recognize the area and perimeter of devices.
When you add the AREA keyword after the id_layer parameter, the area and
perimeter of the device will be calculated from the polygon on id_layer. If you
add the AREA keyword to a layer definition line, the polygon on that layer will
be used to calculate the area and perimeter of the device.

1 2 3

DEV END

Invalid Valid Valid

Figure 57

NLE Circuit Recognition: The DEVICE Rule

124 NLE and LVS User Manual

DEVICE LATERAL_BIPOLAR ID=BASE {
EMITTER 1/AREA
COLLECTOR 1/POLYGON
PINS = COLLECTOR, BASE, EMITTER;

}

For this example, let us say that in your bipolar technology, the emitter shape in
a lateral transistor does not touch the collector shape, however the base shape
touches both. The area of the emitter should be recognized as the area of the
device. You cannot use the emitter layer as the id_layer since it does not touch
the collector layer. You must use the base layer as the id_layer, then use the
AREA keyword on the emitter line to use the shape on that layer for the area of
the device.

NLE Circuit Recognition: The TRANSISTOR Rule

NLE and LVS User Manual 125

Specific Device Rules

TRANSISTOR model_name ID = id_layer [ERR = error_layer] {
GATE = gate_terminal_layer
S$D = source/drain_layer [/POLYGON] [/NODE]
BULK = bulk_layer

}

The TRANSISTOR rule is a shorter way to write a DEVICE rule for transistor
recognition. A transistor is formed from a polygon on id_layer that touches:

1 polygon on gate_terminal_layer
2 polygons or nodes on source/drain_layer
1 polygon on bulk_layer (touch only not cover)

The definition of touch for the gate_terminal_layer and the bulk_layer is exactly
the same as the TOUCHING rule. The 2 shapes on the source/drain_layer must
meet additional criteria for width recognition. These criteria are covered on
page 110. For the TRANSISTOR rule, the source/drain_layer is the only end
layer and the shape on id_layer must touch exactly 2 shapes on that layer.

If your transistors cannot be described using these criteria, use the more
powerful DEVICE rule to recognize them. See page 113.

You must perform the layer processing to create the id_layer for transistor
recognition. You should not electrically connect the id_layer to any other layer.
The only connections should be through the device.

must use exactly one keyword

You should
read Device
Recognition,
beginning on
page 105, to
understand how
the NLE
recognizes
devices.

NLE Circuit Recognition: The TRANSISTOR Rule

126 NLE and LVS User Manual

Example: INPUT LAYER {
1 DIFF
3 POLY
10 WELL

}
SCRATCH LAYER SRC_DRN;
SCRATCH LAYER GATE;

GATE = DIFF AND POLY
SRC_DRN = DIFF AND NOT POLY

The transistor id_layer (GATE in this
example) should be subtracted from the
source/drain_layer (SRC_DRN). How-
ever, do not subtract the id_layer from
the gate_terminal_layer (POLY). The
gate_terminal_layer layer remains a
conductor even where it crosses a
diffusion shape.

Once the layer processing is performed to form the device id_layer and the
source/drain_layer, the TRANSISTOR rule can be used.

Example: TRANSISTOR NMOS ID = GATE {
GATE = POLY
S$D = SRC_DRN /POLYGON
BULK = WELL

}

This TRANSISTOR rule is exactly equivalent to the following DEVICE rule:

DEVICE NMOS ID=GATE {
POLY 1/POLYGON
SRC_DRN 2/WIDTH
WELL 1/POLYGON
PINS = SRC_DRN, POLY, SRC_DRN, WELL;

}

Before After

POLY POLY

WELL

WELL

DIFF SRC_DRN

GATE

l

w

end-
sides

Figure 58: Layer processing before
transistor recognition.

NLE Circuit Recognition: The TRANSISTOR Rule

NLE and LVS User Manual 127

The id_layer for the TRANSISTOR rule in the example above is the GATE
layer. A shape on that layer which touches exactly one polygon on layer POLY,
two polygons on layer SRC_DRN, and one polygon on layer WELL will be
recognized as an NMOS device.

You do not need to specify the PINS keyword in a TRANSISTOR rule. The
NLE will automatically store the device with the terminals in the following
order: source/drain_layer node 1, gate_layer node, source/drain_layer node 2,
bulk_layer node. The order of the two source/drain terminals is arbitrary.

The device dimensions are extracted from the layout. To determine device
width, the id_layer polygon must share an entire end-side with each of the two
shapes on the source/drain_layer. The width will be the average length of the
two end-sides of the polygon on GATE where it shares sides with the polygons
on layer SRC_DRN. (See Figure 58 on the previous page.)

The restrictions on how the shapes must touch are the same as those required
when using the WIDTH keyword of the DEVICE rule. See page 110 for
examples and for details on how the dimensions are calculated from the layout.
Unlike the DEVICE rule, the device dimensions will be calculated automatically
despite use of either the POLYGON or NODE keywords.

The polygon on id_layer does not need to be rectangular. See page 112 for an
example of a valid, non-rectangular transistor.

You must use either the NODE or the POLYGON keyword on the S$D line of
the TRANSISTOR rule. The POLYGON keyword forces the NLE to recognize
as transistors shapes on id_layer which touch exactly two polygons on the
source/drain_layer. Even if the two polygons are shorted so that they represent
the same node, the device will be recognized as a transistor.

The NODE keyword will prevent devices with a short between the source and
drain from being recognized as transistors. However, not all shapes on id_layer
which touch exactly two nodes on the source/drain_layer will be recognized.
The restrictions enforced for width recognition still apply.

You can use the
NUMBER_OF-
_PINS_FOR-
_device LVS
control file
option to
compare 4
terminal
transistors in the
layout netlist to
3 terminal
transistors in the
schematic
netlist.

The LVS device
filters can be
used to force
transistors with
shorted
terminals to be
ignored in the
layout netlist.

NLE Circuit Recognition: The TRANSISTOR Rule

128 NLE and LVS User Manual

Example: INPUT LAYER {
1 DIFF
2 POLY
3 WELL
4 WIRE
5 CONT

}

SCRATCH LAYER {
 GATE
 SRC_DRN

}

GATE = DIFF AND POLY;
SRC_DRN = DIFF AND NOT POLY;

CONNECT SRC_DRN WIRE BY
CONT;

TRANSISTOR TYPE1 ID = GATE {
 GATE= POLY;
 S$D = SRC_DRN /NODE;
 BULK= WELL;
}

If the rule set above is run on the layout shown in Figure 59, only the device in
the middle would be recognized as a TYPE1 transistor. Device 1 is not valid
since the two shapes on the source/drain_layer are shorted and represent only a
single node. Device 3 is not recognized even though it does touch 2
source/drain_layer nodes. This is due to the fact that the shape on the id_layer
does not share exactly 2 end-sides with shapes on the source/drain_layer. The
sharing of end-sides is required for width recognition.

If the POLYGON keyword was used on the S$D line in the TRANSISTOR rule
above, device 1 in Figure 59 would be recognized even though the source and
drain are shorted to form one node.

POLY

DIFF

CONT

WIRE

WELL

2 31

Figure 59: Potential transistors.

For another
example of the
use of the
NODE
keyword, see
page 135.

NLE Circuit Recognition: The TRANSISTOR Rule

NLE and LVS User Manual 129

The optional [ERR = error_layer] parameter is used to store all shapes on
id_layer which are not recognized as valid transistors. If you use an OUTPUT
LAYER rule to define error_layer, the existence of any shapes on error_layer is
reported in the NLE log file as an error. If you use a scratch layer for
error_layer, usually no errors will be reported in the log.

Example: TRANSISTOR NMOS ID=NGATE, ERR=BAD_NGATE {
GATE = POLY
S$D = SRC_DRN /POLYGON
BULK = PWELL

}

You should not assume that the TRANSISTOR rule is verifying all transistor
design rules. For instance, the TRANSISTOR rule requires only that the id_layer
shape touch a shape on the bulk_layer. Device 1 in Figure 44 on page 106,
where the shape on id_layer is not covered by bulk_layer, is still a valid
transistor. To insure that the bulk_layer covers all devices completely, you could
restrict the id_layer to shapes that are covered by bulk_layer. However, this
extra step will add to your NLE run time. You should verify this sort of design
rule in a separate run, preferably with the DRC program available separately
from IC Editors, Inc.

The NLE
command line
option
LOGBAD will
add to the log
file the
coordinates of
each shape on
id_layer that
does not form a
valid device.
See page 175.

NLE Circuit Recognition: The CAPACITOR Rule

130 NLE and LVS User Manual

CAPACITOR model_name ID = id_layer [ERR = error_layer] {
PLUS = plus_layer
MINUS = minus_layer

}

The CAPACITOR rule will recognize polygons on id_layer as devices when the
id_layer polygon touches exactly 1 polygon on plus_layer and 1 polygon on
minus_layer. This rule is simply a shorter way of writing a DEVICE rule.

Example: CAPACITOR MY_CAP ID=CAP {
PLUS = M1
MINUS = M2

}

is equivalent to:

DEVICE MY_CAP ID=CAP/AREA {
M1 1/POLYGON
M2 1/POLYGON
PINS=M1, M2;

}

If your capacitors cannot be described using this simplified rule, use the more
powerful DEVICE rule to recognize them. (See page 113.) However, you
should still read the rest of this description for some important capacitor
examples.

Capacitors present special problems for device recognition. The layout
combinations that produce capacitors often occur in other places in the design
where you do not want them to be considered capacitors. Sometimes the shapes
on id_layer are used to create transistors. You want a transistor recognized as a
capacitor only when the source and drain of the transistor are shorted. We will
cover this scenario a little later. The other problem is when the same
combination of shapes can represent either a capacitor, or no electrical
relationship at all.

NLE Circuit Recognition: The CAPACITOR Rule

NLE and LVS User Manual 131

For example, you
design capacitors
by using large
rectangles of M1
and M2 on top of
each other. You
want the large
overlap of these
layers shown in
Figure 60 to be
recognized as a
capacitor, but you
want the chance
overlap of the two
wires in the upper
right to be ignored.

One way to
distinguish the large
overlap which
represents the capacitor from the small overlap of wires is to classify the overlap
by size using the BOUNDS rule.

Example: INPUT LAYER 2 M1; 3 M2;
SCRATCH LAYER MAY_BE_CAP; CAP_DEV;

MAY_BE_CAP = M1 AND M2
CAP_DEV = NOT BOUNDS (MAY_BE_CAP, (0:5, 0:5))

CAPACITOR MY_CAP ID=CAP_DEV {
 PLUS = M1

MINUS = M2
}

The rule set above will not copy the overlap of wires from the MAY_BE_CAP
layer to the CAP_DEV layer. However the larger common area of M1 and M2
which represents the capacitor is copied to the CAP_DEV layer. The CAP_DEV

M1

M2

CAP

Figure 60: Genuine capacitor and mere crossing of
wires.

NLE Circuit Recognition: The CAPACITOR Rule

132 NLE and LVS User Manual

layer is then used as the id_layer for the CAPACITOR rule. No shapes on non-
design layers (often called dummy layers) are required.
Another common method of capacitor recognition is to use a shape on a dummy
layer to identify the genuine capacitor from the mere crossing of wires. In
Figure 60, the dummy shape is on layer CAP. You would use the CAP layer as
the id_layer in the CAPACITOR rule. The following simple rule set below will
then recognize the large overlap as a capacitor and ignore the crossing of wires
entirely.

Example: INPUT LAYER 1 CAP; 2 M1; 3 M2;

CAPACITOR MY_CAP ID=CAP {
 PLUS = M1

MINUS = M2
}

However, this rule set has a problem. The area and perimeter of the shape on
id_layer are automatically passed to the LVS to calculate the value of the device.

When the shape on id_layer is only a dummy shape used to identify device
candidates, invalid dimensions may be passed to the LVS. You can use extreme
caution when adding the id_layer shapes to your design so that the shapes on
id_layer are always exactly the size of your device, or you can use clever layer
processing to insure that valid dimensions are passed.

Example: INPUT LAYER 1 CAP_ID; 2 M1; 3 M2;
SCRATCH LAYER MAY_BE_CAP; CAP_DEV;

MAY_BE_CAP = M1 AND M2
CAP_DEV = MAY_BE_CAP TOUCHING CAP_ID

CAPACITOR MY_CAP ID=CAP_DEV {
PLUS = M1
MINUS = M2

}

You use the
C_AREA and
C_PERIMETER
keywords in the
device model to
allow the LVS to
calculate the
value from the
area and
perimeter.

NLE Circuit Recognition: The CAPACITOR Rule

NLE and LVS User Manual 133

Using the above example will provide you with accurate capacitor dimensions,
but the extra processing of the MAY_BE_CAP layer will add to your run time.
If you try to save time by creating the CAP_DEV layer with the following line:

Example: CAP_DEV = M1 TOUCHING CAP_ID

you may get inaccurate dimensions. This is due to the fact that the entire M1
shape will be used as the id_layer, instead of the overlap of M1 and M2. If your
layout looked like Figure 60, the area and perimeter of the M1 wire extending
from the capacitor in the upper left will be included in the value of the capacitor.

If you prefer to use the area of the plus_layer or minus_layer as the area of the
capacitor without extra layer processing, you could also use the general DEVICE
rule instead of the CAPACITOR rule and specify the AREA keyword on an
appropriate line of the rule. The following rule requires no additional layer
processing, however since the area of any M1 attached to the device will be
included in the device calculation, it has the same problem as the previous
example.

Example: DEVICE MY_CAP ID=CAP_ID {
M1 1/AREA
M2 1/POLYGON
PINS=M1, M2;

}

However, if you lay out your capacitors so that the terminals attach only through
a contact or via layer, wires on the same layer will not affect the area of the M1
capacitor shape. When this is the case, the above example is an efficient method
of recognizing capacitors.

NLE Circuit Recognition: The CAPACITOR Rule

134 NLE and LVS User Manual

There is often a trade off in how careful you must be in writing your NLE rule
set verses how careful you must be in your layout. However, if you minimize
NLE run time with careful layout restrictions, you may still run into trouble.

The TOUCHING rule on the previous page:

CAP_DEV = MAY_BE_CAP TOUCHING CAP_ID

is somewhat more expensive in NLE runtime than the simple Boolean rule

CAP_DEV = MAY_BE_CAP AND CAP_ID

but the effects are very different. The TOUCHING rule makes the shape or size
of the dummy shape on the CAP_ID layer unimportant. If the AND rule is used
instead, the size and placement of the CAP_ID shape is critical, and mistakes on
this layer may cause problems that are never caught. Let say that you carefully
add the CAP_ID shape to be the same size as the M2 rectangle, but months later,
you edit the capacitor while the CAP_ID layer is blanked (i.e. not displayed).
Now the CAP_ID shape overlaps the capacitor only slightly. The NLE will not
generate any error messages. However, the area of the device passed to the LVS
will now be inaccurate.

One method which will insure accuracy, but which allows you to write an
efficient NLE rule set, is to create a separate NLE or DRC rule set which verifies
the accuracy of the non-design shapes you add to your layout. Run this rule set
less often, but be sure to run it on your final design.

For the example above, you could write the following rules in a separate rule set:

OUTPUT ERROR LAYER CAP_ID_ERR1; CAP_ID_ERR2

CAP_ID_ERR1 = CAP_ID AND NOT M1
CAP_ID_ERR2 = CAP_ID AND NOT M2

NLE Circuit Recognition: The CAPACITOR Rule

NLE and LVS User Manual 135

The optional [ERR = error_layer] parameter can be used to collect all shapes on
id_layer which do not meet the criteria that the shape on id_layer touches
exactly one shape on plus_layer and one shape on minus_layer. If error_layer
is defined with an OUTPUT LAYER rule, the existence of shapes on
error_layer will be reported as an error in the NLE log file. If error_layer is a
scratch layer, errors will usually not be reported.

When your capacitors are really shorted transistors, you can recognize them by
eliminating the transistors with a TRANSISTOR rule using the NODE keyword
then using the err_layer from that rule to recognize capacitors.

Example: INPUT LAYER 3 POLY; 1 DIFF; 4 WELL;
SCRATCH LAYER SRC_DRN; GATE; NMOS_CAP;

GATE = DIFF AND POLY
SRC_DRN = DIFF AND NOT POLY

TRANSISTOR NMOS ID=GATE, ERR=NMOS_CAP {
GATE = POLY
S$D = SRC_DRN /NODE
BULK= WELL

}

DEVICE MY_CAP ID=NMOS_CAP/AREA {
POLY 1 /POLYGON
SRC_DRN 1 /NODE
PINS = POLY, SRC_DRN:

}

When the source and drain of NMOS devices are shorted, there will be only one
SRC_DRN node touching the GATE, despite the fact that there may be two
SRC_DRN polygons touching GATE. When the NODE keyword is used on the
SRC_DRN line of the TRANSISTOR rule, shapes on layer GATE which have
their sources and drains shorted will be copied to layer NMOS_CAP rather than
forming valid NMOS devices. Since NMOS_CAP is defined with the
SCRATCH LAYER rule, no errors will be reported in the log.

The NLE
command line
option
LOGBAD will
add to the log
file the
coordinates of
each shape on
id_layer that
does not form a
valid device.
See page 175.

If you do want
shapes created
on a scratch
error layer to be
reported in the
log, add the
LOGBAD
keyword to the
NLE command
line.

NLE Circuit Recognition: The CAPACITOR Rule

136 NLE and LVS User Manual

The DEVICE rule then uses these leftover shapes from the GATE layer as the
id_layer for capacitor recognition. Since the valid capacitors have only one
SCR_DRN node, they will be recognized by the MY_CAP rule that specifies 1
SRC_DRN node.

If you used a CAPACITOR rule rather than the DEVICE rule with the NODE
keyword, devices that have the source and drain shorted with electrical
connections through other layers would not be found. Remember that the
CAPACITOR rule assumes the POLYGON keyword after the plus_layer and
minus_layer parameters. Therefore, the CAPACITOR rule can only recognize
devices where a single minus_layer polygon touches the id_layer. It will not
recognize devices where two separate polygons on the minus_layer touch the
polygon on the id_layer even though they may be the same electrical node.

NLE Circuit Recognition: The CAPACITOR Rule

NLE and LVS User Manual 137

NLE Circuit Recognition: Node Labels

138 NLE and LVS User Manual

Node Labels

There are three types of node labels recognized by the NLE.

Polygon ID Labels: These are used to label individual polygons.
These labels can be useful in diagnosing shorts and opens when
they are reported in ECC error messages.

LVS Node Labels: The extracted LVS netlist will contain a list of
these labels and the associated node numbers. Many LVS
functions use these node labels as the names of the nodes.
These labels may also contain special characters that control
how the node is treated by LVS circuit transformations.

ECC Node Labels: An LVS label on a layer specified in a LABEL
rule will also be used as an ECC label. These labels are used by
the ECC to determine the node names of electrically connected
nets. Two different labels on a single net will result in an error
message about the short. Two separate nets with the same ECC
node name will result in an error message about the open.

For a text component to be used as a label, it must either be created on a design
layer, or explicitly moved to a design layer in the NLE rule set. The ATTACH
TEXT rule is usually used to move text components to design layers. We will
cover this rule later.

Text components on a design layer are used as LVS labels by default, unless
they are identified as polygon id labels using a special prefix specified by the
COMMENT rule.

You will usually want to use the same text components as LVS labels and ECC
labels. This is easily accomplished. The LABEL rule will force the NLE to use
LVS labels on certain layers as both ECC labels and LVS labels.

You can also
use text
components in
the layout to
override the
measured
dimensions of a
device. See
page 346.

The DISJOINT
rule can be used
to allow virtual
connections of
separate nodes
for ECC
checking.

The TEXT
keyword of the
INPUT LAYER
rule can prevent
the LVS from
using labels on
a design layer.

NLE Circuit Recognition: Node Labels

NLE and LVS User Manual 139

You can label devices and/or nets. If an LVS label is on a device id layer, it will
be used to label the device in the layout netlist. If a label is on a component that
is part of an electrically connected net, it will be used to label the entire net.

The origin of the text component must be covered by the
shape it is meant to label. The origin of the text
component may be in any of nine locations on the text
component, depending on the value of the justification
code used to create it. The easiest way to determine the
origin of an existing component is to select it. The
origin will be indicated by a diamond shaped select
mark. (See the middle text component in Figure 61.)
The origin of the component must be within the
boundary of the component. The origin of the top label
in Figure 61 (justification code LB) is below the wire
and will not label it. The origin of the bottom label
(justification code RC) is to the right of the wire and will
not label it.

Labels are not hierarchical. All labels should be the
top-level cell. Labels in nested cells are ignored
unless you identify them as global labels. To
identify a text component on a net as a global label,
you must add a colon (':') as a suffix to the end of the
text component. The suffix will not be stripped from
the net name. The net name "VDD:" is not the same
as "VDD". You cannot use global labels to label
devices, only nets.

To see why labels in nested cells should be ignored,
look at the subcircuit in Figure 62. Note that two
nodes are labeled "IN" and "OUT". (All of these
labels use justification code CC so that the origins
are in the center of the text components.) If you use
this circuit 100 times in your design, you would get a
long list of false error messages about shorts and

Figure 61: Only the
middle label is
placed correctly.

See the ADD
TEXT
command in the
ICED32™
Layout Editor
Reference
Manual for a
list of
justification
codes.

The ECC will
warn you when
labels are
present in the
layout which do
not label
components.

Global labels
with a single
colon suffix
must be enabled
in the LVS
through the use
of the
RECOGNIZE_-
GLOBAL_-
TEXT_IN_-
SUBCELLS =
YES control file
option.

Figure 62: Subcircuit
with labels

NLE Circuit Recognition: Node Labels

140 NLE and LVS User Manual

opens since 100 separate nets would be labeled "IN", and 100 separate nets are
labeled "OUT".

Note that the power and ground labels in Figure 62, "VSS:" and "VDD:", use the
global net suffix. These labels should be used since all of the net fragments
labeled "VDD:" should be shorted in the higher level circuit. This will label the
same net 100 times with the same label, which is acceptable. In fact, having so
many labels on the net will help isolate shorts if they are present.

One of the important restrictions on labels is difficult to remember. All labels
must be 15 or less characters. Labels created from text components which are
longer than 15 characters will simply be ignored. No warning messages are
produced. Let's put this in capital letters so you do not forget.

ALL LABELS MUST BE 15 OR FEWER CHARACTERS

By default, the ECC will translate all labels to upper case. To force the ECC to
preserve lower case characters in labels, you must use the USE_CASE rule.
This rule is described on page 143.

To preserve the case of lower case characters in labels for the LVS, you can use
the LVS control file option "FORCE_ALL_LAYOUT_LABELS_TO_UPPER-
_CASE = NO". If you want all labels in the layout netlist translated to upper
case as the LVS reads the file, set this control file option to YES.

To create text
components
with lower case
characters in the
ICED32™
layout editor,
you must enable
lower case text
using the TEXT
command.

NLE Circuit Recognition: Node Labels

NLE and LVS User Manual 141

Rules Which Affect Labels

ATTACH TEXT text_layer design_layer_1 [design_layer_2 [... design_layer_n]]

This rule is used to move text components on text_layer to design layers.

All layers used with this rule must be scratch or output layers, since the
layers are modified by this rule and you are not allowed to modify input layers.
Text components will be removed from text_layer and added to the design
layers. See page 147 for an example of how to use this rule when you need to
modify input layers.

Only text components that have origins over a shape on one of the design layers
are moved. All non-text components on text_layer will remain on text_layer. All
text components on text_layer that are not over shapes on one of the specified
design layers will also remain on text_layer. Ordinarily, you will not be warned
that components remain on text_layer. However, if text_layer is an error layer,
the log will report shapes left on the layer as errors. Alternatively, you can add a
LABEL rule (see next rule) for text_layer. This will result in a detailed error
message for each text component left behind on the text_layer.

Example: ATTACH TEXT MY_TEXT_LAYER M1 M2 POLY

When this example of the ATTACH TEXT rule is used, all text components on
layer MY_TEXT_LAYER which have an origin over a shape on M1 will be
moved to the M1 layer. Any remaining text components on MY_TEXT-
_LAYER that have an origin over a component on the M2 layer are moved to
that layer. If there are any text components left on layer MY_TEXT_LAYER
and they have origins over a shape on POLY, they will be moved to layer POLY.
All remaining text components on TEXT_LAYER will remain on that layer.
Also, all non-text components will remain on MY_TEXT_LAYER.

Only a single design layer is required. You can use multiple ATTACH TEXT
rules in a rule set.

Note that the order of design layers in the ATTACH TEXT rule is significant. In
the previous example, if a text component on TEXT_LAYER was placed so that

Scratch layers
are defined by
the SCRATCH
LAYER rule
and output
layers are
defined by the
OUTPUT
LAYER rule.

The Boolean
rules (OR,
AND, etc.) and
the TEXT
keyword of the
INPUT LAYER
rule can also be
used to move
text components
to design layers.

NLE Circuit Recognition: Node Labels

142 NLE and LVS User Manual

its origin was over both a shape on M1 and a shape on layer POLY, it would be
removed from TEXT_LAYER and moved to layer M1 before the POLY layer is
processed. The text component will not label the shape on layer POLY.

[MUST] LABEL layer_1 [layer_2 [... layer_n]]

The LABEL rule is used to identify layers that may contain ECC node labels.
This is the only way to label nodes for ECC shorts and opens checking. You can
have multiple LABEL rules, or specify all layers in the same rule.

Example: LABEL M1 M2 POLY
LABEL SRC_DRN

The rules above will result in the NLE looking for labels on the M1, M2, POLY,
and SRC_DRN layers to label nodes for ECC checking. All labels on other
layers will be ignored by the ECC.

The text components should be on the design layers they are meant to label. If
you have created your text components on a different text layer, you must move
or copy them to the electrically connected design layers for the LABEL rule to
label the nodes. The text components must have origins over shapes they are
meant to label.

Any label that is not covered by a shape on the same layer will be mentioned in
the NLE log in an "Unattached text" message.

The location of the LABEL rule in the rule deck is not important. All LABEL
rules are executed at the end of the NLE run when the ECC checks are
performed.

The optional MUST keyword is used to require that every polygon on the layer
has a node label. This test is performed with the ECC checks.

Labels on
design layers
are always
passed to the
LVS regardless
of this rule.

For these labels
to be used, the
NOECC rule
must not be
used in your
rule set.

The ATTACH
TEXT rule is
the easiest way
to move text
components to
the layer they
are meant to
label.

NLE Circuit Recognition: Node Labels

NLE and LVS User Manual 143

USE_CASE

This rule is used to preserve the case of ECC node labels. By default, the ECC
translates all node labels to upper case before verifying shorts and opens. If you
want a net labeled "Abc" to be considered a different net than "ABC", you must
add the USE_CASE rule to your rule set. The location of the rule in the rule set
is unimportant.

The use of this rule also allows you to enter lower case or mixed case text in the
rules file for the DISJOINT and UNCONNECTED rules. Otherwise, strings in
these rules will be translated to upper case.

The use of this rule does not affect how text that creates LVS node labels is
stored in the output binary layout netlist. Node labels are always stored as typed
in the layout netlist. You can use the LVS control file option
FORCE_ALL_LAYOUT_LABELS_TO_UPPER_CASE = YES if you want all
labels in the layout netlist translated to upper case as the LVS reads the file.

COMMENT [=] comment_string

Use this rule to allow polygon id labels to be added on design layers rather than
on a separate layer specified with the ID keyword in an INPUT LAYER rule.
(See page 56.) Any label that uses comment_string as a prefix will be
considered a polygon id label and not an LVS or ECC label.

If you use this rule in your rule set, use it only once.

This differentiation of labels through use of a prefix is not DRACULA5

compatible.

5 DRACULA is a registered trademark of Cadence, Inc.

NLE Circuit Recognition: Node Labels

144 NLE and LVS User Manual

SAVE layer_1 [layer_2 [... layer_n]]

and

NO_SAVE layer_1 [layer_2 [... layer_n]]

These rules are not truly label rules. They affect the generation of the node
outliner file. This file is automatically generated by the NLE. The data in the
file is used by the ICED32™ layout editor to generate shapes on a temporary
layer that outline specific devices or entire electrically connected nets using the
node outliner commands.

By default, all layers used in connection rules or in device rules will be copied to
the database saved in the file. When the node outliner commands are used to
generate the outline of an entire net, copies are made of every shape on the net
including contacts, vias, etc.

For large chips, the size of this file may be excessive. If you want to restrict the
layers that are saved in the node outliner file, you can use either of these rules.

The SAVE rule will restrict the layers saved to those layers mentioned in the
rule. Be sure to include all wire layers and all device layers, or the node outlines
will be broken and difficult to follow.

Example: SAVE M1 M2 POLY GATE SRCDRN

The NO_SAVE rule will save all layers the NLE would save by default, except
for those listed in the rule. This is usually the better method to restrict layers in
the node outliner file. Include layers that would not aid you in tracing a net or
finding a device, such as contact and via layers.

Example: NOSAVE CONTACTS VIA1 VIA2

The node
outliner
commands are
described in
detail on page
389.

NLE Circuit Recognition: Node Labels

NLE and LVS User Manual 145

Uses of the Three Types of Labels

Polygon ID Labels LVS Node Labels ECC Node Labels

Propagate
through electrical
connections?

No Yes Yes

Used by ECC? To label individual
polygons in error
messages

 No To identify separate
nodes for shorts and
opens checking

Used by LVS? No To label nodes in
extracted netlist

Yes, since an ECC
label is always used as
an LVS label.

How do I move
text to a design
layer and then
use it as a label,
when text is on a
different layer
than design
layer?

INPUT LAYER
ID keyword

or

ATTACH TEXT rule
and

COMMENT prefix

INPUT LAYER TEXT
keyword

or

ATTACH TEXT rule

INPUT LAYER TEXT
keyword

and
LABEL rule

or

ATTACH TEXT rule
and

LABEL rule

When will text
components in a
top-level cell on a
design layer be
used as labels?

Only if COMMENT
prefix is used

Always, as long as the
TEXT keyword is not
used in the INPUT
LAYER rule, and the
COMMENT prefix is
not used

Only when the layer is
specified with the
LABEL rule and the
COMMENT prefix is
not used.

NLE Circuit Recognition: Node Labels

146 NLE and LVS User Manual

Any text component on a design layer that uses the COMMENT prefix will be
considered a polygon id label rather than an LVS or ECC label. These labels are
used to identify individual polygons rather than entire nets. These labels will be
used in ECC error messages about shorts and opens in your circuit. They can
help you to locate the problem by identifying which shapes are included in a net
and which are not.

Example: COMMENT = @
LABEL M1 M2
CONNECT M1 AND M2 BY VIA

If the rules above are used to
generate the electrical
connections for a circuit with
a short between two nets
labeled "NETA" and
"NETB", the NLE ECC
checks will produce error
messages similar to Figure 63.
If several shapes on each net
have polygon id labels with a
prefix of '@', these labels will
not name the net, but they can
be used to help isolate the
short. From looking at the
report, we can see that NETA
shorts to NETB through a
shape with the polygon id
label @NETB_12. You can
follow the path of the short
from the coordinates listed,
even if the circuit contains no
polygon id labels, but it might
be harder to locate the error.

The comment
prefix is set
with the
COMMENT
rule.

Path from NETB to NETA----
Step 1---
 NETB at (46.5, -289), Cell NLETEST
Step 2---
 Box on layer M2[3], Cell NLETEST, x=46 <=>52,

y=-287.5 <=> -289.5
Step 3---
 Box on layer M1[2], Cell NLETEST, x=34.5 <=>48.5,

y=-287 <=> -290
Marked with--
 @NETB_12 at (41, -288.5), Cell NLETEST
Step 4---
 Box on layer M2[3], Cell NLETEST, x=37.5 <=>40.5,

y=-280.5 <=> -291
Marked with--
 @NETA_2 at (38.5, -282.5), Cell NLETEST
Step 5---
 Box on layer M1[2], Cell NLETEST, x=38 <=>48,

y=-283.5 <=> -286.5
Marked with--
 @NETA_1 at (41, -285.5), Cell NLETEST
Step 6---
 Box on layer M2[3], Cell NLETEST, x=46 <=>52,

y=-284 <=> -286
Step 7---
 NETA at (47, -285.5), Cell NLETEST

Figure 63: Fragment of NLE log file with
ECC error messages.

The ECC
checks are
covered in more
detail beginning
on page 152.

NLE Circuit Recognition: Node Labels

NLE and LVS User Manual 147

Any label without the comment prefix on a design layer that is over a shape on a
net will label the entire net. These labels are stored in the extracted netlist
passed to the LVS and also in the .P8K node outliner file generated by the LVS.
The node outliner file can be used with the node outliner commands in the
ICED32™ layout editor to highlight entire nets in the layout.

LVS labels are included in the netlist passed to the LVS only when they attach to
devices in the netlist. For example, if a piece of metal is labeled correctly, but it
does not connect to any devices, the labeled node will not be present in the
netlist.

The LVS uses these labels in many ways. You can use these labels to define
forced points of correspondence between the two circuits. By adding special
characters to the labels, you can prevent nets from disappearing due to device
collapses. If you create a schematic netlist from the layout netlist, these labels
can be used as the names of the nodes.

If the labels are not created on design layers used in device rules or CONNECT
rules, you must move them to the design layers. You should move the text
components to the appropriate layers before the CONNECT rules.

Example: INPUT LAYER 1 TEXT_IN; 2 M1_IN; 3 M2_IN; 4 VIA
SCRATCH LAYER TEXT; M1; M2;

TEXT = TEXT_IN
M1 = M1_IN
M2 = M2_IN
ATTACH TEXT TEXT M1 M2
LABEL M1 M2
CONNECT M1 M2 BY VIA

This set of rules shows how text components on layer TEXT can be used as
labels for both the M1 and M2 design layers. The ATTACH TEXT rule moves
the text components onto the design layers. Since the ATTACH TEXT rule
modifies the TEXT, M1, and M2 layers, they cannot be input layers. This is
why the input layers are copied to scratch layers before the ATTACH TEXT
rule. Since no modifications can be made to a layer after it is used in a
CONNECT rule, the ATTACH TEXT rule comes before the CONNECT rule.

See page 389
for details on
using the node
outliner
commands.

See Advanced
Uses of Node
Labels for more
information.

CONNECT
rules define
electrical
connections.

NLE Circuit Recognition: Node Labels

148 NLE and LVS User Manual

The LABEL rule will allow these labels to be used as ECC labels. The labels
will be used as LVS labels even if the LABEL rule is not present.

Once the nets are labeled with ECC labels, the ECC will list all nets with
conflicting labels as shorts and all separate nets with the same label as opens in
the NLE log file.

Placement and Processing of Labels

For text components to be used as labels, they must be on a design layer (or
moved to a design layer in the rule set) and the origin of the text component must
be over the shape it is meant to label. If the COMMENT rule is used in your
rule set, labels to be used as LVS or ECC labels must not use the COMMENT
prefix.

Text components can be moved to design layers with Boolean operations, the
ATTACH TEXT rule, or the TEXT keyword of the INPUT LAYER rule. If you
use the TEXT keyword on the INPUT LAYER rule, text components on the
design layer will be ignored.

Boolean operations on a layer with text components will treat the text
components in exactly the same manner as other components. If you perform a
Boolean OR on a layer with only text components and a layer with design
components, it has the effect of adding the labels to the design layer.

Example: INPUT LAYER {
1 M1_IN;
101 M1_TEXT;

}
SCRATCH LAYER M1;

M1 = M1_IN OR M1_TEXT

This example will combine the text components (and all other components) on
layer M1_TEXT and all components on layer M1_IN into the new layer M1. All

NLE Circuit Recognition: Node Labels

NLE and LVS User Manual 149

text components on layer M1_IN will remain on that layer and will be used for
node labels.

When you use the TEXT keyword of the INPUT LAYER rule or the ATTACH
TEXT rule, only text components are moved onto the design layer. When you
use the TEXT keyword of the INPUT LAYER rule the text components on the
design layer will be ignored.

Example: INPUT LAYER 1 M1_IN TEXT 101;

When this INPUT LAYER rule is used, all text components on layer 101 of the
ICED32™ cell will be moved to the M1_IN layer. All other components on layer
101 will be ignored. All text components on the original design layer 1 will be
ignored. You can use this feature to temporarily prevent all labels on a design
layer from being used.

When labeling devices, you must be careful
about how the layer with the text component
is handled. You can easily label other
shapes besides the device. Look at Figure
64. The horizontal polygon with the dashed
lines is on layer POLY and other polygon is
on DIFF. These layers are used to create the
SRC_DRN and DEV layers as follows:

DEV = DIFF AND POLY
SRC_DRN = DIFF AND NOT POLY

If the text component is on layer POLY, it
will label both the shape on POLY and the
shape on DEV. This means that the net that
includes the POLY shape will also be
labeled with the name "T1". You usually
want to avoid labeling both the device and the net with the same name.

If the text is on layer DIFF, it will label the shape on DIFF (which will probably
not be used in further CONNECT or DEVICE rules) and the shape on DEV. It

Figure 64: Using text
component to label device.
(The small square represents
the origin of the text
component.)

NLE Circuit Recognition: Node Labels

150 NLE and LVS User Manual

will not label the shapes on SRC_DRN. In this case, the text component will
label only the device.

A good way to label only devices, and avoid labeling nets by accident, is to add
the text components on a unique layer, DEV_TEXT for example, then use the
ATTACH TEXT rule to move the labels to the DEV layer.

Example: ATTACH TEXT DEV_TEXT DEV

NLE Circuit Recognition: Node Labels

NLE and LVS User Manual 151

NLE Circuit Recognition: ECC Rules

152 NLE and LVS User Manual

ECC Rules

The NLE can optionally perform a series of tests on your design, including
detection of shorts and opens. This series of tests is referred to as the ECC
(Electrical Connection Checks) feature.

To disable the ECC checks you can add the NO_ECC rule (see below) to your
rule set. (Or you can use the NO_ECC option on the NLE command line.)

To enable these tests, you must have node labels in your layout and you must
include a LABEL rule in your rule set for each design layer with labels. The
ECC uses these node labels, and the electrical connections defined by the
CONNECT rule, to detect shorts and opens. If two conflicting labels exist on a
net, the ECC will generate an error message about the short. If two electrically
separate nodes are labeled with the same name, the ECC will issue an error
message about the open.

Shapes will be created in the command file created by the NLE to aid you in
locating errors like shorts and opens. See the PATH_LAYER and
ERROR_LAYER rules on the following pages.

In addition to the tests for opens and shorts, the ECC also performs the following
tests:

Verification that certain polygons or simple constructions are not
electrically connected to any other node. (See the UNCONNECTED
and PADSIZE rules below.)

Verification that all text components on layers in a LABEL rule have
origins covered by a shape on the same layer.

Before
performing
ECC checks
you should
learn about
node labels and
the LABEL
rule. See Node
Labels on page
138.

NLE Circuit Recognition: ECC Rules

NLE and LVS User Manual 153

A few rules that affect the ECC tests are covered elsewhere in this manual.
These rules are covered in Node Labels beginning on page 138. The
COMMENT rule defines a prefix that is one way to define polygon id labels.
The USE_CASE rule prevents the ECC from translating all labels into upper
case. The LABEL rule is used to tell the ECC which layers contain node labels
to be used by the ECC tests.

Only node labels on layers defined with a LABEL rule will be used by the ECC.

You can label shapes with polygon id labels. These labels will be reported in any
ECC messages involving those shapes. No polygon id labels are required to
perform the ECC tests. Polygon id labels on shapes in the path of a short or open
will be used even when they are on layers not mentioned in a LABEL rule.

NO_ECC

Use this rule to prevent the ECC checks from being performed on your design.
This will save run time when you execute the NLE repeatedly after small
changes to your design. However, if one of your changes causes a short or open
you will not be warned of this until the LVS reports problems.

Problems like shorts can be difficult to diagnose with the LVS, however finding
shorts from ECC messages is relatively easy. We do not recommend using this
rule to turn off ECC checking unless you really need to reduce the time it takes
to run the NLE.

See an example
of the use of
polygon id
labels on page
146.

Using the
NO_ECC
keyword on the
NLE command
line will have
the same effect
as the use of
this rule in the
rule set.

NLE Circuit Recognition: ECC Rules

154 NLE and LVS User Manual

PATH_LAYER [=] iced_layer_number

When the ECC finds two conflicting node labels on a net, it will outline all
shapes on the path between the two labels on an error layer. These shapes will
be created in your ICED32™ cell when you execute the command file output by
the NLE. By default, the layer used by the ECC is layer number 98. This
rule allows you to override this default and define the number of the error layer
explicitly.

Example: PATH_LAYER 198

When this rule is used, the ECC will create shapes on the path of shorts on layer
198 rather than layer 98.

ERROR_LAYER [=] iced_layer_number

Several ECC checks will create shapes to aid you in locating errors found in your
layout. These shapes will be created in your ICED32™ cell when you read in the
command file created by the NLE. By default, the layer used by the ECC for
errors other than shorts is layer number 99. You can use this rule to change
the layer number used by the NLE to create these shapes.

The only other layer on which the ECC will create shapes, is the layer used to
outline the path of shorts. (See the previous rule.)

Example: ERROR_LAYER 199

When the above rule is used, the layer used by the ECC for errors, other than
path tracing through shorts, will be layer number 199.

See page 189 to
learn about how
to add the
shapes output
by the NLE to
your ICED32™
cell.

NLE Circuit Recognition: ECC Rules

NLE and LVS User Manual 155

DISJOINT node_name

The ECC will issue an error message when two or more separate nodes have
identical node labels. This is considered an open circuit by the ECC.

You can prevent error messages for nodes left unconnected by design through
the use of the DISJOINT rule. Nodes that are labeled with a node_name
supplied in a DISJOINT rule will be considered virtually connected by the ECC.

This rule controls virtual connections for only ECC purposes. There are several
ways to allow virtual connections of nets in the LVS. This rule has no effect on
the layout netlist input to the LVS.

Example: DISJOINT VDD:

This rule in your rule set will suppress ECC error messages about opens between
physically separate nets that are labeled with the text "VDD:". Note that if you
have labeled the nets with a colon (':') suffix to identify them as global nets, you
should include that suffix when typing the node_name in a DISJOINT rule.

You can add multiple DISJOINT rules to your rule set as required.

UNCONNECTED nc_node_name

When this rule is used, the ECC will issue an error message for any polygon
labeled with the text nc_node_name which is electrically connected to another
polygon. This is especially important for verifying that those chip pads that are
meant to be unconnected do not short to any nets. You will receive an error
message even when an unlabeled net shorts to any of the specially marked pads.
Ordinarily, the NLE would have no way of realizing that a short between an
unlabeled net and a large metal shape, which happens to be a pad, is an error.

NLE Circuit Recognition: ECC Rules

156 NLE and LVS User Manual

The ECC will ordinarily find only those shorts that have conflicting labels.
Unless you label every node in your design, shorts between nodes without labels
will not be found by the ECC. When a short involving unlabeled nodes is
between separate nodes in your circuit, you will be alerted to this in the LVS
since the circuit will now be incorrect. However, when the short is between a
node and an unconnected pad, which is not listed in the schematic netlist, neither
the ECC nor the LVS will issue an error message. There is no way for either
program to differentiate between an accidental short to a pad from an intentional
one.

Accidental shorts to a pad can cause real problems. Using this rule and a few
extra text components is an easy way to prevent accidental connections.

Example: UNCONNECTED NC

Using this rule in your rule set, and adding text components with the string "NC"
on top of shapes in your design, will cause an error message to be printed if any
of those shapes is electrically connected to any other shape.

The text components must be on the layer of the polygons they are meant to label
or moved to that layer during the rule set. The text components should be in the
top-level cell.

You should use only one UNCONNECTED rule in your rule set. You can have
many polygons labeled with node label nc_node_name and they will not be
listed as opens.

If your pads are constructions of several electrically connected shapes, rather
than simple polygons, see the PADSIZE rule below.

PADSIZE [=] pad_dimension

This rule affects only the ECC test for unconnected shapes as discussed in the
previous rule. It is used to allow simple constructions of connected shapes to be
marked as unconnected.

Refer to
Verifying Pad
Connections to
for methods to
insure that pads
are connected
correctly.

The
NO_UNCON-
NECTED NLE
command line
option
suppresses this
test.

NLE Circuit Recognition: ECC Rules

NLE and LVS User Manual 157

When this rule is not used, any short to a polygon which is marked as
unconnected will cause the ECC to issue an error message. When this rule is
used, the polygon marked as unconnected can short to other shapes within a box
around itself without generating an error message. This prevents false errors
when an unconnected pad is formed from several polygons connected to each
other.

The pad_dimension parameter must be provided in the user units of the ICED32™
cell. Any connections from the polygon marked as unconnected, to other
polygons within a box square with the axes with sides equal to pad_dimension,
will not generate error messages. Shorts to other polygons outside of this box
will generate error messages.

Example: INPUT LAYER 6 M1 ; 7 M2; 8 VIA

LABEL M2
CONNECT M1 M2 BY VIA
UNCONNECTED NC
PADSIZE 20

When this rule set is processed on
the shapes in Figure 65, only the
pad on the right will have an error
message issued for it by the ECC.
The M1 box which forms part of
the pad on the left is electrically
connected to the M2 box of the
same pad, but no error message
will be printed for it, since it is
within a box of 20 units on a side.

In the example above, the "NC"
text components are on the M2
layer. They will be processed by
the ECC since the LABEL M2 rule is included. The origins of the text
components are indicated by the small boxes. Note that the origin of each text
component is covered by the M2 layer. This is enough to let the NLE label the

VIA

M1

M2

20

Accidental
short

Figure 65: Two pads marked as
unconnected.

NLE Circuit Recognition: ECC Rules

158 NLE and LVS User Manual

polygons with the text. The entire text component does not need to be covered
by the shape.

Running The NLE

NLE and LVS User Manual 159

Running the NLE

Running the NLE

160 NLE and LVS User Manual

Running the NLE to extract a layout netlist involves several steps.

Write the NLE rules which define layer manipulation, electrical
connections, and device recognition in any ASCII text editor. It
is recommended to name this file with a ".RUL" extension, but
this is not required.

Compile the rule set in DOS with the NLE rules compiler.

Create the binary layout data file for the NLE from your
ICED32™ cell by using the DRC command in the ICED32™ layout
editor.

Execute the NLE circuit extractor in DOS using the compiled
rules file and the binary layout data file.

The DRC command is completely described in the ICED32™ Layout Editor
Reference Manual. For NLE netlist extraction of your entire design, you can
simply type "DRC" on the command line. The binary layout data file will be
created as "cell_name.POK" where cell_name is the first 8 characters of the
name of the cell you are editing.

We have already covered how to write the rule set. Next, we will describe how
to run the rules compiler and finally how to run the circuit extractor.

See Figure 1 on
page 18 for a
graphical
representation
of these steps.

Running The NLE: Rules Compilation

NLE and LVS User Manual 161

NLE Rules Compilation

Rules Compiler Command Line Syntax

[prog_path\]RULESNLE [rule_path\]rule_file_name ...
... [USE=u_kbytes] ...
... [SCRATCH_DIR=scratch_path1 [; ... scratch_path5]]

The rule_file_name parameter is the only required parameter on the rules
compiler command line. It is the name of the ASCII file containing your rule set.
A file extension of ".RUL" will be added to the file name if you do not supply
the file extension in rule_file_name.

The NLE installation routine defaults to placing the RULESNLE.EXE file in the
same directory as the ICED32.EXE file. This directory should be included in the
PATH statement in your AUTOEXEC.BAT file. When this is the case, you do
not need to supply prog_path on the command line, even when the file
RULESNLE.EXE is not in the current directory.

Example: RULESNLE DEVRECOG

This command line typed at the DOS prompt will execute the NLE rules
compiler on the file DEVRECOG.RUL. This rules file must exist in the current
directory. The executable file RULESNLE.EXE must be in the current
directory, or in a directory defined in the DOS environment variable PATH.

To see a list of
the current DOS
environment
variables, use
the DOS
command SET.

Running the NLE: Rules Compilation

162 NLE and LVS User Manual

The compiler will create the compiled rule file with the same file name as the
input rule set except that the file extension will be ".LL". This file will be
created in the directory where the input rule file is located. In the example
above, the compiled rules file will have the name DEVRECOG.LL and it will be
created in the current directory.

The optional [USE=u_kbytes] parameter is used to restrict the amount of
memory the rules compiler will use. When the USE keyword is not used in the
command line, the rules compiler will use 10 Megabytes (approximately 10,000
Kilobytes). We recommend using the USE keyword only when you are
executing the compiler in a DOS shell of a multitasking operating system like
Microsoft Windows. Enter the maximum amount of memory the rules compiler
can use in Kilobytes.

If you notice a long delay when you execute the rules compiler, the problem may
be that the rules compiler is initializing much more memory than it needs. Try
using the USE keyword with an initial value of 2000 to prevent the compiler
from initializing too much memory on your system.

If the SCRATCH_DIR keyword is not used, a single scratch file,
$NLRVIRT.000, will be created in the current directory. If the compiler
completes successfully, this file will be deleted.

There are two cases where it is important to use the SCRATCH_DIR option to
set the scratch directory explicitly.

If you running the NLE programs on a network, several users can use the
program at the same time. If they share a scratch directory, they will
corrupt each other's scratch files. When on a network, each user
should have his own scratch directory.

If the current drive or partition has limited space, you should specify at
least one scratch directory on a drive with plenty of free space.

The scratch file for the rules compiler is usually very small, so the second reason
above is rarely a concern. However, the scratch file for the NLE can grow very
large. The SCRATCH_DIR command line option is covered in more detail in
the discussion of the NLE command line options. See page 173.

You can create
a DOS batch
file with the
rules compiler
command line
so that you do
not need to type
the required
parameters each
time.

Running The NLE: Rules Compilation

NLE and LVS User Manual 163

Example: RULESNLE E:\ICED\CKTREG.RUL USE=2000 SCR=E:\NLETMP

This command line will compile the rules in the file E:\ICED\CKTREG.RUL.
The rules compiler will use no more than 2000 Kbytes, or approximately
2 Megabytes, of memory. Note that the SCRATCH_DIR keyword can be
abbreviated to SCR. The NLETMP directory on the E: drive will be used to
store temporary files. This directory must already exist or the rules compiler
will fail with an error message.

There are two ways to force the rules compiler to terminate before it completes
normally.

<Esc> Pressing this key will halt the rules compiler after it
completes the current operation. The compiler will then
close all open files and delete the scratch file(s). This may
take a few moments, so you should be patient and wait for
the compiler to complete these tasks.

<Ctrl><C> Pressing both of these keys simultaneously will bring the
rules compiler to an immediate halt. Files will not be closed
properly and the scratch file(s) will not be deleted.

If you use <Ctrl><C> to terminate the compiler, or if the compiler crashes, you
should delete the scratch file(s) yourself. Remember that the scratch file(s) are
created with the name $NLRVIRT.000. You may also want to run the DOS
utility SCANDISK (or equivalent programs available from other vendors) to find
lost chains on the disk which were left behind because files were not closed
properly.

Running the NLE: Rules Compilation

164 NLE and LVS User Manual

Rules Compiler Output Files

The rules compiler will create the compiled rules file with the name
rule_file_name.LL. If a file with the name rule_file_name.LL already exists, it
will be overwritten. This file will be created in the same directory as the source
rules file. This compiled rules file will be used by the NLE program.

You should usually leave the source rules file in its original location after you
have compiled it. The location and time/date stamp of the source rules file is
stored in the compiled rules file. The NLE will search for the source rules file to
insure that the current source rules file has the same time/date stamp as the one
used to create the compiled rules file. If the NLE cannot locate the source rules
file, it will issue a warning prompt and you must reply to proceed.

The rules compiler will create a log file with the name rule_file_name.RLO.
This file will also be created in the same directory as the source rules file. If a
file with the name rule_file_name.RLO already exists at the start of the rules
compiler program, it will be renamed to rule_file_name.RL1.

The rules compiler log file begins with a block of comments that include the
version number of the compiler. An echo of the source rules file comes next.
Any comments from the compiler about the source will be prefixed with a
double dash ("--") before the comment.

If the compiler finds a syntax error as it parses the source rules file, it will stop
reading the file and print an error message after the line with the error. The
parameter or keyword with the problem will be indicated with double carats
("<< >>"). Only one error will be found per compile.

Warnings may be scattered through the log. All warnings will be prefixed with
the string "**WARNING". All errors and warnings will be printed on the
screen as well as listed in the log. Some of the warnings you may see are listed
below.

To suppress the
warning prompt
when the source
rules file is not
present, add the
NO_RUL
keyword to the
NLE command
line. See page
176.

Running The NLE: Rules Compilation

NLE and LVS User Manual 165

Figure 66: A few of the NLE rules compiler warnings

Message Cause

No layers have been specified
as having node labels....

This message is printed when you have not used the LABEL
rule to specify which layers contain node labels for ECC
checking. The ECC cannot proceed with the tests it is
supposed to perform unless nodes are labeled. You can use
the NO_ECC rule to suppress this message.

Layer xxxx[n], which contains
pins, is not connected to any
other layer.

This message indicates that device terminals are located on a
layer which is not used in a CONNECT rule. This means that
the pins of these devices can never be connected to other
devices. You may have forgotten to include the indicated
layer in a CONNECT rule, or a device rule may specify a
temporary layer rather than the intended layer.

Scratch layer xxx, set on line n,
is never used. Action will be
deleted: ...

This warning occurs when you have included a rule which
creates shapes on a scratch layer, but no other rule uses that
layer. The processing to create the scratch layer is
unnecessary, so the rules compiler deletes the rule entirely.
This situation may occur when you modify a rule set by
removing a rule that used the scratch layer. The NLE will
then optimize your rule set by removing the rules that create
the layer. In this case you can choose to ignore the warnings,
or go back and comment out the indicated rule(s).

However, if you wanted to look at the shapes on that scratch
layer, you should change the line that defined the layer to an
OUTPUT LAYER rule instead of a SCRATCH LAYER rule.

Layer number n is also an
input layer.

When this message is issued, you have used the same layer
number as both an input layer and an output layer. The rules
compiler warns you about this because if you add shapes on
the output layer to your design cell you will be modifying a
design layer. If you will not be using the NLE command file
to add the output layer shapes to your original cell, you can
ignore this warning.

Running the NLE: Rules Compilation

166 NLE and LVS User Manual

If the source rules file contains no syntax errors, the log file will continue with a
summary of the layers used in the file. The NLE layer name, ICED32™ layer
number, the rules file line number which created the layer, and the layer type
(INPUT, OUTPUT, or SCRATCH) will be listed for each layer.

Layers that are created, but are not used in the rule set, will not be listed in this
list of layers. They are removed automatically from the rule set by the compiler.

Next, the rules log will list all constants created by the CONST rule.

The log will then list the rules exactly as they will be executed by the NLE. The
rules are grouped together in passes. Each pass requires each shape in the NLE
database to be interrogated by the NLE. The more passes, the longer the NLE
run.

The order in which rules are executed may not be the order in which the rules are
written. The rules compiler may change the order to minimize the number of
NLE passes. No change made by the compiler should affect how the layers are
processed.

Each NLE layer name mentioned in this list of rules will be followed by the
ICED32™ layer number enclosed in square brackets ("[]"). The line number in
the source rules file is indicated on the line after the rule enclosed in parentheses
("()"). If the compiler has generated the rule, the word "Generated" will be used
instead of the line number. Some additional information may be provided with
the rule, such as the bloat angle in effect for BLOAT or SHRINK rules.

Next will be a summary of connection groups. These are groups of layers which
are electrically connected through the CONNECT rule. If your log indicates
more than 1 group, you may have omitted a CONNECT rule from your rule set.

Layers in the rule set which are not electrically connected to any other layer are
listed under the heading "Unconnected layers". This list may contain
intermediate layers, or layers which are never used. However, you may want to
browse this list to insure that none of the layers that you assume are electrically
connected are included in the list.

One example of
a rule generated
by the compiler,
is a CONNECT
rule added to
insure that
connections
which cross
panel
boundaries will
be handled
correctly.

Running The NLE: Rules Compilation

NLE and LVS User Manual 167

Near the end of the log file will be a report of some of the optional ECC settings.
If you have used the DISJOINT, UNCONNECTED, or COMMENT rules, the
settings will be listed here.

The final line in the log file from a successful compilation will always be the
word "Done".

Running the NLE: Rules Compilation

168 NLE and LVS User Manual

Running The NLE: Command Line Syntax

NLE and LVS User Manual 169

Running the Circuit Extractor

NLE Command Line Syntax

[prog_path\]NLE [rule_path\]rule_file_name ...
... [layout_path\]layout_file_name ...
... [output_path\]output_file_base_name ...
... [@opt_file] ...
... [USE u_kbytes] ...
... [SCRATCH_DIR=path_name] ...
... [SHORTRUN] ...
... [LOGEXT] ...
... [LOGBAD] ...
... [SHOW_BORDER] ...
... [NO_RUL] ...
... [LIST_RULES] ...
... [NO_ECC] ...
... [SEARCH_DEPTH = path_depth] ...
... [NO_OPEN] ...
... [NO_UNATTACHED] ...
... [NO_UNCONNECTED] ...
... [NO_DUP_ID_CHECK] ...
... [STARTCMD = "st_cmdstring"] ...
... [ENDCMD = "end_cmdstring"] ...
... [NO_NET_LIST] ...
... [NO_SAVE_CONNECTIONS] ...
... [NO_NODE_COUNT] ...
... [NO_NLE]

Running the NLE: Command Line Syntax

170 NLE and LVS User Manual

The previous page indicates the syntax for running the NLE circuit extractor.
The first two input files, rule_file_name and layout_file_name, must already be
prepared before you execute the program. All three required file parameters and
each optional parameter are described in detail below.

The command line is typed at the DOS prompt, outside of the ICED32™ layout
editor. If the directory where NLE.EXE is installed is included in the DOS
environment variable PATH, or if this directory is the current directory, the
prog_path parameter is not required.

Use blanks or commas to separate command line parameters. The underscores,
'_', used in several of the option keywords are optional and are included for
readability only. Several of the keywords can be abbreviated.

There are two ways to force the NLE to terminate before it completes normally.
(These are the same methods used with the NLE rules compiler.)

<Esc> Pressing this key will halt the NLE after it completes the
current operation. The NLE will then close all open files
and delete the scratch file(s). This may take a few moments,
so you should be patient and wait for the NLE to complete
these tasks.

<Ctrl><C> Pressing both of these keys simultaneously will bring the
NLE to an immediate halt. Files will not be closed properly
and the scratch file(s) will not be deleted.

If you use <Ctrl><C> to terminate the NLE, or if the NLE crashes, you should
delete the scratch file(s) yourself. The scratch file(s) are created with the name
$NLEVIRT.000. You may also want to run the DOS utility SCANDISK (or
equivalent programs available from other vendors) to find lost chains on the disk
that were left behind because files were not closed properly.

Running The NLE: Command Line Syntax

NLE and LVS User Manual 171

The Three File Parameters

The three file name parameters are the only required parameters on the NLE
command line.

The [rule_path\]rule_file_name parameter supplies the name of the compiled
rules file. This file must already have been created by the NLE rules compiler
described beginning on page 161. If no file extension is supplied in
rule_file_name, a file extension of .LL will be added to the file name before the
NLE searches for the file. The NLE will search for the rules file in the following
directory paths in the order shown:

1) rule_path (if you have supplied this parameter with the file name),
2) the current DOS directory,

and
3) the DOS environment variable DRC_PATH.

The [layout_path\]layout_file_name parameter must be the name of the binary
layout file created by the DRC command in the ICED32™ layout editor. A file
extension of .POK will be added to the file name when you do not supply it on
the command line.

The [output_path\]output_file_base_name parameter supplies the base file name
for several output files. Most of the files created by the NLE will use this
parameter as the file name. The file extensions of the output files will vary.
The extensions and file contents are described beginning on page 185.

Example: NLE CKTRECOG XCHIP XCHIPOUT

This line typed at the DOS prompt will run the NLE with the input files
CKTRECOG.LL and XCHIP.POK. The output layout netlist, log file, and
several auxiliary output files will be created beginning with the string
"XCHIPOUT" in the current directory.

DOS
environment
variables are set
at the DOS
prompt or in a
batch file (e.g.
AUTOEXEC-
.BAT).

See an example
of creating a
binary layout
file on page 21.

Running the NLE: Command Line Syntax

172 NLE and LVS User Manual

Input Redirection, Memory, and Scratch Directory Options

 [@opt_file]

The NLE has many optional parameters and the command line can get very
lengthy. Since DOS commands are limited to 128 characters, you may not be
able to add all of the options you need on the command line. To solve this
problem, or just to save you from repetitive typing every time you run the NLE,
you can use the @opt_file parameter to refer to a file which contains command
line options, rather than typing all options at the DOS prompt.

Example: NLE CKTRECOG XCHIP XCHIPOUT @NLEOPT.TXT NO_ECC

This NLE command line will cause the NLE to read the command line
parameters in the file NLEOPT.TXT and execute them as though they were
typed at the command line. Note that you can add other command line options
after the @opt_file parameter. Options typed last on the command line override
options in the options file.

The options file can be created with any ASCII text editor. Any end-of-line
character is interpreted as a blank space. So you can type each command line
option on it's own line rather than typing all options on a single line.

Comments in the options file are acceptable and will be ignored by the NLE. A
comment is created as an exclamation mark ('!') followed by text. All text from
the exclamation mark to the end of the line is ignored.

You can use another @opt_file command line option in an option file. Option
files may be nested up to ten levels deep.

Running The NLE: Command Line Syntax

NLE and LVS User Manual 173

 [USE u_kbytes]

This parameter limits the memory the NLE is allowed to use. It is intended
primarily for use on multitasking operating systems like Microsoft Windows. If
you are running the NLE on a computer without a multitasking operating system,
it is best to allow the NLE to use all available memory by not adding this option
to the command line.

When this parameter is not used, the NLE will allocate all available system
memory. This includes your system's entire swap file.

If you see a long delay before the first NLE pass is executed, even for small
designs, the NLE may be initializing much more memory than it needs. You can
add this parameter to your command line to limit the amount of memory the
NLE will initialize. Supply the maximum amount of memory in kilobytes.

Example: NLE CKTRECOG XCHIP XCHIPOUT USE=20000

This NLE command line will limit the NLE to 20,000 kilobytes (or about 20
Megabytes) of memory. This should be sufficient for small chips. If you have
plenty of memory on your machine, and the other system demands are light,
higher numbers for u_kbytes will allow the NLE to run faster.

 [SCRATCH_DIR=path_name1 [;...path_name_n]]

This parameter specifies the directory (or directories) for the NLE scratch file
(or files). It is critical that a scratch directory is not shared between
simultaneous executions of the NLE or NLE rules compiler. This could be a
problem if you are executing the NLE over a network.

You may also want to use this option if you have limited space on the current
drive and you want to make use of the space on other drives for scratch files. If
you specify multiple directory paths, the NLE will create scratch files in all
specified directories at the start of the run. Then if the NLE runs out of disk
space while using the scratch file in the first directory, it will use the additional

Running the NLE: Command Line Syntax

174 NLE and LVS User Manual

scratch files. The additional scratch file directories should be on other disk
drives.

If you do not use the SCRATCH_DIR command line option, the NLE will create
a single scratch file with the name $NLEVIRT.000 in the current directory. This
file can grow very large (more than 1 Gigabyte for large chips), so make sure
that there is plenty of free space on the current drive.

When you want to allow the NLE to use more than one directory to utilize space
on more than one drive, specify up to five directories on different drives. Each
scratch_path directory should already exist. The maximum number of
characters in all directory paths is 82.

Example: NLE CKTRECOG XCHIP XCHIP SCR=E:\NLETEMP;D:\NLETEMP

This command line will result in scratch files created on the E: and D: drives in
directories with the name NLETEMP. Note that the SCRATCH_DIR keyword
can be abbreviated to SCR. The directory paths are separated with semicolons.
If the NLE completes successfully, all temporary scratch files will be deleted
automatically at the end of the run.

Logging Options

These NLE command line options control how messages are reported by the
NLE during execution, and whether or not to put extra information into the log
file.

[SHORTRUN]

This optional keyword on the NLE command line optimizes the on-screen
messages form the NLE for short runs. If you are running the NLE on a small
design which completes in a few minutes, this will prevent the quick flashing of

Running The NLE: Command Line Syntax

NLE and LVS User Manual 175

messages which might confuse some users into thinking that error messages are
being printed to the screen too quickly to be seen.

This option will not affect the contents of the NLE log file.

If your NLE run is not a very short run, use the default screen display by not
adding this keyword to your NLE command line.

 [LOGEXT]

If you are running the NLE on a small circuit and encounter circuit recognition
problems, you can add this keyword to the NLE command line. This will add to
the log file a lengthy report on each device recognized by the NLE.

If your circuit is not very small, this option will make your log file extremely
long. The file may grow to use up a large portion of available disk space.

If you simply want to see an ASCII listing of the layout netlist, you should use
the LPE utility to translate the binary layout netlist into an ASCII netlist.

[LOGBAD]

This option on the NLE command line will add a detailed message to the log file
for each shape on a device recognition rule id_layer that does not form a valid
device. This is true whether or not the rule uses the ERR keyword to collect
shapes on id_layer which do not form valid devices.

The log will report the coordinates of each shape and the reason why the shape
failed to form a valid device.

Running the NLE: Command Line Syntax

176 NLE and LVS User Manual

 Rules File Options

These NLE command line options affect how the NLE rules file is processed and
reported in the NLE log.

[SHOW_BORDER]

This command line option will add panel border calculations for each pass to the
NLE log file. This can help you understand how your rule set affects the layer
reach and panel border used by the NLE. If the panel border is large compared
to the panel size, your NLE run may be very slow.

To learn about panels and borders, read Panel Processing beginning on page 83.

[NO_RUL]

The location of the source rules file and its time/date stamp are stored in the
compiled rules file. If the time/date stamp of the source rules file (with a .RUL
file extension) is different than the information stored in the compiled rules file
(with a .LL file extension), the NLE will warn you, then ask you with a prompt if
you want to proceed. This is to avoid a wasted run when you edit the rules file,
then forget to compile it, before re-executing the NLE.

If the source rules file is not found in its original location, you will also receive
an error message and a prompt. This is due to the fact that the NLE cannot tell if
the source rules file is newer than the compiled rules file.

If you want to suppress this error message when the source rules file cannot be
found, and avoid the prompt asking you if you want to proceed, add the
NO_RUL keyword to your NLE command line.

Running The NLE: Command Line Syntax

NLE and LVS User Manual 177

This keyword will not prevent an error message and prompt when the source
rules file is present but has a different time/date stamp than that stored in the
compiled rules file.

Example: NLE CKTRECOG XCHIP XCHIPOUT NORUL

Note that the underscore is optional in the NO_RUL keyword. This is true of all
keywords in the NLE command line.

[LIST_RULES]

Add this keyword to your NLE command line to add to the NLE log file a report
of which rules were executed during each pass of the NLE. Using this keyword
will also add to the NLE log most of the other information related to the rules
file which was reported in the rules compiler log.

Example: NLE CKTRECOG XCHIP XCHIPOUT LIST

Note that the LIST_RULES keyword can be abbreviated.

Running the NLE: Command Line Syntax

178 NLE and LVS User Manual

ECC and Other Optional Test Keywords

The following keywords will disable certain tests that the NLE performs
automatically. You can use these options to increase the speed of your NLE run,
but you may prevent errors from being found.

[NO_ECC]

Use this keyword on the NLE command line to suppress all ECC (Electrical
Connection Checks) processing. This will have the same effect as adding the
NO_ECC rule to your rule set without forcing you recompile the source rules
file.

This will speed up your NLE run, but errors like shorts and opens will not be
found.

 [SEARCH_DEPTH = path_depth]

When the ECC finds more than one unique ECC node label on a single net, it
always attempts to find a path from one label to the other conflicting label. This
path, including the coordinates of each polygon on the path, will be reported in
the NLE log file.

The ECC will trace through the layout building every possible path from the first
label. Once it finds a conflicting ECC label on any path, it will stop tracing and
then print the path with the conflicting label in the log file.

This tracing process can take considerable processing time. This is why the NLE
defaults to tracing through no more than 50 polygons as it builds the paths from
the first label.

See page 152 to
learn about
ECC
processing.

See page 192
for a hint on
how to isolate
difficult to find
shorts.

Running The NLE: Command Line Syntax

NLE and LVS User Manual 179

If you prefer that the NLE not spend time tracing long paths between conflicting
labels, add this option to your command line with the path_depth parameter
equal to a positive integer smaller than 50. The short will still be reported in the
log, but the NLE will report that "The program could not find a path through the
short."

You can use a value of 0 for path_depth. This will prevent all path tracing
through shorts.

If you do want a path traced through a short, but the default of 50 for path_depth
is not long enough to find the path, you can use this option with a value greater
than 50 for path_depth. This will increase run time.

We do not suggest increasing the value of path_depth to more than 50, unless
you have a specific short reported in a previous run of the NLE that the ECC is
unable to trace using the default value.

[NO_OPEN]

Adding this keyword to the NLE command line will prevent the NLE from
searching for unconnected net fragments labeled with identical text components.
This may save time on repeated NLE runs, but open circuits will not be found.

 [NO_UNATTACHED]

During the ECC tests, the NLE will print error messages for text components
that have origins not covered by shapes on the same layer. The NLE assumes
that uncovered text components on design layers are placed in error.

If you want to avoid this test, possibly to save time, you can use the
NO_UNATTACHED keyword on the NLE command line.

Use the
DISJOINT rule
to suppress only
error messages
about virtually
connected
nodes. See
page 155.

Running the NLE: Command Line Syntax

180 NLE and LVS User Manual

[NO_UNCONNECTED]

One ECC test finds all polygons labeled with a special node name and verifies
that none of these polygons short to another net. This test can be disabled by
adding the NO_UNCONNECTED keyword to the NLE command line.

[NO_DUP_ID_CHECK]

The NLE normally performs a duplicate device id polygon test on your layout.
If the same polygon is recognized as a device by more than one device
recognition rule, the NLE will normally warn you with an error message. If you
pass a layout netlist that contains two devices with the same node number to the
LVS, the LVS will abort with an error message.

This test is performed outside of the ECC checks. This test is not disabled by
the NO_ECC command line keyword. However, the NO_DUP_ID_CHECK
command line keyword will prevent the NLE from running this test.

Normally, you want devices that share an id polygon flagged as errors. However
the duplicate id check does add more time to the NLE run. You can add the
NO_DUP_ID_CHECK keyword to save time in repetitive NLE runs. However,
you should perform a final NLE run without the NO_DUP_ID_CHECK keyword
to find any invalid devices.

Example: DEVICE DRES ID=DEV {
 SRC_DRN 2/POLYGON
 PINS=SRC_DRN, SRC_DRN;
}
DEVICE PRES ID=DEV {
 POLY 2/POLYGON
 PINS=POLY, POLY;
}

These rules above will result in an error
message printed for the unusual device
shown in Figure 67. However, if you added the NO_DUP_ID_CHECK keyword
to the NLE command line, no errors or warnings would be printed.

This test is
described in
detail on page
155.

SRC DRN

POLY

DEV

Figure 67: One shape on DEV
f i

Running The NLE: Command Line Syntax

NLE and LVS User Manual 181

Output File Options

These NLE command line options affect the generation of various output files.

[STARTCMD = "st_cmdstring"]

and

[ENDCMD = "end_cmdstring"]

These two command line options affect the command file created by the NLE to
create shapes in the ICED32™ layout editor.

If you add the STARTCMD = "st_cmdstring" option to your NLE command
line, the NLE will use st_cmdstring as the first line of the command file.

The ENDCMD = "end_cmdstring" option will cause the NLE to add
end_cmdstring as the last line in the command file.

Both string parameters should be valid ICED32™ command strings. You should
surround the string parameters with quotes since blanks or '@' characters (used
for the @file_name ICED32™ command) might be misunderstood by the NLE
command line parser.

Example: NLE RECOG XCHIP XCHIPOUT START="EDIT CELL NLEOUT" ...
... END="EXIT;ADD CELL NLEOUT AT 0,0"

This NLE command line will create a command file with the name
XCHIPOUT.CMD. The NLE will add the following line to the top of the file:

EDIT CELL NLEOUT

To learn more
about the
command file
created by the
NLE see page
189.

Running the NLE: Command Line Syntax

182 NLE and LVS User Manual

When the EDIT CELL command is executed, the ICED32™ editor will create a
new cell with the name NLEOUT. All subsequent commands in the command
file will create shapes in this new cell.

The command file will have the following two ICED32™ commands added on the
last line:

EXIT;ADD CELL NLEOUT AT 0,0

When these two commands are executed, the ICED32™ editor will exit from the
cell it has just created, then add that cell to the current cell at the coordinates 0,0.

The total effect of adding these three commands to the command file is that all
shapes created by the NLE command file will be created in a subcell of the
current cell, rather than as components in the current cell.

[NO_NET_LIST]

This command line option suppresses the generation of the binary layout netlist.
This file is used by the LVS or LPE programs. If you do not intend to run the
LVS (for comparison of the layout netlist to your schematic netlist) or the LPE
(for generation of an ASCII netlist from the binary layout netlist), you can use
this keyword on the NLE command line. This will save some run time if you are
running the NLE only to find errors like shorts and opens.

[NO_SAVE_CONNECTIONS]

Adding this keyword to your NLE command line will prevent creation of the
node outliner file required by the outliner commands in the ICED32™ editor. This
will save a small amount of run time and possibly a large amount of disk space.

The node
outliner
commands are
described on
page 389.

Running The NLE: Command Line Syntax

NLE and LVS User Manual 183

The node outliner file has a file extension of .P9K. It is required by the node
outliner commands which highlight entire electrically connected nodes. If you
prevent creating it by using this keyword, you will not be able to run the node
outliner commands.

If the node outliner file is missing when you execute the node outliner
commands, you will not see an error message when you execute the @NODES
command in the ICED32™ layout editor, but when you execute the N0, N1, or NN
commands you will see the error message, "Could not open file cell_name.P9K."

[NO_NODE_COUNT]

This keyword suppresses creation of the node summary file. This can save a
small amount of run time and disk space.

[NO_NLE]

Adding this keyword to your NLE command line is equivalent to adding both the
NO_NETLIST and NO_NODE_COUNT keywords. This will save run time and
disk space if you are running the NLE for only the ECC checks.

To reduce the
size of the node
outliner file, see
the SAVE and
NO_SAVE
rules on page
144.

The node
summary file is
described on
page 193.

Running the NLE: Command Line Syntax

184 NLE and LVS User Manual

Running The NLE: Output Files

NLE and LVS User Manual 185

NLE Output files

The NLE can generate several output files. The file name extensions vary from
file to file, but the base part of the file name will be the same for most of the
files. The base part of the binary layout netlist, the log file name, and two other
auxiliary files will be the string provided in the output_file_base_name
parameter (the third parameter) on the NLE command line.

If you do not provide an output_path with the output_file_base_name parameter,
all files will be created in the current directory.

If a previous NLE run has created output files in the same directory, most of
those files will be renamed with a '1' replacing the final character in the file
extension before the new files overwrite them. This provides a backup of the
results of your last NLE run with no effort on your part.

Running the NLE: Output Files

186 NLE and LVS User Manual

The NLE log file will record the file names used for each of these files.

Another file created by the NLE is the scratch file, $NLEVIRT.000. This file
should be deleted by the NLE at the end of a successful run.

File extension Contents and use of file

NLE log file .NLO
(previous run backup .NL1)

General information about NLE run
All error and warning messages
Statistics on run time

NLE command
file

.CMD
(previous run backup .CM1)

Command file used to create shapes on
output and error layers in the ICED32™
layout editor

Node summary
file

.DEG
(previous run backup .DE1)

Reports on nets sorted by degree
Lists of the device terminals connected
to each net

Binary layout
netlist

.EXT
(previous run backup .EX1)

Binary file used as input to the LVS or
LPE utilities

Node outliner file .P9K(file name is based on
top-level cell name)
(previous run renamed to
.P99, then deleted at end of
run)

Binary file used by node outliner
commands to highlight nets in the
ICED32™ layout editor.

Bad polygon
command files

.ERR (file names are based
on cell names, if possible)
(previous run backups .ER1)

One command file is created for each
input cell that contains bad polygons.
The shapes are copied to an error layer.

Figure 68: NLE output files.

Running The NLE: Output Files

NLE and LVS User Manual 187

NLE log file

This file is where the NLE will store all error and warning messages. All of the
information printed on your screen as the NLE is executing (except for the
progress indicators) will be recorded in this file at the same time.

If you use the following NLE command:

NLE MYRULE MYCELL NLEOUT

The name of the NLE log file will be NLEOUT.NLO.

The file begins with some general information about the NLE run. Details on
the input layout file and the input rules file are provided near the top of the log
file.

If you have not included node labels in your layout, or have not included the
LABEL rule in your rules file, the NLE cannot perform the ECC checks. When
this is the case, the NLE will add the following warning to your log file:

*****WARNING *****WARNING*****WARNING*****WARNING***
*****WARNING *****WARNING*****WARNING*****WARNING***
*****WARNING *****WARNING*****WARNING*****WARNING***
No layers have been specified as having node labels. No ECC errors will be
found.

If bad polygons (shapes which may cause problems for mask processing
software) are included in your layout, they will be mentioned next in the log.
Each cell that contains bad polygons will have a command file created for it that
has the bad polygons copied to an error layer. These files are described in more
detail on page 193.

Some details on how the layout was ungrouped (i.e. flattened) are printed next.
If your layout contains cells which are not ungrouped because they are used in an
INCELL rule, this will be reported.

Next is a summary of how many devices were recognized. If any devices had
errors, this will be recorded here.

To include a
complete listing
of the rules file
in the NLE log,
use the
LIST_RULES
keyword on the
NLE command
line.

To disable this
message, add
the NO_ECC
option to the
command line.

The NLE
command line
option
LOGBAD will
add an error
message to the
log for every
device id
polygon that
fails to form a
valid device.

Running the NLE: Output Files

188 NLE and LVS User Manual

Next the NLE reports on the creation of the node outliner file. This file is
created with a .P1K extension, but before the end of the NLE run, it will be
renamed with a .P9K extension.

The results of the ECC tests are recorded next. If a polygon listed in an ECC
error message is labeled with a polygon id label, this label will be included in the
error message. Most ECC error messages also include the coordinates of the
error. If shapes were created in the command file to help you locate the error,
this will be mentioned in the error message.

At this point in the log file, the NLE will add the following line at the conclusion
of a successful run:

Done.

After this line, the log file contains a summary of shapes created on output and
error layers, as well as counts of ECC errors.

A reference to shared ID polygons may come next:

n devices are on shared ID polygons.

This refers to polygons on a device id layer that form more than one device. Any
number for n other than 0 represents a problem, and the LVS will abort if you
use this layout netlist for comparison. When this line in the log indicates that
you do have devices on shared id polygons, more detailed errors should be
present earlier in the log.

The log ends with statistics on the scratch file and run times. If a large scratch
file was required, you may be able to decrease your run time significantly by
reducing the panel size. One indicator for NLE efficiency is the percentage of
time the NLE spent on "Disc swaps". If more than 50% of the run time is spent
swapping information into and out of the scratch file, and you are not yet
breaking the design into panels, you should read Panel Processing on page 83.

See page 180
for an example
of a shared id
polygon.

Running The NLE: Output Files

NLE and LVS User Manual 189

NLE command file

This file will contain ICED32™ layout editor commands which create shapes to
help you locate the errors the NLE has found or to see the results of layer
processing.

Every shape on layers defined with the OUTPUT LAYER rule will have an
ADD command in the file. These commands are created from the layer data at
the end of the NLE run.

In addition, the ECC can add ADD commands to the file that will create shapes
on layers defined with the PATH_LAYER and ERROR_LAYER rules. These
shapes correspond with ECC error messages in the log file.

The command file will have comments in it to aid you in determining which rule
of your rule file generated the shape. The comment before a block of ADD
commands will contain the string 'TAG=rule_number'. The rule_number
parameter is equal to the number of the rule that created the shapes. The rule
numbers are listed near the bottom of the rule compiler log.

To use this file effectively, you can add the shapes in the file to your top-level
cell with the @file_name command in the ICED32™ layout editor. However,
executing this file in your design cell will add shapes to your cell. If you
prefer to isolate the shapes generated by the NLE from your design cell, you can
use several methods which allow you to add the NLE generated shapes in a way
that allows you to easily delete the shapes again without affecting your original
design.

One simple way is to create a new cell with the ICED32™ layout editor, then
execute the @file_name command in this new cell. You can then add the new
cell to your top-level cell, or add both the new cell and your top-level design cell
to a different new cell. Usually, the best way is to add your top-level cell to the
new cell containing the NLE generated shapes. This will allow you to turn the
display of your design shapes on and off as you view the NLE shapes.

You can add
ICED32™
commands
automatically to
the NLE
command file
with the
START_CMD
and END_CMD
NLE command
line options.
See page 181.

Running the NLE: Output Files

190 NLE and LVS User Manual

If you use the following NLE command line:

NLE MYRULE MYCELL NLEOUT

then the name of the NLE command file will be NLEOUT.CMD. You can then
launch the ICED32™ layout editor to create the new cell, NEWCELL, with the
following ICED32™ command line:

IC32 NEWCELL

Add the NLE shapes with the ICED32™ command:

@NLEOUT

You can then add your design cell to the new cell with the following ICED32™
command:

ADD CELL MYCELL AT 0,0

The shapes the NLE creates are usually difficult to see since they are copies of
shapes in your design cell which are right on top the original shapes. There are
several ways to make the shapes easier to see.

One way is to temporarily turn off the display of your design cell with the
command:

BLANK CELL LAYERS 0:255

You can turn display of your design cell back on with the command:

UNBLANK ALL

Running The NLE: Output Files

NLE and LVS User Manual 191

You can use color to highlight shapes on the NLE layers with the ICED32™
LAYER command. A good color to use for the NLE layers is the HI color. This
color will always have priority on your screen so that shapes drawn with that
color are not hidden behind other colors. To assign the color HI to a layer
generated by the NLE command file, use the command:

LAYER n COLOR=HI

where n is replaced with the layer number in the NLE command file.

You can then make this color strobe on and off with the command:

BLINK

Another way to locate shapes on one of the NLE layers is to select only the
shapes on that layer with the commands:

UNSELECT ALL
SELECT LAYER n ALL

You can then resize the view screen to see all selected shapes with the command:

VIEW SELECT

Once you have located an NLE generated shape which points out an error in
your design cell, you can edit the cell which contains the original design shape,
without exiting the editor, by using any of the ICED32™ edit commands: EDIT,
PEDIT, or TEDIT.

The easiest edit command to use is usually the PEDIT NEAR command. After
typing this command, place your cursor on an edge of the design shape you need
to modify to correct the problem, then click the left mouse button. You are now
editing the cell that contains the design shape, even if it is nested several levels
down. The shapes in other cells will remain on the screen but you will not be
able to edit them. If you prefer that shapes in other cells are not displayed while
you edit the cell with the problem, use the TEDIT NEAR command instead of
PEDIT NEAR.

Running the NLE: Output Files

192 NLE and LVS User Manual

If your NLE run found a short between different node labels on the same net, the
ECC adds to the NLE command file commands which copy the shapes on the
path from one label to the other on the layer defined by the PATH_LAYER rule
(by default, layer 98.)

When the short is on a net that travels over most of the chip (e.g. GND), it may
be difficult to find the short since most of the net will be copied to the path layer.
When this is the case, you can use panel processing to isolate the short.

Look at Figure 69. These are the shapes on layer 98 from an NLE run which
found a short between VDD and VSS on a chip. It is somewhat difficult to
locate exactly where the short is from these shapes.

If we perform the same NLE run again with the rules PANELX=50 and
PANELY=50 rules added to the rules file, the path of the short will look like
Figure 70.

Figure 69: Path of short without panel
processing.

Figure 70: Path of short with panel
processing.

Running The NLE: Output Files

NLE and LVS User Manual 193

Node summary file

The node summary file reports information similar to the LVS net degree report,
but you can see the information before the LVS is run. This file will list the
degrees of all nodes found by the circuit recognition. The degree of a net is
defined as the number of device terminals to which the net connects.

The main use of this file is to quickly inspect the results of circuit recognition
before you run the LVS. If you have many nodes of degree 1, and few or none
of higher degrees, it is likely that your rule set is missing a CONNECT rule. If
you have few nets, and each of these has a very high degree, it is likely that
something is shorting your nets together. The cause of the short may be poorly
written rules which short layers in error, or it may be stray pieces of conductive
material which short many nets together.

If you have used node labels in your layout, the ECC will report shorts or opens
in the NLE log file to provide clues to problems like these. However, this file
can provide clues to major problems even when you have not used node labels.
If this file alone does not provide enough clues to help you find the problem, you
can add a few node labels to your layout at this point to help you see what nets
are being shorted or left unconnected in error.

This report begins with a summary of how many device terminals (pins) and how
many nets were found in the circuit. Then the report lists counts of nets sorted
by degree.

The next section lists the node numbers of nets of each degree. These node
numbers can be used to highlight the nets in the ICED32™ layout editor using the
node outliner commands.

The final section of the report lists each net by node number followed by the
coordinates of each device terminal connected to the net.

The name of this file will be output_file_base_name.DEG. Before a file from a
previous run is overwritten, it will be renamed output_file_base_name.DE1.

The NLE
command line
option
NO_NODE-
_COUNT will
suppress
creation of this
file.

See Node
Labels on page
138 to learn
how to add
node labels.

The node
outliner
commands are
described on
page 389.

Running the NLE: Output Files

194 NLE and LVS User Manual

Binary layout netlist

This file is the input file for the LVS or LPE utilities. It is a binary file that
contains a list of each device the NLE recognized along with the node numbers
of the terminals. If the device rules in your rule set are written to extract device
dimensions, this information will be stored with each device. LVS node labels
found on devices or nets will be included in the file, in a format which the LVS
or LPE can use to correspond the label to the net or device number in the netlist.

Since this file is in binary form to speed the input process for the LVS, you
cannot use an ASCII editor to view it. If you want an ASCII format of the file,
you should run the LPE utility.

Node outliner file

This file is used by the node outliner commands in the ICED32™ layout editor to
highlight devices or entire nets in your design. You can type in a node number
and see the entire net blink, or select a node with the cursor and have the node
number reported to you.

The NLE generates the file cell_name.P9K, where cell_name is the same string
as the cell_name.POK file used as the input file of the NLE. The LVS will
create a companion file to the .P9K file with the name cell_name.P8K. The
.P8K file is not required to run the node outliner commands, but it allows you to
use the node names of nets (rather than node numbers only) to select them.

The node outliner commands will expect these files to be named with the cell
name. They should be located in the same directory as the cell file.

To learn how to use the node outliner commands, see page 389.

Either of the
NLE command
line options
NO_NETLIST
or NO_NLE
will suppress
creation of this
file.

You can also
get a lengthy
ASCII listing of
the layout
netlist with the
NLE command
line option
LOGEXT. See
page 175.

The NLE
command line
option
NO_SAVE_-
CONNEC-
TIONS will
suppress
creation of this
file.

You can use the
SAVE or
NO_SAVE
rules to reduce
the size of this
file.

Running The NLE: Output Files

NLE and LVS User Manual 195

Bad polygon command files

If the NLE found bad polygons or wires in your design cells, it will create
separate command files with copies of these shapes to help you locate the
problems. You can use these files to add copies of these problem shapes to your
cells on a new layer in a similar manner as the other NLE command file
described on page 189.

A "bad" polygon or wire is one that is likely to cause problems for mask
processing software. A self-intersecting shape is an example of a bad polygon.

Unlike the other output files created by the NLE, these files are created before
the design is flattened into one cell. The check for bad polygons is run as shapes
are converted into polygons, before all cells are flattened.

One command file is created for each cell that contains bad polygons. The name
of the command file will be cell_name.ERR, if that is a valid file name. If
cell_name.ERR is not a valid file name, the NLE will create a file name based on
the output file base name. (The actual names of all output files are stored in the
log file.)

The coordinates used in the ADD commands contained in the bad polygon
command files will be in the coordinate system of cell cell_name, not in the
coordinates of the main cell. Run each command file while you are editing cell
cell_name, not the top-level cell.

For example, you run the NLE on your highest level cell, MAINCELL. The cell
NANDCELL is used 100 times in MAINCELL. NANDCELL contains a single
self-intersecting wire. You get only a single warning message about the bad
polygon, not 100 messages. The NLE will create a command file with the name
NANDCELL.ERR. This command file will contain a single ADD command that
creates a copy of the bad polygon on the error layer 99.

The log file will
warn you if
your design
contains bad
polygons.

See the DRC
manual for more
information on
bad polygons.

Running the NLE: Output Files

196 NLE and LVS User Manual

To see exactly which shape is causing the error message, you can edit the cell
NANDCELL with the ICED32™ layout editor, then run the command file with the
ICED32™ command:

@NANDCELL.ERR

This will add the shape on layer 99 to the cell. Now you can see the exact
problem shape with the commands:

SELECT LAYER 99 ALL
VIEW SELECT

This will add select marks to the shape you just added and resize the view
window so the shape is displayed. Once you see the shape that is causing the
problem, delete the shape on layer 99 and fix the original shape.

See page 189 to
learn other ways
to use NLE
generated
command files.

LVS Basics

NLE and LVS User Manual 197

LVS Basics

LVS Basics

198 NLE and LVS User Manual

Overview

The LVS is a comparison utility that verifies that two netlists represent the same
circuit. It is usually used to compare a layout netlist to a schematic netlist. A
layout netlist is generated by the NLE utility, which we have already covered.

The first step the LVS performs is to transform each netlist according to program
options. This is done before any matching of circuits in the two netlists. These
transformations include combining parallel or serial devices into single devices,
filtering out shorted or unconnected devices, and making virtual connections of
nets. This feature will allow circuits which are logically equivalent, but
physically dissimilar, to match successfully.

The options that control these transformations, and options that control other
aspects of the comparison, can be entered in three different ways:

option lines in the LVS control file,
parameters on the LVS command line,

and
device models in the netlists.

The control file contains many options. Several of these options can be
overridden with parameters on the LVS command line. Parameters in device
models override both of these other methods of entering options.

The control file defines default behavior for all devices of a specific type (e.g.
resistors or bipolar transistors). The device models in the netlists can override
this default behavior for only specific models of a device (e.g. polyamid resistors
vs. diffusion resistors). For instance, you may want to merge most of your
parallel resistors, but for certain resistors you want to prevent merges. You
assign these resistors a unique model name in the netlist and create the device
model for this model name that overrides the default defined in the control file
for all resistors.

To see a
diagram of how
files must be
prepared for the
LVS program,
see page 18.

LVS Basics

NLE and LVS User Manual 199

Other parameters in a device model allow the LVS to calculate a value for a
device in a layout netlist based on dimensions calculated by the NLE. A
tolerance for the comparison of device values can also be added to a device
model.

The model name of devices in the layout netlist is defined by the model_name in
the NLE DEVICE rule. An LVS device model must be included in the layout
netlist for each unique model name in the netlist. Similarly, each unique device
model name which occurs in a schematic netlist must have an LVS device model
written for it which is included in the schematic netlist. When you create the
device models for each netlist, you should insure that similar transformations are
performed on each netlist.

You can specify that specific models can only be matched with devices using the
same model, or allow any devices of the same type to match regardless of the
model name used. This is defined in the control file, but can be overridden in
specific device models.

Another method the LVS can use when transforming circuits in netlists is special
handling of nets with certain node labels. Special character prefixes or suffixes
on node labels can prevent transformations or allow virtual connections of nets.

Node labels are usually added to the layout in the ICED32™ layout editor.
However you do not need to edit the layout and re-execute the NLE to modify
the node labels in a layout netlist. You can add node labels overrides in the
layout netlist to modify node labels.

Node labels can be used to assign forced points of correspondence between the
two netlists. You usually define these points of correspondence with a node
correspondence file.

LVS Basics

200 NLE and LVS User Manual

Neither node labels nor forced points of correspondence are required to match
the two netlists. However, forced points of correspondence based on node labels
are highly recommended if your circuit is symmetric. The LVS uses a graph
coloring algorithm which matches devices based on the number and types of
devices each device connects to. If your design has many identical circuits,
many devices will have identical properties and the LVS may be forced to match
a random device from a list of identical devices in each netlist to continue it's
matching algorithm.

If you provide a few forced points of correspondence, you can speed the
matching algorithm considerably. This will also insure that the comparison
progresses from a few known points of correspondence rather than from random
nodes in a list of identical devices. However, if you assign a forced point of
correspondence in error, you may prevent any circuits from matching.

All of these features will be explained in detail in the following chapters.

LVS Basics

NLE and LVS User Manual 201

LVS Statement Syntax

The syntax descriptions for the statements in LVS input files use the following
conventions. For the most part, these are the same conventions as those used in
the NLE rules descriptions. The primary difference is that parentheses, ()'s, are
used to indicate option choices.

KEYWORD Bold type is used to indicate required keywords.

(KEYWORD A | KEYWORD B) Parentheses are used to indicate that a
choice of keywords is required. The options are delimited with
the | character. Exactly one of the options must be used. Do not
type the parentheses.

[KEYWORD] Square brackets indicate that a keyword or parameter is optional.
Do not type the brackets.

parameter value Lower case italic type is used to indicate where a value should
be substituted. A value could be a number or a string. The type
of value and the range is indicated in the manual.

a:z Ranges of possible values are indicated by a colon between the
lowest valid value and the highest valid value.

... Three dots at the end of a line of sample code, or in a syntax
description, indicate that the statement is continued on the next
line. Another three dots will also preceed the continuation on
the next line. The dots should not be included when the
statement is typed.

LVS Basics

202 NLE and LVS User Manual

Three dots in the middle of a line in a syntax description mean
that several additional parameters are allowed but are not
explicitly specified in the syntax description.

*.VIRTUAL net_name_1 net_name_2 [... net_name_n]

This is part of the syntax description for the VIRTUAL netlist
command. You may have multiple netnames after the
*.VIRTUAL keyword. We use this syntax to indicate that you
may enter as many netname parameters as necessary. The dots
take the place of the missing parameters.

Q:\ICED When this manual refers to the directory path Q:\ICED you
should replace it with the drive letter and directory path where
the LVS is installed.

For example, the tutorials refer to files in the directory:

Q:\ICED\SAMPLES\74181\LVS

If you have installed the LVS software on drive C: in the
directory IC32, you should look for the files in the directory:

C:\IC32\SAMPLES\74181\LVS

LVS Input Files

NLE and LVS User Manual 203

LVS Input Files

Input Files

204 NLE and LVS User Manual

Input Files: Schematic Netlists

NLE and LVS User Manual 205

Schematic Netlists

The LVS can read schematic netlists written in the SPICE, PSPICE, HSPICE, or
CDL6 device level circuit simulation languages. The LVS accepts both flat and
hierarchical schematic netlists. Many statements in the schematic netlist used
for simulation, or other purposes, are ignored by the LVS. Statements that are
not used by the LVS do not need to be deleted from the schematic netlist and are
not reported as errors. Every effort has been made to reduce the effort of editing
the original schematic netlist.

One addition you must make to the netlist is to add device models in LVS syntax
for each device model in the netlist. The LVS will ignore all .MODEL
statements in the schematic netlist. You must create a *.SCHMODEL statement
for each device model in the netlist. These device models can be written in a
separate file. This file can be combined with your original schematic netlist
through the use of .INCLUDE statements.

One change you may have to make to the schematic netlist is to enclose the
entire top level circuit in a .SUBCKT and .ENDS pair of statements. You
specify the name of this top-level subcircuit in the control file (or in an optional
parameter in the LVS command line).

These changes will be described in more detail after we cover how to write the
device models for a schematic netlist.

6 CDL stands for Circuit Description Language used by Cadence Design Systems, Inc.

For an example
schematic
netlist file, see
page 25.

A hierarchical
netlist uses
.SUBCKT
statements to
define the
hierarchy.

Input Files: Schematic Netlists

206 NLE and LVS User Manual

The *.SCHMODEL Statement

The *.SCHMODEL statement performs a similar role to the .MODEL statement
in the SPICE language. You must create an *.SCHMODEL statement for each
unique device model in the schematic netlist. The asterisk ('*') is required. It
allows *.SCHMODEL statements to be present in a netlist used for simulation.
The asterisk indicates a comment to programs which use the SPICE language
and its derivatives. The LVS will parse *.SCHMODEL statements, but other
programs will ignore them.

(The *.SCHMODEL statement is the equivalent of the *.ICEDMODEL
statement in beta versions of the LVS.)

The syntax of an *.SCHMODEL statement is:

*.SCHMODEL model_name device_type ...
... [LTLR = l_tolerance] ...
... [WTLR = w_tolerance] ...
... [AREATLR = a_tolerance] ...
... [VALUETLR = v_tolerance] ...
... [LOFFSET = l_offset] ...
... [WOFFSET = w_offset] ...
... [C_PERIMETER = c_perim] ...
... [C_AREA = c_area] ...
... [R_CONTACT = r_contact]...
... [OHMS_PER_SQUARE = r_value] ...
... [L=length] ...
... [W=width] ...
... [M=value] ...
... [AREA=area] ...
... [VALUE=value] ...
... [BULK=bulk_node_name] ...

(continued on next page)

Device models
in the layout
netlist are
defined with the
*.LAYMODEL
statement
described on
page 229.

Tolerance
parameters

C o n t r o l F i l e

Device
characteristics

Default
value
parameters

Input Files: Schematic Netlists

NLE and LVS User Manual 207

... [ALL=(YES | NO)] ...

... [ALLMERGE=(YES | NO)] ...

... [ALLCOLLAPSE=(YES|NO)] ...

... [ALLMATCH=(YES | NO)] ...

... [ALLFILTER=(YES | NO)] ...

... [SMERGE=(YES | NO)] ...

... [PMERGE=(YES | NO)] ...

... [DSIZE=(YES | NO)] ...

... [CHAIN=(YES | NO)] ...

... [DCHAIN=(YES | NO)] ...

... [DMODEL=(YES | NO)] ...

... [SERIES=(YES | NO)] ...

... [PARALLEL=(YES | NO)] ...

... [DCOLLAPSE=(YES | NO)] ...

... [MODEL=(YES | NO)] ...

... [PARAM=(YES | NO)] ...

... [OPEN=(YES | NO)] ...

... [ONE_CNCT=(YES | NO)] ...

... [TWO_CNCT=(YES | NO)] ...

... [SHRT=(YES | NO)] ...

... [GATE_NET=(YES | NO)] ...

... [SD_NET=(YES | NO)] ...

... [BASE_NET=(YES | NO)] ...

... [SWAP=(YES | NO)]

The model_name parameter is required. It must be identical to the device model
name used in the schematic netlist. The model_name must not exceed 132
characters. Model names must begin with an alphabetic character. The
characters '_' and '$', as well as any alphanumeric characters, can be used after
the first character. Model names (as well as all other parameters) are not case
sensitive. All characters are translated to upper case as the LVS reads them.

The device_type parameter is also required. This parameter must be one of the
keywords in the table shown in Figure 72 on page 210.

Example: *.SCHMODEL TRANSISTOR1 PMOS

The model_name in this example is TRANSISTOR1. The device_type is PMOS.
No optional parameters are used.

Control
file
overrides

Models can
span several
lines using
continuation
lines. See an
example on
page 217.

Input Files: Schematic Netlists

208 NLE and LVS User Manual

All parameters indicated with []'s in the syntax description are optional. The
order is not required to be the same as the order in the syntax description. The
parameters will be read left to right. The last parameter read can override a
previous one. You can use blanks for readability since they will be ignored. Use
the entire string indicated (including the underscore '_') when typing parameter
keywords. You can continue a line onto the next line with the "*+" continuation
prefix. (See page 217 for an example.)

Tolerance Parameters

The tolerance parameters are used to specify how closely the values of devices
from each netlist must match if parameter checking is enabled. If no tolerance
parameter is specified, the default is .0005, or .05%. If you want to override this
default for an LVS comparison, tolerance parameters must be added to the
layout netlist device models, not the *.SCHMODEL models. If you are
performing an SVS (Schematic Vs. Schematic) or LVL (Layout Vs. Layout)
comparison, you should add tolerance parameters to the models of the second
netlist if they are required.

See Tolerance Parameters on page 233 for details on the use of these parameters.

Device Modifiers

The LOFFSET and WOFFSET parameters are
used to adjust the dimensions of devices in the
schematic netlist before any calculations or
comparisons are performed. They can be used if
the device values in the schematic netlist are in as-
drawn dimensions, but the layout netlist has already been corrected to account
for device layer shrinking or bloating.

7 These parameters are valid only when JFET values in the device statements are defined
with L and W rather than AREA.

The default
tolerance is
non-zero to
allow for
truncation
errors in
floating point
calculations.

JFET7

MOSFET
RESISTOR

Figure 71: Valid device
categories for the
LOFFSET and
WOFFSET parameters.

The NLE
BLOAT and
SHRINK rules
can modify
device
dimensions
before device
recognition.

Input Files: Schematic Netlists

NLE and LVS User Manual 209

The LOFFSET and WOFFSET parameters are more commonly used in layout
netlist models. See page 235 for examples and more information.

Device Characteristics

These parameters are also more commonly used in layout netlist device models.
They are used to determine how resistance or capacitance is calculated for
devices that are defined by length and width rather than by value. See
Parameter Calculation on page 343 for more details.

Default Value Parameters

If you provide default value parameter(s) for a specific model, the parameter(s)
will be used as default values for each device using that model. You can
override these default values in the device statements that refer to the model in
the schematic netlist.

Example: *.SCHMODEL TRANSISTOR1 PMOS L=6 W=10
*.SCHMODEL TRANSISTOR2 PMOS

M1 1 4 12 6 TRANSISTOR1
M2 2 4 10 6 TRANSISTOR1 L=3 W=5
M3 3 5 18 6 TRANSISTOR2
M4 3 7 18 6 TRANSISTOR2 L=3 W=5

This fragment of a schematic netlist shows two device models and then 4 device
statements that use those models. The TRANSISTOR1 model uses default value
parameters to provide a default length and width for all devices using that model.
TRANSISTOR2 does not include default values. Device M1 will use the default
length of 6 and width of 10. Since devices M2 and M4 define values explicitly,
the defaults will be ignored. Device M3 will have no length or width assigned to
it, and if parameter checking is enabled, it will never pass a parameter check.

See Parameter
Calculation to
learn how to
enable
parameter
checking.

Input Files: Schematic Netlists

210 NLE and LVS User Manual

Physical device
category

*.SCHMODEL
device_type
keyword

Optional default value parameters

MOSFET NMOS
PMOS

L=length and W=width, M=multiplier8

JFET NJF
PJF

AREA=area
L=length and W=width, M=multiplier9

GaAsFET GASFET AREA=area
BIPOLAR NPN

PNP
LPNP
LNPN

AREA=area

DIODE D AREA=area
CAPACITOR CAP VALUE=value, L=length, W=width,

M=multiplier10

RESISTOR RES VALUE=value, L=length, W=width,
M=multiplier11

INDUCTOR IND VALUE=value, M=multiplier12

TXLINE TXLN VALUE=value

Figure 72: Valid *.SCHMODEL device_type keywords.

You can indicate units of measure with the parameter values. You are
responsible for making sure that the units of the *.SCHMODEL statements and
the device statements in the schematic netlist are consistent with the units of the
*.LAYMODEL statements in the layout netlist and the units of dimensions in the
layout.

8 Calculated device width is width * multiplier.
9 L,W, and M are valid in HSPICE and CDL only.
10 L,W, and M are valid in HSPICE only.
11 L,W, and M are valid in HSPICE only.
12 M is valid in HSPICE only.

Input Files: Schematic Netlists

NLE and LVS User Manual 211

A common error is to specify dimensions in the schematic netlist in meters by
using a 'U' after the value (e.g. W=2.4U is translated to W=2.4e-6 or
W=.0000024), but then the layout netlist expresses dimensions in microns (e.g.
W=2.4).

Make sure that the units of the device models agree with the units in the netlist.
If there is a discrepancy in units between the two netlists, relate the units of one
netlist to the other netlist with the SCALE_device_LENGTH_AND_WIDTH or
SCALE_device_VALUE control file options.

In the HSPICE language, the M=multiplier parameter indicates the number of
devices in parallel. When it is used with a MOSFET transistor, it will be used to
multiply the width of the device during preprocessing. (If a device model
specifies a WOFFSET parameter in addition to an M=multiplier parameter, the
offset is applied before the device width is multiplied.)

Example: *.SCHMODEL TRANSISTOR1 PMOS L=2 W=4 M=2

This device model will be translated during preprocessing into:

*.SCHMODEL TRANSISTOR1 PMOS L=2 W=8

When M=multiplier is used with a VALUE=value parameter, it will multiply or
divide the value depending on the category of device.

Example: *.SCHMODEL RESPOLY RES VALUE=12 M=2

The LVS will interpret this device model to be 2 resistors each of value 12
connected in parallel. It will translate this statement to the equivalent single
device:

*.SCHMODEL RESPOLY RES VALUE=6

Inductor values are calculated in the same manner as resistors.

See page 28 for
an example of
units
conversion.

See page 245
for examples of
how the M and
AREA
parameters are
used for bipolar,
JFET,
GaAsFET, and
diode devices.

Input Files: Schematic Netlists

212 NLE and LVS User Manual

Capacitors connected in parallel have their value increased. Therefore, the
following device model will use the M parameter to multiply the value:

Example: *.SCHMODEL CAPMODEL CAP VALUE=12 M=2

and the model after preprocessing will be:

*.SCHMODEL CAPMODEL CAP VALUE=24

The LVS will preprocess the values of device statements using M parameters in
HSPICE netlists in the same manner as the device model default values in the
examples above.

The [BULK=bulk_node_name] is a slightly different default value parameter.
It is used to define the node name for the bulk layer terminal when it is not listed
in a device terminal list. This parameter should be added to your device models
only when you have set the NUMBER_OF_PINS_FOR_device control file
option for the corresponding device type to a value which allows device
statements with fewer terminals to have the bulk terminal added to each terminal
list. See page 285 for details.

Control File Override Parameters

The remaining *.SCHMODEL parameters are used to override the device
options in the control file on a per model basis. Their primary purpose is to
enable or disable device transformations for only specific models of a device
type.

Input Files: Schematic Netlists

NLE and LVS User Manual 213

For example, if you use the following option in the control file:

SWAP_GAASFET_SOURCE_DRAIN=YES

The LVS enables the swap of the source and drain terminals of GaAsFET
devices where necessary to match devices in the two netlists. If you want this
behavior for most of your GaAsFET devices, but not for a specific device model,
you can disable the source/drain terminal swapping for only one model by using
the SWAP=NO parameter on the device models for both netlists.

Example: *.SCHMODEL G_SWAP GASFET
*.SCHMODEL G_NOSWAP GASFET SWAP=NO

B1 1 2 3 G_SWAP
B2 4 5 6 G_NOSWAP

If these statements are used in one netlist, and devices corresponding to B1 and
B2 exist in the other netlist, but with their sources and drains swapped, B1 will
be matched, but B2 will not. When the G_SWAP model is used, the devices will
match since the default in the control file is to allow terminal swapping for all
GaAsFET devices.

You must be careful that the parameters of the *.SCHMODEL statements in one
netlist are consistent with the device models in the other netlist. Control file
overrides can also be used in the device models in a layout netlist. If you want to
match device B2 in a layout netlist, the SWAP=NO parameter must be used in
the model for that device. A device with swapping disabled will never match a
device with swapping enabled, even when the terminals are not swapped. The
corresponding device model in the layout netlist should be similar to:

*.LAYMODEL G_NOSWAP GASFET SWAP=NO

The parameters beginning with the string ALL, override more than one option in
the control file. To see which parameters to use to override specific control file
options, see Figure 73. To learn what the control file options mean, see
INDIVIDUAL DEVICE OPTIONS starting on page 283.

Input Files: Schematic Netlists

214 NLE and LVS User Manual

13

13 There is no way to disable swapping for MOSFETS, RESISTORS, or INDUCTORS.

*.SCHMODEL Parameter Control File Options Overridden

SMERGE MERGE_SERIES_deviceS

PMERGE MERGE_PARALLEL_deviceS

ALLMERGE CHAIN MERGE_device_CHAINS

DCHAIN MERGE_OUT_OF_ORDER_device_CHAINS

DSIZE MERGE_DISSIMILAR_SIZED_MOSFETS

DMODEL MERGE_deviceS_OF_DIFFERENT_MODELS

SERIES COLLAPSE_SERIES_LOGIC_deviceS

ALLCOLLAPSE PARALLEL COLLAPSE_PARALLEL_LOGIC_deviceS

DCOLLAPSE COLLAPSE_DISSIMILAR_SIZED_deviceS

ALLMATCH MODEL MATCH_device_MODELS

ALL PARAM MATCH_device_PARAMETERS

OPEN IGNORE_UNCONNECTED_deviceS

ONE_CNCT IGNORE_ONE_TERMINAL_CONNECTED_deviceS

TWO_CNCT IGNORE_TWO_TERMINAL_CONNECTED_deviceS

ALLFILTER SHRT IGNORE_SHORTED_deviceS

GATE_NET IGNORE_MOSFET_IF_GATE_PIN_IS_TIED_TO-
_CRITICAL_NET

SD_NET IGNORE_MOSFET_IF_SOURCE_AND_DRAIN-
_PINS_ARE_TIED_TO_CRITICAL_NET

BASE_NET IGNORE_BIPOLAR_IF_BASE_PIN_IS_TIED_TO-
_CRITICAL_NET

SWAP13

SWAP_GAASFET_SOURCE_DRAIN
SWAP_JFET_SOURCE_DRAIN
SWAP_CAPACITOR_TERMINALS
SWAP_EMITTER_AND_COLLECTOR_TERMINALS

Figure 73: *.SCHMODEL parameters and the control file options they override.

Input Files: Schematic Netlists

NLE and LVS User Manual 215

If you use the ALLCOLLAPSE=NO parameter, it is the same as using both the
SERIES=NO and PARALLEL=NO parameters. It will prevent the collapse of
devices in the netlist to form pseudo devices with swappable gates. Using
ALLCOLLAPSE=NO on the model statement for a MOSFET device will
override the control file options COLLAPSE_SERIES_LOGIC_MOSFETS-
=YES and COLLAPSE_PARALLEL_LOGIC_MOSFET=YES.

For example, if you have used the control file option COLLAPSE_SERIES-
_LOGIC_MOSFETS=YES, but you want to prevent pseudo device creation for
one model of MOSFET devices, you can use ALLCOLLAPSE=NO.

Example: *.SCHMODEL P_DEFLT PMOS
*.SCHMODEL P_NO_CLPSE PMOS ALLCOLLAPSE=NO

M23 7 4 12 6 P_DEFLT L=6 W=5
M22 9 3 1 6 P_NO_CLPSE L=6 W=10
M21 8 2 1 6 P_NO_CLPSE L=6 W=10

Devices M22 and M21 are candidates for a series logic collapse into a pseudo
device. However, since they use the P_NO_CLPSE model, they will not be
collapsed. If devices M22 and M21 used model P_DEFLT instead, they would
be collapsed.

Remember that the order of the parameters in a device model is important. The
parameters are read from left to right. The parameter read last can override a
previous one. If the *.SCHMODEL statement in the example above had been
written:

*.SCHMODEL P_NO_CLPSE PMOS ALLCOLLAPSE=NO SERIES=YES

the SERIES=YES parameter would have overridden the ALLCOLLAPSE=NO.
However, parallel collapses would still be disabled.

See page 322
for details on
series logic
collapses.

Input Files: Schematic Netlists

216 NLE and LVS User Manual

When using control file overrides to disable the test for matching model names
(control file option MATCH_device_MODELS) or device values (control file
option MATCH_device_PARAMETERS), be sure that the test is disabled in the
device models of both netlists. For example: if the control file contains the
option:

MATCH_CAPACITOR_PARAMETERS=YES

and you want to disable the parameter test for only one model of capacitors, the
device models in both netlists must disable the test using PARAM=NO. If a test
is enabled in the device model statements in either netlist, or by the default in
the control file, the test is enabled.

Adding *.SCHMODEL Statements to the Schematic Netlist

A *.SCHMODEL statement can appear anywhere in a schematic netlist where a
.MODEL statement is legal. A *.SCHMODEL statement can be defined
globally outside any subcircuit, or inside a subcircuit definition. Models defined
in a subcircuit take precedence over models defined globally.

The preferred method is to globally declare all the *.SCHMODEL statements in
a separate file. You can then create a third file which uses an .INCLUDE
statement to include the model file and a *.SCHEMATIC statement to include
the original schematic netlist. When you use this method, you can avoid editing
the original schematic netlist. The .INCLUDE statements can include directory
paths to the files if they are located in different directories.

All models in the schematic netlist must be defined before they are referenced.
The LVS will report an error if a referenced model is not defined with a
*.SCHMODEL statement before the reference occurs.

If you want the LVS to verify model names when matching devices, the model
names chosen play an important role. If the model names of the device models
in one netlist are different from the model names in the other, the LVS may end
up not matching anything when the MATCH_device_MODELS=YES options
are used in the LVS control file.

For a sample
schematic
model file see
page 25.

Input Files: Schematic Netlists

NLE and LVS User Manual 217

No single line should exceed 256 characters. Continuation lines (i.e. lines which
begin with '+' or '*+') are allowed.

Example: *.SCHMODEL P_NO_CLPSE
*+ PMOS SERIES=NO L=6 W=10

Device Statement Restrictions

All statements in the schematic netlist that do not
begin with a '.' (commands) or a '*' (comments or
LVS commands) are assumed to be device
statements (also referred to as element statements).
The devices recognized by the LVS are listed in
Figure 74. All other device statements are ignored.

Subcircuit call statements can pass parameters.
However, the [OPTIONAL: interface_node =
default_value] and [TEXT: name = text value]
parameters are ignored. The PSPICE syntax for
passing parameters, [PARAMS: name = value], is
supported.

The device terminal connections are always parsed
and stored. The NUMBER_OF_PINS_FOR_device control file option can alter
the way terminals referred to in the netlist are stored by the LVS. (See page
285.)

Most devices require a model name parameter. See Figure 75 for the only
exceptions.

14 SPICE language only.
15 PSPICE language only.
16 SPICE language only.

Device
category

Device
prefix

MOSFET M
JFET J
MESFET
(treated as
GaAsFET)

Z14

GaAsFET B15

BIPOLAR Q
CAPACITOR C
RESISTOR R
INDUCTOR L
TXLINE T16

Subcircuit call X

Figure 74: Schematic
device statements
recognized by the LVS.

LVS commands
are listed in the
table on page
220.

Input Files: Schematic Netlists

218 NLE and LVS User Manual

Passive devices in some
schematic netlist languages
do not require a device
model. If your schematic
netlist does not use model
names in passive device
statements (device statements
beginning with the letter 'R',
'L', 'C' or 'T'), the LVS will
supply default model names.
See Figure 75 for the list of passive devices which do not require a cor-
responding *.SCHMODEL statement. All other devices, except for subcircuits
(statements beginning with a the letter 'X'), require *.SCHMODEL statements.

For example, all device statements beginning with the letter 'R', without a model
name, will have the same model name, "RESISTOR".

Example: *.SCHMODEL RES_POLY RES ALLMERGE=YES

.SUBCKT TESTIT
R1 1 2 2.0
R2 2 3 2.0
R3 4 5 RES_POLY 4.0
R4 5 6 RES_POLY 4.0
.ENDS TESTIT

In the above example, the model name "RESISTOR" is assumed for resistors R1
and R2 since no model name is supplied. No *.SCHMODEL statement is
required for model RESISTOR. (However, you can supply one if you desire.)
Resistors R3 and R4 are defined with model RES_POLY. If this schematic
netlist is run with the control file option MERGE_SERIES_RESISTORS=NO,
the RES_POLY device model parameter ALLMERGE=YES will override the
control file option and allow resistors R3 and R4 to merge. However, resistors
R1 and R2 will not be merged.

Device
Prefix

Description Default
model_name

R Resistor RESISTOR
C Capacitor CAPACITOR
L Inductor INDUCTOR
T Transmission line TXLINE

Figure 75: Schematic devices with default
model names.

Input Files: Schematic Netlists

NLE and LVS User Manual 219

*.SCHMODEL statements for these default model names are optional. You can
add models for these default passive devices by using the model names shown in
Figure 75.

In the example above, if you define a device model for RESISTOR, you could
use the ALLMERGE parameter to allow the LVS to merge devices R1 and R2.
You would have to add the following statement to the model file:

Example: *.SCHMODEL RESISTOR RES ALLMERGE=YES

The syntax requirements for supplying the value of a device vary in different
schematic netlist languages. For instance, some languages allow you to specify
either the length and width or the area of a capacitor, while others allow only the
area. The LVS supports the published syntax of each netlist language for
specifying the value or dimensions of each device, including the M=multiplier
parameter in languages supporting its use. Other parameters are ignored.

In PSPICE, the syntax for a JFET device statement looks similar to this:

J1N 100 1 0 JFAST 2.0

where 2.0 represents the area of the device. No parameter name is allowed.
However HSPICE allows the AREA= parameter to be used. In HSPICE the
device statement above could be written:

J1N 100 1 0 JFAST AREA=2.0

In either case, the LVS stores 2.0 as the area of device J1N.

Note that device statements beginning with 'V' (voltage sources) are not
supported. According to Spice convention, two net nodes can be connected by
specifying a zero voltage between them. For example:

v2 20 0 0

The LVS does not support this convention. The statement above would be
ignored by the LVS.

Input Files: Schematic Netlists

220 NLE and LVS User Manual

Commands Supported in the Schematic Netlist

Command statements in schematic netlists are indicated
by a '.' in front of the command. The command
statements shown in Figure 76 are supported. All other
command statements are ignored.

All commands specific to the LVS have a '*' prefix so
that these commands will be considered comments and
will be ignored by other programs which read the
schematic netlist.

We will not cover the use of commands defined by
accepted SPICE syntax. We have already covered the
*.SCHMODEL statement beginning on page 206. The
other commands added for LVS purposes are covered
below.

17 CDL language only.

 .END
 .ENDS
 .EOM
 .GLOBAL or
*.GLOBAL17

*.GROUND_NET
 .INC or
 .INCLUDE
 .MACRO
*.NOCOLLAPSE
 .PARAM
*.PINS
*.POWER_NET
*.SCHEMATIC
*.SCHMODEL
 .SUBCKT
*.VIRTUAL

Figure 76:
Supported
commands

The LVS
supports up to
10 levels of
.INCLUDE or
.INC
statements.

Input Files: Schematic Netlists

NLE and LVS User Manual 221

*.GROUND_NET gnd_name [... gnd_name_n]

 and

*.POWER_NET pwr_name [... pwr_name_n]

The LVS will assume that nets in the
top-level subcircuit with the names
shown in Figure 77 are either ground
or power nets. (Local nets nested in
lower level subcircuits are not
affected.) Different nets in each list
will not be virtually connected.

The LVS treats power and ground
nets differently from other nets.
(For example, you can filter out
bipolar NPN devices that have their
bases shorted to ground. See page
300.)

If your ground or power nets have net names that are not in these lists, you can
use the *.GROUND_NET and/or *.POWER_NET commands to add your net
names to the lists the LVS keeps for valid names for ground or power.

Example: *.GROUND_NET GROUND GND_X

If you add this command to your schematic netlist, the net names "GROUND"
and "GND_X" will be added to the list of nets that the LVS will consider to be
ground nets. These nets must already exist in the top-level subcircuit in your
netlist.

18 HSPICE only.

Ground nets Power nets
GND VDD
GND: VDD:
!GND18 VCC
!GND: VCC:
VSS
VSS:
0 (the number, not
the letter O)

Figure 77: Equivalent node names for
ground and power nets.

Input Files: Schematic Netlists

222 NLE and LVS User Manual

The LVS will translate all nets with the name '0' to the name, "GND". If you
intend that net 0 is in fact different from "GND", it will cause problems. Use a
different name for separate ground nets.

*.NOCOLLAPSE net_name [... net_name_n]

The *.NOCOLLAPSE command is used to prevent collapses for all devices
attached to specific nets. It works in the same manner as labeling a layout net
with the prefix defined by the control file option SPECIAL_CHARACTER-
_FOR_NO_COLLAPSE_OF_DEVICES_CONNECTED_TO_A_NET. See
Node Labels Which Prevent Device Collapses on page 351 for more
information.

Example: *.NOCOLLAPSE CLOCK1 CLOCK2

The above command in the schematic netlist will prevent all devices connected
to nets CLOCK1 or CLOCK2 from disappearing due to device merges or logic
collapses. CLOCK1 and CLOCK2 will not be virtually connected. Listing both
nets in one *.NOCOLLAPSE command is simply shorthand for the following
two commands:

Example: *.NOCOLLAPSE CLOCK1
*.NOCOLLAPSE CLOCK2

*.PINS net_name[:padchar] [... net_name_n[:padchar]]

The *.PINS command is used to prevent disappearance of specific nets due to
device collapses or merges. It works in the same manner as labeling a layout net
with the prefix defined by the control file option SPECIAL_CHARACTER-
_FOR_NO_COLLAPSE_OF_A_NET. See page 351 for more details on
preventing the disappearance of nets from the netlist.

Example: *.PINS NETA NETB

This command in the netlist will prevent the nets "NETA" and "NETB" from
disappearing from the netlist due to logic transformations.

Input Files: Schematic Netlists

NLE and LVS User Manual 223

All nets in the list of connections on the top-level subcircuit are automatically
classified as pins. You do not need to add a *.PINS statement for these nets.

The *.PINS command can also be used to define pad connections of nets. See
Pad Connection Verification on page 335 to learn about using the optional
padchar specifications of the *.PINS command to specify pad connections.

*.SCHEMATIC [dir_path\]netlist_file

You can use this command in your highest level schematic netlist file to specify
the name of your original schematic netlist file. It works in the same way as an
.INCLUDE statement. However, when you use this statement instead of an
.INCLUDE statement, you can override the netlist file with the /S option on the
LVS command line.

See page 228 for an example.

*.VIRTUAL net_name_1 net_name_2 [... net_name_n]

This command will virtually connect all specified nets together as one net. The
name specified as net_name_1 will be used as the name of the net.

There are several other ways to virtually connect nets. See the list of methods on
page 358.

Input Files: Schematic Netlists

224 NLE and LVS User Manual

Parameter Passing and Syntax Restrictions

There is a special consideration when defining parameters globally. In the
PSPICE language, parameters defined on a subcircuit call have precedence over
parameters defined globally using a .PARAM command. However, in the
SPICE, HSPICE, and CDL languages, parameters defined globally have
precedence over subcircuit parameters.

Example: .PARAM val1=2
.SUBCKT TESTIT
*
X1 CKT1 val1=4
*** IN PSPICE THE SYNTAX OF THE ABOVE STMT WOULD BE
*** X1 CKT1 params:val1=4

.ENDS TESTIT

.SUBCKT CKT1 val1=8
*** IN PSPICE THE SYNTAX OF THE ABOVE STMT WOULD BE
*** .SUBCKT CKT1 params:val1=8

M23 7 4 12 6 P_DEFLT L=val1 W=5
M22 9 3 1 6 P_NO_CLPSE L=6 W=10
M21 8 2 1 6 P_NO_CLPSE L=6 W=10

.ENDS CKT1

If the above netlist is parsed with the control file option SCHEMATIC-
_FILE_FORMAT = PSPICE, the length of X1.M23 will be 8. In the other netlist
languages, the length of the device will be 2.

You can use
parameter
substitution in
the model file as
well. See page
248 for an
example.

Input Files: Schematic Netlists

NLE and LVS User Manual 225

There are two syntax features of the CDL language which the LVS does not
support. The first is the use of the same node number more than once in a
subcircuit definition.

Example: SUBCKT CMLT 16 14 22 22 45 46 ! Syntax error

The node 22 has been used twice in the terminal list. The error message the LVS
will report in this case is "Duplicate node names not allowed". You must edit
your schematic netlist to avoid the use of duplicate node names in a subcircuit
definition.

The other restriction is the use of global nodes in a subcircuit terminal list. CDL
allows this, but it is not supported by the LVS.

Example: .GLOBAL 1001
SUBCKT AIT 16 14 600 11 23 1001 22 45 46 ! Syntax error

The global node 1001 has been used in the terminal list of subcircuit AIT. The
LVS will report the error with the message "Global node not allowed as
subcircuit argument". You must remove these nodes from the .SUBCKT
statement.

The net name
"0" is translated
by the LVS to
"GND". See
page 222.

Input Files: Schematic Netlists

226 NLE and LVS User Manual

Node Names

The term node refers to both device nodes and net nodes unless stated otherwise.

When the LVS processes a hierarchical schematic netlist, only global net nodes
and devices in the top-level subcircuit preserve their original name. All other
device and net names are expanded to uniquely identify them. The subcircuit
name at the highest level will come first, then other names will be appended with
a '.' in between each name as you proceed down the hierarchy. For example,
look at the following schematic netlist fragment.

.SUBCKT C
X10001 B
.ENDS C

.SUBCKT B
X200 A
.ENDS B

.SUBCKT A
MP3 7 4 12 6 PMOSDEFLT
.ENDS A

Device MP3 is inside subcircuit A. This subcircuit is added to subcircuit B with
the instance name of X200. Subcircuit B is added to subcircuit C with an
instance name of X10001. The device name in the LVS output will be
X10001.X200.MP3.

Expanded node names have no upper limit on the number of characters.

Device names, net names, and parameter names in the original netlist may be up
to 132 characters long. Net names may consist solely of numeric characters, but
device names and parameter names must begin with a non-numeric character.

Leading 0's are ignored for net names. "00145", "0145" and "145" are all
translated to the node name "145".

MP3

X200

C
A

B

TOP-LEVEL

X10001

The net name
"0" is translated
by the LVS to
"GND". See
page 222.

Input Files: Schematic Netlists

NLE and LVS User Manual 227

Inserting a Top-Level Subcircuit

All devices to be verified by the LVS must be enclosed in subcircuits. If your
schematic netlist contains devices which are not enclosed in a .SUBCKT/.ENDS
pair of statements, the LVS will issue an error message similar to "FATAL
ERROR: Device was not declared within SUBCKT" and abort.

If your schematic netlist has this problem, there are two solutions. You can edit
the schematic netlist to gather all top-level device statements into one place, then
add a .SUBCKT statement before the first device and a .ENDS statement after
the last top-level device.

If you are automatically
generating your schematic
netlist from a schematic
capture program, you can
generate a dummy top-level
schematic. In this case, the
top-level devices will be
automatically contained in a
subcircuit.

If your top-level schematic is
named "CHIP" as shown in
Figure 78, simply add
"CHIP" to another schematic
page named "DUMMY". Now output your schematic netlist from the
"DUMMY" page rather than "CHIP". The devices on page "CHIP" will
automatically be contained in a subcircuit with that name. Use that name as the
parameter in the control file option TOP_LEVEL_SUBCKT_IN_SCHEMATIC-
_FILE. (See page 258.)

SUB1

DUMMY

CHIP

SUB2

M1

M2

Figure 78: Schematics for netlist.

Input Files: Schematic Netlists

228 NLE and LVS User Manual

Summary of How to Prepare a Schematic Netlist for the LVS

1. Create a separate file which includes all of the *.SCHMODEL
statements. You can name this file SCHMODEL.NET

2. Check the original schematic netlist for syntax that could cause problems
(e.g. unsupported CDL syntax, see page 225).

All devices must be contained in subcircuits. You must have a top-level
.SUBCKT statement, and an .ENDS statement after the last top-level
device. (See previous page.) Use the name of the top level .SUBCKT
statement in the control file option TOP_LEVEL_SUBCKT_IN-
_SCHEMATIC_FILE.

For this example, let us assume that the original schematic netlist has the
file name SCH.NET.

3. Create a new file, with a name similar to LVS_SCH.NET. This file
should include the lines:

*Schematic netlist for LVS check
.INCLUDE SCHMODEL.NET
*.SCHEMATIC SCH.NET
.END

The .END statement is essential at the end of file.

Use the LVS_SCH.NET file for the schematic netlist on the LVS command line.

If you prefer, you can add the *.SCHMODEL statements directly to the original
schematic file and use that file name on the LVS command line. However, using
the LVS_SCH file method above, you can avoid editing the original schematic
netlist.

See an example
of this process
in the Quick
LVS Tutorial
on page 25.

The LVS
command line
option /S can be
used to override
the filename in
the
*.SCHEMATIC
statement.

Input Files: Layout Netlists

NLE and LVS User Manual 229

Layout Netlists
The LVS uses layout netlists generated by the NLE circuit extractor. The NLE
uses data generated from an ICED32™ cell. The layout netlists generated by the
NLE have a .EXT extension and are binary files.

The LVS also requires a separate ASCII model file for the layout netlist.
Creating the model file is explained below.

The *.LAYMODEL Statement

The LVS needs a model for each unique device recognized by the NLE circuit
extractor. These statements are very similar to the *.SCHMODEL statements in
a schematic netlist. The syntax of the *.LAYMODEL statement, used to define
device models in the layout netlist, is shown below.

*.LAYMODEL model_name device_type ...
... [LTLR = l_tolerance] ...
... [WTLR = w_tolerance] ...
... [AREATLR = a_tolerance] ...
... [VALUETLR = v_tolerance] ...
... [LOFFSET = l_offset] ...
... [WOFFSET = w_offset] ...
... [BENDS_CR = correction_factor] ...
... [BOX_GM = (YES | NO)] ...
... [MANHATTAN_GM= (YES | NO)] ...
... [REST_GM = (YES | NO)] ...

... [C_PERIMETER = c_perim] ...

... [C_AREA = c_area] ...

... [R_CONTACT = r_contact]...

... [R2_CONTACT = r2_contact]...

... [R2_WIDTH = r2_width]...

... [OHMS_PER_SQUARE = r_value] ...

(continued on next page)

The
*.LAYMODEL
statement is the
equivalent of
the
*.EXTMODEL
statement in
beta versions of
the LVS.

Tolerance
parameters

Device
modifiers

Layout
restrictions

Device
characteristics

Input Files: Layout Netlists

230 NLE and LVS User Manual

... [L=length] ...

... [W=width] ...

... [M=value] ...

... [AREA=area] ...

... [PERIMETER=perim] ...

... [VALUE=value] ...

... [ALL=(YES | NO)] ...

... [ALLMERGE=(YES | NO)] ...

... [ALLCOLLAPSE=(YES|NO)] ...

... [ALLMATCH=(YES | NO)] ...

... [ALLFILTER=(YES | NO)] ...

... [SMERGE=(YES | NO)] ...

... [PMERGE=(YES | NO)] ...

... [DSIZE=(YES | NO)] ...

... [CHAIN=(YES | NO)] ...

... [DCHAIN=(YES | NO)] ...

... [DMODEL=(YES | NO)] ...

... [SERIES=(YES | NO)] ...

... [PARALLEL=(YES | NO)] ...

... [DCOLLAPSE=(YES | NO)] ...

... [MODEL=(YES | NO)] ...

... [PARAM=(YES | NO)] ...

... [OPEN=(YES | NO)] ...

... [ONE_CNCT=(YES | NO)] ...

... [TWO_CNCT=(YES | NO)] ...

... [SHRT=(YES | NO)] ...

... [GATE_NET=(YES | NO)] ...

... [SD_NET=(YES | NO)] ...

... [BASE_NET=(YES | NO)] ...

... [SWAP=(YES | NO)] ...

... [TYPE= [P] [S] [G] [C] [I] [O] [B]
]19

19 The TYPE parameter is used only when device_type = PAD.

Default
value
parameters

Control
file
overrides

Pad type

Input Files: Layout Netlists

NLE and LVS User Manual 231

The model_name keyword must be exactly the same identifier as the model name
used in the device recognition rule in the NLE rules file. If you will be using the
MATCH_device_MODELS options in the LVS control file, the model_name
must also be exactly the same as the model name in the device model in the other
netlist.

The device_type should come from the list supplied in the table in Figure 79.

The only required parameters are the model_name and the device_type. All
other parameters are optional.

Tolerance parameters determine how close the values in this netlist
must be to the values in the other netlist for the values to be
considered a match.

Device modifier parameters are used to shrink or bloat geometry
before dimensions are used to calculate the value of a device.

Layout restrictions will cause the values of devices with unusual
layouts to be ignored.

Device characteristics parameters are used to calculate capacitor and
resistor values.

Default value parameters define values for devices that cannot be
calculated by the NLE circuit extractor.

Control file override parameters allow you to override options in the
control file on a per-model basis.

Pad type parameters (used only for pad devices) allow you to define
the pad type of a pad device. (See page 337 for more details on
these parameters.)

Input Files: Layout Netlists

232 NLE and LVS User Manual

Physical
device
category

*.LAYMODEL
device_type
keyword

Optional tolerance
parameters

Optional device characteristics and
default value parameters

MOSFET NMOS
PMOS

LTLR = l_tolerance,
WTLR = w_tolerance

L=length and W=width
M=multiplier

JFET NJF
PJF

AREATLR = a_tolerance AREA=area
M=multiplier

GaAsFET GASFET AREATLR = a_tolerance AREA=area
M=multiplier

BIPOLAR NPNn
PNPn
LPNPn
LNPNn

AREATLR = a_tolerance AREA=area
M=multiplier

DIODE D AREATLR = a_tolerance AREA=area
M=multiplier

CAPACITOR CAP VALUETLR = v_tolerance C_PERIMETER = c_perim
C_AREA = c_area
AREA=area
PERIMETER=perim
VALUE=value
M=multiplier

RESISTOR RES VALUETLR = v_tolerance R_CONTACT = r_contact or
 R2_CONTACT = r2_contact
 R2_WIDTH = r2_width
OHMS_PER_SQUARE = r_value
VALUE=value
M=multiplier

INDUCTOR IND VALUETLR = v_tolerance VALUE= value
(value never calculated from layout)
M=multiplier

TXLINE TXLN VALUETLR = v_tolerance VALUE= value
PARASITIC-
_CAPACITOR

PCAP None (Never matched to
devices in other netlist.)

C_PERIMETER = c_perim
C_AREA = c_area
(No default values)
M=multiplier

PAD PAD None TYPE = [P] [S] [G] [C] [I] [O] [B]
Subcircuit SUBCKT N/A N/A

Figure 79: Valid *.LAYMODEL device_type keywords.

Input Files: Layout Netlists

NLE and LVS User Manual 233

(The optional n used in the device types for bipolar devices represents the
number of emitters or collectors in the device. When n is not used, the default is
a single emitter or collector device. When n is used, it must be a positive
integer.)

The PCAP device type exists only in layout netlists. It is used to model parasitic
capacitors found by the NLE. Parasitic capacitors are never matched to devices
in the schematic netlist. However, they can be very useful when you use the
GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT =
YES control file option. All parasitic capacitors found in the layout can be
included for simulation purposes. If you prefer to filter these devices, so that
only those above a threshold value are included in the generated spice netlist, use
the control file option DELETE_PARASITIC_CAPACITORS_LESS_THAN =
filtval.

Device models of PAD type devices can be used to verify pad connections. The
pad device type is the only device type that uses the TYPE parameter. It is used
to identify the type of a pad in the layout. See Pad Connection Verification on
page 335 for more information.

The SUBCKT device type is used to expand a single layout device into other
devices. (See Multiple Emitter or Collector Devices on page 331 for some
examples.)

Tolerance Parameters

Tolerance parameters are not intended to allow for process variation of device
dimensions. They are used to allow a matched device to have a small difference
in value in each netlist without an error message. When parameter checking is
enabled, matched devices that have a difference in value outside the tolerance
range will result in a parameter error messages.

Note that value
checking must
be enabled in
the control file
with the option
MATCH-
_device-
_PARAM-
ETERS = YES.

Input Files: Layout Netlists

234 NLE and LVS User Manual

There are three reasons why you may want to override the default tolerance of
.0005 (or .05%) for some device models.

Devices which have complex formulas for value calculation may have
larger than normal floating point calculation deviations which result in a
value mismatch.

Devices with non-critical device dimensions may be approximated in the
layout because of spacing or grid alignment issues. For example, if your
schematic netlist calls for a 127Ω resistor, and in your technology
resistors have a resistance of 10Ω/square, you may not be able to create
the required resistor on grid. If the exact value of the resistor is not
critical, you may want to add a slightly higher tolerance than the default
to avoid many parameter error messages that you consider false errors.

When a device is laid out as several devices in series or parallel, small
mismatches due to diffusion shrinkage in transistors or contact resistance
in resistors may add up to a large mismatch in the merged device. You
may need a slightly higher tolerance to allow this type of device to
match the value in the schematic.

The tolerance parameters are percentages expressed in decimal form real
numbers in the range 0:1. The default value of all tolerance parameters is
0.0005, or .05%. When the tolerance is this small, the values of devices matched
from the two netlists must be almost exactly the same. The default is non-zero
so that small deviations caused by floating point calculations do not cause false
errors.

A tolerance of 0 indicates that the values of matching devices from each netlist
must be exactly the same. A tolerance value of 1.0 translates into a 100%
tolerance. A 100% tolerance allows a device to match even when the value in
the second netlist is twice the value in the first netlist.

Input Files: Layout Netlists

NLE and LVS User Manual 235

Example: *.LAYMODEL PTRANSISTOR PMOS LTLR=0.1 WTLR=0.1
*.LAYMODEL NTRANSISTOR NMOS LTLR=0.05 WTLR=0.05

These models define PTRANSISTOR as a PMOS device with a length and width
tolerance of 10%. This means that the parameter values of length and width of a
device in the second netlist must be within ±10% of the values of the matched
device from the first netlist. If the device from the second netlist is outside of
this range, the devices will still match, however the parameter error summary
report will report a parameter error message for this device. The
NTRANSISTOR device is defined as a NMOS device and the length and width
tolerances are 5 percent.

Only the tolerances defined in the second netlist will be used. In an LVS
comparison, the tolerances must be defined in the *.LAYMODEL statements of
the layout netlist.

Device Modifiers

There are two methods for specifying the size of devices in a schematic netlist:

As-drawn dimensions the dimensions represent the size of the device
as it is drawn in the layout.

Effective dimensions the size of the device has been corrected for
diffusion shrinkage or other fabrication effects.

Most schematic netlists are created specifying as-drawn dimensions for the
values of devices. The simulation models of the devices take into account that
the device size will change as it is fabricated.

The NLE usually creates the layout netlist using as-drawn dimensions.
(However the NLE BLOAT and SHRINK rules can be used to modify device
layers in the layout netlist to extract effective dimensions.)

When both netlists use as-drawn dimensions, there is no discrepancy, and the
comparison will be successful without extra parameters in the device models.

See LVS
Output Files
for more
information on
the parameter
error summary
report.

Input Files: Layout Netlists

236 NLE and LVS User Manual

However, if your schematic netlist uses effective dimensions, and your layout
netlist uses as-drawn dimensions, you can correct this discrepancy using the
LOFFSET and WOFFSET parameters in the layout netlist
device models.

The LOFFSET and WOFFSET parameters are used to
adjust the dimensions of devices in the netlist before any
calculations or comparisons are performed. (If devices are
merged, the adjustments to dimensions specified with these
parameters are applied before the merge.) These
parameters can be used only for devices where the NLE
extracts length and width rather than area or perimeter.

If the LOFFSET=l_offset parameter is used in a model, the
length used in calculations and comparisons will be:

effective_length = as-drawn_length + l_offset

The WOFFSET parameter works in exactly the same manner.

effective_width = as-drawn_width + w_offset

For example, if MOSFET devices in your technology undergo a .16 micron
diffusion shrinkage during fabrication, you account for this when you layout a
device for this technology. If you need a device with an effective width of 4.0
microns after fabrication, you will create a device with a width of 4.16 in the
layout. If your schematic netlist specifies effective dimensions (this is not
typical) and the corresponding device is defined with a width of 4.0, you would
have to use a large tolerance parameter to get the devices to pass the parameter
value test.

It is much better to adjust the dimensions of devices with accuracy, then use a
small tolerance which allows you to find real errors.

Example: *.LAYMODEL SHRINK_NMOS NMOS WOFFSET= -.16 WTLR=.0001

20 The LOFFSET and WOFFSET parameters are valid for JFET device models only when
length and width are extracted from the layout rather than area.

JFET20

MOSFET
RESISTOR

Figure 80: Valid
device categories
for the
LOFFSET and
WOFFSET
parameters.

Input Files: Layout Netlists

NLE and LVS User Manual 237

If the layout device mentioned above with a width of 4.16 uses this device
model, the length would be adjusted to:

4.16 - .16 = 4.0

When the LVS compares the value of this device to the schematic device with a
length of 4.0, the device values will match, even with such a small tolerance.

Example: *.LAYMODEL RESISTOR RES LOFFSET= .1 WOFFSET= -.2
*+ OHMS_PER_SQUARE = 5

When this model is used for resistors in your layout, .1 will be added to each
extracted resistor length, and .2 will be subtracted from each extracted resistor
width. This will be done before the resistance of the device is calculated using
the value of OHMS_PER_SQUARE.

Be careful to supply the offset values in the same terms as the layout units. Most
layouts assume microns as the user unit. If you write the device model with a 'U'
suffix:

*.LAYMODEL SHRINK_NMOS NMOS LOFFSET= -.16U

The LVS will interpret this statement as:

*.LAYMODEL SHRINK_NMOS NMOS LOFFSET= -.16e-6

Then only .00000016 microns will be subtracted from each layout length
dimension.

See the
BENDS_CR
option (covered
next) to correct
dimensions of
bent devices.

Input Files: Layout Netlists

238 NLE and LVS User Manual

The optional [BENDS_CR = correction_factor] parameter is used to
modify the way the LVS will calculate the value of non-rectangular devices
for which the NLE extracts a length and width.

When a device is
rectangular, the NLE
calculates the width as
the length of the end

sides and the length as
area/width. The length will
then be equal to the length of
the centerline of the rectangle
from end-side to end-side.

When the device is not
rectangular, the length is still
calculated as area/width,
which usually means the
length is the centerline length, however, the
centerline is not a straight line. (See Figure
84 on the next page for an example.)

If you do not consider the length of the
centerline to be the length of a bent device,
add the BENDS_CR parameter to the
device model for these devices.

The correction is based on the number of
bends. For resistors, the correction is made
to the length of the resistor. For transistors
the correction is made to the width of the
device.

The dimensions of a device with the

21 The BENDS_CR parameter is valid for JFET device models only when length and
width are extracted from the layout rather than area.

JFET21

MOSFET
RESISTOR

Figure 81: Valid
device categories
for BENDS_CR.

l

w

end-
sides

center-
line

POLY

CONTACTS

RES_POLY

Figure 82: Rectangular resistor.

POLY

SRC_DRN

GATE

width

end-sides

length

Figure 83: Rectangular
transistor.

To see more
details on NLE
device
dimension
recognition, see
page 117.

Input Files: Layout Netlists

NLE and LVS User Manual 239

BENDS_CR parameter defined in the device model will be:

For resistors:
Length = Center_line_length - (Num_bends * (Correction_factor * width))

For transistors:
Width = Center_line_width - (Num_bends * (Correction_factor * length))

The number of bends is calculated
from the number of vertices as
follows:

A typical value for the correc-
tion_factor for bent resistors is .5 or
50% of the width. This value is based
on manhattan layouts where all bends
are 90°. If the bends of your devices
are not at 90°, use an appropriate
value for correction_factor.

As it is drawn, the resistor shown in
Figure 84 contains 7 squares. Most designers would consider this equivalent to a
unbent resistor with less than 7 squares. The square at the bend adds less
resistance to the device than the other squares. We want to modify the stored
value of this device by subtracting a small correction factor. The number of
bends is 1, the width is 1, and the length of the centerline is 7. If the following
layout device model is used for this device:

Example: *.LAYMODEL POLY_RES RES BENDS_CR=.5

the length of the resistor above will be corrected as follows before computing the
resistance and comparing it to the value in the other netlist:

Length = 7 - (1 * (.5 * 1)) = 6.5

w

end-sides

center line

RES_POLY CONTACT POLY

Figure 84: Non-rectangular resistor.

Number of vertices
2

- 2

Input Files: Layout Netlists

240 NLE and LVS User Manual

These corrections are made after any corrections indicated by the LOFFSET or
WOFFSET device modifier parameters.

If the device model for the POLY_RES resistor in the example above is:

Example: *.LAYMODEL POLY_RES RES
*+ LOFFSET=1.2 WOFFSET=0.2 BENDS_CR=0.5
*+ OHMS_PER_SQUARE = 1000 R_CONTACT = 10

The LOFFSET and WOFFSET processing is performed first. The new length
and width will be:

Length = 7 + 1.2 = 8.2
Width = 1 + 0.2 = 1.2

Then the bends correction would be made:

Length = 8.2 - (1 * (.5 * 1.2)) = 7.6

Finally the value would be calculated using the model parameters for OHMS-
_PER_SQUARE and R_CONTACT:

Value = R_CONTACT + OHMS_PER_SQUARE * (Length/Width)
Value = 10 + 1000 * (7.6/1.2)
Value = 10 + 1000 * 6.333 = 6343 = 6.343 KΩ

Input Files: Layout Netlists

NLE and LVS User Manual 241

Layout Restrictions

The NLE categorizes device layouts into three classes:

Boxes: Rectangles with all sides either
vertical or horizontal,

Manhattan: Polygons with horizontal and vertical
sides,

and

Rest: Devices with at least one side that is
not horizontal or vertical.

The NLE should be
able to correctly
recognize the dim-
ensions of boxes and
manhattan geometry. However, some
types of manhattan geometry may result in
the NLE reporting incorrect dimensions.
The device with the manhattan layout
shown in Figure 86 will probably have
incorrect dimensions since the width is not
constant.

Devices that are not boxes or manhattan layouts are more likely to have incorrect
dimensions in the layout netlist. If you wish to prevent the LVS from comparing
the dimensions the NLE has recognized for devices in certain classes, you can
add layout restriction parameters to your *.LAYMODEL statement.

You may want to do this to prevent incorrect dimensions from being compared
to the values in the other netlist. If the dimensions in the layout netlist for a non-
manhattan device are incorrect, but they just happen to be within the error
tolerance of the device in the other netlist, you will not get a parameter error
message for the device. You may never realize that the device is the incorrect
size.

A

C

B

Figure 85: Device
layouts: A) Box,
B) Manhattan,
C) Rest

Figure 86: Manhattan device
with varying width.

Input Files: Layout Netlists

242 NLE and LVS User Manual

The three layout restriction parameters are [BOX_GM = (YES | NO)],
[MANHATTAN_GM= (YES | NO)], and [REST_GM = (YES | NO)]. The
defaults for all three parameters are "YES". We do not recommend that you ever
use the "BOX_GM=NO" parameter, since the NLE can always correctly
recognize the dimensions of this class of devices. The "MANHATTAN_GM =
NO" parameter should also not be used unless you have seen a problem with
your manhattan devices.

Many of the device layouts in the third class will have their dimensions
calculated correctly, however the values of these types of devices should be
looked at carefully in your initial LVS runs. If the NLE is not extracting the
device dimensions correctly, add the "REST_GM = NO" parameter to the
corresponding layout netlist device model. The LVS will then use a value of '0'
for the device and it will never pass a parameter error check.

For example, you have many resistors in your layout, and most of them are either
boxes or manhattan layouts, but a few use non-manhattan geometry. You see in
an initial LVS run that these non-manhattan devices have incorrect dimensions
extracted for them by the NLE. You should add the "REST_GM = NO"
parameter to your resistor device model. Only the non-manhattan devices will
have their dimensions ignored by the LVS. All other resistors will still have
their calculated values compared to values in the other netlist. The non-
manhattan resistors will have error messages listed in the parameter error
summary report.

Default value parameters (page 243) will not be used when devices have had
their values ignored through the use of the layout restriction parameters. These
devices can be assigned values using the label method described on page 346.

Device Characteristics

If you want the LVS to calculate resistance or capacitance values from device
measurements made by the NLE, you must supply the appropriate device
characteristics parameters. For capacitor device models, you must specify both
C_PERIMETER and C_AREA. Similarly, resistor models should specify

Input Files: Layout Netlists

NLE and LVS User Manual 243

OHMS_PER_SQUARE and optionally R_CONTACT or R2_CONTACT and
R2_WIDTH to calculate resistance values. See the examples on page 343.

Default Value Parameters

The default value parameters will not override values calculated by the NLE
circuit extractor. They are useful when the NLE cannot calculate the value of a
device.

For example, the NLE does not currently calculate a device value for inductors.
You can however have the NLE differentiate between different inductors by
model names. If these different inductor models have different VALUE
parameters on their *.LAYMODEL statements, these values will be used as the
values of the devices, and the values can then be verified against the other
netlist.

Example: *.LAYMODEL IND_90 IND VALUE=90
*.LAYMODEL IND_40 IND VALUE=40

The M=multiplier parameter is used differently in a layout netlist model than in
a schematic netlist model. In a schematic netlist model, you would use an M
parameter to simulate the number of devices in parallel. In the layout device
models, M parameters are used to account for the way area is defined for
Bipolar, JFET, GaAsFET, and Diode devices in schematic netlists.

When you define the value of a Bipolar, JFET GaAsFET or Diode device in a
schematic netlist, you are really defining an area multiplier rather than an area.
The value supplied on the device statement is multiplied by an area factor
supplied in the .MODEL statement for the device. The LVS ignores these
.MODEL statements, so the area factor must be accounted for in some manner.

In the layout netlist, the value of one of these devices is the actual area. If you
compare the multiplier in the schematic netlist devices to the actual area in the
layout netlist without accounting for this discrepancy, you will get parameter
value mismatches for every device.

See Default
Value
Parameters in
Schematic
Netlists on page
209 for more
details on these
parameters.

See page 211
for examples of
using an M
parameter in a
schematic
device model.

Another way to
assign a device
value in the
layout is to add
a label on the
device. See
page 346.

Input Files: Layout Netlists

244 NLE and LVS User Manual

One way to compare the values of these types of devices is to compare the area
multipliers rather than the area. This will allow the layout netlist to be consistent
with the schematic netlist. This is done by adding the M=multiplier parameter
to the device model in the layout netlist.

When the M=multiplier parameter is used in a *.LAYMODEL device model, the
device area used for comparison will be:

device_area_compared = actual_area * multiplier

Set multiplier equal to:
1

AREA_FACTOR_FROM_SCHEMATIC_.MODEL_STMT

For example, if you are using JFET devices as shown in the following schematic
netlist fragment:

.MODEL JMODEL NJF AREA=20

J1 1 2 3 JMODEL 2

The multiplier you need to use to scale the actual area in the layout netlist is:

 1
20 = 0.05

To account for the area scaling in the layout netlist device model, add the
M=multiplier to the *.LAYMODEL statement as shown below:

Example: *.LAYMODEL JMODEL NJF M=0.05

When the above model is used, JFET devices in the layout netlist using the
JMODEL model will have their device areas multiplied by 0.05. If the layout
contains a device with an actual area of 40, the value of the device for
comparison or spice netlist generation will be:

40 * 0.05 = 2

Now the schematic netlist device will match without a parameter error. (Do not
add the AREA=area parameter to the schematic *.SCHMODEL device model.)

Input Files: Layout Netlists

NLE and LVS User Manual 245

If you generate a spice netlist for simulation from the layout data with the
GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT =
YES control file option, the value of the J1 device will be stored as 2 which will
be consistent with the .MODEL simulation model.

Control File Override Parameters

These parameters are used to allow specific models for certain devices to be
treated differently than other models. For instance, for some models of PNP
devices, you want to allow series merges, but for others you need to avoid
allowing any device transformations.

The use of control file override parameters in *.LAYMODEL statements is
exactly the same as their use in *.SCHMODEL statements. Refer to the
examples and description starting on page 212.

Preparing the Model File

You must create a *.LAYMODEL statement for each unique device type
recognized by the NLE circuit extractor. These statements are usually grouped
together in an ASCII model file.

Once you have the model file created, you usually combine it with the binary
layout netlist created by the NLE circuit extractor in a third file. This third file
is the layout netlist file you refer to on the LVS command line. The model file is
added to the layout netlist file with an .INCLUDE command. The binary layout
netlist is added to the file with the *.LAYOUT command.

The syntax of the *.LAYOUT statement is as follows:

For an example
layout netlist
model file, see
page 23.

Input Files: Layout Netlists

246 NLE and LVS User Manual

*.LAYOUT [path/]file_name

where file_name is the name of the binary layout netlist file generated by the
NLE circuit extractor. If the binary file is not in the same directory as the rest of
the layout netlist, you can supply the directory path. If no file extension is
provided in file_name, the extension .EXT is assumed. The *.LAYOUT
statement is used exactly as you would an .INCLUDE statement.

The model file should be read by the LVS before the binary .EXT file. All
models must be defined in the model file before they are referred to in the binary
layout netlist. The LVS will report an error if a model is not defined before it is
referenced.

Example: *Layout netlist for LVS check
.INCLUDE LAYMODEL.NET
*.LAYOUT CELL.EXT
.END

The name of the
binary layout
netlist can be
overridden with
the /L option on
the LVS
command line.

Input Files: Layout Netlists

NLE and LVS User Manual 247

Commands Supported in the Layout Netlist

Commands which are valid in the ASCII portion of the layout netlist are listed in
Figure 87. Most of these commands were already covered in the schematic
netlist section. Their use in the layout netlist is exactly the same as their use in
the schematic netlist. The remaining commands are described in advanced
subjects later on in the manual. Refer to the table for the page numbers where
they are described.

All commands specific to the LVS have a '*' prefix so that these commands will
be ignored by other programs which read netlists.

Command Use Refer to
page(s)

*.DEVLABEL Override device labels 361
 .END Mark end of netlist 250
 .ENDS Subcircuit models 331
*.GROUND_NET Define ground nets 221
 .INC or
 .INCLUDE

Include another netlist file 250

*.FORMAT Subcircuit models 331
*.LAYMODEL Device models 229
*.LAYOUT Include binary layout netlist from NLE 246
*.NETLABEL Override net labels 361
*.NOCOLLAPSE Prevent device collapse 222
 .PARAM Allow parameter substitution in models 248
*.PINS Prevent net disappearance and define

pad devices
222 and 335

*.POWER_NET Define power nets 221
 .SUBCKT Subcircuit models 331
*.VIRTUAL Virtually connect nets 223

Figure 87: Supported commands in layout netlist

Input Files: Layout Netlists

248 NLE and LVS User Manual

You can use .PARAM commands in the model file of the layout netlist to allow
parameter substitution in the device models. This can make the model file easier
to write and easier to update for future uses. Remember that the .PARAM
command allows substitution of numbers, not strings.

Example: .PARAM POLY_SHRINK = -0.16

*.LAYMODEL POLY_RES RES WOFFSET = {POLY_SHRINK}
*.LAYMODEL NMOS NMOS LOFFSET = {POLY_SHRINK}

The parameters must be used according to the syntax of a schematic netlist
language (SPICE, PSPICE, HSPICE, or CDL). If you are performing an LVS
comparison, the syntax used is indicated by the control file option SECOND-
_SCHEMATIC_FILE_FORMAT, or by the *.FORMAT command in the layout
netlist file. (See page 333.)

Review of Node Labels

The use of node labels in the layout is described in detail in the NLE section of
this manual. See page 138 for complete details. Here, we will review a few
points that affect the LVS comparison.

No layout net or device labels are required for the LVS to match the two netlists.
However, use of named nodes in the layout can make mismatches easier to
diagnose and speed verification of symmetric circuits. Nets and devices in the
layout can be labeled through the use of text components in the ICED32™ cell. If
the text components are not on design layers, the NLE rules file moves them to
the design layers to label the nodes.

We recommend that all node labels be placed in the top level cell in the layout.
All node labels in nested cells will be ignored by the NLE unless you specify
that they are global nodes using the ':' or '::' suffix on the label. When the control
file option RECOGNIZE_GLOBAL_TEXT_IN_SUBCELLS=NO is used, even
node labels with a ':' suffix will be ignored if they are located in a nested cell.
Nodes using the '::' suffix in subcells will always be processed.

To see how to
label nodes in
the layout
netlist without
reprocessing the
layout through
the NLE circuit
extractor, see
page 361.

Input Files: Layout Netlists

NLE and LVS User Manual 249

You can use labels in the top level cell to label nets or devices local to nested
cells. Simply place a text component in the top level cell over a component in a
nested cell. If you are using a node correspondence file, the name of the local
node can be whatever you like. Simply use the correspondence file to associate
the label in the layout with the flattened schematic node name. If you are not
using a node correspondence file, label the node with the name in the flattened
schematic netlist. Details on how these names are generated from a hierarchical
netlist are covered in Node Names on page 226.

The .POK file which the NLE uses to create the layout netlist cannot contain
labels with more than fifteen characters. Create all node labels in the layout
using fifteen or less characters. Longer node labels will be ignored.

Node labels can be case sensitive. If the ICED32™ layout editor is configured to
allow lower case text (through the TEXT or USE commands), lower case
characters in node labels will not be translated to upper case for the LVS unless
the control file option FORCE_ALL_LAYOUT_LABELS_TO_UPPER_CASE
= YES is used.

Labels on device id layers can be used to assign a value to a device for which the
NLE is unable to determine the dimensions. The use of these labels is described
on page 346.

Labels can be used to control how the LVS performs the comparison. Node
labels can be used to create points of forced correspondence between the two
netlists. The relevant control file options for node equivalence are described
beginning on page 261.

Node labels can also affect how the layout netlist is modified by logic
transformations. The control file defines special characters which will prevent
device collapses when used in a node label. Another special character can be
used to indicate virtual connections in the layout. See Advanced Uses of Node
Labels on page 349 for more information.

Node labels can be added or modified without re-executing the NLE circuit
extractor through the use of node label overrides. See Using Node Label
Overrides on page 361 to learn more about this feature.

Details on the
node corres-
pondence file
are provided in
Using a Node
Correspondence
File on page
355.

Input Files: Layout Netlists

250 NLE and LVS User Manual

Summary of How to Prepare a Layout Netlist for the LVS

The entire sequence of events to prepare a layout netlist for LVS verification is:

1. Within ICED32™, use the DRC command to produce the input file for the
NLE program.

2. Generate a flat layout netlist using the NLE circuit extractor. The output
binary file will have an .EXT extension. For example, you can name the
binary layout netlist CELL.EXT.

3. Prepare a model file containing the *.LAYMODEL statements as
explained above. This file can be named LAYMODEL.NET.

4. Create a new file, with a name similar to LVS_LAY.NET. This file
should look similar to:

*Layout netlist for LVS check
.INCLUDE LAYMODEL.NET
*.LAYOUT CELL.EXT
.END

Use the LVS_LAY.NET file for the layout netlist on the LVS command line.
The .END statement is essential at the end of file.

The *.LAYOUT
statement can
be overridden
with the /L
option on the
LVS command
line.

Input Files: The LVS Control File

NLE and LVS User Manual 251

The LVS Control File

The control file options allow you to direct the netlist-netlist comparison
algorithms and manage the generation of various output files. An example
control file, Q:\ICED\22SAMPLES\LVS\CONTROL.LVS, is provided with the
installation. We suggest that you always copy this control file to your working
directory and modify the copied file.

You should not delete any lines from the file. Do not change the order of the
options in the file. Missing lines will result in errors reported to the screen and
the netlist comparison will not be performed. Modify the defaults only where
you need to. Blanks can be used to make the file more readable. Quotes can be
used around string parameters, such as filenames, but they are not required.

Some options in the control file can be overridden. The LVS command line has
parameters to override several options. These are indicated in the margin notes
next to the appropriate options. Also, all options in the Individual Device
Options section can be overridden for specific device models by using
parameters on the *.SCHMODEL statements in a schematic netlist, or by
parameters on the *.LAYMODEL statements in a layout netlist.

The LVS control file options are divided into six sections. These sections are
indicated with comments in CONTROL.LVS with the titles below in the same
order. Details on the options in each section follow on the page indicated.

DIRECTORY PATH & FILE NAME EXTENSION page 256
COMPARISON TYPE & FILE FORMAT page 257
LVS RUNTIME OPTIONS page 259
OPTIONAL OUTPUT FILES page 271
OUTPUT FILES page 281
INDIVIDUAL DEVICE OPTIONS page 283

22 Remember that Q:\ICED represents the drive letter and path where you have installed
ICED32™.

See Command
Line Syntax in
Running LVS
for details on
the LVS
command line.

The control file
also has a few
options at the
end specifically
for the LPE
utility.

Input Files: The LVS Control File

252 NLE and LVS User Manual

To quickly find the page where a specific option is described, you can use the
alphabetical list below.

COLLAPSE_DISSIMILAR_SIZED_deviceS = (YES | NO)...294

COLLAPSE_PARALLEL_LOGIC_deviceS = (YES | NO)... 294

COLLAPSE_SERIES_LOGIC_deviceS = (YES | NO) .. 292

DELETE_deviceS_LESS_THAN = filtval .. 300

ENABLE_NO_COLLAPSE_OF_A_NET = (YES | NO).. 268

ENABLE_NO_COLLAPSE_OF_DEVICES = (YES | NO) .. 267

ENABLE_VIRTUAL_CONNECTIONS = (YES | NO) ... 265

FORCE_ALL_LAYOUT_LABELS_TO_UPPER_CASE = (YES | NO) 260

GENERATE_NAME_EQUIVALENCES = (YES | NO) ... 271

GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT 276

IGNORE_BIPOLAR_IF_BASE_PIN_IS_TIED_TO_CRITICAL_NET = (YES | NO) 300

IGNORE_MOSFET_IF_GATE_PIN_IS_TIED_TO_CRITICAL_NET = (YES | NO)............ 299

IGNORE_MOSFET_IF_SOURCE_AND_DRAIN_PINS_ARE_TIED_TO_CRITICAL_NET =
(YES | NO).. 299

IGNORE_ONE_TERMINAL_CONNECTED_deviceS = (YES | NO)... 297

IGNORE_SHORTED_deviceS = (YES | NO) .. 298

IGNORE_TWO_TERMINALS_CONNECTED_deviceS = (YES | NO) 297

IGNORE_UNCONNECTED_deviceS = (YES | NO) .. 297

INPUT_FILE_OF_NAME_EQUIVALENCES = input_equiv_file .. 261

INTERACTIVE_MODE = (YES | NO).. 264

LAYOUT_TEXT_MODE= (EQUIV | AUTO | SKIP) ... 260

MATCH_device_MODELS = (YES | NO) ... 295

Input Files: The LVS Control File

NLE and LVS User Manual 253

MATCH_device_PARAMETERS = (YES | NO) .. 296

MERGE_device_CHAINS = (YES | NO).. 292

MERGE_deviceS_OF_DIFFERENT_MODELS = (YES | NO).. 290

MERGE_DISSIMILAR_SIZED_MOSFETS = (YES | NO) ... 290

MERGE_OUT_OF_ORDER_device_CHAINS = (YES | NO) .. 292

MERGE_PARALLEL_deviceS = (YES | NO)... 289

MERGE_SERIES_deviceS = (YES | NO)... 287

NUMBER_OF_PINS_FOR_device = (3 | 4| *)... 285

OUTPUT_DIRECTORY_PATH = dir_path ... 256

OUTPUT_FILE_NAME_EXTENSION_FOR_LVS = file_ext... 257

OUTPUT_FILE_OF_COLLAPSED_DEVICES = collapse_file... 275

OUTPUT_FILE_OF_DEVICES_WITH_PARAMETER_ERRORS = parm_err_file... 282

OUTPUT_FILE_OF_FILTERED_DEVICES = filt_dev_file.. 281

OUTPUT_FILE_OF_FINAL_RESULTS_OF_NETLIST_COMPARISON 283

OUTPUT_FILE_OF_MATCHED_DEVICES_INCLUDING_PARAMETER_ERRORS............ 282

OUTPUT_FILE_OF_NAME_EQUIVALENCES = equiv_file ... 271

OUTPUT_FILE_OF_NET_DEGREES = netdeg_file .. 280

OUTPUT_FILE_OF_NET_LABELS .. 273

OUTPUT_FILE_OF_NETS_WITH_ZERO_AND_ONE_CONNECTIONS 274

OUTPUT_FILE_OF_SPICE_NETLIST = spice_file ... 276

OUTPUT_FILE_OF_SYMMETRIC_MATCHES = sym_file.. 275

OUTPUT_FILE_OF_UNMATCHED_DEVICES_AND_NETS=unmatch_file 282

PRINT_ALL_NETS_WHOSE_DEGREE_GREATER_THAN = degree 280

Input Files: The LVS Control File

254 NLE and LVS User Manual

PRINT_ALL_UNLABELED_NETS_WHOSE_DEGREE_GREATER_THAN 273

PRINT_COLLAPSED_DEVICES_IN_A_SEPARATE_FILE = (YES | NO)............................. 274

PRINT_COMMENTS_IN_SPICE_OUTPUT_GENERATED_BY_LVS................................... 277

PRINT_FILTERED_DEVICES_IN_SPICE_OUTPUT_GENERATED_BY_LVS 277

PRINT_LIST_OF_FILTERED_DEVICES = (YES | NO)... 280

PRINT_MATCHED_DEVICES_AND_NETS = (YES | NO) ... 281

PRINT_NET_LABELS_IN_A_SEPARATE_FILE... 272

PRINT_NETS_AND_THEIR_DEGREES = (YES | NO) .. 280

PRINT_NETS_WITH_ZERO_AND_ONE_CONNECTIONS = (YES | NO)............................. 273

PRINT_SYMMETRIC_MATCHES_IN_A_SEPARATE_FILE= (YES | NO).......................... 275

RECOGNIZE_GLOBAL_TEXT_IN_SUBCELLS.. 260

REPLACE_NLE_NODES_WITH_MATCHED_SCHEMATIC_NODES................................. 279

SCALE_CHARACTER_FOR_CAPACITORS.. 278

SCALE_CHARACTER_FOR_INDUCTORS.. 278

SCALE_CHARACTER_FOR_RESISTORS.. 278

SCALE_device_LENGTH_AND_WIDTH = scale.. 284

SCALE_device_VALUE = scale .. 284

SCHEMATIC_FILE_FORMAT= (CDL | PSPICE | HSPICE | SPICE) 257

SECOND_SCHEMATIC_FILE_FORMAT=(CDL | PSPICE | HSPICE | SPICE).......................... 258

SET_NET_SIZE_LIMIT_WHEN_PRINTING_CONNECTIONS=num_devs 264

SET_NO_PROGRESS_LIMIT = num_passes .. 263

SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_A_NET = net_char 269

SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_DEVICES_CONNECTED_TO_A-
_NET = dev_char ... 267

Input Files: The LVS Control File

NLE and LVS User Manual 255

SPECIAL_CHARACTER_FOR_PRINTING_DEVICES_IN_A_DEVICE_CELL_INSTANCE
= dev_cell_char... 270

SPECIAL_CHARACTER_FOR_PRINTING_PARALLEL_MERGES=par_char 270

SPECIAL_CHARACTER_FOR_PRINTING_SERIES_MERGES=ser_char........................... 269

SPECIAL_CHARACTER_FOR_VIRTUAL_CONNECTIONS = virt_char.............................. 266

SPICE_FILE_FORMAT = (CDL | PSPICE | HSPICE | SPICE)... 277

SWAP_CAPACITOR_TERMINALS = (YES | NO).. 286

SWAP_EMITTER_AND_COLLECTOR_TERMINALS = (YES | NO) 286

SWAP_GAASFET_SOURCE_DRAIN = (YES | NO).. 286

SWAP_JFET_SOURCE_DRAIN = (YES | NO)... 286

TAKE_CARE_OF_LOGIC_EQUIVALENCES_WHILE_MATCHING 259

TOP_LEVEL_SUBCKT_IN_SCHEMATIC_FILE = subckt ... 258

TOP_LEVEL_SUBCKT_IN_SECOND_SCHEMATIC_FILE= subckt 258

TREAT_FIRST_LINE_IN_SPICE_NETLIST_AS_COMMENT_LINE................................... 265

TYPE_OF_COMPARISON = (LVS | SVS | LVL).. 257

USE_EQUIVALENCES_FOR_INITIAL_MATCHING= (YES | NO) 262

USE_LOCAL_MATCHING =(YES | NO).. 260

Input Files: The LVS Control File

256 NLE and LVS User Manual

DIRECTORY PATH & FILE NAME EXTENSION

OUTPUT_DIRECTORY_PATH = dir_path

This option is used to define the default directory for output files containing the
results of the netlist-netlist comparison. The LVS can create the last directory in
dir_path, if it does not already exist. If it does already exist, we recommend that
this directory be empty. Old files will be overwritten without warning.

If dir_path begins with a '\' (or a drive letter followed by ":\"), the path is
assumed to be defined from the root directory. When dir_path does not begin
with a '\' or a drive letter, the path is defined relative to the current directory. If
the LVS cannot find or create the directory, it reports an error and terminates the
run.

Example: OUTPUT_DIRECTORY_PATH = "results"

The OUTPUT_DIRECTORY_PATH option above will store all files in a
subdirectory of the current directory. If the current directory is
C:\ICED\MYCHIP, the files will be stored in C:\ICED\MYCHIP\RESULTS.

Example: OUTPUT_DIRECTORY_PATH = \results

In this example dir_path begins with a '\', so the directory path is relative to the
root directory. If the current drive is D:, the reports will be stored in
D:\RESULTS, regardless of the current directory.

Note that the quotes are optional.

Example: OUTPUT_DIRECTORY_PATH = .

When you set dir_path to '.', all files will be stored in the current directory.

The /O
command line
parameter can
override this
option.

Input Files: The LVS Control File

NLE and LVS User Manual 257

OUTPUT_FILE_NAME_EXTENSION_FOR_LVS = file_ext

This option allows you to provide a default file name extension for all output
files. You do not need to provide an extension with any of the output file names
supplied in other options in the control file. The file_ext parameter should be a
valid DOS file name extension of one, two or three characters.

Example: OUTPUT_FILE_NAME_EXTENSION_FOR_LVS = "lvs"

This option cause the LVS to create all output files with the default extension
".lvs". This default extension can be overridden by specifying an extension with
the file name parameter in any of the control file options that specify output
files.

COMPARISON TYPE & FILE FORMAT

TYPE_OF_COMPARISON = (LVS | SVS | LVL)

Use this option to inform the LVS which type of netlists are to be compared.
Exactly one of the following choices must be used:

LVS Layout Vs Schematic
SVS Schematic Vs Schematic
LVL Layout Vs Layout

Example: TYPE_OF_COMPARISON = LVS

SCHEMATIC_FILE_FORMAT= (CDL | PSPICE | HSPICE | SPICE)

This option informs the LVS which schematic netlist syntax should be used by
the input parser. This option is used for netlist1. (See the SECOND-
_SCHEMATIC_FILE_FORMAT option to set the syntax of netlist2.)

The /C
command line
parameter will
override this
option.

The /F or /F1
command line
parameters will
override this
option

Input Files: The LVS Control File

258 NLE and LVS User Manual

Example: SCHEMATIC_FILE_FORMAT= PSPICE

TOP_LEVEL_SUBCKT_IN_SCHEMATIC_FILE = subckt

Use this option to identify the name of the top level subcircuit in schematic
netlist1. (Even though this option will be ignored if you are running an LVL
comparison, you must supply some string.) If your schematic netlist has no top
level subcircuit, see page 227 to learn how to prepare the schematic netlist.

If you provide a subcircuit name that exists in the schematic netlist, but is NOT
the top level subcircuit, the LVS will use that subcircuit as the top-level circuit.
In this case, subcircuits not referred to in the specified subcircuit will be ignored.
If this subcircuit does not correspond to the circuit in the layout netlist, many
false error messages will result. Be sure to specify this parameter carefully.
You can use a nested subcircuit name if that is the only circuit you wish to verify
and the other netlist is prepared accordingly. This allows you to avoid cutting
and pasting a schematic netlist when you need to verify only one subcircuit.

Example: TOP_LEVEL_SUBCKT_IN_SCHEMATIC_FILE = "OPAMP"

If you specify a circuit name that does not exist on a .SUBCKT statement in the
netlist, the LVS will warn you immediately and abort the run.

SECOND_SCHEMATIC_FILE_FORMAT=(CDL | PSPICE | HSPICE | SPICE)
and

TOP_LEVEL_SUBCKT_IN_SECOND_SCHEMATIC_FILE= subckt

If you are executing a SVS (Schematic Vs. Schematic) comparison, these two
options inform the LVS of the schematic file format and top level subcircuit
name for the second schematic netlist.

If you are performing an LVL or LVS comparison using SUBCKT device
models in a layout netlist, the SECOND_SCHEMATIC_FILE_FORMAT option
can be used to define the spice syntax used to parse the SUBCKT device models
in the second netlist. In a layout netlist, the *.FORMAT statement will override
this option in the control file.

The /T or /T1
command line
parameters will
override this
option.

The /F2 and /T2
command line
parameters will
override these
options.

Input Files: The LVS Control File

NLE and LVS User Manual 259

The TOP_LEVEL_SUBCKT_IN_SECOND_SCHEMATIC_FILE option will
always be ignored for a LVL or LVS comparison.

LVS RUNTIME OPTIONS

TAKE_CARE_OF_LOGIC_EQUIVALENCES_WHILE_MATCHING ...
... = (YES|NO)

This option controls device transformations performed before the netlists are
compared. It is intended primarily for CMOS digital design.

Example: TAKE_CARE_OF_LOGIC_EQUIVALENCES_WHILE_MATCHING = YES

Selecting YES for this option will allow the LVS to perform an additional series
collapse of already collapsed pseudo devices. This will usually result in a single
pseudo device for each pull-down or pull-up circuit. Collapsing pull-down and
pull-up paths into pseudo devices will allow matching of device structures which
are logically equivalent but topologically dissimilar.

Even when you do not want to allow dissimilar topologies in your two netlists,
this option can be useful. A logic error in one pull-up or pull-down circuit may
cause a large number of unmatched devices in other circuits. This option can be
useful in locating logic errors in pull-up or pull-down circuits when the
unmatched device list includes many devices which are correctly connected.

To use this feature, the COLLAPSE_SERIES_LOGIC_deviceS and
COLLAPSE_PARALLEL_LOGIC_deviceS options must also be set to YES
(where device is the category of device for which you want to enable logic
equivalence transformations).

See Pull-up and
Pull-down
Pseudo Devices
on page 324 for
examples.

These control
file options are
described
beginning on
page 292.

Input Files: The LVS Control File

260 NLE and LVS User Manual

USE_LOCAL_MATCHING = (YES | NO)

The LVS matching algorithm can use either a global matching algorithm or a
faster local matching algorithm to find one to one correspondence between the
two netlists. Using YES for this option will force the local matching algorithm
to be used. This is the recommended algorithm in all cases.

FORCE_ALL_LAYOUT_LABELS_TO_UPPER_CASE = (YES | NO)

The NLE will store all node labels in the binary layout netlist exactly as they are
typed in the ICED32™ cell. If the labels are in lower or mixed case they are
stored that way in the file.

If you want to have all node labels translated to upper case before the
comparison, set this option to YES. If you prefer to use the labels exactly as
they are typed, set this option to NO.

RECOGNIZE_GLOBAL_TEXT_IN_SUBCELLS = (YES | NO)

Normally, all text labels in nested cells are ignored by the LVS. Nodes can only
be labeled by text components in the top-level cell. You can override this
behavior by using global text labels. There are two types of global text labels,
those ending with a single colon, ':' and those ending with a double colon, '::'.

If you use single colon global text labels to label nodes in the layout and set this
option to YES, these labels will be processed by the LVS even when they are
located in a nested cell.

Node labels created with a double colon suffix will always be recognized by the
LVS. They are not required to be in the top-level cell, and setting this option to
NO will not stop them from being recognized.

The /G
command line
option will
override this
option.

Input Files: The LVS Control File

NLE and LVS User Manual 261

LAYOUT_TEXT_MODE= (EQUIV | AUTO | SKIP)

This option controls how node names are used to make forced correspondences
by the LVS. Use of node name correspondences is recommended for highly
symmetric circuits, or for diagnosing large numbers of mismatches.

When EQUIV is used, the LVS will use the equivalences in the node
correspondence file defined by the next option. The flags in the file will
determine how the equivalences are used. (See page 357 for details.)

The AUTO option will associate all labeled nodes in the layout netlist with
schematic nodes with identical names. When the AUTO mode is used, no node
correspondence file is required.

The SKIP option will prevent node labels from being use to make forced points
of correspondence between the two netlists. Layout labels using special
characters, as described in Advanced Uses of Node Labels in Running LVS,
will still be processed by the LVS.

When the AUTO or SKIP options are used, the node correspondence file is
ignored.

INPUT_FILE_OF_NAME_EQUIVALENCES = input_equiv_file

When the LAYOUT_TEXT_MODE option (see previous option) is set to
EQUIV, this option provides the name of the node correspondence file to be
used. If you have indicated the AUTO or SKIP mode, the file need not exist,
however, do not delete this line from the control file.

The /M
command line
option will
override this
option.

The /E YES
command line
parameter can
be used to
terminate the
LVS if errors
are found in the
correspondence
file.

Input Files: The LVS Control File

262 NLE and LVS User Manual

Example: LAYOUT_TEXT_MODE = EQUIV
INPUT_FILE_OF_NAME_EQUIVALENCES = "projxeqv.lvs"

Using these options in the control file will cause the file projxeqv.lvs to be read
by the LVS. The node equivalences in the file will be used according to the
options in the file and the following control file option.

See Using a Node Correspondence File on page 355 to learn more about this
feature.

USE_EQUIVALENCES_FOR_INITIAL_MATCHING= (YES | NO)

When the LAYOUT_TEXT_MODE option is set to EQUIV or to AUTO, the
node correspondences can be handled two ways. When USE_EQUIV-
ALENCES_FOR_INITIAL_MATCHING is set to YES, the node corres-
pondences will be made before the LVS proceeds with the rest of the circuit
matching.

If you set this option to NO, the correspondences are made only when the LVS
fails to find a match without using the correspondences. The LVS may fail to
find a match when circuits have a great deal of symmetry.

We recommend that you use YES for this option only when your circuits are
highly symmetric, or when you need to diagnose large numbers of mismatches
where apparently correctly connected devices are listed as mismatches. When
you use YES, and there are errors in the node correspondence file, the LVS may
be unable to find any correspondence between the two netlists. However, if you
use NO, the program will always be able to proceed with the match. If the
circuits are not highly symmetric, there is little or no speed improvement when
you use the USE_EQUIVALENCES_FOR_INITIAL_MATCHING=YES
option.

You can
generate a
preliminary
node
correspondence
file with the
GENERATE-
_NAME-
_EQUIVA-
LENCES
control file
option.

Input Files: The LVS Control File

NLE and LVS User Manual 263

SET_NO_PROGRESS_LIMIT = num_passes

This option sets the minimum number of passes the LVS will execute before it
begins breaking symmetry. When a circuit has a great deal of symmetry, and
node labels in the layout are not used to provide forced points of correspondence
between the netlists, the LVS can execute many passes without making any
progress.

The num_passes parameter must be a positive integer. We do not recommend
using a value less than 2, since the net graphs built by the LVS improve with
each pass, and matches are less likely when you allow the LVS only one pass.
Forcing the LVS to make arbitrary matches before the end of the second pass
will probably result in false matches and many false error messages.

Example: SET_NO_PROGRESS_LIMIT = 2

Using this option will force the LVS to take one of the courses of action listed
below if it cannot find a correspondence between the netlists in 2 passes. This is
a typical value for num_passes, and the default in the sample control file
provided with the LVS.

When the LVS has executed 2 passes without making progress in matching the
netlists, it will take one of the following actions:

1) If there are node equivalences in the node correspondence file that
have not yet been used, the LVS will match one of these pairs of nodes.
Then the LVS will continue attempting to match the netlists.

2) If no unused node equivalences are left, and the INTERACTIVE-
_MODE option (covered below) is set to YES, the LVS will go into this
mode and allow you to select one net from each list to make a node
correspondence.

3) If the LVS cannot make progress with either of the previous options,
then it will begin picking arbitrary nets from lists of potential matches to
make a forced correspondence.

See Symmetric
Circuits for
examples and
more details
about how the
LVS breaks
symmetry.

Nodes forced to
be equivalent
when these
actions are
taken will be
listed in the
forced matches
report. See
page 384.

Input Files: The LVS Control File

264 NLE and LVS User Manual

SET_NET_SIZE_LIMIT_WHEN_PRINTING_CONNECTIONS=num_devs

By default, when the LVS fails to match a net, the unmatched devices report will
list all devices connected to the net. If the unmatched net is GND or VDD, the
number of devices could be very large. You can control the maximum number
of devices to be listed by setting this option.

The num_devs parameter must be a positive integer.

Example: SET_NET_SIZE_LIMIT_WHEN_PRINTING_CONNECTIONS = 10

INTERACTIVE_MODE = (YES | NO)

When the LVS has difficulty in matching devices and nets because of symmetry
in the circuits, it may arbitrarily pick a net or a device from each circuit and
match them. An arbitrary match is rarely a good starting point. You can avoid
arbitrary matches by using YES for this option, or by using a node
correspondence file.

The INTERACTIVE_MODE=YES option is recommended only when you
prefer not to use a node correspondence file. See the LAYOUT_TEXT_MODE,
INPUT_FILE_OF_NAME_EQUIVALENCES, and USE_LABELS_FOR-
_INITIAL_MATCHING options above for details.

In interactive mode, the LVS displays on the screen possible options from each
circuit netlist. It displays five options at a time. You can ask for more options by
typing a <Y> or <N> (type the single character) to the prompt on the screen.

Input Files: The LVS Control File

NLE and LVS User Manual 265

The interactive mode display is similar to:

If you simply type <Enter>, more choices will be displayed. If you type a <N>
at the "Some more choices" prompt, you will see the prompt:

You should type a node number under the "NO#" heading for each netlist to
indicate that they represent the same node in each circuit.

TREAT_FIRST_LINE_IN_SPICE_NETLIST_AS_COMMENT_LINE = ...
... (YES | NO)

The original spice syntax defines the first line of a spice file as a comment
whether it was prefixed by a "*" or not. If you follow this syntax, set this option
to YES. In this case the first line of the schematic netlist will be ignored.

If you prefer that the first line is not ignored by the LVS, set this option to NO.

ENABLE_VIRTUAL_CONNECTIONS = (YES | NO)

Set this option to YES if you want to allow virtual connections of nets in the
layout netlist. Virtual connections can be useful in verifying designs which are
not yet completely wired, or when you verify a subcircuit which uses
connections in a higher level cell.

NO# SCHEMATIC LAYOUT
0
1
.
.
.

Some more choices[y] :

Schematic choice :
Layout choice:

The /V
command line
option will
override this
option.

Input Files: The LVS Control File

266 NLE and LVS User Manual

When this option is set to NO, the LVS will report errors for nets in the layout
which have the same name, but which are not electrically connected. Using
virtual connections in the layout allows you to override this behavior and force
the LVS to consider separate nets as a single node.

When node numbers for a virtually connected net are listed in the reports, the
syntax used will be "node_number[V,n]", where n indicates the number of nets
which have been virtually connected.

One way to create virtual connections is to label the nets in the layout using the
special character suffix defined with the following option. For other methods,
see Assigning Virtual Connections on page 358.

Be sure to disable virtual connections in the final LVS runs on your chip or
real open circuits may not be found. All virtual connections will be disabled
when this control file option is set to NO.

SPECIAL_CHARACTER_FOR_VIRTUAL_CONNECTIONS = virt_char

This option is used to specify a character that can be used in layout net labels to
indicate nets that are virtually connected. (To allow this feature to be used, the
ENABLE_VIRTUAL_CONNECTIONS option must also be set to YES. See the
previous option.)

To assign virtual connections, set virt_char using this option to some unique
character. Then use this character as a suffix in net labels on nets to be virtually
connected. The character will not be stripped from the netname. (For example,
the LVS will not automatically virtually connect the nodes "VDD" and "VDD:".
You can virtually connect these two nodes in the node correspondence file or
with the *.VIRTUAL command in the netlist.)

To see a list of
different
methods for
assigning virtual
connections, see
page 358.

Input Files: The LVS Control File

NLE and LVS User Manual 267

Example: ENABLE_VIRTUAL_CONNECTIONS = YES
SPECIAL_CHARACTER_FOR_VIRTUAL_CONNECTIONS = :

When virt_char is ':' (the default in the sample control file), you can have several
separate nets labeled "VDD:" and the LVS will consider all of them to be
electrically connected. All nets labeled "GND:" will also be considered to be
virtually connected. However "GND:" and "VDD:" nets will not be considered
virtually connected to each other.

If the colon (':') is not a valid character in your schematic netlist language, you
can set virt_char to a different character. The virt_char character (and the
characters specified in the next several options) should all be single characters
different from each other.

ENABLE_NO_COLLAPSE_OF_DEVICES = (YES | NO)

If the control file options for a specific device type allow devices to be collapsed
(e.g. series merge or parallel device collapse), you may wish to identify certain
nets in a way that prevents any devices attached to them from being collapsed.
Set this option set to YES and follow the instructions provided in the next
option. When you add appropriate labels in the layout to these nets, all devices
connected to them will be prevented from disappearing due to device collapses.
This can be useful in verifying critical nets such as clocks.

When this option is set to NO, devices attached to nets labeled with the character
defined by the next option will not be prevented from collapsing.

SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_DEVICES...
..._CONNECTED_TO_A_NET = dev_char

This option is used to specify a character which can be used in layout net labels
to prevent the collapse of any devices connected to those nets. The previous
option must also be set to YES to enable this feature.

Input Files: The LVS Control File

268 NLE and LVS User Manual

Devices can be collapsed into series, parallel, or pseudo circuits if options enable
such collapses (refer to the options starting on page 287). If you want to prevent
these collapses for all devices attached to a specific net:

use the ENABLE_NO_COLLAPSE_OF_DEVICES = YES option,
set dev_char to a unique character with this option,

and
label these nets with this character used as a prefix in the highest level
cell in the layout.

The dev_char parameter should be a single character different from the other
special characters.

Example: ENABLE_NO_COLLAPSE_OF_DEVICES = YES
SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_DEVICES...
...CONNECTED_TO_A_NET = $

In this example, dev_char is set to '$'. This is the character used in the sample
control file supplied with the LVS installation.

ENABLE_NO_COLLAPSE_OF_A_NET = (YES | NO)

Occasionally, you may wish to prevent certain nets from disappearing from the
layout netlist due to device collapses. This is different from preventing all
devices attached to a net from collapsing. If you wish to preserve a net while
allowing devices attached to it to take part in collapses which do not result in the
disappearance of the net, use this feature. This can be useful in insuring that I/O
pins which connect to circuitry at a higher level are preserved in the layout
netlist.

When this option is set to YES, devices connected to nets labeled with the
character defined by the next option can be used in series, parallel, or pseudo
circuit collapses if the corresponding device options (see page 287) enable such

To see examples
of how this
special
character is
used, see page
352.

You can also
prevent devices
from collapsing
by using the
*.NOCOLLAPS
E command in
the netlist.

To see examples
which
demonstrate
how this feature
is different from
ENABLE_NO-
_COLLAPSE-
_OF-
_DEVICES, see
page 352.

Input Files: The LVS Control File

NLE and LVS User Manual 269

collapses. However, if a specific collapse will result in the net from
disappearing from the netlist, the collapse will be prevented.

When the above option is set to NO, devices attached to nets labeled with the
character defined by the next option will not be prevented from collapsing.

SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_A_NET = net_char

The character specified with this option is used to prevent a net from
disappearing from the layout netlist due to device collapses. Use this character
as the prefix for node labels in the layout.

The net_char parameter should be a single character different from the other
special characters.

Example: ENABLE_NO_COLLAPSE_OF_A_NET = YES
SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_A_NET = #

These lines set net_char to '#', and enable the special processing of nets prefixed
with that character.

SPECIAL_CHARACTER_FOR_PRINTING_SERIES_MERGES=ser_char

This character will be used by the LVS when naming devices created from series
merges. (Series merges are enabled through the use of the MERGE_SERIES-
_deviceS options in the control file. See page 287.) The name of a device
created by a series merge will be the names of the original devices separated by
ser_char.

Example: SPECIAL_CHARACTER_FOR_PRINTING_SERIES_MERGES = @

In the sample control file supplied with the LVS installation, ser_char is set to
'@'. When this option is used, and a series device is created by the LVS, the
name of the merged device will be similar to DEV1@DEV2@DEV3..., where
DEV1, DEV2, and DEV3 are the names of the original devices in the netlist.

A different
method of
preventing nets
from
disappearing is
using the *.PINS
command in the
netlist.

Input Files: The LVS Control File

270 NLE and LVS User Manual

SPECIAL_CHARACTER_FOR_PRINTING_PARALLEL_MERGES=par_cha
r

This character will be used by the LVS when naming devices created from
parallel merges. (Parallel merges are enabled through the use of the MERGE-
_PARALLEL_deviceS options in the control file. See page 289.) The name of a
device created by a parallel merge will be the names of the original devices
separated by par_char.

Example: SPECIAL_CHARACTER_FOR_PRINTING_PARALLEL_MERGES = &

In the sample control file supplied with the LVS installation, par_char is set to
'&'. When this option is used, and a parallel device is created by the LVS, the
name of the collapsed device will be similar to DEV1&DEV2&DEV3..., where
DEV1, DEV2, and DEV3 are the names of the original devices in the netlist.

SPECIAL_CHARACTER_FOR_PRINTING_DEVICES_IN_A_DEVICE...
..._CELL_INSTANCE = dev_cell_char

There are some types of physical devices which cannot be represented as a single
device in a schematic netlist. Multiple emitter NPN devices are an example.
These devices can be expanded in the layout netlist. Expanded devices will be
named using this character. See Multiple Emitter or Collector Devices in
Device Transformations for an example.

Example: SPECIAL_CHARACTER_FOR_PRINTING_DEVICES_IN_A_DEVICE...
..._CELL_INSTANCE = !

The dev_cell_char is set to '!' in the sample control file supplied with the LVS
installation. You can set dev_cell_char to the character required by your
schematic netlist language.

Input Files: The LVS Control File

NLE and LVS User Manual 271

OPTIONAL OUTPUT FILES

The LVS generates several different reports. The following options control
which reports are generated and what files the data is stored in. All files will be
stored in the directory indicated in the OUTPUT_DIRECTORY_PATH option
described on page 256. Do not include a directory path with any of the file name
parameters of the following options.

GENERATE_NAME_EQUIVALENCES = (YES | NO)

The LVS can generate a node correspondence file listing all node labels in the
layout netlist and the equivalent node names in the other netlist. The file can be
used as an input node correspondence file in subsequent runs of the LVS. The
name of the output file should be provided in the next option.

Example: GENERATE_NAME_EQUIVALENCES = NO

Using this option in the control file will prevent the creation of a node
correspondence file based on the actual netlist data.

When you set this option to YES, nodes which are labeled in the layout, but
which have not been matched to a node in the other netlist, will be indicated with
an '*'. The line in the generated file will look similar to:

* = NETABC

You should replace the '*' with the appropriate node name in the other netlist
before using this file as an input node correspondence file with the control file
option INPUT_FILE_OF_NAME_EQUIVALENCES.

OUTPUT_FILE_OF_NAME_EQUIVALENCES = equiv_file

When you use the GENERATE_NAME_EQUIVALENCES = YES option, this
parameter is used as the file name for the node correspondence file the LVS will
generate. If you do not provide a file extension, the default file extension set by
the OUTPUT_FILE_NAME_EXTENSION_FOR_LVS option will be used.

See LVS
Output Files
for more details
on all reports
generated by the
LVS.

See Using a
Node
Correspon-
dence File in
Running LVS.

Input Files: The LVS Control File

272 NLE and LVS User Manual

Example: GENERATE_NAME_EQUIVALENCES = YES
OUTPUT_FILE_OF_NAME_EQUIVALENCES = "EQUIVOUT.TXT"

Using these options in the control file will cause the LVS to create a node
correspondence file listing all nodes labeled in the layout netlist and the
corresponding node names in the other netlist. This file (like all reports
generated by the LVS) will be created in the directory specified by the
OUTPUT_DIRECTORY_PATH option. The file name will be
EQUIVOUT.TXT.

PRINT_NET_LABELS_IN_A_SEPARATE_FILE = (YES | NO)

Setting this option to YES will cause the LVS to create a file that will list all
nodes labeled in the layout netlist. The node number of each labeled net will be
indicated. This file can be used as an input file to your next run of the LVS to
override node labels found in the layout.

If you need to change a node labeled in error in the layout, or add new labels,
you can edit this file instead of editing the layout and reprocessing it through the
NLE circuit extractor. This can save time.

You add this file to the layout netlist with an .INCLUDE statement. Changes
made with this file are processed as though the changes were made to the layout
even though you have not altered your layout in any way.

Node numbers can change when you edit the layout and re-execute the NLE.
Therefore, the file generated by this option may not be valid after you recreate
the binary layout netlist with the NLE.

The name of the output file is determined by the next option. You can include
unlabeled nets in the list with the PRINT_ALL_UNLABELED_NETS-
_WHOSE_DEGREE_GREATER_THAN option.

See Using Node
Label Overrides
on page 361 for
more details and
an example.

Input Files: The LVS Control File

NLE and LVS User Manual 273

OUTPUT_FILE_OF_NET_LABELS = label_file

If you have used the PRINT_NET_LABELS_IN_A_SEPARATE_FILE = YES
option (described above), the data will be stored in the file named with this
parameter. Use a valid DOS filename. Do not include the path. The file
extension is optional. You can surround label_file with quotes for readability.
They are not required.

Example: PRINT_NET_LABELS_IN_A_SEPARATE_FILE = YES
OUTPUT_FILE_OF_NET_LABELS = "LABELOVR.NET"

When these options are used in the control file, all nodes with labels in the
layout netlist will be listed in the file LABELOVR.NET in the directory
specified by the OUTPUT_DIRECTORY_PATH option.

PRINT_ALL_UNLABELED_NETS_WHOSE_DEGREE_GREATER...
... _THAN = net_degree

If you want to include unlabeled nets in the list generated by the PRINT_NET-
_LABELS_IN_A_SEPARATE_FILE = YES option, set net_degree to a number
low enough to include the nets you are interested in.

PRINT_NETS_WITH_ZERO_AND_ONE_CONNECTIONS = (YES | NO)

This option enables or suppresses the generation of a report which lists nets not
connected to any device (degree zero nets) and nets connected to only one device
(i.e. unterminated nets).

A zero degree net in the schematic netlist arises when nets listed in the I/O list of
a subcircuit are never referred to in a device statement. There are never any nets
of zero degree in the layout netlist. Even when stray pieces of conductive
material are not connected to any devices, they will not be listed as nets of zero
degree.

If you set this option to YES, the lists will be stored in the file name supplied in
the next option.

To insure that
certain nodes in
the layout are
unconnected,
see the
UNCON-
NECTED NLE
rule.

Input Files: The LVS Control File

274 NLE and LVS User Manual

OUTPUT_FILE_OF_NETS_WITH_ZERO_AND_ONE_CONNECTIONS ...
... = unterm_net_file

All nets which are not connected to a device, or which connect to only one
device will be listed in a file with the name unterm_net_file. This parameter
should be a valid DOS filename. Do not include the path. The file extension is
optional. If you do not supply a file extension, the default extension set by the
OUTPUT_FILE_NAME_EXTENSION_FOR_LVS option will be used.

This file will be created only if the PRINT_NETS_WITH_ZERO_AND_ONE-
_CONNECTIONS option (described above) is set to YES.

Example: PRINT_NETS_WITH_ZERO_AND_ONE_CONNECTIONS = YES
OUTPUT_FILE_OF_NETS_WITH_ZERO_AND_ONE_CONNECTIONS=...
..."UNTERM"

If you have used the option OUTPUT_FILE_NAME_EXTENSION_FOR-
_LVS=LVS, all nets in the schematic netlist which do not connect to any devices
will be listed in a file with the name UNTERM.LVS. Nets which connect to
only one device in either netlist will also be listed.

PRINT_COLLAPSED_DEVICES_IN_A_SEPARATE_FILE = (YES | NO)

The LVS performs various transformations on the circuit netlists depending on
the user options. In the process of transformation, the LVS can collapse a group
of devices of the same type and model into a pseudo device. These pseudo
devices are intended to allow for gate terminal input swapping and logic
equivalence while matching two circuit netlists.

If you use YES for this option, the LVS will create a file with the list of devices
grouped into each pseudo device. If you use NO, no report will be generated,
however, these devices will still be listed in the matched device report (or the
unmatched device report if they do not match with circuits in the other netlist).

Remember that
all files are
stored in the
directory
defined by the
OUTPUT-
_DIRECTORY
_PATH option.

Devices formed
from a simple
merge will not
be listed in this
report.

See Device
Trans-
formations for
more details on
logic collapses.

Input Files: The LVS Control File

NLE and LVS User Manual 275

OUTPUT_FILE_OF_COLLAPSED_DEVICES = collapse_file

If you have used the PRINT_COLLAPSED_DEVICES_IN_A_SEPARATE-
_FILE = YES option (described above), the data will be stored in the file named
with this parameter. Use a valid DOS filename. Do not include the path. The
file extension is optional.

Example: PRINT_COLLAPSED_DEVICES_IN_A_SEPARATE_FILE = YES
OUTPUT_FILE_OF_COLLAPSED_DEVICES = "COLLAPSE.TXT"

When these options are used in the control file, the list of devices collapsed to
create each pseudo device will be listed in the file COLLAPSE.TXT in the
directory specified by the OUTPUT_DIRECTORY_PATH option.

PRINT_SYMMETRIC_MATCHES_IN_A_SEPARATE_FILE= (YES | NO)

This option can enable or suppress the report of symmetric (forced) matches.

If your circuit has large numbers of devices matched incorrectly or unmatched
incorrectly, it may be that the LVS was forced to match two nodes from a list of
nodes with identical node properties, and that it matched a pair of nodes
incorrectly. The most frequent cause of this problem is symmetric circuits.

This option enables the report of a list of pairs of nodes which the LVS was
forced to match from candidates of possible matches. When you have large
numbers of devices matched incorrectly, look at this report to see which pair of
nodes was forced to match in error. You can then chose a correct pair of nodes to
be matched by the LVS. Label the node in the layout and associate this label to
the equivalent node in the schematic netlist using the node correspondence file.

OUTPUT_FILE_OF_SYMMETRIC_MATCHES = sym_file

If the PRINT_SYMMETRIC_MATCHES_IN_A_SEPARATE_FILE option is
set to YES, the output will be created in the file indicated with this parameter.
sym_file must be a valid DOS filename. Do not include the path.

See page 365
for more details
on symmetric
circuits.

Input Files: The LVS Control File

276 NLE and LVS User Manual

GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT
= (YES | NO)

This option controls the generation of a flat schematic netlist from the layout
netlist. The file is created only if the type of comparison is LVL or LVS. (When
the comparison is LVL, the flat schematic netlist is generated from the second
layout netlist.)

This schematic netlist output can be very useful for simulation if you have the
NLE recognize parasitic capacitors. If you wish to limit the parasitic capacitors
listed to those over a threshold value, use the DELETE_PARASITIC-
_CAPACITORS_LESS_THAN control file option. (See page 300.)

The following options in the control file (covered below) apply only to the
generated schematic netlist. If you do not want to generate a schematic netlist,
skip ahead to page 280.

OUTPUT_FILE_OF_SPICE_NETLIST
SPICE_FILE_FORMAT
PRINT_COMMENTS_IN_SPICE_OUTPUT_GENERATED_BY_LVS
PRINT_FILTERED_DEVICES_IN_SPICE_OUTPUT_GENERATED_BY_LVS
SCALE_CHARACTER_FOR_RESISTORS
SCALE_CHARACTER_FOR_CAPACITORS
SCALE_CHARACTER_FOR_INDUCTORS
REPLACE_NLE_NODES_WITH_MATCHED_SCHEMATIC_NODES

OUTPUT_FILE_OF_SPICE_NETLIST = spice_file

If the GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT
option is set to YES, the spice data will be created in the file indicated with this
parameter. spice_file must be a valid DOS filename. Do not include the path.
The file extension is optional.

The schematic netlist will be created using the language syntax set by the
SPICE_FILE_FORMAT option (covered next).

You can
generate a
schematic
netlist from a
layout netlist
without running
the LVS. Use
the LPE utility.

Input Files: The LVS Control File

NLE and LVS User Manual 277

SPICE_FILE_FORMAT = (CDL | PSPICE | HSPICE | SPICE)

This option selects the format of the flat schematic netlist generated from the
layout.

Example: GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT=YES
OUTPUT_FILE_OF_SPICE_NETLIST = "SPICEOUT"
SPICE_FILE_FORMAT = PSPICE

These three options will result in the LVS creating a flat PSPICE format
schematic netlist from the layout data. If the
OUTPUT_FILE_NAME_EXTENSION_FOR_LVS option is set to "LVS", the
filename will be SPICEOUT.LVS.

PRINT_COMMENTS_IN_SPICE_OUTPUT_GENERATED_BY_LVS = ...
...(YES | NO)

If you desire that comments be added to the schematic netlist created by the
LVS, set this option to YES. These comments include device instance names
from the matched devices in the other netlist and details on collapsed devices.

PRINT_FILTERED_DEVICES_IN_SPICE_OUTPUT_GENERATED_ ...
... BY_LVS = (YES | NO)

When you want the LVS to include devices in the generated schematic netlist
which are filtered out of the layout netlist before comparison, set this option to
YES. Devices may be filtered if you have set any of the control file options
which begin with the word "IGNORE" to YES. (See page 297.)

The /P
command line
parameter will
override this
option.

Input Files: The LVS Control File

278 NLE and LVS User Manual

SCALE_CHARACTER_FOR_RESISTORS = ("r_char" | " ")
and

SCALE_CHARACTER_FOR_CAPACITORS = ("c_char" | " ")
and

SCALE_CHARACTER_FOR_INDUCTORS = ("i_char" | " ")

If one of these options is set to a non-blank character, that character will be used
to identify the units of the values of devices in the indicated category in the
generated spice netlist.

For example, you have defined the layout device model for resistors with the
following statement:

*.LAYMODEL RESMODEL RES OHMS_PER_SQUARE = 5

A resistor in the layout netlist using this model with dimensions L=10 and W=2
will have its value calculated as:

(10 / 2) * 5 = 25

If you want the value of this device to be followed with a "K" in the generated
spice netlist (so that it is interpreted as 25 Kohms), use the following option in
the control file:

Example: SCALE_CHARACTER_FOR_RESISTORS = "K"

The other options work in a similar manner. If you want to have the character 'p'
printed after each capacitor value in the generated spice netlist (so that the values
are interpreted as picofarads), use the control file option SCALE-
_CHARACTER_FOR_CAPACITORS = 'p'. Using the option SCALE-
_CHARACTER_FOR_INDUCTORS = 'n' will result in the values for inductors
being interpreted as nanohenries.

Input Files: The LVS Control File

NLE and LVS User Manual 279

REPLACE_NLE_NODES_WITH_MATCHED_SCHEMATIC_NODES...
... = (YES | NO)

This option applies only to parasitic capacitor statements in the generated spice
netlist when the comparison is LVS. Simulating your circuit with parasitic
capacitors extracted from the layout can be very useful.

If you intend to simulate the entire generated spice netlist, rather than using cut
and paste methods to use only the parasitic capacitor statements, set this option
to "NO".

However, you may not want to simulate the generated spice netlist because your
original spice netlist contains probe points or other information not included in
the generated spice netlist. If you use cut and paste methods to edit the parasitic
capacitor statements into your original schematic netlist, the net names in the
statements will not match. Layout netlist node numbers will be used instead of
schematic netlist net names.

If you set this option to YES, the LVS will replace the node numbers indicated in
parasitic capacitor statements with the netnames used in the original schematic
netlist. This requires that the nets have been matched successfully by the LVS.
All nets that have not been successfully matched with nets in the schematic
netlist will be represented by the string "????".

This is the last control file option that applies only to the format of the generated
spice netlist.

Input Files: The LVS Control File

280 NLE and LVS User Manual

PRINT_NETS_AND_THEIR_DEGREES = (YES | NO)
and

PRINT_ALL_NETS_WHOSE_DEGREE_GREATER_THAN = degree

These options control the generation of a report listing nets and their degrees.
(Degree is defined as the number of devices to which a net connects.) The net
degrees are calculated after performing transformations on devices in the netlists.

This report can be very useful in diagnosing shorts and opens. The discrepancies
in net degrees between the two netlists often allow you to quickly find nets
which are shorted together (degrees higher than expected) or open (several nets
with a low degree instead of one with a high degree).

The report is enabled by setting PRINT_NETS_AND_THEIR_DEGREES to
YES. When the report is enabled, the counts of all nets sorted by degree from
each netlist is at the top of the report. A more detailed listing, with net names
and numbers, is restricted to those nets with a degree larger than the degree
parameter in the PRINT_ALL_NETS_WHOSE_DEGREE_GREATER_THAN
option. degree must be a positive integer.

OUTPUT_FILE_OF_NET_DEGREES = netdeg_file

The list of nets and their respective degrees will be created in a file with the
name netdeg_file. This parameter should be a valid DOS filename. Do not
include the path. The file extension is optional.

This file will be created only if the PRINT_NETS_AND_THEIR_DEGREES
option (described above) is set to YES.

PRINT_LIST_OF_FILTERED_DEVICES = (YES | NO)

Use this option to generate a list of filtered devices. Devices may be filtered if
you have set any of the control file options which begin with the word
"IGNORE" to YES. (See page 297.)

See Device
Transfor-
mations in
Running LVS
to learn about
the types of
transformations
performed
before degree is
calculated.

See the
Advanced
Tutorial to see
how useful this
file can be.

Input Files: The LVS Control File

NLE and LVS User Manual 281

If you set this option to NO, you will not be provided with a list of devices which
have been ignored by the LVS.

OUTPUT_FILE_OF_FILTERED_DEVICES = filt_dev_file

If the PRINT_LIST_OF_FILTERED_DEVICES option is set to YES, the data
will be created in the file indicated with this parameter. filt_dev_file must be a
valid DOS filename. Do not include the path.

OUTPUT FILES

These options control the most useful reports generated by the LVS.

PRINT_MATCHED_DEVICES_AND_NETS = (YES | NO)

This option can suppress the generation of the list of devices and nets which
match in the two netlists. The devices will be sorted by type. Those devices
with parameter mismatches outside the tolerances specified by the device models
in the second netlist will be indicated by the string "Parameter Error". The list of
devices with parameter mismatches is also provided in the next report.

If disk space is a concern, you can disable this report by setting this option to
NO. If you set this option to YES, the file name is set with the next option.

See LVS
Output Files
for more details
on all reports
generated by the
LVS.

Input Files: The LVS Control File

282 NLE and LVS User Manual

OUTPUT_FILE_OF_MATCHED_DEVICES_INCLUDING_PARAMETER...
..._ERRORS = match_file

The list of matched devices and nets will be created in a file with the name
match_file. This parameter should be a valid DOS filename without a path.

This file will be created only if the PRINT_MATCHED_DEVICES_AND_NETS
option is set to YES.

OUTPUT_FILE_OF_DEVICES_WITH_PARAMETER_ERRORS ...
... = parm_err_file

Use this parameter to define the name of the file to store the list of matched
devices with value or dimension errors. A device will be listed if it matches in
the two netlists, but the parameter values indicated in each netlist differ by a
value greater than the tolerance specified by the device model.

In other words, use this file to locate devices which are correctly connected, but
are the wrong size.

This report cannot be disabled, however, the MATCH_device_PARAMETERS
options must be set to YES to enable this type of verification for specific device
categories. If all MATCH_device_PARAMETERS options are set to NO, this
file will not list any devices.

OUTPUT_FILE_OF_UNMATCHED_DEVICES_AND_NETS=unmatch_file

This option defines the name of the file where the list of unmatched devices and
nets will be stored. This report cannot be disabled.

The devices in this report will be sorted by type and degree (the number of
terminals). The device terminals for each device are listed and if a matched net
is connected to the terminal, the netname is indicated. When an unmatched net
is attached to a device, the string "?????" is indicated instead of the net name.

Remember that
all files are
stored in the
directory
defined by the
OUTPUT-
_DIRECTORY
_PATH option.

Device
parameter
tolerances are
usually defined
by
*.LAYMODEL
statements in
the layout
netlist. See
page 233.

Input Files: The LVS Control File

NLE and LVS User Manual 283

The report of unmatched nets are also sorted by degree (the number of devices
attached to the net). The devices attached to each net are listed. When an
unmatched device is attached to a net, the string "?????" is listed instead of the
device name. The maximum number of devices listed for each net is controlled
by the option SET_NET_SIZE_LIMIT_WHEN_PRINTING_CONNECTIONS.

OUTPUT_FILE_OF_FINAL_RESULTS_OF_NETLIST_COMPARISON ...
… = summary_file

This option provides the file name for the comparison summary report. It cannot
be disabled. You must ALWAYS look at this file carefully.

INDIVIDUAL DEVICE OPTIONS

This section of options controls how devices in specific
categories are transformed during preprocessing and how
model names and parameter values are matched. Ten
different device categories are recognized by the LVS. The
device categories are listed in Figure 88.

Most of the following options can be overridden for specific
device models in the netlists with parameters on the
*.SCHMODEL or *.LAYMODEL statements. See Figure
73 on page 214 to see which parameter to use to override
each option. The control file option provides the default for
both netlists unless it is noted otherwise in the description.

When typing the options in the control file, replace the string "device" with one
of the device category strings from the table given for that specific option. Not
all options are valid for each device category. All options for a specific device
category are grouped together in the control file.

MOSFET
BIPOLAR
GaAsFET
JFET
DIODE
CAPACITOR
RESISTOR
INDUCTOR
TXLINE
PARASITIC-
_CAPACITOR

Figure 88:
Valid LVS
device
categories.

Input Files: The LVS Control File

284 NLE and LVS User Manual

SCALE_device_LENGTH_AND_WIDTH = scale

These options will scale the length and width of devices
in a schematic netlist by the value provided for scale.

Example: SCALE_MOSFET_LENGTH_AND_WIDTH = 1e6

Using this option in the control file will multiply the
length and width of each MOSFET device in the
schematic netlist by 106. This is very useful when the
units of device length and width in the schematic netlist
are given in meters (e.g. W=6u) and the units in the
layout are in microns (e.g. W=6).

If you prefer to scale the final value of a device, rather than the dimensions, you
can use the next option.

SCALE_device_VALUE = scale

These options will scale the value of devices in a
schematic netlist by the value provided for scale. This
can avoid false errors when the units used to express the
value of a device are different in the two netlists.

Example: SCALE_RESISTOR_VALUE = .001

Using this option in the control file will multiply the value
of each resistor in the schematic netlist by .001 or 10-3.

When you prefer to scale the dimensions of the device, use the previous option.

MOSFET
JFET
CAPACITOR
RESISTOR

Figure 89: Valid
device categories
for the SCALE...-
LENGTH_AND-
_WIDTH options.

See an example
of using this
feature on page
28.

CAPACITOR
RESISTOR
INDUCTOR

Figure 90: Valid
device categories
for the
SCALE...VALUE
options.

Input Files: The LVS Control File

NLE and LVS User Manual 285

NUMBER_OF_PINS_FOR_device = (2 | 3 | 4| *)

This option affects how devices in the
schematic netlist are preprocessed.

When this option is set to a '3', bipolar
transistors, GaAsFETs, and JFETs, the
devices will be stored as 3 terminal
devices. If a fourth terminal connection
is indicated for a device in the schematic
netlist, it will be ignored.

When a '4' is used, only 4 terminal
devices will be allowed. If only 3
terminals are defined for a these devices
in the schematic netlist, the string
defined by the BULK=bulk_node_name parameter in the corresponding
*.SCHMODEL device model will be used for the fourth terminal. If the BULK
option is not used in the corresponding device model, it will be flagged as an
error and reported in the log file, "LVS.LOG".

Example: NUMBER_OF_PINS_FOR_MOSFETS=4

(In schematic netlist:)
*.SCHMODEL NMOS NMOS BULK=VSS
*.SCHMODEL PMOS PMOS BULK=VDD

MN5 OUT 19 12 NMOS W=4U L=1.0U

When this control file option and the device models shown are used, the LVS
will add the net VSS to the device statement for MN5. The LVS will then
proceed with the comparison as though the device statement was written as:

MN5 OUT 19 12 VSS NMOS W=4U L=1.0U

In this case, NMOS devices should be recognized by the NLE as having 4
terminals.

Device category Valid numbers
BIPOLAR 3, 4, or *
GaAsFET 3, 4, or *
JFET 3, 4, or *
DIODE 2, 3 or *
CAPACITOR 2, 3 or *
RESISTOR 2, 3 or *
INDUCTOR 2, 3 or *

Figure 91: Valid device categories
for the NUMBER_OF_PINS...
options.

Input Files: The LVS Control File

286 NLE and LVS User Manual

For diodes, capacitors, resistors, and inductors, if the corresponding
NUMBER_OF_PINS_FOR_device option is set to 2, the corresponding devices
will be stored and compared as two terminal devices. When the option is set to
3, and the third terminal is not supplied in the device statement in the schematic
netlist, the string after the BULK keyword in the device model will be used as
the third terminal.

If this option is set to '*', both 3 terminal and 4 terminal bipolar transistors,
GaAsFETs, or JFETs will be allowed. When this option is set to '*' for diodes,
capacitors, resistors, or inductors, both 2 and 3 terminal devices will be allowed.
However, devices with different numbers of terminals will never match (e.g. a 3
terminal device will never match a 4 terminal device).

SWAP_GAASFET_SOURCE_DRAIN = (YES | NO)

SWAP_JFET_SOURCE_DRAIN = (YES | NO)

SWAP_EMITTER_AND_COLLECTOR_TERMINALS = (YES | NO)
and

SWAP_CAPACITOR_TERMINALS = (YES | NO)

Use these options to enable swapping of terminals for specific device categories.
The source and drain of MOSFET devices are always considered swappable, so
are the terminals of resistors and inductors. The terminals of diodes and
transmission line (TXLINE) devices can never be swapped. The SWAP-
_EMITTER_AND_COLLECTOR_TERMINALS option applies only to LPNP
and LNPN types of bipolar devices. The terminals of NPN and PNP type
devices are never swapped.

Example: SWAP_JFET_SOURCE_DRAIN = YES

Using this option in the control file will allow the source and drain of JFET
devices to be swapped if necessary to match devices in the two netlists.

See more details
on terminal
swapping on
page 316.

Input Files: The LVS Control File

NLE and LVS User Manual 287

This option can be overridden for specific models of devices with the
SWAP=NO parameter on the device models (*.SCHMODEL or *.LAYMODEL
statements) in both netlists.

MERGE_SERIES_deviceS = (YES | NO)

This option will allow devices connected in series to be
merged. For transistors to be considered as candidates for
a merge, the gate terminals of all devices must be
connected.

Setting this option to YES for specific device categories
can result in a match of logically equivalent but physically
dissimilar circuits. For example, a single resistor in one
netlist will match with several resistors connected in series
in the other netlist.

Only the LPNP and LNPN types of bipolar transistors may
be merged. To allow series merges of these types of
devices, the control file option SWAP_EMITTER-
_AND_COLLECTOR_TERMINALS = YES must also be
used. Even when you use the control file option
MERGE_SERIES_BIPOLARS = YES, PNP and NPN types of transistors will
not be merged.

Unless the corresponding MERGE_deviceS_OF_DIFFERENT_MODELS =
YES option is used (see page 290), only devices with identical models can be
merged. When used with transistors, the devices must be connected to the same
substrate. The area of a merged device is the sum of the device areas collapsed
to create it.

Example: MERGE_SERIES_RESISTORS=YES

Using this option in an LVS control file will merge all resistors connected in
series into single devices.

See an example
of using
overrides for
specific device
models on page
212.

MOSFET
BIPOLAR
GAASFET
JFET
CAPACITOR
RESISTOR
INDUCTOR
PARASITIC-
_CAPACITOR

Figure 92: Valid
device categories
for MERGE-
_SERIES
options.

See page 315
for more
information on
the difference
between merges
and collapses.

Input Files: The LVS Control File

288 NLE and LVS User Manual

R1 1 2 RESMODEL L=2 W=3
R2 2 3 RESMODEL L=2 W=3
R3 3 4 RESMODEL L=2 W=3
R4 4 5 RESMODEL L=2 W=3
R5 5 6 RESMODEL L=2 W=3

The resistors in the schematic netlist fragment above will be merged into a single
device. The length of the new device will be the sum of the lengths of the
merged devices. The name of the new device will be the old device names
concatenated together. The device names will be separated by a special
character defined with the SPECIAL_CHARACTER_FOR_PRINTING-
_SERIES_MERGES control file option. This character is '@' in the sample
control supplied with the LVS installation. The resulting resistor device would
be as follows:

R1@R2@R3@R4@R5 1 6 RESMODEL L=10 W=3

The SMERGE, ALLMERGE, or ALL options in the device models in the
netlists can be used to override series merges for specific device models. If you
used the MERGE_SERIES_RESISTORS=YES option but then defined the
RESMODEL resistor model in the schematic netlist with the following
*.SCHMODEL statement, the series resistors in the schematic netlist shown
above would not be merged. However, resistors using other models would still
be merged.

*.SCHMODEL RESMODEL RES SMERGE=NO

Series diodes can never be merged. The MERGE_SERIES_DIODES option
must always be set to NO.

MOSFETS are treated somewhat differently than other three terminal devices.
For MOSFET devices, this parameter only merges devices with identical length
and width. (To allow the merge of devices of different sizes, see the
MERGE_DISSIMILAR_SIZED_MOSFETS option below).

Input Files: The LVS Control File

NLE and LVS User Manual 289

MERGE_PARALLEL_deviceS = (YES | NO)

This option will allow devices connected in parallel to be
collapsed. Setting this option to YES for specific device
categories can result in a match of logically equivalent but
topologically dissimilar circuits.

To allow two terminal devices with different models to be
merged, use the appropriate MERGE_deviceS_OF_DIF-
FERENT_MODELS = YES control file option. Otherwise,
only devices with identical models can be merged. The net
connections for all terminals of the devices must be
identical. When used with transistors, the devices must be
connected to the same substrate. The area of a merged
device is the sum of the device areas collapsed to create it.

Example: MERGE_PARALLEL_RESISTORS=YES

Using this option in an LVS control file will merge all
resistors connected in parallel into single devices.

R1 1 2 L=2 W=3
R2 1 2 L=2 W=3
R3 1 2 L=2 W=3
R4 1 2 L=2 W=3
R5 1 2 L=2 W=3

The resistors in the schematic netlist fragment above will be merged into a single
device. The name of the new device will be the old device names concatenated
together and separated with a special character defined by the SPECIAL-
_CHARACTER_FOR_PRINTING_PARALLEL_MERGES control file option.
This character is '&' in the sample control supplied with the LVS installation.
The width of the new device will be the sum of the merged devices. The
resulting resistor device would be as follows:

R1&R2&R3&R4&R5 1 2 L=2 W=15

MOSFET
BIPOLAR
GAASFET
JFET
DIODE
CAPACITOR
RESISTOR
INDUCTOR
PARASITIC-
_CAPACITOR

Figure 93: Valid
device categories
for MERGE-
_PARALLEL
options.

See page 318
for more
information and
examples.

Input Files: The LVS Control File

290 NLE and LVS User Manual

The PMERGE, ALLMERGE, or ALL options can be used to override parallel
merges for specific device models in the netlists.

Only LPNP and LNPN types of bipolar transistors may be merged.

MOSFETS are treated somewhat differently than other three terminal devices.
For MOSFET devices, this option enables only merges of devices with identical
length and width. (To allow the merge of devices with different sizes, see the
MERGE_DISSIMILAR_SIZED_MOSFETS option below).

MERGE_DISSIMILAR_SIZED_MOSFETS = (YES | NO)

This option applies only to MOSFETS. The previous two options will merge
only MOSFET devices with identical length and width. If you want the LVS to
merge dissimilar sized devices, set MERGE_DISSIMILAR_SIZED_MOSFETS
to YES. The MERGE_PARALLEL_MOSFETS= YES or MERGE_SERIES-
_MOSFETS = YES option must also be used.

MERGE_deviceS_OF_DIFFERENT_MODELS = (YES | NO)

This option is valid only for the two-
terminal devices listed in Figure 94.
For these devices, it is possible to
allow series or parallel merges
between devices with different models.
This option can be overridden for
specific device models by the
DMODEL, ALLMERGE, or ALL
parameters in the netlist device
models.

See page 318
for details on
dimension
calculation for
merges of
dissimilar sized
devices.

Device Category Merged Model
Name

CAPACITOR CAPACITOR
RESISTOR RESISTOR
INDUCTOR INDUCTOR
PARASITIC-
_CAPACITOR

PCAPACITOR

Figure 94: Valid device categories
for MERGE......DIFFERENT-
_MODELS options.

Input Files: The LVS Control File

NLE and LVS User Manual 291

When devices of the same model are merged, the device model name remains
unchanged. However, when devices of different models are merged, the model
name assigned to the merged device is indicated by the table in Figure 94. Some
of the model parameters, including tolerance parameters, from this model will be
used instead of those defined for the original devices.

Example: MERGE_RESISTORS_OF_DIFFERENT_MODELS=YES

To see the effect of the above control file option, let us say you have two resistor
models RESDIFF and RESPOLY. The device models are defined with the
following statements in the layout netlist:

*.LAYMODEL RESDIFF RES VALUETLR=.3 R_CONTACT =.1
*+ OHMS_PER_SQUARE=1

*.LAYMODEL RESPOLY RES VALUETLR=.1 R_CONTACT =.1
*+ OHMS_PER_SQUARE=2

If two resistors in series, one of each model, were merged into one device, the
model of the merged device would be RESISTOR.

However, the calculated value of the merged device would be accurate. The
value of each resistor is calculated from the device dimensions and values of
R_CONTACT and OHMS_PER_SQUARE in the netlist device models before
the devices are merged.

When the LVS performs device parameter checking, the value tolerances defined
for RESDIFF and RESPOLY will be ignored because the merged device has a
model of RESISTOR before it is matched to a device in the other netlist. If a
device model for RESISTOR is defined, that value tolerance would be used. If
no model for RESISTOR exists, the default tolerance of .0005 will be used.

Input Files: The LVS Control File

292 NLE and LVS User Manual

MERGE_device_CHAINS = (YES | NO)

This option controls the parallel merge of transistors
which do not have all terminals shorted together. For
bipolar transistors (LPNP and LNPN device types only,
NPN and PNP devices types are never merged), the bases
of the devices must be shorted and the collectors and
emitters must be connected in chains. For FET
transistors, the gates must be shorted together and the
sources and drains connected in chains.

This is best explained with examples. See page 320 for a
more complete explanation of this process.

MERGE_OUT_OF_ORDER_device_CHAINS = (YES | NO)

This option controls the parallel merge of transistors
which do not have all terminals shorted together. The
previous option will allow only transistors in chains
which are connected in the same order in each chain to be
merged. This option allows the transistors which make
up the chains to be in different order in the connected
chains.

When the LVS uses this option, warnings will be listed in
the log file and the comparison summary report and also
on the screen. All out of order chains will be listed in the
unmatched devices report.

See page 321 for examples and more details.

MOSFET
BIPOLAR
GAASFET
JFET

Figure 95: Valid
device categories
for the MERGE-
_device_CHAINS
options.

MOSFET
BIPOLAR
GAASFET
JFET

Figure 96: Valid
device categories
for the MERGE-
_device_CHAINS
options.

Input Files: The LVS Control File

NLE and LVS User Manual 293

 COLLAPSE_SERIES_LOGIC_deviceS = (YES | NO)

This option controls whether 3 or 4 terminal devices of a
specific category, which are connected in series but have
different gates, will be collapsed into a pseudo device with
swappable gate terminals. Enabling this option will result
in a match between logically equivalent but physically
different structures.

For a group of devices to be collapsed, the devices must
use the same model and share the same substrate.

Example: COLLAPSE_SERIES_LOGIC_MOSFETS=NO

When logic collapses are disabled by using the control file option above, the
LVS will not match circuits that are logically equivalent, but physically
dissimilar due to the order of the gate connections.

Setting this option to YES will often prevent cascading errors due to
misconnections, making it easier to diagnose circuit mismatches.

The SERIES, ALLCOLLAPSE, or ALL options on individual device models in
the netlists can be used to override creation of series pseudo device collapses for
specific device models.

Only LPNP and LNPN types of bipolar transistors may be collapsed. To allow
series logic collapses of these types of devices, the control file option
SWAP_EMITTER_AND_COLLECTOR_TERMINALS = YES must also be
used.

Details on the devices collapsed to form a pseudo device will be reported in the
file defined by the control file option
OUTPUT_FILE_OF_COLLAPSED_DEVICES.

MOSFET
BIPOLAR
GAASFET
JFET

Figure 97: Valid
device categories
for COLLAPSE-
_SERIES-
_LOGIC
options.

See page 322 in
Device
Transfor-
mations for
more
information and
examples.

Input Files: The LVS Control File

294 NLE and LVS User Manual

COLLAPSE_PARALLEL_LOGIC_deviceS = (YES | NO)

This option controls whether parallel devices (with 3 or 4
terminals) of a specific category with different gates will
be collapsed into a pseudo device. For a group of devices
to be collapsed, the devices must use the same model and
share the same substrate.

Example: COLLAPSE_PARALLEL_BIPOLARS = YES

The gates of the pseudo device will be swappable.

COLLAPSE_DISSIMILAR_SIZED_deviceS = (YES | NO)

The two previous control file options enable the logic
collapse of devices. When either of those options is
enabled, this option controls whether or not devices with
different sizes can be collapsed.

Example: COLLAPSE_SERIES_LOGIC_MOSFETS = YES
COLLAPSE_PARALLEL_LOGIC_MOSFETS = YES
COLLAPSE_DISSIMILAR_SIZED_MOSFETS = YES

When you use these options in your control file, MOSFET
devices connected in series with different sizes will be
collapsed so that the gates of the circuit are swappable. This may mean that two
circuits that are logically equivalent, but with very different electrical properties,
will match without a warning in the unmatched devices list. However, error
messages will be indicated in the parameter error report.

MOSFET
BIPOLAR
GAASFET
JFET

Figure 98: Valid
device categories
for COLLAPSE-
_PARALLEL-
_LOGIC
options.

See Device
Transfor-
mations on
page 323 for
more
information and
examples.

MOSFET
BIPOLAR
GAASFET
JFET

Figure 99: Valid
device categories
for COLLAPSE-
_DISSIMILAR-
_SIZED options.See page 328

for details on
how parameter
values and gate
order are
verified when
this option is set
to YES.

Input Files: The LVS Control File

NLE and LVS User Manual 295

MATCH_device_MODELS = (YES | NO)

All devices have a model name in each netlist. Set this
option to YES if you want the LVS to verify that the model
names for specific devices match in the two netlists.

Example: MATCH_RESISTOR_MODELS=YES

RA 1 2 RESMODEL L=2 W=3

RB 1 2 L=2 W=3

If the two lines above represent statements from each of
two netlists you are verifying against each other, and you
have enabled verifying model names for resistors using the
example option shown above, then the two devices will not
match. (Resistor RB will have a model name of
RESISTOR by default. See Figure 75 on page 218.) If you
instead used MATCH_RESISTOR_MODELS=NO, the
two devices would match.

These control file options do not change the fact that device categories and types
must always match. Even when MATCH_MOSFET_MODELS=NO is used, a
PMOS device will never match an NMOS device.

You must be careful to assign identical model names in both netlists when you
enable model name checking. If the model names of a pair of candidates for a
match are not exactly the same in each netlist, the device will not be matched.

MOSFET
BIPOLAR
GAASFET
JFET
DIODE
CAPACITOR
RESISTOR
INDUCTOR
TXLINE

Figure 100:
Valid device
categories for
MATCH...-
MODELS
options.

Input Files: The LVS Control File

296 NLE and LVS User Manual

MATCH_device_PARAMETERS = (YES | NO)

Setting this option to YES forces the
LVS to check for parameter value
errors between matched devices of
each device category.

The schematic netlist parameter values
can be specified on the device
statement, or defaults provided by the
*.SCHMODEL statements can be
used. In the layout netlist, the
parameter values can be calculated by
the NLE, or defaults can be used for
specific models using *.LAYMODEL
statements. The *.LAYMODEL
statements are where you should
provide tolerances for value matching.

If you have enabled device merges, the
parameter value verified will be the merged device value. If you have enabled
logic collapses, the values of the individual devices that were collapsed will be
verified.

Unlike the MATCH_device_MODELS options above, a mismatch on parameter
values will not prevent a device from matching, however, the value mismatch
will be reported in the file specified by the OUTPUT_FILE_OF_DEVICES-
_WITH_PARAMETER_ERRORS option in the control file.

Device category Parameters
verified

MOSFET Length and
Width

BIPOLAR Area
GAASFET Area
JFET Area
DIODE Area
CAPACITOR Capacitance
RESISTOR Resistance
INDUCTOR Inductance
TXLINE Value

Figure 101: Valid device categories
for MATCH...PARAMETERS
options.

See Parameter
Calculation on
page 343 for
more details.

Input Files: The LVS Control File

NLE and LVS User Manual 297

IGNORE_UNCONNECTED_deviceS = (YES | NO)

Some circuit layouts include many unconnected devices by design (e.g. semi-
custom layouts). If you want these devices filtered out by the LVS before
matching the two netlists, set this option to YES. This option controls devices
that have no net connections to any terminal. (See options below for partially
connected devices.)

If you want unconnected devices to be flagged as errors, set
this parameter to NO. In this case, all unconnected devices
will be listed as unmatched devices. If you prefer to filter
them from the matching algorithm, but still list the filtered
devices in a separate report, use the PRINT_LIST_OF-
_FILTERED_DEVICES = YES option.

IGNORE_ONE_TERMINAL_CONNECTED_deviceS
= (YES | NO)

This option controls how devices with only one connected
terminal are handled. If you want the LVS to filter out
devices with only one terminal attached to a valid net
(VDD for instance), set this option to YES.

If you consider devices with only one connected terminal
to be in error, set this parameter to NO. In this case, all
unmatched devices of this kind will be listed in the
unmatched device list.

IGNORE_TWO_TERMINALS_CONNECTED_deviceS = (YES | NO)

This option controls how 3 or 4 terminal devices with only 2 connected terminals
are handled. If you want the LVS to filter out these devices for a specific
category, set this option to YES.

MOSFET
BIPOLAR
GAASFET
JFET
DIODE
CAPACITOR
RESISTOR
INDUCTOR

Figure 102:
Valid categories
for
IGNORE_UN-
CONNECTED
and
IGNORE_ONE-
_TERMINAL-
_CONNECTED
options.

Input Files: The LVS Control File

298 NLE and LVS User Manual

If you consider devices with unconnected terminals to be in
error, set this parameter to NO. If your circuit uses bipolar
transistors with collectors which are unconnected by
design, set this parameter to NO.

When this option is set to NO, and there is no
corresponding device in the other netlist, a device of this
kind will be listed in the unmatched device list.

IGNORE_SHORTED_deviceS = (YES | NO)

Setting this option to YES will force the LVS to ignore
devices which have shorted terminals. Three terminal FET
devices with a shorted source and drain are considered
shorted devices by the LVS. Bipolar transistors with a
short between the collector and the emitter are also
considered shorted devices. See Figure 105.

If you prefer that shorted devices are not removed from the
netlists, set this parameter to NO. Then, all unmatched
shorted devices will be listed in the unmatched device
report.

If you have written the NLE rule set to recognize
transistors with shorted terminals as capacitors (using the
NODES option in the DEVICE rule, see page 135), they
will not be filtered out of the layout netlist even if this
option is set to YES. This is because the binary layout
netlist created by the NLE will list a two terminal capacitor
for such a device, not a transistor with shorted terminals.

MOSFET
BIPOLAR
GAASFET
JFET

Figure 103:
Valid device
categories for
IGNORE_TWO
_TERMINAL-
_CONNECTED
options.

The devices
filtered out by
any of the
IGNORE_...
options can be
listed by using
the PRINT-
_LIST_OF-
_FILTERED-
_DEVICES =
YES option.

MOSFET
BIPOLAR
GAASFET
JFET
DIODE
CAPACITOR
RESISTOR
INDUCTOR
TXLINE

Figure 104:
Valid device
categories for
IGNORE-
_SHORTED...
options.

Input Files: The LVS Control File

NLE and LVS User Manual 299

IGNORE_MOSFET_IF_GATE_PIN_IS_TIED_TO_CRITICAL_NET =
(YES | NO)

This option, and the following two options, rely on the LVS recognizing the
names of the nets which represent ground and power. Ordinarily these nets are
treated just like any other nets. However this option will not be able to filter
devices unless the LVS knows which nets are power and ground. See page 221
to learn how the LVS determines which nets are power and ground nets.

This option will filter NMOS type devices from either netlist when the gate
terminals are connected to a ground net. PMOS devices will be removed from
the netlist when the gate terminals are connected to a power net.

IGNORE_MOSFET_IF_SOURCE_AND_DRAIN_PINS-
_ARE_TIED_TO_CRITICAL_NET = (YES | NO)

This option will filter NMOS type devices from either netlist when the source
and drain terminals are both connected to a ground net. PMOS devices will be
removed from the netlist when the source and drain terminals are both connected
to a power net. (See note above to learn the importance of defining power and
ground nets.)

UnconnectedConnected

Figure 105: Devices considered shorted by the LVS.

Input Files: The LVS Control File

300 NLE and LVS User Manual

IGNORE_BIPOLAR_IF_BASE_PIN_IS_TIED_TO_CRITICAL_NET =
(YES | NO)

This option will filter NPN and LNPN type devices from either netlist when the
base terminals are connected to a ground net. PNP and LPNP devices will be
removed from the netlist when the base pins are connected to a power net. (See
note above to learn the importance of defining power and ground nets.)

DELETE_deviceS_LESS_THAN = filtval

Parasitic devices can be created in a layout netlist by the
NLE. These devices are not intended to match devices in a
schematic netlist. However you may want to be aware of
their presence in your design. If you create a schematic
netlist from the layout (by using the GENERATE_SPICE-
_NETLIST_FROM_THE_EXTRACTOR_OUTPUT con-
trol file option with the LVS, or by using the LPE utility)
you can include these devices for simulation purposes.

There can be thousands of these devices in your layout, and
often their value is too small to be significant. If you want to filter these devices,
retaining only those over a threshold value, use that value for filtval. If you
prefer that all parasitic devices be reported, set filtval to 0.

Example DELETE_PARASITIC_CAPACITORS_LESS_THAN = 1p

This control file option will filter out from the layout netlist all parasitic
capacitors with a value less than 1 picofarad.

PARASITIC-
_CAPACITOR

Figure 106:
Valid device
categories for
the DELETE-
_deviceS_LESS-
_THAN options.

Input Files: The LVS Control File

NLE and LVS User Manual 301

Summary of How to Prepare the Control File for the LVS

1. Copy the sample control file, CONTROL.LVS, to a new file. (We
strongly suggest that you copy the sample control file
(Q:\ICED\23SAMPLES\LVS\CONTROL.LVS) and edit only the copy.
Keep the original control file for reference.)

2. Edit the options to customize the LVS for your particular design. Edit
only the fields after the '=' on each line. Do not delete any lines.

3. Look at the filter options (options beginning with the word IGNORE, see
page 297). If you do not want any devices recognized by the NLE to be
ignored by the LVS, set all filters to NO.

4. If you want to enable device value or dimension checking, set the
appropriate MATCH_device_PARAMETERS options to YES.

5. Enable all the output files that may be useful. You may want to enable
all reports on your initial run. For subsequent runs, disable unnecessary
reports. Large designs can result in considerable disk space being
consumed by reports.

6. Use the modified control file name as the first argument in the LVS
command line.

23 Remember that Q:\ICED represents the drive letter and path where you have installed
ICED32™.

See page 380 to
learn more
about the
optional output
files.

The LVS Control File

302 NLE and LVS User Manual

Running LVS

NLE and LVS User Manual 303

Running the LVS Circuit Comparison

Running LVS: Command Line Syntax

304 NLE and LVS User Manual

Command Line Syntax

LVS [path\]control_file_name [path\]netlist1_file_name [path\]netlist2_file_name ...
... [@file_name] ...
... [/c format] ...
... [/e (yes | no)] ...
... [/f (or /f1) sch_format] ...
... [/f2 sch2_format] ...
... [/g (yes | no)] ...
... [/i in_path] ...
... [/l (or /l1) ext_file] ...
... [/l2 ext_file] ...
... [/m text_mode] ...
... [/o dir_path] ...
... [/p sch_out_format] ...
... [/s sch_file_name] ...
... [/t (or /t1) sch_subckt] ...
... [/t2 sch2_subckt] ...
... [/v (yes | no)]

The LVS requires three input files. The details about how to prepare these files
is covered in the previous chapters. We suggest that all input files be in the
current working directory rather than supplying paths with the file names.

The command line options are not required. They override defaults and options
in the control file. The command line options will be covered in more detail
below.

Command
line options

Running LVS: Command Line Syntax

NLE and LVS User Manual 305

The control_file_name parameter defines the name of the runtime options
control file. (A sample control file, CONTROL.LVS, is provided with the LVS
installation.) If you do not supply a file extension in control_file_name, an
extension of ".lvs" is assumed. If the control file is in the current directory (or in
the directory specified with the /i command line option), the path is not required.

The netlist1_file_name and netlist2_file_name identify the netlists to compare.
If the files are in the current directory, the path is not required.

The netlists can be either schematic or layout netlists. The order of the two
netlists on the command line depends on the comparison to be performed. (See
below.)

A schematic netlist must be prepared as described in the Schematic Netlists
chapter. The netlist must be written in one of the following four circuit
description languages: SPICE, HSPICE, PSPICE, or CDL. A file extension of
".net" is appended by default to the schematic netlist file name if you do not
supply an extension.

A layout netlist must be prepared as described in the Layout Netlists chapter.
The most important component is a binary file created by the NLE circuit
extractor. No other circuit extractor is currently supported. A file extension of
".lay" is appended by default to the layout netlist file name if you do not supply
an extension.

If you supply either netlist file name with a final '.' (e.g. "schtest."), the LVS
assumes that the input file has no extension.

The LVS can perform three types of netlist comparisons. The three choices are
LVS (Layout Vs. Schematic), LVL (Layout Vs. Layout), and SVS (Schematic
Vs. Schematic). The comparison choice is set by the /c command line option or
by the TYPE_OF_COMPARISON option in the control file.

For an LVS comparison, the schematic netlist must be referred to by
netlist1_file_name. netlist2_file_name must identify the layout netlist. This
order is required.

You can specify
the path for all
input files with
the /i command
line option.

Running LVS: Command Line Syntax

306 NLE and LVS User Manual

Example: LVS CONTROL.LVS SCH.NET TEST.LAY

This LVS control line will execute the program using the options in the file
CONTROL.LVS, the schematic netlist SCH.NET and the layout netlist
TEST.LAY. When performing an LVS comparison, the schematic netlist file
name is typed before the layout netlist file name.

For a SVS comparison, both netlist1_file_name and netlist2_file_name must
identify schematic netlists.

If a LVL comparison is being performed, both netlist1_file_name and
netlist2_file_name must identify layout netlists. If you use the
GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT option
in the control file, the Spice netlist will be generated from netlist2_file_name.

Most of the command line options override options in the control file. Others
override program defaults. The case of the option is not important. The order of
the options does not need to be the same as that used in the syntax description,
but the three file name parameters must come first in the order shown. Blanks
can be added for readability, but are not required.

You can write all command line parameters and options in a file and refer to that
file using the @file_name option in the command line.

Example: LVS @LVSRUN.TXT

If the contents of LVSRUN.TXT look like Figure 107, the
LVS will use the parameters as though they were all typed at
the command line. You can have other @file_name
parameters in the file, nested up to ten deep.

You can use more than one @file_name option in the
command line. You can combine file name parameters and options typed on the
command line with @file_name options. Options are read from left to right, and
if an option is used more than once, the option on the right will override a
previous option.

control.lvs
sch.net
lay.net

Figure 107:
Contents of
LVSRUN.TXT.

Running LVS: Command Line Syntax

NLE and LVS User Manual 307

Example: LVS @LVSRUN.TXT @LVSOPT.TXT /O NEWRSLT

This example shows how you can use one options file to
specify the file names and another to specify the command
line options. The /O option specifies the output directory
path. (This option is described below.) The "/O NEWRSLT"
command line option will override the "/o results" option in
the file LVSOPT.TXT. Note that case is irrelevant.

The remaining command line options are described below in alphabetical order.

[/c format] When this option is used, you can override the TYPE-
_OF_COMPARISON option in the control file. The
format parameter must be one of the following:

LVS
SVS

LVL

[/e (yes | no)] Use the "/e yes" option if you want the LVS to
terminate when errors are found in the node
correspondence file. Otherwise, when errors are
present, the LVS will continue and the errors will be
reported in the LVS.LOG file.

[/f sch_format]
or

[/f1 sch_format] This option allows you to override the SCHEMATIC-
_FILE_FORMAT option in the control file. The
file_format parameter must be one of the following
strings:

CDL
PSPICE
HSPICE
SPICE

/o results
/i mypath

Figure 108:
Contents of
LVSOPT.TXT.

Running LVS: Command Line Syntax

308 NLE and LVS User Manual

Both options, /f and /f1, perform the same function.
You may want to use the /f1 form for readability when
you also use the /f2 below.

[/f2 sch2_format] This option allows you to override the SECOND-
_SCHEMATIC_FILE_FORMAT option in the control
file. The sch2_format parameter must come from the
list given above for the /f option.

[/g (yes | no)] Use this option to override the control file option
RECOGNIZE_GLOBAL_TEXT_IN_SUBCELLS.
This will enable or disable the use of node labels
which use a colon (':') suffix which are nested in
subcells.

[/i in_path] The in_path parameter defines the default directory
for all input files. The LVS will search in this
directory for the control file and netlists as well as any
optional input files. in_path can be a fully qualified
directory path beginning with a drive letter or '\', or it
can be relative to the current directory.

When the /i option is not used, the current directory
will be used as the default directory.

When a directory path is supplied with a file name, the
LVS will search for the file in that directory rather
than the default directory.

[/l ext_file]
or

[/l1 ext_file] When the comparison type is LVS, either of these
options allow you to override the name of the binary
layout netlist file for comparison. The name of the
file given by ext_file will override the file name
provided in the *.LAYOUT statement in the layout
netlist file.

The
*.FORMAT
statement in a
layout netlist
will override the
/f2 option.

Running LVS: Command Line Syntax

NLE and LVS User Manual 309

If the comparison type is LVL this option will
override the *.LAYOUT statement in the first layout
netlist file.

[/l2 ext_file] If the comparison type is LVL, this option will
override the *.LAYOUT statement in the second
layout netlist file. Do not use it if you are performing
a LVS or SVS comparison.

[/m text_mode] Use this option to override the control file option
LAYOUT_TEXT_MODE. This option controls how
node labels in the layout netlist are used for forced
node correspondence. The text_mode parameter must
be one of the following:

EQUIV
AUTO
SKIP

[/o dir_path] This command line option overrides the
OUTPUT_DIRECTORY_PATH option in the control
file. The dir_path parameter defines the default path
for all output files the LVS creates.

[/p sch_out_format] This option will override the SPICE_FILE-
_FORMAT option in the control file. This will be the
format of the spice file generated from the layout.
Valid strings for the sch_out_format parameter are the
same as for the /f command line option above.

[/s sch_file_name] When this option is used, the file indicated on the
*.SCHEMATIC statement in the first schematic netlist
is ignored, and the file sch_file_name is used instead.
You can specify a directory path with the file name if
the file is not in the current directory. Do not use this
option if the comparison type is LVL.

Running LVS: Command Line Syntax

310 NLE and LVS User Manual

[/t sch_subckt]
or

[/t1 sch_subckt] Use either option to override the TOP_LEVEL-
_SUBCKT_IN_SCHEMATIC_FILE option in the
control file.

[/t2 sch2_subckt] Use this option to override the TOP_LEVEL-
_SUBCKT_IN_SECOND_SCHEMATIC_FILE op-
tion in the control file. Use this option only when
performing an SVS comparison.

[/v (yes | no)] Use this option to override the control file option
ENABLE_VIRTUAL_CONNECTIONS. This will
enable or disable the LVS from making connections
between nets which are not physically connected.

You should use the "/v=no" option on the final run
of a chip for which virtual connections were
defined, so that you do not prevent the LVS from
finding real open circuits.

Example: LVS CONTROL.LVS SCH.NET TEST.LAY /t MUX /l MUX.EXT

This example shows you how to perform a comparison of a subcircuit rather than
an entire chip without editing any of the input files.

The LVS command line above uses two options. The /t option will cause the
LVS to override the TOP_LEVEL_SUBCKT_IN_SCHEMATIC_FILE option in
the control file and use "MUX" as the top level circuit in the schematic netlist.
The rest of the schematic netlist (except for subcircuits referenced in the MUX
subcircuit) will be ignored.

The /l option will cause the file name on the *.LAYOUT statement in the
TEST.LAY file to be ignored. The data in the file MUX.EXT will be used
instead as the binary layout netlist.

Running LVS: Runtime Errors

NLE and LVS User Manual 311

Runtime Errors

If there are syntax errors in either netlist, or in the control file, this is reported
immediately on your screen and in the LVS.LOG file in the following form:

LINE : line_number IN FILE : file_name
ERROR # err_number : err_description
file_line

(or)

LINE : line_number IN FILE : file_name
WARNING # warning_number : warning_description
file_line

(or)

FATAL ERROR : error_message

The file_line is the actual line of the netlist file or control file that contains the
error. The parameter that caused the warning or error will be surrounded by
chevrons ("<< >>").

The LVS aborts if it finds syntax errors in any input file. Warnings will not
result in an abort, but should be noted and resolved before the next run. The LVS
will not report more than 15 errors before aborting.

Large numbers of mysterious errors in the control file are often the result of a
missing line. Never delete lines from a control file. (We recommend that you
backup the original control file supplied with the installation and never edit it so
that you can always start with a fresh copy.)

If syntax errors in the schematic netlist are listed because the LVS is ignoring the
first line, try the control file option TREAT_FIRST_LINE_IN_SPICE-
_NETLIST_AS_COMMENT_LINE = NO.

Running LVS: Runtime Errors

312 NLE and LVS User Manual

If the LVS aborts with a message similar to "FATAL ERROR: Device was not
declared within SUBCKT", see page 227 to learn how to prepare the schematic
netlist for the LVS.

If you receive the message, "Insufficient Memory", the LVS was unable to run to
completion with the amount of RAM memory available on your computer. Since
the LVS at this time does not create virtual memory through a swap file, there
are no settings you can change to avoid the problem. You must free more
memory for the LVS through system settings or by terminating memory resident
programs.

The LVS run can be interrupted by using the <CTRL><BREAK> or
<CTRL><C> keyboard combinations.

Running LVS: Overview of Matching Algorithm

NLE and LVS User Manual 313

Overview of Matching Algorithm

The LVS does not require any forced correspondence between the two netlists.
The use of node names is not required to match nets and devices. The LVS uses
a powerful graph coloring algorithm in combination with a local matching
algorithm to find one-to-one correspondence between the device nodes and net
nodes of the two netlists24. Node properties in the circuits are calculated and
sorted to find one-to-one correspondence.

The NLE assigns unique integer values to all devices and nets in a layout netlist.
These node numbers will be used when reporting unmatched devices and nets.
You can use commands in the ICED32™ layout editor to highlight specific nodes
in the layout using the node numbers listed in the reports generated by the LVS.
See page 389. If the devices and nets are named through the use of text
component labels, the LVS will list the node names as well as the node numbers.

The LVS matches devices of same device category and type only. The model
names of the devices must also match if the MATCH_device_MODELS option
for that device category is set to YES in the control file.

An initial set of node equivalences can sometimes speed the matching algorithm,
but is not required. If the circuits are highly symmetric, a few forced points of
correspondence between the two netlists may be necessary. Symmetric circuits
have large numbers of virtually identical circuits. See Symmetric Circuits on
page 365 for important details on performing a comparison between highly
symmetric circuits.

24 These algorithms are based on those described in "GeminiII: A Second Generation
Layout Validation Program" by Carl Ebling, Department of Computer Science, University
of Washington.

Nodes in the
layout are
labeled with
text
components.
See page 248.

Device
categories and
types are listed
in the table on
page 210.

Running LVS: Overview of Matching Algorithm

314 NLE and LVS User Manual

Filters can be used to remove unconnected or shorted devices from the netlist
comparison. The control file options which begin with the string "IGNORE"
will remove from the netlist any devices in a specific category which meet
different criteria. This can be useful when performing verification on layouts
which use a semi-custom template.

Various merges and collapses can be performed on the netlists before the LVS
attempts to match them. The next section has details on these transformations.

Read about the
filter options on
page 297. A
quick summary
of these options
appears on page
387.

Running LVS: Device Transformations

NLE and LVS User Manual 315

Device Transformations

The LVS can transform the circuitry of specific categories of devices in the input
netlists. These transformations are enabled or disabled for both netlists through
the options in the control file. These options can be overridden for specific
models of a device in a netlist through the use of control file override parameters
in the device model statements (*.SCHMODEL or *.LAYMODEL). The
transformations take place before the two netlists are compared.

There are four different transformations where devices will be combined before
circuit comparison is performed. (These transformations are described in more
detail on the following pages.)

Merges: A device merge can be performed when devices in the same
category are connected in series or parallel and can be transformed into a
single device in the same category. This type of transformation allows
the LVS to calculate the value of the merged device.

Chain Merges: Devices which are prevented from a parallel merge
because they are in separate series chains can still be merged with this
type of transformation. (See an example on page 320.) The values of
devices merged with this transformation will be calculated and
compared.

Series and Parallel Collapses: This type of transformation takes
three or four terminal devices connected in series or parallel, with
different gates or base terminals, to be collapsed into a circuit with
several swappable terminals. It is this circuit, or pseudo device, rather
than the individual devices, which will be compared.

Pull-up and Pull-down Circuits: Entire circuits can be collapsed
into pseudo devices with groups of swappable terminals.

These transformations allow the successful comparison of designs that are
logically equivalent but very different physically.

See page 214
for a table
describing the
device model
parameters
which override
control file
options.

The total
number of
devices, after
each type of
transformation
is processed, is
reported in the
comparison
summary report.
(See page 376.)

Running LVS: Device Transformations

316 NLE and LVS User Manual

These types of transformations can also be used to help diagnose circuit errors.
Even when you want to verify that your designs are physically equivalent, if you
have circuit misconnections that you are having trouble locating, you may want
to perform a few LVS runs with these transformations enabled to allow you to
isolate the logic problem. See page 421 for an example of how this process
works.

Another transformation allows certain terminals of a device to be swapped to
allow it to match an equivalent device in the other netlist. See the tables on the
following pages to see how to enable or disable terminal swapping for specific
categories of devices.

One last circuit transformation, which can help you to overcome limitations in
the schematic netlist languages, is the ability to define subcircuits in the layout
netlist. Devices like multiple emitter bipolar transistors must be simulated in the
schematic netlist as collections of single emitter transistors, even though they are
single devices in the layout. This presents a real problem for circuit comparison
that the LVS solves by letting you expand single devices in the layout netlist into
collections of devices.

Terminal Swapping

The terminals of
some categories of
two terminal
devices can always
be swapped by the
LVS when attemp-
ting to match
devices in the two
netlists. Others can
never be swapped.
See Figure 109.

Device
category

Terminal swapping allowed?

DIODE Never
CAPACITOR Enabled by control file option

SWAP_CAPACITOR_TERMINALS
or by the SWAP parameter in device
models.

RESISTOR Always
INDUCTOR Always

Figure 109: Two terminal device terminal swapping.

Running LVS: Device Transformations

NLE and LVS User Manual 317

Capacitors are the special case. When the control file option
SWAP_CAPACITOR_TERMINALS = YES is used, the terminals of capacitors
can be swapped to allow devices in the two netlists to match. When it is set to
NO, the terminals cannot be swapped. However, this behavior can be overridden
for specific device models by using the SWAP parameter on the *.SCHMODEL
model (for schematic netlists) and the *.LAYMODEL model (for layout
netlists).

The source and drain
for some three or four
terminal devices can
be swapped. See
Figure 110. LPNP and
LNPN type bipolar
devices can have their
emitter and collector
swapped as an option
in the control file. The
ability of the SWAP
device model param-
eter to override the
control file options for
these device categories
is the same as that for
capacitors described
above.

When you use the
SWAP override
parameter on a device
model, be sure that the
device model in the
other netlist uses the
same SWAP parameter. A device that has swapping enabled will never match a
device that has swapping disabled.

Device
category

Terminal swapping allowed?

MOSFET Source and drain terminal swapping is
always enabled

BIPOLAR LPNP and LNPN: Enabled by control
file option SWAP_EMITTER_AND-
_COLLECTOR_TERMINALS or by the
SWAP parameter on device models.

PNP and NPN: Never swapped

GaAsFET Enabled by control file option
SWAP_GAASFET_SOURCE_DRAIN
or by the SWAP parameter on device
models.

JFET Enabled by control file option
SWAP_JFET_SOURCE_DRAIN or by
the SWAP parameter on device models.

TXLINE Never

Figure 110: Multi-terminal device terminal
swapping.

Running LVS: Device Transformations

318 NLE and LVS User Manual

Device Merges

The LVS can merge devices that are connected in series or
in parallel into a single device. For transistors to be con-
sidered as candidates for a merge, the gate terminals of all
devices must be connected and they must use the same sub-
strate. For example: a MOSFET transistor that is created
as a fingered device in the layout can be merged into the
equivalent single device before comparison.

The name of a merged device in the schematic netlist will
be the old device names concatenated together. Special
characters defined in the control file will separate the
device names. The control file options are SPECIAL-
_CHARACTER_FOR_PRINTING_SERIES_MERGES
and SPECIAL_CHARACTER_FOR_PRINTING_PARALLEL_MERGES. In
the sample control file supplied with the LVS installation, the series merge
character is '@' and the parallel merge character is '&'.

In the layout netlist, merged devices will be named by a unique node number
followed by the string "[M,n]", where n represents the number of merged
devices.

These merges are enabled or disabled using one of two methods. The default for
all models of a given device category is
defined in the control file with the
MERGE_SERIES_deviceS and MERGE-
_PARALLEL_deviceS options, where
device is one of the strings in the table
shown in Figure 111. For specific device
models, the PMERGE, SMERGE,
ALLMERGE, or ALL options in the
device model definition can be used to
override the default. (See page 212 for
an example of how to use these

25 Diodes can be merged when connected in parallel only. Diodes connected in series are
never merged.

MOSFET
BIPOLAR
GAASFET
JFET
DIODES25

CAPACITOR
RESISTOR
INDUCTOR

Figure 111:
Valid device
categories for
merges.

Transistors
connected in
parallel or in
series with
different gates
can be collapsed
as well. See
page 322.

See page 287
for another
example of a
series merge of
resistors.

1

2 →

1

3
R2

R1

3

R1@R2

Figure 112: Series merge

Running LVS: Device Transformations

NLE and LVS User Manual 319

overrides.) Only devices using the same model name will be merged, unless the
control file option MERGE-
_deviceS_OF_DIFFERENT-
_MODELS = YES (or the
DMODEL=YES override in the
device model definition) is used.

The parameter value of the merged
device is computed automatically.
Merged bipolar, GaAsFET, or JFET
devices will all be assigned the area
of the sum of the merged devices.

The MERGE_SERIES_MOSFETS and MERGE_PARALLEL_MOSFETS
options control the merge of devices with the same dimensions. If the devices
are in series, they must all have the same width. The length of the resulting
series device is sum of the lengths of the original devices. If the devices are in
parallel, they must all have the same length. The width of the resulting parallel
device is sum of the widths of the original devices.

If you want the LVS to merge MOSFET devices with different dimensions, the
MERGE_DISSIMILAR_SIZED_MOSFETS option must be set to YES in the
control file (or the DSIZE=YES parameter must be used in the device models of
the netlists.)

For MOSFET category devices connected in series with different widths, the
length and width are calculated as follows (where L1 through Ln are the lengths
of the original devices, and W1 through Wn are the original widths):

√Length = (L1*W1 + L2*W2 + ... + Ln*Wn) * (L1/W1 + L2/W2 + ... + Ln/Wn)

Width = (L1*W1 + L2*W2 + ... + Ln*Wn) / (L1/W1 + L2/W2 + ... + Ln/Wn)√

1

2

→

1

A1 NMOS A1 NMOS A1 NMOS

2

Figure 113: Parallel merge

Adjustments to
device sizes
defined with the
LOFFSET,
WOFFSET, or
BENDS_CR
keywords in the
device models
will be
performed on
the individual
devices before
the value of a
merged device
is calculated.

Series
Merge

Running LVS: Device Transformations

320 NLE and LVS User Manual

MOSFET devices merged in parallel will have their length and width calculated
as follows:

√Length = (L1*W1 + L2*W2 + ... + Ln*Wn) / (W1/L1 + W2/L2 + ... + Ln/Wn)

Width = (L1*W1 + L2*W2 + ... + Ln*Wn) * (W1/L1 + W2/L2 + ... + Ln/Wn)√

Merges of Devices in Chains

Transistors that are
connected in series
chains connected in
parallel can be merged
with this transform-
ation. Look at Figure
114. The two
transistors attached to
net A1 could take part
in a parallel merge if
nodes 3 and 4 were
connected. You may
prefer that these
devices are merged
even though these
nodes are not
connected.

When the corresponding MERGE_device_CHAINS = YES control file option is
used, devices in that category will be merged as shown in Figure 114. Nets 3
and 4 will be virtually connected, as will nets 5 and 6.

The default provided in the control file option MERGE_device_CHAINS can be
overridden for specific models of a device with the device model keywords
CHAIN, ALLMERGE, or ALL. When any of these parameters are used to allow

Parallel
Merge

65

43

1

2

A1
→

A2

A3

A1

A2

A3

1

2

A1

A2

A3

Figure 114: Merge of device chains.

Running LVS: Device Transformations

NLE and LVS User Manual 321

chain merges, circuits that are physically different, but logically equivalent, in
each netlist can be matched successfully.

The values of the merged devices will be calculated in the same manner as
simple merges. The value of each merged device will be verified against the
value of the matched device in the other netlist.

The LVS has no limit on the number of devices connected in series in each
chain, or on the number of chains connected in parallel. However the devices
must be connected in the same order in each device chain unless out-of-order
chain merges are enabled.

Out-of-order chain merges are enabled with the control file option MERGE-
_OUT_OF_ORDER_device_CHAINS = YES. This default for all devices in the
specified category can be overridden with the device model keywords DCHAIN,
ALLMERGE, or ALL.

When out-of-order
chain merges are en-
abled, the devices in
the chains shown in
Figure 115 will be
merged. Note that nets
A2 and A3 are swapped
in the second chain.
You may consider such
misconnections accept-
able. If not, do not en-
able this type of trans-
formation.

Even when out-of-order
chains are enabled, a
warning will be printed for each out-of-order chain merged. These warnings will
be displayed on your screen and printed in the LVS log file and the comparison
summary report. Details on each out-of-order chain will be listed in the
unmatched devices report.

65

43

1

2

A1
→

A3

A2

A1

A2

A3

1

2

A1

A2

A3

Figure 115: Merge of out-of-order device chains.

Running LVS: Device Transformations

322 NLE and LVS User Manual

Series Logic Collapses

The LVS can create a
pseudo device from series
transistors with different
gates. This type of collapse
is controlled by the
COLLAPSE_SERIES-
_LOGIC_deviceS options in
the control file. This type of
collapse can be enabled for
any type of three or four
terminal device. The
collapse is performed only
on devices of the same cate-
gory, type, and model. The devices must be connected to the same substrate.

The gates of the pseudo device will be treated as swappable when matching an
equivalent pseudo device in the other netlist. However, when devices with
different sizes are collapsed (because you have used the corresponding control
file option COLLAPSE_DISSIMILAR_SIZED_deviceS=YES), and the order of
the gate terminals of the matched pseudo device is different in each netlist, an
error message will be generated in the parameter error report. You will also be
warned when the parameter values of the original devices do not agree. More
details on this process are described on page 328.

In other words, a discrepancy in the order of the signal connections will not
prevent a pseudo device from matching. However, when the collapsed devices
are different sizes, you will be warned about the discrepancy in the parameter
error report. Most designers do not consider discrepancies of this type to be
logic errors, but the timing properties of each circuit may be completely
different.

NMOS

NMOS

1

2

3

A1

A2

NMOS
Pseudo
Device

1

3

A1

A2

→ swappable

Figure 116: Series logic collapse.

Running LVS: Device Transformations

NLE and LVS User Manual 323

The form of each pseudo device name is "node_number[P,n]", where
node_number is the node number of one of the original devices, and n is the
number of original devices.

All pseudo devices can be listed by using the PRINT_COLLAPSED_DEVICES-
_IN_A_SEPARATE_FILE=YES option in the control file. The report will be
stored in the file defined by the control file option OUTPUT_FILE_OF-
_COLLAPSED_DEVICES. The names and parameter values of each device
collapsed to create the pseudo device will be reported here.

Series logic collapses take place before parallel logic collapses (covered next).
Once the parallel logic collapses are performed, if you want the LVS to perform
additional series logic collapses, you must use the TAKE_CARE_OF_LOGIC-
_EQUIVALENCES_WHILE_MATCHING = YES option. See Pull-Up and
Pull-Down Pseudo Devices on page 324.

Parallel Logic Collapses

Parallel transistors with different gates can be collapsed into a pseudo device.
The gates of the pseudo device will be treated as swappable. You enable or
disable this type of transformation by using the COLLAPSE_PARALLEL-
_LOGIC_deviceS options in the control file. This type of collapse can be

Devices formed
from a simple
merge will not
be listed as
pseudo devices.

NMOS NMOS

1

2

A1 A2 NMOS
Pseudo
Device

1

2

A1

A2
→

swappable

Figure 117: Parallel logic collapse.

Running LVS: Device Transformations

324 NLE and LVS User Manual

enabled for any type of three or four terminal device. The collapse is performed
only on devices of the same category, type, and model. The devices must be
connected to the same substrate.

The criteria for matching and verifying this type of pseudo device is the same as
that used for series logic collapses.

Pull-Up and Pull-Down Pseudo Devices

This optional transformation allows circuits which are logically equivalent to be
matched from the two netlists even when the topology is very different. The first
transformation on the circuit in Figure 118 is caused by the COLLAPSE-
_SERIES_LOGIC_MOSFETS = YES and COLLAPSE_PARALLEL_LOGIC-
_MOSFETS = YES control file options. The series collapse of the two pseudo
devices in the center of Figure 118 to create the pseudo device on the right is
enabled by the TAKE_CARE_OF_LOGIC_EQUIVALENCES_WHILE-
_MATCHING = YES control file option. This creates a pseudo device with
groups of swappable gates. The circuit in Figure 118 will then match
successfully to the circuit in Figure 119.

While this type of transform is most useful for CMOS digital designs, it can be
used for any three or four terminal devices.

The collapse is done only for devices using the same model. The devices must
all be connected to the same substrate.

Running LVS: Device Transformations

NLE and LVS User Manual 325

PMOS PMOS

VDD

A1 A2

PMOS
Pseudo
Device

A2

A1

→

swappable

PMOS

PMOS

B2

B1

VDD

B1

B2

swappable

PMOS
Pseudo
Device

A2

A1

swappable

VDD

PMOS
Pseudo
Device

B1

B2

swappable

→

Figure 118: Circuit A Pull-up pseudo device collapse.

PMOS PMOS

VDD

A1 A2

PMOS
Pseudo
Device

B2

B1

→

swappable

PMOS

PMOS

B2

B1

VDD

A1

A2

swappable

PMOS
Pseudo
Device

B2

B1

swappable

VDD

PMOS
Pseudo
Device

A1

A2

swappable

→

Figure 119: Circuit B Pull-up pseudo device collapse.

Running LVS: Device Transformations

326 NLE and LVS User Manual

True logic errors, like the one shown in Figure 120, will be caught by the LVS.
If the TAKE_CARE_OF_LOGIC_EQUIVALENCES_WHILE_MATCHING =
YES control file option is used, the LVS collapses circuit A and circuit B to
pseudo devices. The pseudo devices will not be matched because nodes A2 and
A3 are misconnected.

When a pseudo device fails to match, the entire pseudo device is listed in the
unmatched devices report. (The control file option OUTPUT_FILE_OF-
_UNMATCHED_DEVICES_AND_NETS defines the name of the unmatched
devices report.) The original devices included in each pseudo device will also be
listed here.

PMOS PMOS

VDD

A1 A2

PMOS
Pseudo
Device

A1

A2

swappable

PMOSA3

↓

A3

VDD

Circuit A

PMOS PMOS

VDD

A1 A3

PMOS
Pseudo
Device

A1

A3

swappable

PMOSA2

↓

A2

VDD

Circuit B

Figure 120: Pseudo devices which will not match.

Running LVS: Device Transformations

NLE and LVS User Manual 327

PMOS PMOS

VDD

A1 A2

PMOS
Pseudo
Device

A1

A2

swappable

PMOSA1

↓
VDD

Circuit A

PMOS
Pseudo
Device

A1

A2

swappable

↓
VDD

Circuit B

PMOSA2

PMOS PMOS

VDD

A1 A2

PMOSA1

PMOSA2

OUT OUT

OUT

OUT

PMOSA1

PMOSA2

1 2

A1

A2

swappable PMOS
Pseudo
Device

A1

A2

swappable
PMOS
Pseudo
Device

A1

A2

swappable

Figure 121: Open will prevent creation of pseudo device.

Running LVS: Device Transformations

328 NLE and LVS User Manual

For another example, see Figure 121. Even when TAKE_CARE_OF_LOGIC-
_EQUIVALENCES_WHILE_MATCHING is set to YES, the LVS would fail to
match circuit A and B.

You can overcome this problem in three different ways:

allow chain merges as described on page 320,
or

connect nodes 1 and 2 as shown by the dotted line,
or

virtually connect nodes 1 and 2. (See Assigning Virtual Connections
on page 358 for details on how to virtually connect nodes.)

Any of these three methods will allow the pairs of devices connected to A1 and
A2 to form parallel merges and then form the single pseudo device.

If you have disabled all device collapses by setting the COLLAPSE_SERIES-
_deviceS and COLLAPSE_PARALLEL_deviceS options to NO, and the only
difference between the two netlists is that nodes 1 and 2 are unconnected in one
netlist, the discrepancy may be difficult to determine from the error reports. The
LVS might fail to match other circuits because no logical equivalence has been
attempted.

Parameter Value and Signal Order Verification of Collapsed Circuits

When devices of the same size are collapsed to form a pseudo device, the LVS
assumes that the gates can be connected in any order. In this case, the LVS will
not issue error messages if gates are connected in different orders in the matched
pseudo devices in either netlists. The LVS will verify that the size of the devices
is the same in both netlists.

Running LVS: Device Transformations

NLE and LVS User Manual 329

When the LVS performs a series collapse of devices with
different sizes, the gates are not truly swappable. Look at
Figure 122. The width of the device attached to signal B is 2.
The width of the device attached to signal C is 4. The device
attached to signal C may be wider because this signal arrives a
bit later than signal B. Or maybe the circuit is designed this
way so that the device attached to GND is larger. In any case,
if the signals or device sizes are swapped in the circuit in the
other netlist, the circuits will not function in an identical
manner.

Now look at the three
circuits in Figure 123. If you
enable the collapse of
dissimilar sized devices, the
LVS will match any of these
circuits to the circuit in
Figure 122 since the gates of
collapsed devices are
swappable. The circuits will

not be listed in the unmatched devices report since they have been matched
successfully. However, the LVS will report errors for each of these circuits in
the parameter error report and the matched devices report.

Circuit 1 will result in an error message for the devices attached to signal B and
signal C. These errors are indicated with the phrase "PARAMETER ERROR".
The order of the gates is the same as the circuit in Figure 122. However, the size
of the device attached to GND is different in each circuit.

In circuit 2, the size of the device attached to signal B is the same size as the
device attached to signal B in Figure 122. The sizes of the devices attached to
signal C are also the same in both circuits. However, the order of the gates is

1/2

2/2

A

B

2/4C

GND

Figure 122:
Series logic
collapse of
dissimilar
sized devices.

These collapses
must be enabled
with the
COLLAPSE-
_DISSIMILAR-
_SIZED-
_deviceS=YES
control file
option in
addition to the
other logic
collapse options
discussed
earlier.

1/2

2/4

A

B

2/2C

A

C

B

A

C

B

CKT1 CKT2 CKT3

1/2

2/4

2/2

1/2

2/2

2/4

GNDGND GND

Figure 123: Three circuits which match the
circuit in Figure 122.

The file names
of these reports
are determined
by parameters in
the control file.
See pages 371
and 382.

Running LVS: Device Transformations

330 NLE and LVS User Manual

different in the two circuits. The LVS will issue a "GATE SIGNAL
SWITCHED" error message for each device in the parameter error file. You
may consider this a false error for your circuit, but if the width of the device
attached to GND is supposed to be larger than the other devices, this is a real
error.

When circuit 3 is matched, the LVS will issue both a "PARAMETER ERROR"
and a "GATE SIGNAL SWITCHED" error message for both devices.

When pseudo devices are formed from series collapses of collapsed circuits, it
may not be obvious which device in the pseudo circuit caused an error message.
The LVS will report the gate signal position of each device in the pseudo device.
To understand how the gate signal position is determined, look at Figure 124.
The gate signal position is determined relative to the starting node of the circuit.
(The starting node of a circuit may be the reverse of what you would expect from
looking at a schematic. There is no way for the LVS to determine "which way is
up".)

The first number of the gate signal position
represents the order of the gates at the highest-
level series collapse. As you move away from the
starting node, the gate signal position is
incremented. If a collapsed device at this level is
formed from another series collapse, the gate
position of this second level collapse is indicated
to the right of the first position. The positions are
delimited with a '.'. 2

1

2.1

2.2

3

2

Starting
node

Figure 124: Collapsed
circuit with gate signal
positions indicated.

Running LVS: Device Transformations

NLE and LVS User Manual 331

Multiple Emitter or Collector Devices

None of the schematic netlist languages valid for the LVS support a device
primitive for a multiple emitter or collector bipolar transistor. You must always
simulate such devices as collections of single emitter or collector devices. This
causes a real problem when attempting to match a layout netlist with such a
device. However, the LVS program provides two simple solutions.

The easiest method is to allow the LVS preprocessor to automatically split
multiple emitter or collector bipolar devices in a layout netlist into single bipolar
devices before comparison. You must create a *.LAYMODEL statement which
uses a device type with a number suffix indicating the number of emitters or
collectors.

Example: *.LAYMODEL MULT_EMITR_NPN NPN3

When this device model exists in the layout netlist, and you have used an NLE
rules file which creates MULT_EMITR_NPN devices, the LVS will be able to
split such devices into several single emitter NPN devices. This will allow the
circuit to match with the schematic netlist representation.

If the layout netlist contains a device such as:

Q1 1 2 3 4 5 MULT_EMITR_NPN

this device will be expanded, before comparison, into 3 NPN devices as seen
below

Q1!1 1 2 3 NPN
Q1!2 1 2 4 NPN
Q1!3 1 2 5 NPN

The character used to separate the original device name from the number suffix
('!' in this example), is determined by the control file option SPECIAL-
_CHARACTER_FOR_PRINTING_DEVICES_IN_A_DEVICE_CELL-
_INSTANCE.

Running LVS: Device Transformations

332 NLE and LVS User Manual

If this method does not meet your needs, you can use SUBCKT statements in the
layout netlist device models. SUBCKT device models expand a single layout
device into several other devices.

Example: *.format pspice

*.laymodel S2_LPNP SUBCKT MULT_COLL_PNP2
*.laymodel S3_LPNP SUBCKT MULT_COLL_PNP3
*.laymodel S4_LPNP SUBCKT MULT_COLL_PNP4
*
.subckt MULT_COLL_PNP2 1 2 3 4
q1 1 3 4 PNP
q2 2 3 4 PNP
.ends

.subckt MULT_COLL_PNP3 1 2 3 4 5
q1 1 4 5 PNP
q2 2 4 5 PNP
q3 3 4 5 PNP
.ends

.subckt MULT_COLL_PNP4 1 2 3 4 5 6
q1 1 5 6 PNP
q2 2 5 6 PNP
q3 3 5 6 PNP
q4 4 5 6 PNP
.ends

The LVS will expand devices which use SUBCKT device models in the layout
netlist in the same manner as .SUBCKT statements in a schematic netlist. They
are written using SPICE, PSPICE, HSPICE, or CDL syntax. If you use
subcircuits in your layout netlist, you must tell the LVS which syntax to use
when parsing the SUBCKT models.

Running LVS: Device Transformations

NLE and LVS User Manual 333

In an LVS comparison, where the layout netlist is the second netlist on the LVS
command line, the spice language syntax is specified by the control file option
SECOND_SCHEMATIC_FILE_FORMAT. In the layout netlist, the control file
option can be overridden by using the *.FORMAT statement. The *.FORMAT
statement overrides the option in the control file and the /f2 option on the LVS
command line. The *.FORMAT statement must occur before the SUBCKT
models.

The syntax of the *.FORMAT statement is:

*.FORMAT (CDL | PSPICE | HSPICE | SPICE)

SUBCKT models can be nested using X statements. All subcircuits must expand
into devices which have already been defined. Parameter passing is allowed
according to the spice syntax selected.

Example: *.format pspice
*.laymodel npn subckt mult_npn
*.laymodel npntype npn
.subckt mult_npn 1 2 3 4 5 6 7 PARAMS: area=4
q1 3 1 2 npntype {area}
q2 3 6 5 npntype {area}
q3 3 6 7 npntype {area}
.ends

Running LVS: Device Transformations

334 NLE and LVS User Manual

Running LVS: Pad Connection Verification

NLE and LVS User Manual 335

Pad Connection Verification

You should take special care, when preparing your chip for LVS verification,
that you have a method in place to verify pad connections. Unconnected pads, or
pads which short to nets by accident, can turn a groundbreaking design into
wasted silicon. Many designers have learned that simply assuming that the pads
are connected correctly is very dangerous.

This problem is often overlooked because pad connections are not reflected in
the schematic netlist. Even if your chip passes an LVS check, if your
schematic netlist does not include pad connections, the pad connections have
not been checked.

You may be tempted to verify that nets attach to the correct pads by simply
adding node labels in the layout where the wires attach to the pads. However,
the LVS does not automatically match nets by name. The LVS uses the node
properties of a net (i.e. what devices the net connects to) to match nets in the two
netlists. The node names are usually ignored.

The best way to verify pad connections is to treat each pad in the layout as a
device. When each pad is a device, the pad connections will be verified as
carefully as the other devices in your design. In addition, the LVS will
automatically verify that the names of matched nets are identical in both netlists
when those nets are connected to pad devices.

When we define pads in the layout as devices, we can also identify different
types of pads as different types of devices and verify that a net connects to the
right type of pad. For instance, if you have a clock net that must connect to a
pad with the appropriate speed constraints, the LVS will insure that this is the
case just as it verifies that a net connects to an NMOS device rather than a
PMOS device.

The UNCON-
NECTED rule
in the NLE can
verify that pads
which are
unconnected by
design are not
accidentally
shorted to an
unlabeled net.

Running LVS: Pad Connection Verification

336 NLE and LVS User Manual

Defining Pads in Schematic Netlist

You do not have to add pad devices to the schematic netlist. However, you must
identify which nets connect to pads. This is accomplished very easily with the
*.PINS statement. For each net that connects to a pad, list the name of the net
followed by a colon (':') then the appropriate pad type character.

The valid pad types are shown in Figure
125. (These characters are the same as
those used by the DRACULA program.)
The LVS will verify that the pad types of
matched nets are identical in each netlist.

Example: *.PINS VDD:P SIGNAL1:I

When this line is included in the schematic
netlist, net VDD is connected to a power
pad and SIGNAL1 is connected to an input
pad.

You can have multiple *.PINS statements in a netlist. They should not be
located inside of a subcircuit definition.

Example: *.PINS VDD:P
*.PINS TESTPOINT1:B
*.PINS CLOCK:C

When these statements are used in a schematic netlist, net "VDD" is connected
to a power pad. The net "TestPoint1" is connected to a bi-directional pad.
"CLOCK" is connected to a clock pad.

All nets which occur in a *.PINS statement will be prevented from disappearing
from the netlist due to device collapses.

Type
character

Pad type

P or S Power pad
G Ground pad
C Clock pad
I Input pad
O Output pad
B Bi-directional pad

Figure 125: Valid pad types.

Running LVS: Pad Connection Verification

NLE and LVS User Manual 337

Defining Pad Devices in Layout Netlist

There are three steps to recognizing pad devices in the layout netlist. First you
must label each pad with a text component identical to the net name in the
schematic netlist. Next, you use layout layers and NLE rules to extract pad
devices from the layout. Finally, you define pad types for each unique type of
pad device with *.LAYMODEL device models.

Adding labels to each pad insures that each net is not only connected to a pad,
but is connected to the right pad. The LVS will warn you when you have
unlabeled pads in your layout. A pad is labeled in the layout by adding a text
component.

- The text component must be in the top-level cell.

- It must be added on the same layer used to recognize the
device, or be copied to that layer by the NLE.

- The origin of the text component must be covered by the
shape that is used to recognize the pad device.

For the NLE to extract pad devices from the layout, you
must identify an id-layer that the NLE rules file will use to
recognize which shapes represent pad devices. If you want
to recognize more than one type of pad, you must process
the layers so that each unique type of pad has a unique id-
layer to identify it. You specify each unique pad id-layer in
the device rule for that type of pad. You must then identify
which layer to use as the terminal or pin of the pad. The pin
layer is usually the wire layer that is used to connect the
pad.

The following NLE rules file uses a via layer used only by
pads (p_via for passivation via) to identify pad devices. A
dummy layer called powerpad_mask is used to separate the
via layer into two device id layers to separate power pads
from signal pads. The pad text component labels are on the
pad_text_in layer. These labels are moved to the device id
layers with the ATTACH TEXT rule.

See Node
Labels
beginning on
page 138 to
learn more
about LVS node
labels.

M1 P_VIA

POWERPAD_MASK

Figure 126: Two pads. Note that
text component labels are
selected to show you that origins
are covered by p_via shapes.

Running LVS: Pad Connection Verification

338 NLE and LVS User Manual

Example: input layer {
10 m1
12 m2
13 via1
20 p_via !via layer used only on pads
110 powerpad_mask !dummy layer used to identify power pads
120 pad_text_in !layer with text components used to label pads

}
scratch layer {

iopad_id
powerpad_id
pad_text

}
connect m1 m2 by via1

!Separate power pads from signal pads with dummy layer powerpad_mask
powerpad_id = p_via and powerpad_mask
iopad_id = p_via and not powerpad_mask

!Text components on pad_text_in layer are used to label both types of pads
!Text must be copied to scratch layer for attach text rule
pad_text = pad_text_in
attach text pad_text powerpad_id iopad_id

device io_pad id=iopad_id {
M1 1/node
pins = M1

}
device pwr_pad id=powerpad_id {

M1 1/node
pins = M1

}

The device rules above are written so that a shape on the pad device id layer
must touch a single node on the M1 layer to be considered a pad. The node
number of the touching shape on M1 will be stored as the net connection of each
pad device.

Learn more
about the
DEVICE rule
beginning on
page 113.

Running LVS: Pad Connection Verification

NLE and LVS User Manual 339

Now you must add a device model to the layout netlist model file for each
unique type of pad device. These device models define the devices as pad
devices and assign the appropriate pad types with the TYPE keyword.

Example: *.laymodel io_pad pad type=b
*.laymodel pwr_pad pad type=p

Any net that connects to an io_pad device will be connected to a bi-directional
pad. Any net that connects to a pwr_pad device will be connected to a power
pad.

The schematic netlist does not need to contain devices that correspond to pad
devices. However, each net in the schematic netlist that connects to a pad should
be included in a *.PINS statement which defines the pad type for the net.

Example: *.PINS VDD:P
*.PINS SIGNAL1:B

Diagnosing Pad Misconnections

The comparison summary (usually "RESULTS.LVS") will list the number of
pad devices found in the layout across from the caption "NUMBER OF PAD
DEVICES". The number of pad devices in a schematic netlist is always zero.
The total number of unmatched pads is also listed. The total number of pins
defined in a schematic netlist is listed a little further down in the same report
across from the caption " NUMBER OF I/O PINS ".

Details on each matched pad is provided near the bottom of the matched device
report. Details on each pad that is unmatched, or is matched with a discrepancy
in pad types, is listed in the unmatched devices report. Search for the phrase
"PAD CONNECTIONS" to locate these summaries.

The name of the
comparison
summary is
listed on the
console by the
LVS. The
comparison
summary lists
the file names
of all other
reports.

Running LVS: Pad Connection Verification

340 NLE and LVS User Manual

The LVS will list unlabeled pads (when they connect to a valid net) in the
unmatched devices report. You should label all pads, or prevent them from
being recognized as pads. (See Ignoring Testpoint Pads on page 342.)

Variable Pad Types

If a layout pad device can match several different types of pads, you can use
more than one pad type character in the *.LAYMODEL statement.

Example: *.laymodel in_pad pad type=cib

This device model will allow nets attached to in_pad devices in the layout to
match with nets in the schematic netlist which are defined as pad types C, I, or
B. All of the following nets in the schematic netlist will match correctly if they
are attached to in_pad devices in the layout:

Example: *.PINS NET1:C NET2:I NET3:B

You cannot specify multiple pad types in a *.PINS statement. The schematic
netlist must be unambiguous about the pad type for each net.

Pad Protection Circuitry

If your layout contains pad protection circuitry, but your schematic netlist layout
does not, you should mask out the protection devices in the layout with a dummy
layer so they are not included in the layout netlist and then wind up in the
unmatched devices report.

If your protection devices are not recognized by your NLE rule set (e.g. fingered
static protection devices, or poly wires without dummy shapes to classify them
as resistors), you need take no special steps to insure that they are ignored by the
NLE.

Running LVS: Pad Connection Verification

NLE and LVS User Manual 341

You must use caution to insure
that the unrecognized protection
devices do not cause unintentional
opens or shorts. Look at Figure
127. The gate layer must be
removed from the diffusion layer
as it is for the rest of the chip, or
the MOS devices will result in
shorts from the signal to VSS and
VDD. If the resistor is removed
from the signal wire layer, the
signal will not be connected to the
pad, and the LVS may report an
open.

Example: ngate_all = ndiff and poly
n_src_drc = ndiff and not poly

!remove protection devices from
id-layer
ngate = ngate_all and not pad_mask

transistor nmos id = ngate {
gate = poly
s$d = n_src_drn
bulk = p_well

}

You must also insure that the layer you use for the pad device id-layer touches
the wire layer of the nets connected to the devices in the rest of the layout. Be
careful that real opens will not be prevented from being found. It is the
connection of the net to the pad device id-layer that will be verified by the LVS.

Figure 127: Schematic of pad with
protection circuitry.

Running LVS: Pad Connection Verification

342 NLE and LVS User Manual

Ignoring Testpoint Pads

If your layout contains testpoint pads that you do not want to label and verify,
you should prevent these pads from being included in the layout netlist.
Unlabeled pads that connect to other devices are considered errors by the LVS
and they will be listed in the unmatched devices report.

You can prevent the NLE from recognizing testpoint pad devices in different
ways. If you recognize your pads using a dummy layer as the pad device id
layer, simply insure that the testpoint pads are not covered by the dummy layer.

If your testpoint pads have different dimensions than your real pads, you can
remove the testpoint pads from the pad device id layer with the IS_BOX rule.

Example: pad_id = isbox (passivation_via, (50,50))

The above rule will copy only pads that are exactly 50 units square to the pad_id
layer. Other shapes on the passivation_via layer are ignored.

If your pads cannot be differentiated by size, and you use a design layer (e.g.
passivation_via) as the pad device id layer, you can mask these pads with a new
dummy layer with a NLE rule similar to:

Example: pad_id = passivation_via and not testpoint_mask

Running LVS: Parameter Calculation

NLE and LVS User Manual 343

Parameter Calculation

The LVS compares the parameter values of matched devices if the appropriate
option in the control file for that device category is set to YES. (See Figure 128
below.) This can be overridden for specific device models by using the
PARAM=NO, ALLMATCH=NO or ALL=NO override parameters in the device
models of both netlists.

All parameter errors are listed in the file specified by the OUTPUT_FILE_OF-
_DEVICES_WITH_PARAMETER_ERRORS option in the control file.

See Device
Merges on page
318 for the
calculation of
dimensions of
merged
MOSFET
devices with
dissimilar sizes.

Device
category

Parameters checked Control file option

MOSFET Length and Width MATCH_MOSFET_PARAMETERS

JFET Area MATCH_JFET_PARAMETERS

BIPOLAR Area MATCH_BIPOLAR_PARAMETERS

GaAsFET Area MATCH_GAASFET_PARAMETERS

DIODE Area MATCH_DIODE_PARAMETERS

RESISTOR Value=
R_CONTACT +
(OHMS_PER_SQUARE *
(Length/Width))
 or
R2_CONTACT /(Width +R2_WIDTH) +
(OHMS_PER_SQUARE *
(Length/Width))

MATCH_RESISTOR_PARAMETERS

CAPACITOR Value=
(C_PERIMETER * Perimeter) +
(C_AREA * Area)

MATCH_CAPACITOR_PARAMETER
S

INDUCTOR Value MATCH_INDUCTOR_PARAMETERS

TXLINE Value MATCH_TXLINE_PARAMETERS

Figure 128: Parameters verified by the LVS.

Running LVS: Parameter Calculation

344 NLE and LVS User Manual

In the layout netlist, the Length, Width, Area, and Perimeter values are all
calculated by the NLE. The R_CONTACT, R2_CONTACT, R2_WIDTH,
OHMS_PER_SQUARE, C_PERIMETER, C_AREA, and tolerance values are
set by *.LAYMODEL device models. If any device has a *.LAYMODEL
device model which uses the LOFFSET, WOFFSET, or BENDS_CR parameters,
these dimension corrections are applied before device calculation and
comparison.

Resistors

Contact resistance for resistors can be accounted for in two different ways. If
you provide R_CONTACT in the *.LAYMODEL device model, that will be the
value used for contact resistance, and the total resistance will be:

R_CONTACT + (OHMS_PER_SQUARE * (Length/Width))

If you do not supply R_CONTACT in the device model, but you do supply
R2_CONTACT, then the contact resistance used is inversely proportional to the
width of the resistor. In this case, the contact resistance is:

R2_CONTACT
Width

where Width is the width of the resistor. The total resistance will be:

 R2_CONTACT
Width

Example: *.LAYMODEL RES1 RES R2_CONTACT=10
*+ OHMS_PER_SQUARE=100

If the length of a resistor is 20 and the width is 4, the resistance would be:

 10
4

See page 240
for an example
of how
LOFFSET,
WOFFSET and
BENDS_CR
affect the value
of a device.

+ (OHMS_PER_SQUARE * (Length/Width))

+ 100 * = 502.520
 4

Running LVS: Parameter Calculation

NLE and LVS User Manual 345

If you require the contact resistance to be more accurate, you can use the
R2_WIDTH parameter to account for contacts that are less wide than the
resistor. When R2_WIDTH is not supplied in the device model, it defaults to 0.
You should set R2_WIDTH to a negative value to subtract a width offset from
the width of the resistor so that an accurate contact width can be used to
calculate resistance.

When you do supply R2_WIDTH, you must also supply R2_CONTACT. When
both of these parameters are specified, the total resistance will be:

 R2_CONTACT
Width +R2_WIDTH

Look at Figure 129. Most
technologies require a gap
between the side of the resistor
and the contact via hole. Here
we have shown the gaps as w1
and w2. (w1 is always equal to
w2.) To accurately calculate
the contact resistance, the sum
of w1 and w2 is subtracted from
the width of the resistor to
calculate the contact width.

The contact does not need to
look exactly like the one shown
in Figure 129. You may use an array of via holes. You should set R2_WIDTH
to a negative value that adjusts the width of the resistor to provide an accurate
contact width.

Contact
Via

R2_WIDTH = -1 * (w1 + w2)
Contact_width = Width + R2_WIDTH

Width

w2

w1

Figure 129: Resistor with contact width
different than resistor width.

+ (OHMS_PER_SQUARE * (Length/Width))

Running LVS: Parameter Calculation

346 NLE and LVS User Manual

Capacitors

Capacitance for a capacitor device is calculated by the LVS using the perimeter
and area recognized by the NLE. The formula for capacitance shown in Figure
128 is:

(C_PERIMETER * Perimeter) + (C_AREA * Area)

If your layout contains a CAP1 device with dimensions 2 x 4, the NLE will store
a value of 12 for its perimeter and 8 for its area. If the model in the layout netlist
is defined with the following statement:

Example: *.LAYMODEL CAP1 CAP C_PERIMETER=1p C_AREA=2p

the value of the device will be

(1e-12 * 12) + (2e-12 * 8) = 26e-12 = 26p

Inductors and Other Devices for Which the NLE Cannot Calculate a Value.

The NLE does not calculate the value of inductor devices from the geometry in
the layout. You can define the value of an inductor in the layout in two ways:

add a label of the form "VALUE=value" on the device id layer,
or

define a default value on the *.LAYMODEL statement for a specific
model of an inductor device.

You can use either of these methods with other categories of devices. The
default value on the *.LAYMODEL card will be used only when the NLE does
not calculate a value and the label method is not used. The label method will
override any other parameter value measurement or default.

Running LVS: Parameter Calculation

NLE and LVS User Manual 347

To use a label to define a parameter value for a device, add a text component on
a layer used to assign node labels to the device id layer. (This can be the device
id layer itself, or a layer used in the ATTACH TEXT NLE rule.) The format of
the label must be:

val_string=value

Where val_string is one of the following keywords:

AREA
VALUE
L
W

Scaling and Tolerances

Use the SCALE_device_LENGTH_AND_WIDTH and SCALE_device_VALUE
command file options to avoid false errors due to the use of different units in the
two netlists.

If the capacitor in the example on page 346 were matched with the following
schematic netlist device:

C1 1 2 CAP1 26

The device would fail the parameter value check since 26e-12 does not equal 26.
You do not have to edit the schematic netlist to correct this problem. Simply use
the control file option:

SCALE_CAPACITOR_VALUE = 1e-12

See Node
Labels
beginning on
page 138 to
learn more
about the
placement and
processing of
labels.

Running LVS: Parameter Calculation

348 NLE and LVS User Manual

The parameter values of devices do not need to match exactly. The default
tolerance is .0005, or .05%, of the device values in the first netlist. You can
override this default tolerance on the *.LAYMODEL (or *.SCHMODEL) model
statements in the second netlist typed on the LVS command line (usually the
layout netlist).

If the capacitor mentioned above with the value of 26 used the device model:

Example: *.LAYMODEL CAP1 CAP C_PERIMETER=1 C_AREA=2
*+VALUETLR = .01

and the device in the schematic netlist was

C1 1 2 CAP1 26.2

The device would still match since

26.2 - 26 = .2 = device_error < error tolerance = .01 * 26.2 = .262

See page 233 to
learn more
about changing
the default
tolerance for
specific device
models.

Running LVS: Advanced Uses of Node Labels

NLE and LVS User Manual 349

Advanced Uses of Node Labels

Node labels in the layout can be used to name nets and devices so the LVS
reports are somewhat easier for you to follow. In addition these labels can direct
the LVS comparison in several ways. Labels in the layout can be used when
assigning forced points of correspondence between the layout and the other
netlist. In addition, the control file assigns special characters for use in node
labels which control how the layout is interpreted. (The special characters are
not stripped from the name given to the net. If you use the node name in the
node correspondence file you should include the special character in the name.)

Text components in the layout must be in the top level cell unless they are global
nets. Global nets are indicated with a colon ':' as the suffix on the node label. If
node labels ending in a single colon ':' are contained in nested cells, they will be
processed only if the control file option RECOGNIZE_GLOBAL_TEXT_IN-
_SUBCELLS=YES is used. Global nets ending with a double colon '::' will
always be processed.

Forced Points of Correspondence

Labels in the layout can be used to force points of correspondence between
nodes in the layout and nodes in the other netlist. These node equivalences can
be made before the LVS proceeds with its matching algorithms (initial
equivalences), or later on if the LVS comes to a point during the comparison
where it can no longer make progress (optional equivalences). When initial
equivalences are made incorrectly, they can prevent the LVS from matching
anything. When optional equivalences are used, a mistake is less likely to
prevent any progress in the matching algorithms.

See Node
Labels in
NLE Circuit
Recognition
and Review of
Node Labels in
Layout Netlists
for the basics of
adding labels to
the layout.

Running LVS: Advanced Uses of Node Labels

350 NLE and LVS User Manual

To assign node equivalences, the control file option LAYOUT_TEXT_MODE
must be set to EQUIV or AUTO. When EQUIV is used, you must prepare a
node correspondence file as described on page 355. The AUTO mode will take
each labeled node and attempt to match it to an identically named node in the
other netlist.

In either case, the node equivalences can be initial points of correspondence, or
held in reserve until after the matching algorithm has made no progress for a
certain number of passes.

If the control file option USE_EQUIVALENCES_FOR_INITIAL_MATCHING
= YES is used, all equivalences are used as initial points of correspondence.
When this option is set to NO, the node equivalences are held in reserve to be
used when the LVS can make no progress. We recommend setting this option to
NO unless you have a highly symmetric circuit. There is little or no speed
improvement when using initial points of correspondence, and errors in the node
equivalences can hinder rather than help matching.

The number of passes the LVS will make before using the node equivalences to
make progress is set by the control file option SET_NO_PROGRESS_LIMIT.

Virtual Connections in the Layout

Virtual connections in a layout netlist indicate that two or more nets that are not
electrically connected should be considered the same node. This is especially
useful when you are verifying subcircuits that use material in a higher level cell
to connect nodes. For example, if your subcell has two separate ground nodes
which both connect to a ground bus in a higher level cell, you do not have to add
metal to connect them for circuit comparison. You need only virtually connect
them for the LVS to match the circuit.

These virtual connections can be made using labels in the layout with a special
character defined in the control file as the suffix. (See page 358 for other
methods of assigning virtual connections that do not require adding labels.)

+/- flags in the
node
correspondence
file can override
this control file
option.

Virtual
connections in
the schematic
netlist between
nets with
different names
can be made
with the
*.VIRTUAL
command.

Running LVS: Advanced Uses of Node Labels

NLE and LVS User Manual 351

The SPECIAL_CHARACTER_FOR_VIRTUAL_CONNECTIONS option (':' in
the sample control file) assigns a character which is used as a suffix to identify
nets which the LVS should assume are virtually connected. For instance, you
use several separate VDD nets in your design that will be connected later, or at a
higher level. If you label them "VDD:" in the layout, the LVS will act as though
they are electrically connected.

When nets which have been virtually connected are listed in the reports, their
node numbers will all be listed with the syntax node_number[V,n] , where n
indicates the number of nets virtually connected.

If not used correctly, this can lead to opens not being found in the layout. We
suggest that you be very careful to remove all use of this feature before a
final test on a chip. The easiest ways to insure that no virtual connections are
made is to use the control file option ENABLE_VIRTUAL_CONNECTIONS =
NO, or the LVS command line option "/V=NO".

Node Labels Which Prevent Device Collapses

Two special characters are defined in the control file to prevent nets from
disappearing when devices are merged or collapsed. The control file option
SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_DEVICES_CONNEC-
TED_TO_A_NET defines a character used to preserve all devices attached to a
net. The value of this parameter in the sample control file provided with the
LVS installation is '$'. When a net is labeled with a string using a prefix of '$',
no devices connected to that net will be collapsed into series, parallel, or pseudo
devices. This can be useful for critical nets, such as clocks, where you want to
verify that every device attached to that net is exactly the same in the two
netlists.

The control file option SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF-
_A_NET is used to prevent a net from disappearing due to device collapses. The
sample control file assigns '#' for this character. Devices attached to a net
labeled with this character may be collapsed as long as the collapse does not
remove the net from the netlist. For example, if you add a text component with

The control file
option
ENABLE_NO-
_COLLAPSE-
_OF_DEVICES
enables this
special
processing.

The control file
option
ENABLE_NO-
_COLLAPSE-
_OF_A_NET
enables this
special
processing.

Running LVS: Advanced Uses of Node Labels

352 NLE and LVS User Manual

the string "#PAD1" to a pad on a chip, no device collapses or merges will be
performed that make that net disappear from the netlist.

To see the effect of these two characters in node labels, look at Figure 130. If
you label a node using no special character prefix, all 6 resistors will be
collapsed into one resistor as long as the MERGE_SERIES_RESISTORS=YES
option is used in the control file. In this case, NodeB vanishes completely from
the netlist. When the '$' prefix is used in the net label, none of the devices
attached to the net are collapsed in the series device. Resistors R1 and R2 are
collapsed, but not R3. When the '#' prefix is used, NodeB is preserved, but the
devices on either side are collapsed.

R2

R3

R6

NodeB

NodeC

NodeA

NodeA

NodeA

NodeC

R1@R2

R1@R2@R3R3

R4

R5@R6

$NodeB

NodeC

R1

NodeA

R4@R5@R6

#NodeB

NodeCR5

R4

R1@R2@R3@R4@R5@R6

Figure 130: Effect of special characters in net labels.

Running LVS: Advanced Uses of Node Labels

NLE and LVS User Manual 353

The *.NOCOLLAPSE statement in a netlist has the same effect as a node label
using the special character SPECIAL_CHARACTER_FOR_NO_COLLAPSE-
_OF_DEVICES_CONNECTED_TO_A_NET. This is the only way to prevent
collapses of any devices connected to a specific net in the schematic netlist.

Example: *.NOCOLLAPSE CLOCK

Using this statement in a schematic netlist will prevent device collapses on all
devices which connect to the net with the name "CLOCK".

The *.PINS statement in a netlist has the same effect as a node label using the
special character SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_A-
_NET. This will prevent the disappearance of a specific net in the schematic
netlist due to device collapses or merges. In addition, all nets in the i/o list of the
top-level subcircuit will be treated as though they are included in a *.PINS
statement.

Example: *.PINS NETA NETB

.SUBCKT TOP NETC NETD

If TOP is the top-level subcircuit in a schematic netlist, these statements will
prevent the disappearance of the nets NETA, NETB, NETC, and NETD from
device collapses. The ASCII part of the layout netlist should include a *.PINS
statement for all four nets or have them labeled with node labels which begin
with the prefix defined by SPECIAL_CHARACTER_FOR_NO_COLLAPSE-
_OF_A_NET. Otherwise, different device collapses in each netlist may prevent
the two netlists from matching.

Running LVS: Advanced Uses of Node Labels

354 NLE and LVS User Manual

Running LVS: Using a Node Correspondence File

NLE and LVS User Manual 355

Using a Node Correspondence File

Purpose of the File

The node correspondence file is used to define pairs of equivalent nodes. Each
pair contains one node from each netlist. These equivalences are used to force a
match between the nodes. These equivalences can be defined as initial
equivalences (i.e. initial points of correspondence before the LVS begins its
matching algorithm) or optional forced equivalences. Optional equivalences
are used as forced points of correspondence only when the matching algorithm
fails to make progress matching the circuit after a set number of passes. Highly
symmetric circuits will frequently fail to match unless you provide some points
of correspondence.

The node correspondence file can also be used to define virtual connections in a
layout netlist without requiring you to edit the layout. This will be covered
below.

The node correspondence file can be created in any ASCII text editor, or you can
allow the LVS to create an initial node correspondence file from a preliminary
LVS run using the GENERATE_NAME_EQUIVALENCES=YES control file
option. Edit this file and use it as an input file in your next run.

File Syntax

The format each line of the node equivalence file is:

Netlist1_net = Netlist2_net

The LVS
command line
option /E will
cause the LVS
to halt when
syntax errors are
found in the
node corres-
pondence file.
When this
option is not
used, the LVS
will still print
error messages
in the log file,
but it will
continue despite
the errors.

Running LVS: Using a Node Correspondence File

356 NLE and LVS User Manual

where Netlist1_net is the name of a net in the first netlist, usually the schematic
netlist. Netlist2_net is the name of a net in the second netlist, usually a label in
the layout netlist.

For example, if you have a net in the schematic netlist with the name "CLK1",
and the equivalent net in the layout is labeled with the text "CLOCK", write the
line in the node equivalence file as follows:

Example: CLK1 = CLOCK

Comments are also allowed in the file. To write a comment, simply use an '*' as
the first character on the line.

Node labels are case sensitive. If you have used the control file option
FORCE_ALL_LAYOUT_LABELS_TO_UPPER_CASE=NO, be sure to use the
same case as the node name in each netlist. If you typed the statement above as:

Example: CLK1 = clock

and the label in the layout netlist is "CLOCK", the LVS will not be able to make
the node correspondence.

Setting the Control File Options

To use a node correspondence file, specify the following control file options:

LAYOUT_TEXT_MODE=EQUIV
INPUT_FILE_OF_NAME_EQUIVALENCES=input_equiv_file

where input_equiv_file is the name of your file.

To use the equivalences only when the LVS cannot continue matching the circuit
without making a random forced match from lists of nodes with identical
properties, specify the control file option:

USE_EQUIVALENCES_FOR_INITIAL_MATCHING=NO

This will default all equivalences to be optional equivalences. (You can override
this default for certain nets with the use of flags in the file. See below.) We

Running LVS: Using a Node Correspondence File

NLE and LVS User Manual 357

recommend that you set the above option to NO so that errors in the node
correspondence file will not prevent any matches from being found.

You set the number of passes the LVS will perform before resorting to the
optional equivalences with the control file option:

SET_NO_PROGRESS_LIMIT=num_passes

Using +/- Flags

To override the default definition for each equivalence set by the USE_EQUIV-
ALENCES_FOR_INITIAL_MATCHING control file option, you can use the '+'
and '-' flags for certain nets.

If the line in the node correspondence file begins with a '+', it will be used as an
initial equivalence. This means that the nets will be matched before the LVS
begins its matching algorithm.

Using a '-' as the first character will assign the equivalence as a optional
equivalence. The nets will be forced to match only if the LVS fails to match the
circuits after a number of passes defined by the SET_NO_PROGRESS_LIMIT
control file option.

Example: *Schematic Layout
+CLOCK1 = CLOCKA
-X2.7 = SIGNALX
NET1 = NETA

CLOCK1 will be matched to CLOCKA before attempting to match the circuits
even if the control file option USE_EQUIVALENCES_FOR_INITIAL-
_MATCHING=NO is used. If CLOCK1 does not really correspond with the net
labeled CLOCKA in the layout, the LVS may fail to match any nets or devices.
Net 7 in subcircuit X2 will not be matched to SIGNALX unless the LVS fails to
match the circuits after several passes. The NET1/NETA equivalence will be an
initial equivalence only when the control file option USE_EQUIVALENCES-
_FOR_INITIAL_MATCHING=YES is used.

Running LVS: Using a Node Correspondence File

358 NLE and LVS User Manual

Assigning Virtual Connections

Virtual connections are defined as connections of nets that are not electrically
connected in the layout. When two nets are virtually connected, the LVS will
treat them as though they are the same net. If you use virtual connections, you
should remove them before the final LVS run on your chip by using the
control file option ENABLE_VIRTUAL_CONNECTIONS=NO, (or the
LVS command line option "/V=NO") or real opens may not be found.

There are four ways to virtually connect nets in the layout netlist.

1) Place identical text labels in the layout on each net. The labels
should end with the character defined by the control file option
SPECIAL_CHARACTER_FOR_VIRTUAL_CONNECTIONS. In
this case, the NLE circuit extractor must be executed again for
changes made in the layout to be used by the LVS.

2) Use the node correspondence file to virtually connect two or more
labeled nets. (See below.)

3) Add *.VIRTUAL statements to the ASCII part of the layout netlist.

4) Use node label overrides in the ASCII part of the layout netlist to
virtually connect two nets by their node numbers assigned by the
last pass of the NLE circuit extractor. In this case, the nets do not
need to be labeled in the layout netlist at all, and you do not need to
re-execute the NLE. (See Using Node Label Overrides on page
361 for more details.)

See page 350
for details on
assigning virtual
connections in
the layout.

Running LVS: Using a Node Correspondence File

NLE and LVS User Manual 359

To virtually connect nets with different labels in the layout using the node cor-
respondence file, list all net labels on the right side of the equivalence statement.

Example: *Schematic Layout
+VDD = VDD VDD: POWER

In this example, the nets labeled "VDD", "VDD:", and "POWER" will all be
virtually connected and matched to the schematic net VDD before the LVS
matching algorithm begins.

This method can be used to virtually connect separate nets with the same label
even when you have not used the suffix defined by the SPECIAL-
_CHARACTER_FOR_VIRTUAL_CONNECTIONS control file option (usually
':'). When two or more separate nets are identically labeled without this
character, they are indicated as errors by the LVS. However, you can virtually
connect them in the node correspondence file with an asterisk '*'.

Example: *Schematic Layout
+VDD = VDD* VDD:

If you have several separate nets labeled "VDD" in the layout, they will all be
virtually connected by the above statement. All nets labeled "VDD:" will also be
virtually connected to the same net.

Running LVS: Using a Node Correspondence File

360 NLE and LVS User Manual

Running LVS: Using Node Label Overrides

NLE and LVS User Manual 361

Using Node Label Overrides

When you run an LVS comparison on your circuit for the first time, you may
wish that you had added more node labels to the layout before you ran the NLE
to extract the layout netlist. Running the NLE circuit extractor can be time
consuming. If all you need to do to make your next LVS run more useful is to
add (or modify) node labels, you do not need to run the NLE again. You can add
node labels to the layout netlist with node label override statements.

The syntax of the node label override statements is:

*.NETLABEL node_number label
and

*.DEVLABEL node_number label

where *.NETLABEL statements add or modify labels on nets, and
*.DEVLABEL is used to label devices. The node_number parameter must be
the node number generated by the NLE as reported in the LVS output files. The
label parameter is the string which will be used to label the node.

Once these statements in the layout netlist are processed, the nodes are labeled as
though the labels were added to the layout itself and processed again with the
NLE. You do not need to modify the layout at all.

However, each time you do modify the layout and re-execute the NLE to create a
new binary layout netlist, the node numbers may change. Node override
statements that were correct for one binary layout netlist, may not be correct
with a new binary netlist. When you edit the layout for a new NLE extraction,
you should add the labels to the actual layout and delete the old node label
overrides.

To determine
the node
number of a
specific net in
the layout while
in the
ICED32™
layout editor,
you can use the
node outliner
commands. See
page 389.

Running LVS: Using Node Label Overrides

362 NLE and LVS User Manual

For example, let us say that you discover on your first LVS run that the net VDD
is open. Many devices are unmatched because they connect to one of two
different nets instead of a single net. You could solve this problem by going
back to the layout and adding net labels that virtually connect the net. You could
add the label "VDD:" to each net to virtually connect them.

If you solve the problem this way, you will need to run the NLE program again
to extract the binary layout netlist. If you are processing a large circuit, this may
take a long time.

You can avoid running the NLE again to solve such a simple problem with two
node label override statements. Get the node numbers of both nets by using the
node outliner commands in the layout editor, or from the LVS reports. These
numbers are used in the unmatched device report and the net degree report. If
the node numbers are 145 and 328, write the statements:

Example: *.NETLABEL 145 VDD:
*.NETLABEL 328 VDD:

Remember that node labels may be case sensitive. If you want your node labels
in upper case, type them in upper case, unless you have used to control file
option FORCE_ALL_LAYOUT_LABELS_TO_UPPER_CASE=YES.

You must add these statements to the layout netlist. Since you cannot edit the
binary layout netlist, you must add these statements to the ASCII file you use to
combine the layout netlist device models to the binary layout netlist. We
recommend that you create these statements in a separate file and use an
.INCLUDE statement to add them to the ASCII layout netlist file.

*Layout netlist for LVS check
.INCLUDE LAYMODEL.NET
*.LAYOUT CELL.EXT
.INCLUDE LABELS.NET
.END

The control file
option
ENABLE-
_VIRTUAL-
_CON-
NECTIONS =
YES must be
used to allow
virtual
connections.

Running LVS: Using Node Label Overrides

NLE and LVS User Manual 363

The node labels processed last take precedence over node labels already
processed. When the node label overrides are processed before the binary
netlist, labels present in the layout will override them. Unless you want the
binary layout netlist to override your overrides, place them in the layout netlist
after the *.LAYOUT statement.

If you want to use many node label overrides, (especially if you need to modify
labels already in the layout) you can run the LVS with the control file option
PRINT_NET_LABELS_IN_A_SEPARATE_FILE = YES. This will create a
file with node label override statements for all nodes with labels in the layout
and all unlabeled nets over a certain degree. You can then use this file in
subsequent runs of the LVS. Refer to the control file option PRINT_NET-
_LABELS_IN_A_SEPARATE_FILE on page 272 for more details.

This file can be edited with any ASCII editor. You can change the lines in the
file, which will have the same effect as editing the labels in the layout and re-
executing the NLE. You can also add lines to this file which has the same effect
as adding node labels to the layout.

Running LVS: Using Node Label Overrides

364 NLE and LVS User Manual

Running LVS: Symmetric Circuits

NLE and LVS User Manual 365

Symmetric Circuits

The LVS performs its circuit comparison based on the relationship of each
device to other devices around it. When many devices have identical
relationships, the LVS may have to force a random match between devices from
lists of identical devices to continue its matching algorithm. A random match is
rarely a good starting point for circuit comparison.

A circuit that has many
devices with identical
relationships to other devices
is called a symmetric circuit.
Look at Figure 131. This
design consists solely of four
identical opamps. The
devices in each opamp are
identical. Unless you instruct
the LVS to make forced
correspondences between the
two netlists, NetA may be
matched to Net1, Net3 Net5,
or Net7. Any of these
matches would be completely
valid.

When your circuit is as
completely redundant as this
one, you probably do not care
if NetA is matched to Net3.
It will be relatively easy to
decipher the reports even though the nets are not matched as you would match
them by looking at the circuits.

Forced matches
will be listed in
the optional List
of Forced
Matches report.

Layout
Netlist

Net2Net1

OPAMP Net4Net3

OPAMP Net6Net5

OPAMP Net8Net7

OPAMP

Schematic
Netlist

NetBNetA

OPAMP NetDNetC

OPAMP NetFNetE

OPAMP NetHNetG

OPAMP

Figure 131: Symmetric circuit

Running LVS: Symmetric Circuits

366 NLE and LVS User Manual

However, now let us assume that the opamps are not identical. The resistor
values in each opamp are the only difference. Now the fact that NetA is matched
to Net3 means that the resistors will be listed as having parameter value
mismatches. This is not a real error, but it is an unavoidable result of a random
match to begin the matching algorithm.

The LVS will use parameter values as criteria for performing the forced match.
However, if the LVS chooses one of the identical transistors for the forced
match, instead of one of the resistors, the parameter values are identical in each
opamp, and the different value of the resistor elsewhere in the circuit will not
prevent the LVS from making an incorrect forced match.

It may not be too difficult to figure out what went wrong when the symptom is a
few parameter value mismatches. However, if one of these opamps does have a
real error in the layout, it can be difficult to determine which opamp has the
problem when the LVS is matching a different opamp than the one you thought
it was. Large numbers of cascading errors can make the reports difficult to use.

All of these problems are easily avoided by forcing the LVS to perform a few
forced correspondences when it is unable to continue its matching algorithm.
This will prevent the LVS from forcing a random match between nodes from
each netlist.

Forced correspondences can be defined with one of three methods:

1) The control file option LAYOUT_TEXT_MODE=AUTO will match all
nodes pairs with identical names in each netlist. (The control file option
USE_EQUIVALENCES_FOR_INITIAL_MATCHING=YES must also
be used.)

2) The node correspondence file can be used to supply the LVS with
corresponding nets from each netlist. (See page 355.) Use the control
file option LAYOUT_TEXT_MODE=EQUIV in this case.

3) The INTERACTIVE_MODE = YES option in the control file can be
used to select a forced point of correspondence during the LVS run. In
this mode, you interactively select a node number from each netlist. You
do not need any node labels in your circuit for this option.

Running LVS: Symmetric Circuits

NLE and LVS User Manual 367

We do not recommend option 3 because you will need to know the node
numbers of the nodes in each netlist while the LVS is running. If you forget to
write these numbers down based on a previous run of the LVS, or mistype one
node number, the results of the LVS comparison may be much worse that if you
did not attempt the forced correspondence at all.

If you want to use option 2 (the recommended choice), but you do not want to re-
execute the NLE to add the labels to the layout, there is a shortcut you can use.
Create a node label override file that adds the required node labels to the layout
netlist without re-executing the NLE. (See page 361.)

Use care when assigning forced correspondences. If you specify one in error, the
result can often be a mismatch of every other net and device. Keep initial
correspondences in the node correspondence file to a minimum, and make
additional correspondences optional so that they will be used only if the LVS
cannot continue the matching algorithm without making a forced match. You
indicate that a correspondence is optional with the '-' prefix in the node
correspondence file.

Running LVS: Symmetric Circuits

368 NLE and LVS User Manual

LVS Output Files

NLE and LVS User Manual 369

LVS OUTPUT FILES

LVS Output Files

370 NLE and LVS User Manual

Reports Generated by the LVS

A log file and three other reports that are always generated by a successful LVS
run. In addition, there are several optional reports which can be useful in
diagnosing discrepancies between the two netlists being compared.

LVS.LOG

The log file will always have the name "LVS.LOG". Unlike the other reports, it
is always created in the current directory. This file is simply a log of all
console output generated by the LVS. When the run is successful, there is little
information here. There will be a message for each label found in a layout
netlist, and a summary of activity done by each pass of the program. The
summary for the last pass will tell you how many devices and nets were
matched. The final line of the log tells you where the comparison summary
report, often "RESULTS.LVS", can be found. It is very important to look at this
file carefully, even when no errors are mentioned in the log. All other reports
will always be found in the same directory as the comparison summary report.

If there are syntax errors in one of the netlists or the control file, the error
messages are stored in the log file to help you diagnose the problem. The format
of error messages is described on page 311. Only 15 error messages will be
printed before the LVS aborts. If additional errors exist, they will not be
reported until you re-execute the program.

You should always look at the end of this report for references to report files that
list problems with the netlists. Look at each of the indicated files. You may
wish to refer to other reports for additional information that will help you
diagnose problems. Details on these other reports are found on the following
pages.

The OUTPUT-
_DIRECTORY-
_PATH control
file option
determines the
location of all
reports other
than LVS.LOG.

One additional
output file is the
cell_name.P8K
file generated
by the LVS for
the node
outliner
commands. See
page 389.

LVS Output Files

NLE and LVS User Manual 371

Non-Optional Output Files

The three reports generated by every LVS run will be created in the directory
defined by the control file option OUTPUT_DIRECTORY_PATH. Most of
these reports include a header which lists the input file names, the time and date
of the run, the elapsed time of the run, the memory allocated, and the LVS
version number. The reports are summarized in Figure 132.

Control file option which defines
file name

Information found in file

Comparison
summary

OUTPUT_FILE_OF_FINAL-
_RESULTS_OF_NETLIST-
_COMPARISON

Number of devices and nets before and after
preprocessing

Number of devices and nets matched and
unmatched

Number of devices with parameter errors

Number of I/O pins

Number of filtered, collapsed, and forced match
devices

Number of floating nets

A list of device counts sorted by device type

A summary of most control file options, and
individual device model options

A summary of what other reports were generated
and their file names

Parameter
error
summary

OUTPUT_FILE_OF_DEVICES-
_WITH_PARAMETER_ERRORS

List of matched devices with size or value
mismatches

Unmatched
devices report

OUTPUT_FILE_OF-
_UNMATCHED_DEVICES-
_AND_NETS

Details on each unmatched device in each netlist
Details on each unmatched net in each netlist
Lists of out-of-order device chains
Lists of mismatched pad devices

Figure 132: Non-optional output files.

LVS Output Files

372 NLE and LVS User Manual

Comparison Summary

It is important to inspect this file carefully after every LVS run. The console
messages do not indicate all errors.

The file begins with a header that includes the input file names, the time and date
of the run, the elapsed time of the run, the memory allocated, and the LVS
version number.

The other information contained in this file includes:

SUBCKT / CELL NAME The top level subcircuit of schematic netlists
and/or the top level cell of layout netlists will be indicated here.

NUMBER OF DEVICES BEFORE PREPROCESSING The total num-
ber of devices found in each netlist is given. This is not the total number of
devices compared. The preprocessing is done before the comparison and can
change these numbers substantially. (Pad devices are not included in this total or
in the totals for the next 5 lines.)

NUMBER OF DEVICES AFTER PREPROCESSING This is the total
number of devices from each netlist which were compared. The preprocessing
can filter out devices based on the control file options. The preprocessing also
involves device transformations that merge or collapse several devices into a
single device. These collapses are controlled by the control file and/or
parameters in the device models in each netlist. The number of filtered devices
and collapsed devices is provided below.

NUMBER OF DEVICES MATCHED This is the total number of
devices which matched in the two netlists. Some or all of these matched devices
may have parameter errors.

NUMBER OF DEVICES NOT MATCHED Any non-zero numbers in these
fields mean that there is a discrepancy between the two netlists. See the
unmatched devices report for a list of all unmatched devices.

The optional
matched devices
report will list
details on each
matched device.

LVS Output Files

NLE and LVS User Manual 373

NUMBER OF DEVICE PARAMETERS NOT COMPUTED If the
value of a device in the schematic netlist is missing, or if a device in the layout
netlist cannot be computed because the dimensions were not recognized by the
NLE (and there is no default value in the device model), the device will be
included in this total. This total may include devices with unusual layouts (e.g.
non-manhattan layouts) for which the NLE cannot recognize dimensions.

A non-zero number in either column means that devices in the netlist have not
had their values verified against the other netlist. Unmatched devices will be
included in this total. Devices counted in this total will be listed in the
parameter error file with the string "***" indicated for the value.

NUMBER OF PARAMETER ERRORS Each matched device can be
verified for value or dimension discrepancies between the two netlists. This
verification can be disabled for specific device types or device models. You
should verify that parameter checking is enabled for all of the device types and
models you need verified. If parameter checking is disabled for some of
your devices, this number may not be an accurate account of the parameter
errors present in your circuit.

The parameter error summary report will list all devices with parameter errors.

NUMBER OF NETS BEFORE PREPROCESSING The total number
of nets in each input netlist is reported. These totals are calculated before virtual
connections are made and before devices are filtered, merged, or collapsed.

NUMBER OF NETS AFTER PREPROCESSING Transformations of
devices can remove nets from the netlist. This number is the total number of
nets which were compared from each netlist.

NUMBER OF NETS MATCHED This is the total number of nets which
matched from each netlist.

NUMBER OF NETS NOT MATCHED A non-zero number in either
column indicates a discrepancy between the two netlists. See the unmatched
devices report for details on each unmatched net.

Default value
parameters can
be supplied in
the
*.LAYMODEL
device models.

Parameter
checking is
enabled in the
control file by the
MATCH_device-
_PARAMETERS
options. This
default can be
overridden in the
netlist device
models by the
PARAM
parameter.

LVS Output Files

374 NLE and LVS User Manual

NUMBER OF PAD DEVICES The number of pad devices recognized
by the NLE in a layout netlist will be listed here. Since pad devices are not valid
in a schematic netlist, there will always be a zero in a schematic netlist column.
Pads indicated through the use of the *.PINS statement will not be listed here.

NUMBER OF PAD DEVICES MATCHED If pad devices are matched to
nets in the other netlist defined with the same pad type character (usually
through the use of the *.PINS statement) they will be counted here.

NUMBER OF PAD DEVICES NOT MATCHED If you have a non-zero
number in the layout netlist column for this line, this means you have pad
devices which are not being matched to appropriate nets in the other netlist.
This indicates an error in your pad connections.

NUMBER OF OUT_OF_ORDER TRANSISTOR CHAINS If the control
file option MERGE_OUT_OF_ORDER_device_CHAINS (or the device model
overrides DCHAIN, ALLMERGE, or ALL) has caused out-of-order transistor
chains to be merged, this total will be non-zero. See the unmatched device
report for a list of all out-of-order device chains.

NUMBER OF ERRORS IN LAYOUT LABELS The errors referred to
on this line include single nets labeled with two different labels or multiple nets
with the same label (which have not been virtually connected). The LVS log file
and the unmatched device report will both contain detailed error messages about
these nets.

NUMBER OF I/O PINS The number of nets which are considered pins
from each netlist is listed here. In a schematic netlist, a net is considered a pin
when it is in the argument list of the top-level subcircuit. In a layout netlist, the
net must be labeled with the prefix defined by the control file option SPECIAL-
_CHARACTER_FOR_NO_COLLAPSE_OF_A_NET, or the net must connect
to a pad device. Nets which are listed in a *.PINS statement in either netlist are
also considered i/o pins.

See Pad
Connection
Verification on
page 335 for
important
information on
how to verify
pad
connections.

See page 320
for examples of
out-of-order
device chains.

LVS Output Files

NLE and LVS User Manual 375

NUMBER OF UNCONNECTED NETS The total number of nets which
are not connected to any device after preprocessing, are provided here. The list
of nets is contained in the file set by the OUTPUT_FILE_OF_NETS_WITH-
_ZERO_AND_ONE_CONNECTIONS control file option. Nets in a schematic
netlist which occur in a subcircuit argument list, but which do not connect to any
devices, will be included in the total.

NUMBER OF FLOATING/DEGREE-ONE NETS The total number of
nets which connect to only one device are listed here. These nets will be listed
in the same report as the unconnected nets. All i/o pins that connect to only one
device will be included in this total.

NUMBER OF VIRTUAL CONNECTIONS If nets have been virtually
connected through any of the methods shown on page 358, the total will be
reported here. If this is your final run on your chip, and if the number in the
layout column is non-zero, you have opens in your layout which are being
hidden by virtual connections.

NUMBER OF FILTERED DEVICES This line reports the number of
devices removed from each netlist due to options in the control file and device
models. Devices can be filtered because they are unconnected, hanging, shorted,
or because they are parasitic devices below a certain tolerance.

NUMBER OF FILTERED NETS When devices are filtered out of the
netlist, the nets connected to them may disappear from the netlist. When this is
the case, the total number of nets removed from each netlist is indicated here.

NUMBER OF COLLAPSED DEVICES When devices are collapsed due
to options in the control file or in the device models, the total number of new
devices created which replace the collapsed devices in each netlist is provided
here. These collapses may be series or parallel merges, series or parallel logic
collapses, or pseudo device collapses.

NUMBER OF LABELED NET MATCHES When labels in the layout netlist
are used to make forced correspondences between the two netlists, the count will
be listed here.

Disable virtual
connections
with the
"/v=no" LVS
command line
option.

For details on
device filters,
see page 387.

See pages 318 -
325 for details
on device
collapses.

LVS Output Files

376 NLE and LVS User Manual

NUMBER OF FORCED NET MATCHES If the LVS matching algorithms
make no progress after the number of passes defined by the control file option
SET_NO_PROGRESS_LIMIT, the LVS will force equivalences between pairs
of nets from each netlist. The count of forced net matches will be listed here.

NUMBER OF FORCED DEVICE MATCHES This is the total number
of forced matches of devices rather than nets.

Next in this report is a list of device counts sorted by device type. The number
of terminals follows the device type separated by a '/' (e.g. "NPN/4"). The total
number of devices after each device transformation is listed on a line after the
device category name. The first line for each device category represents the
totals in the first netlist (usually the schematic netlist) the next line lists the totals
for the second netlist (usually the layout netlist).

The next table contains counts of devices sorted by device model. The total
before and after preprocessing for each netlist is given here.

The device count information is followed by a summary of the individual device
options for each device category. The defaults in the control file come first.
This is followed by a table of the overrides for each device model.

The column headings and the control file device options they represent are:

SWAP SWAP_device_SOURCE_DRAIN,
SWAP_EMITTER_AND_COLLECTOR_TERMINALS, or
SWAP_CAPACITOR_TERMINALS

SMERGE MERGE_SERIES_deviceS

PMERGE MERGE_PARALLEL_deviceS

CHAIN MERGE_device_CHAINS

DCHAIN MERGE_OUT_OF_ORDER_device_CHAINS

DSIZE MERGE_DISSIMILAR_SIZED_MOSFETS

DMODEL MERGE_deviceS_OF_DIFFERENT_MODELS

Forced net and
device matches
are listed in the
optional forced
matches report.

Details on the
device
transformations
are found on
page 315.

LVS Output Files

NLE and LVS User Manual 377

SERIES COLLAPSE_SERIES_LOGIC_deviceS

PARALLEL COLLAPSE_PARALLEL_LOGIC_deviceS

MODEL MATCH_device_MODELS

PARAM MATCH_device_PARAMETERS

OPEN IGNORE_UNCONNECTED_deviceS

ONE-CNCT IGNORE_ONE_TERMINAL_CONNECTED_deviceS

TWO-CNCT IGNORE_TWO_TERMINALS_CONNECTED_deviceS

SHRT IGNORE_SHORTED_deviceS

GATE-NET IGNORE_MOSFET_IF_GATE_PIN_IS_TIED_TO-
_CRITICAL_NET

SD-NET IGNORE_MOSFET_IF_SOURCE_AND_DRAIN_PINS-
_ARE_TIED_TO_CRITICAL_NET

Other control file options follow. The file names for each report are given here,
as well as the values for most other control file options.

Parameter Error Summary

This report lists each device which has been matched but has different parameter
values in the two netlists. The parameter values compared depend on the type of
device and on options in the control file and device models for each netlist. The
parameters compared can be device area, length and width, or value.

If parameter checking has been turned off for a device type with the control file
option MATCH_device_PARAMETERS = NO, or in the device models of both
netlists using the override parameters PARAM=NO, ALLMATCH=NO, or
ALL=NO, the presence of real errors in the netlists will not be listed in this
report.

See Parameter
Calculation on
page 343 for
details.

LVS Output Files

378 NLE and LVS User Manual

If devices without values exist in either netlist, their values cannot be compared
to devices in the other netlist. Devices without values will have the string "***"
listed as the value. In this case, the comparison summary report will have a non-
zero number listed for NUMBER OF DEVICE PARAMETERS NOT
COMPUTED.

The default tolerance for parameter checking is .0005, or .05%. This default can
be overridden in the device models for netlist2. In an LVS comparison, the
tolerances must be provided in the device models of the layout netlist. A device
will be listed as an error only if the difference between the device parameters is
greater than the tolerance.

The count of devices in error is listed is provided near the top of the report.

Several details on each device are listed, including the label or unique identifier
that represents the name of each device. The coordinates for devices in the
layout netlist will be indicated.

Device names from a schematic netlist are represented hierarchically. The
highest-level subcircuit instance name is provided on the left. If a device in the
schematic netlist represents a merged device, the device name will be each
original device name concatenated together and separated by special characters.
These characters are defined in the control file. Series merges will be separated
by the character defined in the option SPECIAL_CHARACTER_FOR-
_PRINTING_SERIES_MERGES (usually '@'). Parallel merges will be
separated by the character defined in the option SPECIAL_CHARACTER_FOR-
_PRINTING_PARALLEL_MERGES (usually '&').

Nets in the layout are represented by their node numbers. These node numbers
can be used with the node outliner commands in the ICED32™ layout editor to
highlight nodes in the layout. (See page 389.) When a net is formed from a
virtual connection of nets, it will be followed by the character 'V' and the number
of original nets virtually connected in square brackets (e.g. 81[V,2]).

A device in the layout which has been formed from a device merge will be
represented by a unique node number followed by the character 'M' and the
number of devices merged in square brackets (e.g. 296[M,3]). Devices formed

LVS Output Files

NLE and LVS User Manual 379

from a logic collapse will be followed by the character 'P'. The coordinates
listed for one of these devices are the coordinates of one of the original devices.

When you get a large number of false errors due to the device values being
represented in different units, this can be easily corrected in your next run,
without re-executing the NLE. The control file options SCALE_device-
_LENGTH_AND_WIDTH and SCALE_device_VALUE allow for unit
discrepancies between the two netlists. See those control file options for details.

Unmatched Devices Report

This report lists details on each unmatched device and net from each netlist. The
count of unmatched devices and nets is provided near the top of the report. (The
reference to out-of-order device chains refers to transistor chains which have
been merged even though the devices were in different orders in connected
chains. See below.)

The list of unmatched devices from each netlist comes first. The first line
assigns an incremented error number to the device. Then the device instance
name or number is provided on the next line. The format of the device instance
name is described above. The coordinates of the device and then its value are
provided next. The device model name, device type, and the number of nets
connected are provided on the next line.

A detailed report of each net connected to the device comes last. The net name
or number is listed, then the terminal number, and terminal name. Finally the net
name or number from the other netlist which is a potential match is listed under
the column heading "MATCH ?". If no potential match was found, the string
"?????" is listed instead.

The list of unmatched nets from each netlist comes next. Each net is provided
with an error number, then the net name is reported. The number of devices to
which the net connects is listed, followed by details for each device. The device
name, terminal number, terminal name, and potential match device name from
the other netlist are provided.

If large numbers
of devices
which are
correctly
connected
appear in this
report, look at
the list of forced
matches report
to see if the
LVS made a
poor choice for
a forced point
of
correspondence.
See page 384.

LVS Output Files

380 NLE and LVS User Manual

The SET_NET_SIZE_LIMIT_WHEN_PRINTING_CONNECTIONS control
file option can limit the number of devices listed for unmatched nets.

Note that if you have a large number of false errors from terminal swapping
which is allowed in your technology, you can avoid these false errors with the
control file options: SWAP_device_SOURCE_DRAIN, SWAP_EMITTER-
_AND_COLLECTOR_TERMINALS, or SWAP_CAPACITOR_TERMINALS.

If you have defined pad devices in either netlist (as described on page 335), and
mismatches exist between the pad connections in the two netlists, details will be
provided near the end of the report, separate from the other unmatched devices.

If out-of-order device chains exist in either netlist, they will be listed here. An
out-of-order device chain is a transistor chain which has been merged to another
connected chain even though the devices were in different orders in the different
chains.

Optional Output Files

Several optional reports can be generated according to options in the control file.
Most of the control file options are located in the OPTIONAL OUTPUT FILE
section. The exception is the matched devices report which is in the OUTPUT
FILES section. These reports will be created in the same directory as the non-
optional reports. Most of these reports include a header which include the input
file names, the time and date of the run, the elapsed time of the run, the memory
allocated, and the LVS version number. The reports are summarized in the table
on the next page.

See page 320
for examples of
out-of-order
device chains.

LVS Output Files

NLE and LVS User Manual 381

Control file option
which enables report

Control file option which
defines file name

Information found in file

Matched
devices
report

PRINT_MATCHED-
_DEVICES_AND-
_NETS

OUTPUT_FILE_OF-
_MATCHED_DEVICES-
_INCLUDING-
_PARAMETER_ERRORS

List of all matched devices,
including instance name, model
name, device type, and
parameters from each netlist.

Each device with a parameter
mismatch is indicated with the
error message "PARAMETER
ERROR".

List of all matched nets.
List of
unconnected
and floating
nets

PRINT_NETS-
_WITH_ZERO_AND-
_ONE-
_CONNECTIONS

OUTPUT_FILE_OF-
_NETS_WITH_ZERO-
_AND_ONE-
_CONNECTIONS

List of nets which are not
connected to any device

List of nets which connect to
only one device

List of
collapsed
devices

PRINT-
_COLLAPSED-
_DEVICES_IN_A-
_SEPARATE_FILE

OUTPUT_FILE_OF-
_COLLAPSED_DEVICES

List of pseudo devices formed
from logic collapses. (Merges
are not included.)

List of
forced
matches

PRINT-
_SYMMETRIC-
_MATCHES_IN_A-
_SEPARATE_FILE

OUTPUT_FILE_OF-
_SYMMETRIC-
_MATCHES

Lists of pairs of nodes forced to
correspond.

Spice output GENERATE_SPICE-
_NETLIST_FROM-
_THE_EXTRACTOR-
_OUTPUT

OUTPUT_FILE_OF-
_SPICE_NETLIST

Schematic netlist generated from
the layout (including parasitic
devices).

Net degree
report

PRINT_NETS_AND-
_THEIR_DEGREES

OUTPUT_FILE_OF-
_NET_DEGREES

Counts of nets sorted by degree.

List of nets over a certain degree.

Continued on next page

LVS Output Files

382 NLE and LVS User Manual

Filtered
device list

PRINT_LIST_OF-
_FILTERED-
_DEVICES

OUTPUT_FILE_OF-
_FILTERED_DEVICES

List of devices removed from
each netlist.

Node
equivalence
file

GENERATE_NAME-
_EQUIVALENCES

OUTPUT_FILE_OF-
_NAME-
_EQUIVALENCES

Net equivalences found between
the labels in the layout and the
schematic netlist.

Node labels
file

PRINT_NET-
_LABELS_IN_A-
_SEPARATE_FILE

OUTPUT_FILE_OF-
_NET_LABELS

List of nodes labeled in the
layout with the corresponding
node numbers.

Figure 133: Optional LVS reports.

Matched Devices Report

In this report, every device that matched in each netlist is listed. Each netlist has
a column.

The first line is simply a counter. This number is prefixed by "# :". The next
line has the device instance name. Device names from a schematic netlist are
represented hierarchically. The highest level subcircuit instance name is
provided on the left. Device instance names or node numbers in the layout
netlist can be used to locate the device in the ICED32™ layout editor. (See page
389.)

The coordinates of the device are printed next. (The coordinates of a device in a
schematic netlist are always 0.) The next line contains the device model name
and type. The parameter values for the device are on the last line. The list of
terminals is not included as it is in the unmatched device report.

Any device that has a parameter mismatch between the two netlists is indicated
with the error message "PARAMETER ERROR". This information is also
reported in the non-optional parameter error summary. (See page 377.)

LVS Output Files

NLE and LVS User Manual 383

List of Unconnected and Floating Nets

This report lists all nets of degrees zero and one. The degree of a net is defined
as the number of devices it connects to.

A zero degree net in the schematic netlist arises when nets listed in the I/O list of
a subcircuit are never referred to in a device statement. There are never any nets
of zero degree in the layout netlist. Even when stray pieces of conductive
material are not connected to any devices, they will not be listed as nets of zero
degree.

The format of the report is similar to the unmatched device report. The counter
(indicated by the string "# :") is followed on the next line by the net instance
name. If the net is in the floating net list, the next line lists the device instance
name, the terminal number, and the terminal name. Finally the net name or
number from the other netlist which is a potential match is listed under the
column heading "MATCH ?". If no potential match was found, the string
"?????" is listed instead.

This information is generated after the device filters have been processed. Nets
that disappear from the netlist due to the device filters will not be included. If
you do not filter unconnected devices, you may see a floating net indicated for
each terminal of a unconnected device.

List of Collapsed Devices

This report lists pseudo devices. While the format is similar to the matched
device report, the order of the devices in each column is arbitrary. The pseudo
device in the netlist column on the left is probably not matched to the device in
the other column. See the matched device report (page 382) for a report where
the device on the left is matched to the one on the right.

To insure that
certain nodes in
the layout are
unconnected,
see the
UNCON-
NECTED
NLE rule.

See page 322
for details on
logic collapses.

LVS Output Files

384 NLE and LVS User Manual

Devices formed by a simple merge will not be listed here. The devices listed are
generated when the control file options COLLAPSE_SERIES_LOGIC_deviceS
= YES, COLLAPSE_PARALLEL_LOGIC_deviceS = YES, or TAKE_CARE-
_OF_LOGIC_EQUIVALENCES_WHILE_MATCHING = YES or the netlist
device model options SERIES = YES, PARALLEL = YES, ALLCOLLAPSE =
YES, or ALL = YES are used.

For each pseudo device, the first line is an incremented counter. The next line is
the pseudo device node number or name. The coordinates of one of the devices
is listed, then the device model and type. (Remember that the LVS will only
form pseudo devices from collections of devices of the same type and model.)

Details on the devices that were collapsed to form the pseudo device follow next.
The device instance name, coordinates, and parameter values are listed for each
device.

List of Forced Matches

When the matching algorithms make no progress for the number of passes set by
the control file option SET_NO_PROGRESS_LIMIT, the LVS is forced to
choose a point of correspondence between the two netlists. The pairs of nodes
that were forced to match will be listed here. These matches may be made in
error, especially when your circuit is highly symmetric.

These matches may be arbitrary matches, matches you selected interactively
when you have used the INTERACTIVE_MODE=YES control file option, or
labeled nets in the layout which were not defined as initial equivalences in the
node correspondence file.

When many false mismatches are listed in the unmatched device report, look at
this file to see if an incorrect forced match started the algorithms off on the
wrong path.

To avoid incorrect forced matches in your next run, select several correct pairs
of nodes for forced correspondence. Label them with text components in the
layout and indicate that they are initial equivalences in the node correspondence

Read Symmetric
Circuits on
page 365 for
details on
forced matches.

See Using a
Node
Correspondence
File on page
355.

LVS Output Files

NLE and LVS User Manual 385

file. If you want to avoid running the NLE again to process node labels in the
layout, you can add node labels using node label overrides. (See page 361.)

Spice Output

This report is a schematic netlist generated from the layout data. If you are
comparing two layout netlists, this netlist will be generated from layout netlist2.
This netlist can be used for simulation, or as an auxiliary device report for
diagnosing mismatches.

Several control file options determine the format of the generated schematic
netlist. SPICE_FILE_FORMAT controls the syntax of the schematic netlist.
This option and the other relevant control file options are described beginning on
page 276.

The DELETE_PARASITIC_CAPACITORS_LESS_THAN control file option
can be used to filter out devices less than a threshold value from this Spice file.
This allows you to simulate your design with all significant parasitic capacitors
present in your layout.

Net Degree Report

This report is a quick summary of nets sorted by degree. (Remember that degree
is defined as the number of devices to which a net connects.) This report can be
very helpful in diagnosing opens and shorts. You can easily see major
discrepancies in nets of high degree that indicate shorts or opens.

The number of nets of each degree is listed for each netlist and the difference in
the counts is reported on the right. If your netlists match, all numbers in the right
hand column should be zero.

See the
Advanced
Tutorial for
examples of
how useful this
file can be when
diagnosing
circuit
discrepancies.

LVS Output Files

386 NLE and LVS User Manual

If you have an unmatched net of high degree in one netlist and two or more
unmatched nets in the other netlist whose degrees add up to the high degree net
in the first netlist, it is likely that you have a short in the first netlist, or an open
in the second netlist.

Any non-zero number next to DIFFERENCE IN TOTAL NUMBER OF PINS
indicates a circuit mismatch. Pins in this case refers to all device terminals. The
total number of terminals of all devices (after preprocessing) in the second netlist
is subtracted from the first netlist. See the net degree report and the unmatched
device report for details on the problem.

You can optionally list the names or numbers of nets over a certain degree with
the PRINT_ALL_NETS_WHOSE_DEGREE_GREATER_THAN control file
option. These nets will be listed under the LISTING OF NETS headings. The
names or numbers of nets in a layout netlist can be used to highlight the nets in
the layout using the node outliner commands. (See page 389.)

LVS Output Files

NLE and LVS User Manual 387

Filtered device list

This report lists all devices filtered by preprocessing. Several classes of devices
can be filtered according to options in the control file. See Figure 134.

Control file option Devices filtered
IGNORE_UNCONNECTED_deviceS devices where no terminal is connected to

another device.

IGNORE_ONE_TERMINAL_CONNECTED_deviceS devices with only one terminal connected
to another device.

IGNORE_TWO_TERMINALS_CONNECTED_deviceS 3 or 4 terminal devices with more than one
unconnected terminal.

IGNORE_SHORTED_deviceS devices with shorted terminals (Shorts
between the substrate and source or drain
of 4 terminal devices are not considered
shorted.)

IGNORE_MOSFET_IF_GATE_PIN_IS_TIED-
_TO_CRITICAL_NET

NMOS devices with gate terminals tied a
ground net and PMOS devices with gate
terminals tied to a power net.

IGNORE_MOSFET_IF_SOURCE_AND_DRAIN_PINS-
_ARE_TIED_TO_CRITICAL_NET

NMOS devices with source and drain
terminals both tied a ground net.

PMOS devices with source and drain
terminals both tied to a power net.

IGNORE_BIPOLAR_IF_BASE_PIN_IS_TIED-
_TO_CRITICAL_NET

NPN and LNPN devices with base
terminals tied a ground net.

PNP and LPNP devices with base terminals
tied to a power net.

DELETE_deviceS_LESS_THAN parasitic devices whose value is less than
the specified tolerance.

Figure 134: LVS filters.

If you have enabled these filters, but consider such devices to be errors, you
should look carefully at this report.

See page 221 to
specify which
nets are power
or ground nets.

LVS Output Files

388 NLE and LVS User Manual

Node Equivalence File

This report will list each labeled net in the layout netlist with the corresponding
net name from the other netlist. This file can be edited and used as an input node
correspondence file in future LVS runs.

Nets which are labeled in the layout, but which were not matched to nets in the
other netlist will be listed as comments under the heading "Unmatched layout
labels". If you want to force the LVS to match a net in this list to a certain net in
the other netlist, type that net name on the left of the '=' and remove the '*' that
makes the line a comment. Then use this file as an input node correspondence
file in your next run.

Node Labels File

This file will list all nodes which are labeled in the layout. Each node will be
listed with the node number assigned to this node by the NLE circuit extractor.
These node numbers are the same ones used in other reports (e.g. the node
numbers of nets attached to terminals in the unmatched devices report.)

You can edit this file and use it as in input file in the layout netlist to override
labels in the layout.

If you want to include unlabeled nets over a certain degree in this file, use the
PRINT_ALL_UNLABELED_NETS_WHOSE_DEGREE_GREATER_THAN
control file option.

Remember that the node number in the layout netlist may change when you re-
execute the NLE. If you use this file as an input file for subsequent LVS runs, it
will be valid only until you regenerate the layout netlist using the NLE.

See Using a
Node
Correspondence
File on page
355 for more
details.

See Using Node
Label Overrides
on page 361 for
more details.

Using the Node Outliner Commands

LVS Reference Manual 389

Using the Node Outliner Commands
The node outliner commands are executed in the ICED32™ layout editor to
highlight the geometry that forms a specific net or device. You can use these
commands to pinpoint a net or device in the layout using the node number listed
in the LVS reports. There is also a command to tell you the name or number of a
net or device when you click on a specific piece of geometry in the layout.

The node outliner commands will make the selected net or device blink for
several seconds. The ICED32™ layout editor must be launched with
COLORS=16 (the default) for these commands to use the BLINK command. If
you launch ICED32.EXE with the COLORS=8 command line parameter, you
should remove it before launching the editor to use the node outliner commands.

The following commands launch the program OUTLINER.EXE to process
geometry. If the ICED32™ layout editor is not reserving some memory for other
applications, you may see the error message "Insufficient memory" when you use
any of the node outliner commands. To reserve memory, you will need to quit,
alter the ICED32.EXE command line, and relaunch the editor.

The command line parameter you should use to reserve memory depends on the
operating system. If you are running DOS in a shell of a multitasking operating
system (e.g. WINDOWS or OS/2), add an appropriate "USE" parameter at the
end of the ICED32.EXE command line. If you are using native DOS, add the
parameter "RESERVE=2000".

The node outliner commands need to access files created by the NLE and LVS
programs for information on the electrical connections and for the node
identifiers. One file is created automatically when you execute the NLE circuit
extractor to create the binary layout netlist. The name of the file is
cell_name.P9K, where cell_name is the same string as that in the file name of
the binary layout data file, cell_name.POK. The other file is the cell_name.P8K
file created by the LVS.

The existence of the .P9K file is enough to execute the node outliner commands,
but you will not be able to use a node name to locate a net. Only node numbers
may be used to highlight nets when the .P8K file does not exist. This means that
you can use the node outliner commands before you execute the LVS, however
the commands are easier to use once the LVS has been run.

The IC32.BAT
file is usually
used to launch
ICED32.EXE.
Edit the
command line
in this file.

See the
ICED32™
layout editor
reference
manual for more
details on the
USE and
RESERVE
command line
parameters.

Using the Node Outliner Commands

390 LVS Reference Manual

Do not delete the .P9K file (generated by the NLE) or the .P8K file (generated
by the LVS). They must be located in the directory of the cell file.

To execute the node outliner commands:

Launch the ICED32™ layout editor to edit the cell used to create the
binary layout netlist.

The command @NODES must be executed once in this cell to define
the other commands. This will create the new commands N0 (the
number 0, not the letter 0), N1, ND, and NN. Once the @NODES
command has been executed, the command definitions will be stored
with the cell. When you try to execute the N0, ND, or NN commands,
and the @NODES command has not been executed in the current cell,
the editor will respond with error messages.

Type N0 to highlight a net or device by its node number (or node name
if the LVS has already generated the .P8K file). You will be prompted
to type the net or device number. (You can type the node name at this
prompt if the .P8K file exists.) The geometry that comprises the
indicated node will be copied temporarily to layer 250. This geometry
will then blink for several seconds.

Type ND to clear all temporary geometry from layer 250.

Type N1 to use the cursor to select a component and highlight all of the
geometry electrically connected to it. Place the cursor inside the
boundary of the component, not on its edge. The geometry will be
copied temporarily to layer 250, then it will blink for several seconds.
The node number you have selected will be displayed at the bottom of
the screen.

If you prefer to select a node with the cursor to report the attached node
number, without highlighting it, use the NN command.

All layers used
in connection
and device
recognition
rules will be
included in the
node outliner
file unless you
add the SAVE
or NO_SAVE
rules to your
NLE rule set.

You can include
the @NODES
command in
your startup
command file
run on each new
cell. See the
Layout Editor
Reference
Manual.

If several
devices have
been merged,
you need to
enter only one
of the node
numbers to
highlight all
devices merged
with it.

Using the Node Outliner Commands

LVS Reference Manual 391

Each time you use N0 or N1, you are adding geometry from the .P9K file to
layer 250 using color 15. All geometry using color 15 will blink when you
execute N0 or N1. We recommend that you use ND before using N0 or N1 for a
new node.

If the cursor is over more than one node when you execute the N1 or NN
commands, more than one node will be selected. Try to place the cursor in a
different place where geometry for only the node of interest is located with no
other shapes overlapping it.

If you are unable to select only the single node of interest, it is probably because
you cannot avoid selecting other nodes such as a substrate or well. Move the
cursor slightly so that it is not on top of the net of interest or any other obvious
node. Execute the NN command and note the "background" node numbers
reported on the history line on your screen. Now when the N1 or NN commands
report several node numbers, you can subtract the background node numbers
from the list to determine the node number of interest. Then execute the ND
command to clear layer 250, and finally, use the N0 command on the node
number of interest to highlight only that one net.

Let us examine this fragment from an unmatched devices report:

:1
LAYOUT :291
X :474 Y :-395
LENGTH :1 WIDTH :6
MODEL :NMOS TYPE :NMOS CONNECTED_TO : 4 nets.
TERMINAL NET_NAME MATCHED_NET
DRAIN 1 ?????

GATE 3 10058

SOURCE 72 OT1

SUBSTRATE 1 ?????

You can highlight the unmatched device with the command

N0 291

You can change
the width of the
outlines created
by the N0 or N1
commands by
changing the
default width of
layer 250 with
the layout editor
LAYER
command.

If the editor is
unable to
recognize the
N0 command,
type @NODES
at the prompt to
define the node
outliner
commands.

Using the Node Outliner Commands

392 LVS Reference Manual

To highlight only the entire net attached to the source, use the commands

ND
N0 72

Once you have used N0 or N1 to create the geometry, you can make it blink
continuously with the command:

BLINK T=0

Press any key to make it stop blinking.

Now look at this fragment of a parameter error summary:

SCHEMATIC | LAYOUT
|
|

:1 | # :1
XIN1.MN1 | 295
X : 0 Y :0 | X : 305 Y :180
MODEL :MN TYPE :NMOS | MODEL :NMOS TYPE :NMOS
LENGTH :4 WIDTH :2 | LENGTH :1 WIDTH :2

|
|

If we edit this cell and execute the @NODES command, we could highlight the
device with the incorrect length by typing N0, then at the prompt, typing 295.
Let us say that the view window is currently showing only part of your cell, and
nothing lights up on your screen. This could mean that the device is somewhere
beyond the borders of your screen.

Now execute the commands:

VIEW ALL
BLINK T=0

The first command fits the entire cell in the view window. The second command
makes the geometry created by the N0 command blink again so you can locate

Using the Node Outliner Commands

LVS Reference Manual 393

the device. Now you can zoom in and execute the blink command again if you
desire.

Once you are done outlining nodes, execute the ND command to clear all
geometry from layer 250 before saving the cell.

Using the Node Outliner Commands

394 LVS Reference Manual

The LPE Utility

LVS Reference Manual 395

The LPE Utility

The LPE Utility

396 LVS Reference Manual

The LPE utility is used to translate a binary layout netlist (created from ICED32™
cell data by the NLE utility) into an ASCII schematic netlist. This netlist can be
used as an input to a circuit simulator. If the NLE rules file is designed to
extract parasitic capacitors, they will be included in the netlist.

The LPE can optionally perform the same device transformations and filters the
LVS performs before creating the netlist.

No comparison is made between the transformed layout netlist and another
netlist.

The netlist created by the LPE will be flat, with no hierarchical subcircuits.

The LPE Utility

LVS Reference Manual 397

LPE Command Line Syntax

LPE [path\]control_file_name [path\]layout_netlist_name ...
... [@file_name] ...
... [/g (yes | no)] ...
... [/i in_path] ...
... [/l ext_file] ...
... [/o dir_path] ...
... [/p sch_out_format] ...
... [/v (yes | no)]

The LPE should be run at the DOS prompt, outside of the ICED32™ layout editor.

The LPE requires two input files. The first is the control file. The LPE uses the
same control file as the LVS utility. Many of the options applicable only to the
LVS will be ignored by the LPE. However, you should not delete any lines from
the control file. The LPE control file parser expects a complete control file. A
few control file options are used only by the LPE. These are described below.

The second input file is the layout netlist which will be translated into a
schematic netlist. The layout netlist should be prepared in exactly the same
manner as one prepared for LVS comparison. See the "Layout Netlists" chapter
beginning on page 229 for complete details on preparing this file.

Command
line options

See page 251
for a complete
description of
the control file.

The LPE Utility

398 LVS Reference Manual

The most important component of the layout netlist is the binary file generated
by the NLE utility. The NLE utility generates this file from a data file created by
the DRC command in the ICED32™ layout editor. The NLE uses a rules file to
control circuit extraction from the layout data.

NLE Rules File
.RUL

Layout File
.CEL

ICED32
Layout Editor

NLE Rules
Compiler

Compiled Rules
.LL

Binary
Layout Data

.POK

NLE
Circuit Extractor

Binary
Layout Netlist

.EXT

*.LAYMODEL
Device ModelsControl File

LPE

File

Program

Figure 22: Flow of data for the LPE utility.

The NLE utility
is described
beginning on
page 37.

The LPE Utility

LVS Reference Manual 399

The layout netlist must also contain device models for each unique device in the
layout netlist. These models define how to calculate device values from the
device dimensions stored by the NLE. The device models can also contain
overrides for options in the LPE control file.

The layout data can contain node labels. These labels will be listed in the output
schematic netlist in *.NETLABEL and *.DEVLABEL statements near the
beginning of the file which relate the label to the node number. The labels will
not be used as the names of the nodes in the device statements. The labels can
be used to control device transformations such as preventing the collapse of
devices on certain nets. (See "Advanced Uses of Node Labels" on page 349 for
details.)

All of the options in the LPE command line perform identical functions to those
used in the LVS command line. See page 307 for more complete descriptions of
these options.

Command line option Purpose
@file_name Allow indirection on command line
/g (yes | no) Enable/disable global node labels
/i in_path Specify input file directory path
/l ext_file Override the *.LAYOUT statement in the layout netlist input

file
/o dir_path Specify output file directory path
/p sch_out_format Specify format of output schematic netlist
/v (yes | no) Enable/disable virtual connections

Figure 23: LPE command line options

Example: LPE CONTROL.LVS LVS_LAY.NET /O LPERESLT

This command line, typed at the DOS prompt in the directory created to run the
quick tutorial (described on page 19), will run the LPE on the ONEBIT circuit.
The /O option overrides the OUTPUT_DIRECTORY_PATH option in the
CONTROL.LVS control file. The output schematic netlist (SPICE.LPE) will be

The layout
netlist can
contain node
label overrides
which allow
you to modify
node labels in
the layout
without re-
executing the
NLE. See page
361.

The LPE Utility

400 LVS Reference Manual

created in the LPERESLT subdirectory of the current directory. However, the
log file (LPE.LOG) will still be created in the current directory.

The LPE Utility

LVS Reference Manual 401

The LPE Utility

402 LVS Reference Manual

The LPE Control File

The LPE control file is usually the same file you use for the LVS program.
Some of the lines will be ignored by the LPE, but you should never delete lines
from a control file.

You should be familiar with most of the control file options before executing the
LPE. The control file is described completely in "The LVS Control File" earlier
in the manual. The control file options perform identical functions in the LPE
and the LVS. See the table below for the page numbers where several of the
most relevant control file options are described.

Control file option Purpose Refer to
page

DELETE_PARASITIC_CAPACITORS_LESS-
_THAN

Remove parasitic capacitors below a
threshold value

300

ENABLE_VIRTUAL_CONNECTIONS Allow nets to be virtually connected 265
FORCE_ALL_LAYOUT_LABELS_TO_UPPER-
_CASE

Enable or disable lower case characters
in node names

260

OUTPUT_DIRECTORY_PATH Set name of directory for most output
files

256

PRINT_NET_LABELS_IN_A_SEPARATE_FILE Enable creation of file used to store net
labels found in layout

272

OUTPUT_FILE_OF_SPICE_NETLIST Set file name of generated netlist 276
SPICE_FILE_FORMAT Set format of generated netlist 277
SCALE_CHARACTER_FOR_CAPACITORS Add scale character to each capacitor

value
278

SCALE_CHARACTER_FOR_INDUCTORS Add scale character to each inductor
value

278

SCALE_CHARACTER_FOR_RESISTORS Add scale character to each resistor
value

278

Figure 135: Important LPE control file options.

Some important control file options are found under the heading "INDIVIDUAL
DEVICE OPTIONS". (See page 283.) These options control how devices are

The LPE Utility

LVS Reference Manual 403

transformed before the output netlist is generated. These options set defaults
that can be overridden by parameters in the device models. (See page 245.)

The LPE uses a few extra control file options that we have not covered
elsewhere in this manual. You can find these options at the bottom of the
control file, under the heading "LPE RUNTIME OPTIONS". These options
override similar options in the LVS section of the control file so that you can
edit them once for your LPE uses, but leave the remainder of the control file
intact for LVS uses.

OUTPUT_FILE_NAME_EXTENSION_FOR_LPE = file_ext

This control file option overrides the LVS option OUTPUT_FILE_NAME_EX-
TENSION_FOR_LVS. (See page 257.) The string file_ext will be used as the
default file extension for all output files generated by the LPE. Setting file_ext
to a different string than the LVS extension will cause the LPE to create all files
with a different extension than your LVS generated files, so that none of the
LVS generated files will be overwritten.

The only files generated by the LPE which do not use this string as the file
extension are the LPE.LOG file (which contains a log of all console output
generated by the LPE) and the cell_name.P8K file for use in the node outliner
utilities. (See page 389.)

PRINT_COMMENTS_IN_SPICE_OUTPUT_GENERATED_BY_LPE = ...
... (YES|NO)

This control file option overrides the LVS option PRINT_COMMENTS_IN-
_SPICE_OUTPUT_GENERATED_BY_LVS. (See page 277.) The comments
which will be added to the netlist generated by LPE include device labels found
in the layout. Each device in the output netlist which was created by collapsing
devices in the input netlist will have some details printed about it in the
comments. These comments will aid you in reading the output netlist, but will
have no effect on the simulatable lines of the file.

The LPE Utility

404 LVS Reference Manual

PRINT_FILTERED_DEVICES_IN_SPICE_OUTPUT_GENERATED...
... _BY_LPE = (YES|NO)

This control file option overrides the LVS option PRINT_FILTERED-
_DEVICES_IN_SPICE_OUTPUT_GENERATED_BY_LVS. (See page 277.)
When this option is set to yes, the generated schematic netlist will have lines
added to it which represent commented out device statements for each device
filtered out of the netlist by the LVS filters.

Devices may be filtered out of the netlist according to options in the control file.
The primary use of this feature is to allow only the connected devices in a semi-
custom layout to be included in the output netlist. (See page 297.) When these
filters are enabled, devices that are unconnected to other devices, or devices
which are shorted to specific power or ground nets, will be removed from the
netlist.

Example: OUTPUT_FILE_NAME_EXTENSION_FOR_LPE =LPE
PRINT_COMMENTS_IN_SPICE_OUTPUT_GENERATED_BY_LPE=YES
PRINT_FILTERED_DEVICES_IN_SPICE_OUTPUT_GENERATED...
... _BY_LPE = YES

These three options use the values supplied with the sample control file included
with the installation. The first line sets the default file extension the LPE will
use for all output files to "LPE". This will be the file extension used for the
generated schematic netlist. If the control file contains the line "OUTPUT_FILE-
_OF_SPICE_NETLIST=spice", the name of the generated schematic netlist will
be SPICE.LPE.

The next line of the example will result in comments added to the file which will
make it easier to read. The last line will cause devices which have been filtered
out of the netlist to be included as comments in the file.

The LPE Utility

LVS Reference Manual 405

Advanced Tutorial

406 LVS Reference Manual

Advanced Tutorial

Advanced Tutorial

LVS Reference Manual 407

This tutorial uses files on the installation diskettes to demonstrate how to find
circuit errors in an LVS (layout vs. schematic) comparison using the NLE and
LVS programs. The NLE rule file and the schematic netlist file are the same
files as those used in the quick tutorial at the beginning of this manual.
However, for this tutorial, we will run the LVS on the entire TOP181 circuit,
rather than the ONEBIT subcircuit.

This tutorial contains excerpts from reports generated by the LVS. As you run
the LVS and browse these files, your reports may look slightly different due to
your version of the program. However, the basic information should be easy to
see even if your reports are not identical.

It is likely that the node numbers we talk about in this tutorial will be different in
your reports. Write the node numbers in your reports next to the numbers shown
in the examples and use those numbers when typing node numbers in the node
outliner commands or in the input files for the LVS.

Copy the following files to a new, empty working directory.

From Q:\ICED\26SAMPLES\74181\LVS
CONTROL.LVS Sample control file
TOP181.CIR Original schematic netlist
SCHMODEL.NET Schematic netlist models
LVS_SCH.NET Schematic netlist including models
S181.RUL NLE rules file for layout circuit extraction
LAYMODEL.NET Layout netlist device models
LVS_LAY.NET ASCII layout netlist including models

From Q:\ICED\SAMPLES\74181\BAD
*.CEL Cell files for layout

26 Remember that Q:\ICED represents the drive letter and path where you have installed
ICED32™.

Schematics for
this example
can be found on
page 434.

Advanced Tutorial

408 LVS Reference Manual

Note that the cell files should be copied from the "BAD" subdirectory, not the
"CLEAN" subdirectory we used for the quick tutorial. These cell files contain
errors that we will find with the LVS. Make the new directory the current DOS
directory.

Our first step is to compile the NLE rules file, S181.RUL. At the DOS prompt,
type:

RULESNLE S181

The compiler will create the compiled rules file S181.LL. We will use this file
as an input file when we run the NLE in a later step. If you want to browse the
log file from the compiler, the file name is S181.RLO.

The next step is to create the layout data file for the NLE. We do this in the
ICED32™ layout editor with the DRC command. At the DOS prompt, type:

IC32 TOP181

This will launch the ICED32™ layout editor to edit the top level cell of our sample
design. Now type the following command on the prompt line:

DRC

This command will create the layout data file TOP181.POK. This will be the
one of the input files for the NLE. Once the file is created, exit the editor
without saving by typing the command:

QUIT

Now we are back in DOS and ready to run the NLE. Type at the DOS prompt:

NLE S181 TOP181 TOP181

The NLE will execute using the input files S181.LL and TOP181.POK. Since
the third argument on the NLE command line is the same as the cell file name,
TOP181, most of the output files created by the NLE (including the binary
layout netlist) will use this string as the base file name. This is not required, but

A listing of the
rules file,
S181.RUL, can
be found in the
Quick Tutorial.

Advanced Tutorial

LVS Reference Manual 409

it may help you find files later. The binary layout netlist will have the file name
TOP181.EXT.

The binary layout netlist must be combined with the device models in the file
LAYMODEL.NET. This has already been done for you in the file
LVS_LAY.NET. Browse these files if you want to be more familiar with how to
build the layout netlist.

The layout netlist is now ready for the LVS comparison. The schematic netlist
has already been prepared for you. The original schematic netlist is stored in
CDL syntax in the file TOP181.CIR. This file must be combined with the device
models found in the file SCHMODEL.NET. These two files are combined into a
complete LVS schematic netlist in the file LVS_SCH.NET. No changes are
required to any of these files.

We will not make any changes to the sample control file, CONTROL.LVS, at
this time.

To execute the LVS, type at the DOS prompt:

LVS CONTROL LVS_SCH.NET LVS_LAY.NET

This command line will run the LVS with the control file CONTROL.LVS, the
schematic netlist file LVS_SCH.NET, and the layout netlist file
LVS_LAY.NET. The order of the last two files on the command line is
important. In an LVS comparison, the schematic netlist must be listed before
the layout netlist.

The final console messages from the LVS should look similar to this:

Check <<results\unmatch.lvs>> file. There are [4+35] unmatched devices and nets.
Check <<results\param.lvs>> file. There are 362 parameter errors.
Check <<results\results.lvs>> for summary of netlist comparison.

If you are
running the
NLE in a DOS
shell of a
multitasking
operating
system, like
Microsoft
Windows, and
you see a long
delay (more
than 20
seconds) before
you are
prompted to
press <Enter> to
continue, you
should add the
USE=20000
parameter to the
end of the
command line.

Advanced Tutorial

410 LVS Reference Manual

Note that the final console messages from the LVS report that there are 4
unmatched devices and 35 unmatched nets. There are also 362 parameter errors.
The final message directs you to look at the file RESULTS.LVS in the
RESULTS subdirectory for a summary of the comparison. Browse this file now
with your favorite ASCII text editor or file viewer.

Note that each total across from the line "NUMBER OF PARAMETER
ERRORS”, 362 in each column, is the same number as "NUMBER OF
DEVICES MATCHED". This means that every matched device had a parameter
error. To see a listing of these errors, look at the parameter error summary
report, PARAM.LVS.

The first device in the report should look similar to Figure 136. Note that the
values of the device indicated after the words "LENGTH" and "WIDTH" in each
column have a discrepancy of exactly 1e-06. You can see that this is true of every
device in the report.

This is due to the fact that the values of the devices in the schematic netlist use
units of meters. This is the corresponding device statement in the schematic
netlist TOP181.CIR:

MN1 OUT IN VSS VSS MN W=6U L=1.0U

Note that the parameter values in this statement are followed by the units
indicator 'U'. When the LVS reads this statement, it multiplies every value by
1.0e-6, or 0.000001.

SCHEMATIC | LAYOUT
|

:1 | # :1
XINT1.MN1 | 2494
X :0 Y :0 | X :16 Y :144
MODEL :MN TYPE :NMOS | MODEL :NMOS TYPE :NMOS
LENGTH :1e-06 WIDTH :6e-06 | LENGTH :1 WIDTH :6

Figure 136: Fragment of parameter error summary

Advanced Tutorial

LVS Reference Manual 411

The values in the layout are in units of microns. This units discrepancy is the
cause of each parameter value mismatch. We can correct this problem, without
editing the original schematic netlist, by changing a setting in the control file.

Edit the control file, CONTROL.LVS, and search for the following line:

SCALE_MOSFET_LENGTH_AND_WIDTH = 1

Change the parameter after the '=' to "1e6" so that the line reads:

SCALE_MOSFET_LENGTH_AND_WIDTH = 1e6

This will multiply each MOSFET device dimension in the schematic netlist by
1e6 or 1,000,000. This will resolve the units discrepancy between the two
netlists.

Save the control file and run the LVS program again with the same command
line at the DOS prompt.

Check <<results\unmatch.lvs>> file. There are [4+35] unmatched devices and nets.
Check <<results\param.lvs>> file. There are 7 parameter errors.

Now you can see that only seven devices have parameter mismatches. Now that
we have solved the major discrepancy involving all devices, we will wait until
the circuits have matched to worry about these remaining device value
discrepancies. If all nets and devices are not yet matched, false parameter errors
can be generated since devices may be matched in error. It is not usually worth
trying to resolve parameter errors until all nets and devices are matched.

Now browse the new RESULTS.LVS file. Our next clue to a large number of
errors is the fact that the layout netlist has 20 unmatched nets, while the
schematic netlist has only 15. Any time that the two netlists have different
numbers of unmatched nets is a good indication of a short or open. The easiest
way to diagnose this type of problem is the net degree report.

The degree of a net is defined as the number of device terminals to which the net
connects. If several unmatched nets in the layout netlist have a degree which
adds up to the degree of an unmatched net in the schematic netlist, this implies
that opens in the layout are resulting in several unconnected net fragments which
should be connected into one net.

Never alter the
fields to the left
of the '=' in the
control file.
Never delete
any lines.

Advanced Tutorial

412 LVS Reference Manual

Let us browse the net degree report. The name of this file, along with the names
of all other LVS output files, is reported in the RESULTS.LVS file. Near the
end of this file, you will see the list of file names under the heading:

OTHER OPTIONS AS SET IN
CONTROL FILE

Search for the string "degree" and you will see that the name of the net degree
report is NETDEG.LVS. Browse this file now.

The net degree report should
contain a block of lines similar
to Figure 137. The discrepancy
between the nets of higher
degree implies that opens exist
in the layout netlist. We can
see that the schematic netlist
contains 1 net of degree 340,
but the layout netlist has no net
with the same degree.
However, the layout netlist
contains an unmatched net with
a degree of 335. Also, the
schematic netlist contains an
unmatched net with degree 274,
while the layout contains
unmatched nets with degrees
108, 104, and 62. Since
108+104+62 = 274, it appears
that two opens exist in this net
in the layout.

NET DEGREE #SCHEMATIC #LAYOUT DIFFERENCE
---------- ------------ ------------ ----------
1 0 1 -1
2 92 94 -2
3 1 1 0
4 2 3 -1
5 29 29 0
6 47 46 1
7 6 6 0
8 7 7 0
9 0 1 -1
10 1 1 0
11 1 0 1
12 1 1 0
15 2 2 0
18 1 0 1
19 1 0 1
20 0 1 -1
21 0 1 -1
22 1 1 0
62 0 1 -1
104 0 1 -1
108 0 1 -1
274 1 0 1
335 0 1 -1
340 1 0 1

Figure 137: Fragment of net degree report

Advanced Tutorial

LVS Reference Manual 413

To determine exactly which nets have the problem, look at the details on nets of
high degree in the second half of the net degree report. This should look like the
listing in Figure 138. The name of the net in the schematic netlist with degree
274 is VSS. The node numbers of the three net fragments in the layout netlist
whose degrees add up to 274 are nodes 1, 4, and 6. We can use these node
numbers to locate the nets in the layout.

Let us launch the
ICED32™ layout editor
again and use the node
outliner commands to
look at these nets in
the layout. In the
editor, type the
command:

@NODES

This initializes the
other node outliner
commands.

To make the node with
the node number 1
blink on the display,
type:

N0 1

The N0 command will add geometry which represents the net to layer 250, then
it makes this geometry blink with the BLINK command. All geometry on layer
250 will blink when you use any of the node outliner commands. You usually
want to remove the previous contents of layer 250, before outlining the next
node, by using the command ND.

To make node number 4 blink, type the commands:

ND

You can set the
minimum
degree for nets
in the detailed
listing in the
second half of
the net degree
report with the
PRINT_ALL-
_NETS-
_WHOSE-
_DEGREE-
_GREATER-
_THAN control
file option.

LISTING OF NETS : SCHEMATIC

NET DEGREE : 274
VSS
NET DEGREE : 340
VDD

LISTING OF NETS : LAYOUT

NET DEGREE : 62
1
NET DEGREE : 104
4
NET DEGREE : 108
6
NET DEGREE : 335
7

Figure 138: Fragment of net degree report

You may want
to print the net
degree report
rather than
browsing it so
that you do not
have to quit the
layout editor
later to browse
it again.

If you get the
message
"Insufficient
memory" when
you try to
execute these
node outliner
commands, see
"Using the
Node Outliner
Commands" in
this manual for
details on
reserving
memory for the
commands.

Advanced Tutorial

414 LVS Reference Manual

N0 4

To make node number 6 light up, type:

ND
N0 6

Feel free to change the view of the circuit to get a closer look at the geometry
that comprises these nets. It becomes obvious that these three layout nets all
represent the same net, VSS. The nets were meant to be connected together in a
higher level circuit. You do not have to connect them in the layout to get
around this problem, you can virtually connect the nets without physical
connections in the layout.

You could add labels in the layout to virtually connect the nets, but this would
require re-executing the NLE. It is easier to virtually connect the nets with node
label overrides. The nets will be virtually connected by the LVS without re-
executing the NLE. We will add these node label overrides in a moment. First,
let us look at the problem with net VDD.

The degree of VDD in the schematic netlist is 340. The closest match in the
layout is net 7 with a degree of 355. This indicates that some unattached net
fragments of VDD exist in the layout. However, since these fragments have a
low degree, they do not appear in the detailed listing shown in Figure 138. To
find them, we will have to look in the unmatched devices report.

The name of the unmatched devices report is UNMATCH.LVS. Quit the
ICED32™ layout editor and browse this file now. This file also contains details
on unmatched nets. To locate this information, search for the string "LAYOUT
NETS".

You may want
to print the
unmatched net
report rather
than browsing it
so that you do
not have to quit
the layout editor
later to browse
it again.

Advanced Tutorial

LVS Reference Manual 415

The report on the first unmatched net should look similar to Figure 139. This
indicates that node 1650 connects to the drain of device 2340 which has been
matched to schematic netlist device XXB1STF.XNA1_6.MP1. When we look
up this device in the schematic netlist (TOP181.CIR), the device statement is:

MP1 OUT IN1 VDD VDD MP W=4.0U L=1.0U

in subcircuit NAND4 of subcircuit B1STF. Note that the drain of this device
should be VDD. This is a good hint that node 1650 in the layout should connect
to VDD, but is open in error. We should look at node 1650 in the layout.

Launch the ICED32™ layout editor again and enter the commands:

@NODES
N0 1650

If you do not see any geometry blinking on your screen, type the commands:

VIEW ALL
BLINK

You should now see something blink. Zoom in on this part of the circuit with
the command:

VIEW BOX

Select the new corners of the view window with the mouse.

###
##The following LAYOUT NETS were not matched. ##
NO POTENTIAL MATCHES
###
:1
LAYOUT :1650
CONNECTED TO :1 devices.
TERMINAL DEVICE_NAME MATCHED_DEVICE ?
DRAIN 2340 XXB1STF.XNA1_6.MP1

Figure 139: Fragment of unmatched devices report

Once the
@NODES
command is
executed, the
other node
outliner
command
definitions are
stored in the
cell. If you save
the cell, you do
not have to
execute
@NODES
again.

Advanced Tutorial

416 LVS Reference Manual

You can make the geometry blink again at any time by typing the command
BLINK. Keep zooming in until you can see the circuitry around this node. Once
you are at an appropriate scale, it is easy to see that this node should be
connected to net VDD.

You can fix this error by adding geometry to the cell, or by virtual connections.
In this tutorial we will fix the error with virtual connections because it is faster.
However, when you perform this kind of quick fix for your real circuits, you
must remember to fix the errors in the layout later.

The method to find the other VDD net fragments is the same one we used to find
net 1650.

The report on the second unmatched net should look similar to Figure 140. This
indicates that node 1723 connects to the drain of device 2404 which has been
matched to schematic netlist device XXB3STF.XNA3_6.MP1. When we look
up this device in the schematic netlist, the device statement is:

MP1 OUT IN1 VDD VDD MP W=4.0U L=1.0U

in subcircuit NAND4 of subcircuit B3STF. Note that the drain of this device
should be VDD. This is a good hint that node 1723 in the layout should connect
to VDD, but is open in error. We should look at node 1723 in the layout.

Launch the ICED32™ layout editor again and enter the commands:

@NODES
N0 1723

:2
LAYOUT :1723
CONNECTED TO :2 devices.
TERMINAL DEVICE_NAME MATCHED_DEVICE ?
SOURCE 2404 XXB3STF.XNA3_6.MP1
DRAIN 2405 XXB3STF.XNA3_6.MP3

Figure 140: Fragment of unmatched devices report

Advanced Tutorial

LVS Reference Manual 417

Follow the instructions above for zooming in on the node in the display. Once
again, it is obvious that node 1723 should be connected to VDD and is open in
error.

The report on the third unmatched net should look similar to Figure 141. This
indicates that node 23 is another candidate for an unattached net fragment of net
VDD. Looking at the layout confirms this.

To add virtual connections to get around the false
errors on net VSS, and the real errors on net VDD,
we will use node label overrides. This allows us to
virtually connect the net fragments without re-
executing the NLE. The best way to add node label
overrides is to create a new ASCII text file with the
name LBLOVR.TXT. Type the lines shown in
Figure 142 replacing the node numbers with the node
numbers found in your reports if your numbers are
different.

Be sure to type the colons (':') after the node names
as shown. This will allow the net fragments to have
the same label without error messages about identical
labels on separate nets.

:3
LAYOUT :23
CONNECTED TO :2 devices.
TERMINAL DEVICE_NAME MATCHED_DEVICE ?
DRAIN 2362 XXB1STF.XXR1_2.MP1
SOURCE 2367 XXB1STF.XXR1_2.MP2

Figure 141: Fragment of unmatched devices report

*.Netlabel 1 VSS:
*.Netlabel 4 VSS:
*.Netlabel 6 VSS:

*.Netlabel 7 VDD:
*.Netlabel 1650VDD:
*.Netlabel 1723VDD:
*.Netlabel 23 VDD:

Figure 142: Node label
override file
LBLOVR.TXT

Advanced Tutorial

418 LVS Reference Manual

We now need to add these virtual connections to the
layout netlist. Edit the file LVS_LAY.NET. Add the
following line to the file:

.include lblovr.txt

Be sure to add the new line after the *.layout
statement as shown in Figure 143. Save this file and
re-execute the LVS with the same command line.

Check <<results\unmatch.lvs>> file. There are [4+16] unmatched devices and nets.
Check <<results\unmatch.lvs>> file. There are [0+2] virtual connections using labels.
Check <<results\param.lvs>> file. There are 2 parameter errors.

The new net degree report will look similar to Figure 144. Note that the report
indicates nets of relatively high degree are still unmatched in the two netlists.
The layout contains a net of degree 21 and no such net exists in the schematic.
Let us take a look at this net in the unmatched device report. Look for the net
connected to 21 devices under the "Layout Nets" heading. The listing will look
similar to Figure 146.

*
.include laymodel.net
*.layout top181.ext
.include lblovr.txt
.end

Figure 143: Modified
LVS_LAY.NET

NET DEGREE #SCHEMATIC #LAYOUT DIFFERENCE
---------- ------------ ------------ ----------

.

.

.
18 1 0 1
19 1 0 1
20 0 1 -1
21 0 1 -1
22 1 1 0
274 1 1 0
340 1 1 0

Figure 144: Fragment of new net degree report

Advanced Tutorial

LVS Reference Manual 419

We can determine that net 271 represents net "C" in the schematic netlist by
looking at the first two devices: XXB1STF.XXR1_1.MN3, and
XXB1STF.XXR1_1.MN4. Now we compare this net to the listing for net "C"
under the schematic nets heading of the unmatched devices report. See Figure
145.

What we are looking for is the cause of the discrepancy in the net degrees for
this net. Look at the connections of the XXB2STF circuit. Note the two devices
which are marked with arrows ('⇐') in the listing of the layout net 271.
According to the schematic listing for net "C", this net should not connect to the
XNA2_6 subcircuit of XXB2STF at all. This is the cause of the discrepancy.

:8
SCHEMATIC :C
CONNECTED TO :19 devices.
TERMINAL DEVICE_NAME MATCHED ?
GATE XXB1STF.XXR1_1.MN3 2563
GATE XXB1STF.XXR1_1.MN4 2561
GATE XXB1STF.XXR1_1.MP2 2366
GATE XXB2STF.XNA2_3.MN4 2601
GATE XXB2STF.XNA2_3.MP4 2387
GATE XXB2STF.XNA2_4.MN2 2572
GATE XXB2STF.XNA2_4.MP2 2391
GATE XXB2STF.XNA2_5.MN1 2580
GATE XXB2STF.XNA2_5.MP1 2400
GATE XXB3STF.XNA3_3.MN2 2594
GATE XXB3STF.XNA3_3.MP2 2419
GATE XXB3STF.XNA3_4.MN2 2590
GATE XXB3STF.XNA3_4.MP2 2415
GATE XXB3STF.XNA3_5.MN2 2604
GATE XXB3STF.XNA3_5.MP2 2409
GATE XXB3STF.XNA3_6.MN2 2586
GATE XXB3STF.XNA3_6.MP2 2405
DRAIN XXBIT2.XIN5.MN1 2631
DRAIN XXBIT2.XIN5.MP1 2424

Figure 145: Fragment of new
unmatched devices report

:8
LAYOUT :271
CONNECTED TO :21 devices.
TERMINAL DEVICE MATCHED_DEVICE ?
GATE 2563 XXB1STF.XXR1_1.MN3
GATE 2561 XXB1STF.XXR1_1.MN4
GATE 2366 XXB1STF.XXR1_1.MP2
GATE 2601 XXB2STF.XNA2_3.MN4
GATE 2388 XXB2STF.XNA2_3.MP3
GATE 2572 XXB2STF.XNA2_4.MN2
GATE 2391 XXB2STF.XNA2_4.MP2
GATE 2580 XXB2STF.XNA2_5.MN1
GATE 2399 XXB2STF.XNA2_5.MP2
GATE 2583 XXB2STF.XNA2_6.MN1 ⇐⇐⇐⇐
GATE 2402 XXB2STF.XNA2_6.MP1 ⇐⇐⇐⇐
GATE 2594 XXB3STF.XNA3_3.MN2
GATE 2418 XXB3STF.XNA3_3.MP3
GATE 2590 XXB3STF.XNA3_4.MN2
GATE 2414 XXB3STF.XNA3_4.MP3
GATE 2604 XXB3STF.XNA3_5.MN2
GATE 2409 XXB3STF.XNA3_5.MP2
GATE 2586 XXB3STF.XNA3_6.MN2
GATE 2405 XXB3STF.XNA3_6.MP2
SOURCE 2649 XXBIT1.XIN5.MN1
SOURCE 2426 XXBIT1.XIN5.MP1

Figure 146: Fragment of new unmatched
devices report

Advanced Tutorial

420 LVS Reference Manual

By looking in the schematic netlist file (TOP181.CIR) at the B2STF subcircuit,
we can see that subcircuit XNA2_6 should connect to net "D" not net "C".

XNA2_6 VDD VSS D I 10123 NAND2

We can locate this error in the layout by launching the ICED32™ layout editor and
outlining the first device listed in error in the listing for net 271, node number
2583. In the editor, type the commands:

@NODES
N0 2583

This will cause the first device connected in
error to net "C" to blink. Resize the window and
zoom in on this area of the circuit so your
window clearly shows the error as shown in
Figure 147. Use a combination of SELECT
commands and the MOVE command to relocate
the VIA2PLY cell (circled in Figure 147) and the
connecting wire to the wire labeled D. Be
careful to use MOVE SIDE when moving the
vertical wire so that you move only the bottom
edge of the wire and do not leave an open in the
wire.

Once the error is fixed in the layout, type the
commands:

DRC
EXIT

Now execute the NLE again by typing at the
DOS prompt:

NLE S181 TOP181 TOP181

Blinking

Move to
D wire

Figure 147: Portion of
TOP181 cell

Advanced Tutorial

LVS Reference Manual 421

When the utility has completed run the LVS again with the same command:

LVS CONTROL LVS_SCH.NET LVS_LAY.NET

Check <<results\unmatch.lvs>> file. There are [0+8] unmatched devices and nets.

Browse the net degree report or the unmatched devices report and you will see
that there are still some discrepancies between the two netlists. Let us try a
slightly different method to diagnose the next problem.

We can allow the LVS to collapse the logic of both netlists to form higher level
pseudo devices. This can often simplify finding misconnections by minimizing
the number of cascading errors caused by the misconnections.

To force the LVS to collapse devices into higher-level pseudo devices in both
netlists, we should edit the control file. Edit the file CONTROL.LVS. Search
for "COLLAPSE_SERIES_LOGIC_MOSFETS”. Change the values for this line
and the next two lines to YES as shown below.

COLLAPSE_SERIES_LOGIC_MOSFETS = YES
COLLAPSE_PARALLEL_LOGIC_MOSFETS = YES
COLLAPSE_DISSIMILAR_SIZED_MOSFETS = YES

Save the file and re-execute the LVS with the command line below:

LVS CONTROL LVS_SCH.NET LVS_LAY.NET /O COLLAPSE

The /O option will result in all reports being created in the "COLLAPSE"
subdirectory rather than in the "RESULTS" subdirectory. This will allow you to
compare the two different methods if you desire.

Check <<collapse\unmatch.lvs>> file. There are [8+4] unmatched devices and nets.

This reduces the number of unmatched nets to two in each netlist, for a total of
four. Look at the unmatched nets in the unmatched devices report
COLLAPSE/UNMATCH.LVS. (See Figure 148 and Figure 149.)

Advanced Tutorial

422 LVS Reference Manual

From this report we can see that net "F" in the schematic corresponds to net 274
in the layout. However, net "F" connects to 11 devices while net 274 connects to
9 devices. To find the 2 missing devices, notice that net 273 in the layout has 2
extra devices. By comparing the lists, we can see that devices 2754[P,2] and
2788[P,2] connect to net "E" by mistake and should connect to net "F" instead.

:1
SCHEMATIC :F
CONNECTED TO :11 devices.
TERMINAL DEVICE_NAME MATCHED ?
GATE 100039 2739[P,3]
GATE 100040 2754[P,2] ⇐⇐⇐⇐
GATE 100057 2755[P,3]
GATE 100116 2788[P,2] ⇐⇐⇐⇐
GATE 100153 2830[P,3]
GATE 100164 2838[P,3]
GATE XXB0STF.XXR0_1.MN3 2536
GATE XXB0STF.XXR0_1.MN 42534
GATE XXB0STF.XXR0_1.MP 22364
DRAIN XXBIT1.XIN9.MN1 2638
DRAIN XXBIT1.XIN9.MP1 2425

:2
SCHEMATIC :E
CONNECTED TO :18 devices.
TERMINAL DEVICE_NAME MATCHED ?
GATE 100009 2757[P,5]
GATE 100055 2756[P,4]
GATE 100069 2759[P,5]
GATE 100075 2766[P,3]
GATE 100079 2752[P,4]
GATE 100081 2764[P,4]
GATE 100085 2748[P,4]
GATE 100145 2839[P,4]
GATE 100152 2829[P,4]
GATE 100156 2833[P,3]
GATE 100157 2831[P,4]
GATE 100162 2836[P,4]
GATE 100171 2852[P,5]
GATE 100172 2853[P,5]
GATE XXB0STF.XXR0_1.MN1 2535
GATE XXB0STF.XXR0_1.MP1 2357
DRAIN XXBIT1.XIN5.MN1 2631
DRAIN XXBIT1.XIN5.MP1 2424
Figure 148: Unmatched devices report

:1
LAYOUT :274
CONNECTED TO :9 devices.
TERMINAL NAME MATCHED ?
GATE 2739[P,3] 100039
GATE 2755[P,3] 100057
GATE 2830[P,3] 100153
GATE 2838[P,3] 100164
GATE 2536 XXB0STF.XXR0_1.MN3
GATE 2534 XXB0STF.XXR0_1.MN4
GATE 2364 XXB0STF.XXR0_1.MP2
DRAIN 2638 XXBIT1.XIN9.MN1
DRAIN 2425 XXBIT1.XIN9.MP1

:2
LAYOUT :273
CONNECTED TO :20 devices.
TERMINAL NAME MATCHED ?
GATE 2757[P,5] 100009
GATE 2754[P,2] 100040 ⇐⇐⇐⇐
GATE 2756[P,4] 100055
GATE 2759[P,5] 100069
GATE 2766[P,3] 100075
GATE 2752[P,4] 100079
GATE 2764[P,4] 100081
GATE 2748[P,4] 100085
GATE 2788[P,2] 100116 ⇐⇐⇐⇐
GATE 2839[P,4] 100145
GATE 2829[P,4] 100152
GATE 2833[P,3] 100156
GATE 2831[P,4] 100157
GATE 2836[P,4] 100162
GATE 2852[P,5] 100171
GATE 2853[P,5] 100172
GATE 2535 XXB0STF.XXR0_1.MN1
GATE 2357 XXB0STF.XXR0_1.MP1
SOURCE 2631 XXBIT1.XIN5.MN1
SOURCE 2424 XXBIT1.XIN5.MP1
Figure 149: Unmatched devices report

Advanced Tutorial

LVS Reference Manual 423

The syntax of the device name in the layout netlist, "2754[P,2]", indicates that
device 2754 is a pseudo device formed from 2 devices. You can use the simple
node number, "2754" to locate both of the devices in the layout. To locate the
problem in the layout, launch the ICED32™ layout editor and type the commands:

ND
N0 2754

Resize the widow so that
you can see the blinking
device clearly. Move the net
connection shown in Figure
150 to the wire labeled 'F'.

Now type the commands:
DRC
EXIT

Extract a new netlist by
using the same NLE
command line we have used
before.

There are still other errors in
the circuit. It will be easier
to see the rest of the
problems if the LVS does
not collapse devices. Edit
the control file to set all
three of the collapse
options you changed above
back to NO.

Run the LVS again, changing the output directory to a new string if you desire.

Check <<no_coll\unmatch.lvs>> file. There are [4+0] unmatched devices and nets.

The console messages tell you that all nets now match. However, there are still
4 unmatched devices, 2 in each netlist.

Blinking

Move to
F wire

Figure 150: Portion of TOP181 cell

Advanced Tutorial

424 LVS Reference Manual

This problem is less obvious to find than it would appear. The problem is that
the LVS reports 2 devices in the schematic netlist circuit XNAT2 as unmatched,
when in fact these devices appear to be connected correctly. The problem is
that these devices are supposed to connect to net F0B, however this net is
incorrectly connected in another circuit.

The net in the layout which connects to devices 2501 and 2322, is node number
29. In the layout editor type the following commands to locate the unmatched
device 2501.

VIEW ALL
ND
N0 2501

:1
SCHEMATIC :XNAT2.MN4
X :0 Y :0
LENGTH :1 WIDTH :4
MODEL :MN TYPE :NMOS

CONNECTED_TO :4 nets.
TERMINAL NET_NAME MATCHED_NET ?
DRAIN XNAT2.10113 1920
GATE F0B 28
SOURCE VSS 2681[V,3,VSS:]
SUBSTRATE VSS 2681[V,3,VSS:]

:2
SCHEMATIC :XNAT2.MP4
X :0 Y :0
LENGTH :1 WIDTH :4
MODEL :MP TYPE :PMOS

CONNECTED_TO :4 nets.
TERMINAL NET_NAME MATCHED_NET ?
DRAIN 10059 147
GATE F0B 28
SOURCE VDD 2680[V,4,VDD:]
SUBSTRATE VDD 2680[V,4,VDD:]

Figure 151: Fragment of unmatched
devices report

:1
LAYOUT :2501
X :268 Y :143
LENGTH :1 WIDTH :4
MODEL :NMOS TYPE :NMOS

CONNECTED_TO : 4 nets.
TERMINAL NET_NAME MATCHED_NET ?
DRAIN 1920 XNAT2.10113
GATE 29 XXB0STF.XXR0_8.10148
SOURCE 2681[V,3,VSS:] VSS
SUBSTRATE 2681[V,3,VSS:] VSS

:2
LAYOUT :2322
X :273 Y :134
LENGTH :1 WIDTH :4
MODEL :PMOS TYPE :PMOS

CONNECTED_TO : 4 nets.
TERMINAL NET_NAME MATCHED_NET ?
DRAIN 2680[V,4,VDD:] VDD
GATE 29 XXB0STF.XXR0_8.10148
SOURCE 147 10059
SUBSTRATE 2680[V,4,VDD:] VDD

Figure 152: Fragment of unmatched devices
report

Advanced Tutorial

LVS Reference Manual 425

Now make net 29 blink in the layout with the layout editor command:

ND
N0 29

We can see that this net connects to other devices on the left side of the circuit.
By zooming in on the area around device 2501, we can see that the text
components in the layout label this net as F0B. This is consistent with what we
see in the schematic representation of this device in Figure 151. However, note
that the LVS has matched net 28 to the schematic net F0B, not net 29. This
match has been made in error, causing other devices to mismatch later. To see
why the LVS has made this error, let us take a closer look at net 28.

To make net 28 blink on your screen, type the commands:

ND
N0 28

When you zoom in on this area, you can see that node 28 is an internal net to the
XXR0_8 XOR circuit.

The clue to the real problem is the net listed as the gate terminal for layout
devices 2501 and 2322, XXB0STF.XXR0_8.10148. This net is supposed to be a
net internal to the XOR circuit XXR0_8 in the XXB0STF circuit. If we look at
this circuit in the schematic netlist, we can see that net F0B is an output of this
circuit.

XXR0_8 VDD VSS 10083 10085 F0B XOR...
.SUBCKT XOR VDD VSS IN1 IN2 OUT
MN1 10148 IN1 VSS VSS MN W=3U L=1.0U
MN2 10152 10148 VSS VSS MN W=2U L=1.0U
MN4 OUT IN2 10148 VSS MN W=2U L=1.0U
MN5 OUT 10149 10152 VSS MN W=4U L=1.0U
MN3 10149 IN2 VSS VSS MN W=2U L=1.0U
MP2 10149 IN2 VDD VDD MP W=4U L=1.0U
MP1 10148 IN1 VDD VDD MP W=5U L=1.0U
MP3 OUT 10149 10148 VDD MP W=5U L=1.0U
MP4 OUT 10148 10149 VDD MP W=6U L=1.0U
.ENDS

Advanced Tutorial

426 LVS Reference Manual

By looking at the connections for this circuit in the schematic netlist (see bolded
lines above), we can see that they agree with the connections for net 28 in the
layout (see Figure 153.) This net should connect to the net labeled F0B and then

to devices 2501 and 2322 in
the XNAT2 circuit.

The net in the layout that is
labeled F0B connects to the
wrong net in the XOR
circuit. The cause of this
appears to be that this
XOR_1 cell was mirrored
rather then rotated when it
was added to the diagram.
The output is now on the
right, rather than on the left
as it is in the other XOR
circuits. However, since the
other connections appear to
be correct, we will not fix
the problem by rotating the
cell. We will just do a quick
fix that will leave the MT1
wire with the F0B label in
the upper left still connected
to the wrong net, but we will
connect the output of this

XOR to the other devices to which it should connect.

We need to move the circled via cell to the MT1 wire labeled "OUT". However,
this via cell is not placed in the TOP181 cell we are currently editing. It is
nested in the B0STF cell. We could QUIT the editor, then edit cell B0STF, but
it is much easier to use a nested edit command to edit the nested cell.

The TEDIT SELECT command is used to traverse one level of cell nesting at a
time to edit a nested cell. It is the best way to edit a nested cell if you are not
familiar with how the geometry is nested.

Net 29 to
devices 2501
and 2322.

Via placed
in error

Figure 153: XXR0_8 XOR circuit.

Advanced Tutorial

LVS Reference Manual 427

Type at the prompt:

TEDIT SELECT

Then place your cursor on the edge of the circled via cell shown in Figure 153.
Click the left mouse button. Now the prompt line indicates that you are editing
the B0STF cell.

Select the via cell and use the MOVE X command to move it to the location
shown in Figure 154. Be sure that the MT1 box in the via cell touches the MT1
wire labeled "OUT".

Type EXIT and return to the TOP181 cell.

Now type the DRC command to export the modified layout to the NLE program.
Exit the editor, then execute the NLE and LVS programs again as shown on page
408. The console messages now indicate that all devices and nets have been
successfully matched. However, there are still two parameter value errors.

Check <<results\param.lvs>> file. There are 2 parameter errors.

Figure 154: Portion of B0STF cell with selected via moved to
correct location.

Advanced Tutorial

428 LVS Reference Manual

You can locate one of these devices in the layout by editing the TOP181 cell and
then executing the commands:

ND
N0 2529

Once you zoom in the display, the circuit
will look like Figure 156. Unfortunately,
this INV_1X cell is mislabeled XNA3_8.
It really is the XIN3_9 subcircuit of the
XXB3STF circuit as indicated by the
matched device in the parameter summary.
You can follow the connections to prove
this to yourself. (Note that the output
node, labeled "GB" in the layout is one of
the inputs to the XNA3_10 NAND2
circuit, which is labeled correctly.)

When we look at these circuits in the
schematic netlist (see Figure 157), we can
see that XIN3_9 should be an INV3
circuit, not a INV1 circuit. This is the
cause of the device size mismatches.

 SCHEMATIC | LAYOUT
|

:1 | # :1
XXB3STF.XIN3_9.MN1 | 2529
X :0 Y :0 | X :427 Y :142
MODEL :MN TYPE :NMOS | MODEL :NMOS TYPE :NMOS
LENGTH :1 WIDTH :6 | LENGTH :1 WIDTH :2

|
:2 | # :2
XXB3STF.XIN3_9.MP1 | 2327
X :0 Y :0 | X :427 Y :134
MODEL :MP TYPE :PMOS | MODEL :PMOS TYPE :PMOS
LENGTH :1 WIDTH :12 | LENGTH :1 WIDTH :4

Figure 155: PARAM.LVS parameter error summary

Blinking
device 2529

Figure 156: Portion of TOP181
cell with node 2529 outlined.

Advanced Tutorial

LVS Reference Manual 429

We must replace the INV_1X cell in the B3STF cell with a INV_3X cell to
correct this problem. To do this, we will use the TEDIT command again to edit
the cell B3STF.

Type the TEDIT command as follows:

TEDIT SELECT

Place your cursor over one of the components in the inverter (any spot over the
outlined device 2529 will do). Now press the left mouse button. You are now
editing the B3STF cell.

Now select the INV_1X cell with the command:

SELECT CELL INV_1X IN

.SUBCKT B3STF A B C CN CN4 D E F G GB H PB VDD VSS
XIN3_1 VDD VSS B 10128 INV1
XNA3_2 VDD VSS A D 10131 NAND2
XNA3_3 VDD VSS A C F 10135 NAND3
XNA3_4 VDD VSS A C E H 10136 NAND4
XNA3_6 VDD VSS A C E G PB NAND4
XNA3_8 VDD VSS 10128 10131 10135 10136 10133 NAND4
XNA3_10 VDD VSS GB 10142 CN4 NAND2
XIN3_9 VDD VSS 10133 GB INV3
XNA3_5 VDD VSS A C E G CN 10142 NAND5
.ENDS
.SUBCKT INV1 VDD VSS IN OUT
MN1 OUT IN VSS VSS MN W=2U L=1.0U
MP1 OUT IN VDD VDD MP W=4U L=1.0U
.ENDS
.SUBCKT INV3 VDD VSS IN OUT
MN1 OUT IN VSS VSS MN W=6U L=1.0U
MP1 OUT IN VDD VDD MP W=12U L=1.0U
.ENDS

Figure 157: B3STF, INV1 and INV3 subcircuits in
TOP181.CIR

Advanced Tutorial

430 LVS Reference Manual

Then select two points with the cursor so that the select rectangle overlaps the
inverter. Select marks will appear on the cell boundary and the prompt line will
show you that one item is selected. Delete this cell with the command:

DELETE

We can correct the text at this point as well. Select the text component
"XNA3_8". We can edit this text without deleting the component by using the
@ED command. Type at the prompt:

@ED

At this point, an ASCII text editor will be launched with the ADD command for
the text component shown on the screen. Change the string "XNA3_8" to
"XIN3_9". Then exit and save the file. Now the ICED32™ layout editor resumes
with the modified component shown on the screen.

We must add the INV_3X cell next. We will have to mirror it about the y-axis to
add it in the correct orientation. Type the command:

ADD CELL INV_3X MY AT 422, 153

We must fix one short the old VDD wiring now causes. (See Figure 158.) To
select the wire, type the commands:

UNSELECT ALL
SELECT LAYER MT1 SIDE IN 428, 128 429, 130

You can use the
@ED command
to edit other
attributes of a
component,
such as the
width of wires.

Advanced Tutorial

LVS Reference Manual 431

This will select only the sides we need
to shift. Now use the MOVE SIDE X
command to shift these sides to the
left so that the MT1 polygon no longer
overlaps the inverter cell.

Now type the EXIT command so that
you are editing the TOP181 cell again.
Type the DRC and EXIT commands.
Then run the NLE and LVS again.

Unfortunately, this last change caused
the node numbers applied by the NLE
to change. The node label overrides
we added back on page 417 now refer
to the wrong node numbers. This is
one drawback of using node label
overrides.

You can see the symptom of this
problem in the console message:

Check <<results\unmatch.lvs>> file. There are [0+4]
unmatched devices and nets.

To see more details on why this
happened, look at the unmatched
devices report UNMATCH.LVS. (See
Figure 160.) Note that this is virtually
identical to the unmatched net listing shown in Figure 139 on page 415 and
Figure 140 on page 416. These are the new node numbers we must virtually
connect.

At this point, we can edit the overrides to correct the node numbers, or add labels
to the layout and re-execute the NLE to pass these labels to the LVS to virtually
connect the nodes.

Polygon sides
shifted

Figure 158: B3STF cell with INV_3X
cell placed and short fixed.

Advanced Tutorial

432 LVS Reference Manual

We will edit the
overrides in this
tutorial, but you may
want to try to solve the
problem by virtually
connecting the nodes
with labels in the
layout as an exercise.
(Add text components
of "VDD:" on design
layers for each
unconnected fragment
of VDD. Then re-
execute the NLE.)

Edit the node label
override file,
LBLOVR.TXT.
Change the node
number 1723 to 1731
and node 1650 to 1658.
The file should now
look like Figure 159.
Save the file and re-
execute the LVS.

The circuits in the two netlists now match exactly.
However, remember that since we have fixed the
opens in the VDD net with virtual connections, the
opens still exist in the layout. If you do these kind
of quick fixes when you are running the LVS on your
circuits, you must remember to fix the real errors at
some point. You should always turn off virtual
connections for your final LVS runs on your chip.
The easiest way to do this is to add the parameter
"/V=NO" to the LVS command line. If you fail to
do this, your quick fixes involving virtual
connections will prevent the real opens from being reported.

*.Netlabel 1 VSS:
*.Netlabel 4 VSS:
*.Netlabel 6 VSS:

*.Netlabel 7 VDD:
*.Netlabel 1658 VDD:
*.Netlabel 1731 VDD:
*.Netlabel 23 VDD:

Figure 159: New
LBLOVR.TXT file.

###
The following LAYOUT NETS were not matched.
NO POTENTIAL MATCHES
###
:1
LAYOUT :1658
CONNECTED TO :1 devices.
TERMINAL DEVICE_NAME MATCHED_DEVICE ?
DRAIN 2350 XXB1STF.XNA1_6.MP1

:2
LAYOUT :1731
CONNECTED TO :2 devices.
TERMINAL DEVICE_NAME MATCHED_DEVICE ?
SOURCE 2414 XXB3STF.XNA3_6.MP1
DRAIN 2415 XXB3STF.XNA3_6.MP2

:3
LAYOUT : 2690[V,2,VDD:]
CONNECTED TO :337 devices.
TERMINAL DEVICE_NAME MATCHED_DEVICE ?
SOURCE 2326 XINT1.MP1
SUBSTRATE 2326 XINT1.MP1...

Figure 160: Fragment of unmatched devices report.

Advanced Tutorial

LVS Reference Manual 433

This concludes the tutorial. You can continue to experiment with this circuit.
Try changing control file options and comparing the results. If you want to
compare results, remember to change the output directory with the "/O"
command line option to avoid overwriting your last report directory.

Appendix: Tutorial Schematics

434 LVS Reference Manual

Appendix: Tutorial Schematics
The following pages represent the schematics used to generate the schematic
netlist for the Quick and Advanced Tutorials. This schematic netlist,
TOP181.CIR, can be found in the Q:\ICED\SAMPLES\74181\LVS directory.

This circuit is a CMOS simulation of a 74181 4-bit ALU. The schematics and
layout were provided by Michael Gentry of MGC, Inc.

You can download copies of these schematics from the internet and print larger
copies on your own printer. See the ICED website at ICEDITORS.COM.

Appendix: Tutorial Schematics

LVS Reference Manual 435

Appendix: Tutorial Schematics

436 LVS Reference Manual

Appendix: Tutorial Schematics

LVS Reference Manual 437

Appendix: Tutorial Schematics

438 LVS Reference Manual

Appendix: Tutorial Schematics

LVS Reference Manual 439

Appendix: Tutorial Schematics

440 LVS Reference Manual

Appendix: Tutorial Schematics

LVS Reference Manual 441

Appendix: Tutorial Schematics

442 LVS Reference Manual

Appendix: Tutorial Schematics

LVS Reference Manual 443

Appendix: Tutorial Schematics

444 LVS Reference Manual

Appendix: Tutorial Schematics

LVS Reference Manual 445

Appendix: Tutorial Schematics

446 LVS Reference Manual

Appendix: Tutorial Schematics

LVS Reference Manual 447

Index

448 NLE and LVS User Manual

Index
- in node correspondence .. 357

! comment indicator .. 43
! expanded cell delimiter... 270

special node label character ... 269, 351

$ special node label character ... 268, 351
$NLEVIRT.000 .. 170, 174
$NLRVIRT.000.. 162

& parallel merge delimiter .. 270
example .. 289

() not allowed in Boolean layer rules ... 61
() used to indicate keyword choice .. 201

* wildcard in cell name specifications .. 55
*.DEVLABEL statement .. 247, 361
*.FORMAT statement... 258, 308, 332, 333
*.GROUND_NET statement .. 221, 247
*.LAYMODEL statement....................... 19, 213, 235, 236, 243, 245, 278, 291, 296, 331, 344, 348

defined.. 229
*.LAYOUT statement... 23, 245, 250

overriding ... 308
*.NETLABEL statement... 247, 361
*.NOCOLLAPSE statement ... 222, 247, 353
*.PINS statement .. 222, 247, 353, 374

using to assign pad types .. 336
*.POWER_NET statement ... 221, 247
*.SCHEMATIC statement .. 26, 223, 228

overriding ... 309
*.SCHMODEL statement ... 19, 25, 211, 215, 216, 218, 228, 244, 288

defined.. 206
*.VIRTUAL statement.. 223, 247
*+ continuation line .. 208

Index

NLE and LVS User Manual 449

... used to indicate continuation .. 45, 201

.EXT ... See *.LAYOUT

.EXTMODEL ..See *.LAYMODEL

.ICEDMODEL...See *.SCHMODEL

.INCLUDE statement.. 26, 216, 246, 250, 362

: special node label character .. 267
: used to assign pad type ... 336
: used to identify global node labels ... 248

; delimiter.. 56, 114

@ Series merge delimiter.. 269, 288
@ED command... 430
@file_name command .. 189
@file_name parameter in LVS command line .. 306
@NODES OUTLINER command.. 390
@opt_file NLE command line option ... 172

[] used to indicate optional keywords .. 44, 201
[P,n] device name syntax .. 423
[V,n] node name syntax .. 266

_ underscore character .. 43

{} used to allow rules to span several lines .. 56

| delimiter in cell name specifications ... 55

+ in node correspondence ... 357
+ used to combine input layers ... 54

<CTRL><BREAK> program interrupt... 312

= use in assignment rule.. 62

Aborting program ...See Terminating program
Acute angles.. 69, 86
Advanced Tutorial .. 406
Air bridges .. 80
Algorithms .. 260, 313

Index

450 NLE and LVS User Manual

ALL control file override in device model ... 214
ALLCOLLAPSE control file override in device model.. 214
ALLFILTER control file override in device model .. 214
ALLMATCH control file override in device model ... 214
ALLMERGE control file override in device model.. 214
AND rule .. 63
Area ...See also Parameter values

recognition by NLE.. 110
recognition of capacitors .. 132
using M= parameter.. 243

AREA keyword of DEVICE rule.. 123
AREA=area parameter in device model... 232
AREA=area parameter in device model... 210, 244
AREATLR keyword in device model... 206, 232
As-drawn dimensions.. 235
ASPECT_RATIO rule .. 78
Assignment rule (copying a layer) .. 62
ATTACH TEXT rule.. 141

example .. 147, 338
AUTO keyword in LAYOUT_TEXT_MODE ... 261
AUTO mode for node correspondences ... 350

Bad polygon command files ... 195
Bad polygons .. 187
Base layer in bipolar transistors.. 99
BASE_NET control file override in device model ... 214
Bends .. 239
BENDS_CR device model keyword... 238
Binary layout data file... 22, 171
Binary layout netlist.. 194

disabling generation of ... 182
Bipolar devices

multiple emitter or collector ... 233, 331
NLE example.. 124
types allowing terminal swapping .. 317

Bipolar transistors
sample layer processing.. 98

BLANK command.. 190
BLINK command ... 191, 392, 413
Bloat angle

reported in log .. 166
BLOAT rule.. 67

Index

NLE and LVS User Manual 451

example .. 119
BLOAT_ANGLE rule .. 69
Bloating

device dimensions in LVS.. 208, 236
Bloats of acute angles ... 86
Boolean operations on layers.. 60
BORDER rule... 89
Borders of panels .. 84, 176
Bounding box

using aspect ratio to classify shapes ... 78
using size to classify polygons ... 77

Bounding boxes of cells
using to classify shapes... 55

BOUNDS rule... 77
BOX_GM keyword in device model .. 242
Boxes .. 75
BRIDGE rule .. 80
BULK keyword in TRANSISTOR rule.. 125
BULK=bulk_node_name parameter in device model... 212
BY keyword in STAMP rule .. 102
BY keyword of CONNECT rule... 97

C_AREA... 243, 343
C_AREA = c_area parameter in device model .. 232
C_AREA keyword in device model.. 206
C_PERIMETER ... 243, 343
C_PERIMETER = c_perim parameter in device model ... 232
C_PERIMETER keyword in device model .. 206
Capacitance..See also Parameter values

calculating .. 343
CAPACITOR rule .. 130
Capacitors .. See also Parasitic capacitors

calculating capacitance... 243, 346
default device model .. 218
NLE recognition of shorted transistors... 135
NLE recognition using dummy layer.. 132
scale character in generated schematic netlist .. 278
swapping terminals... 317

Cascading errors
caused by forced match .. 366

Case
in NLE rules ... 43

Index

452 NLE and LVS User Manual

of ECC labels ... 143
of LVS labels.. 249, 260
of node labels ... 140

CDL schematic netlist... 25
restrictions on syntax.. 225

Cell boundaries
using to classify layers.. 55

Cell names
using to classify layers.. 54, 66

Cells
flattened by NLE .. 91

CHAIN control file override in device model... 214
Chains of transistors.. 320
Circuit recognition .. 38

diagnosing problems... 175
diagnosing problems... 57

Circuit Recognition... 93
CMOS device

example of NLE processing ... 105
CMOS NLE rules file ... 21
COLLAPSE.LVS.. 32
COLLAPSE_DISSIMILAR_SIZED_deviceS.. 294
COLLAPSE_PARALLEL_LOGIC_deviceS.. 294

use in tutorial.. 421
COLLAPSE_SERIES_LOGIC_deviceS .. 293
Collapsed devices

parameter and gate order verification... 328
report .. 383
total in report .. 375

Collapses..See Device collapses
Collector layer in bipolar transistors... 98
COLORS=8 command line parameter .. 389
Command file .. See NLE command file
Command line

LVS .. 304
NLE.. 169
NLE rules compiler .. 161

Commands
in layout netlist ... 247
in schematic netlist ... 220

COMMENT rule... 143
listing of settings in log file .. 167

Index

NLE and LVS User Manual 453

Comments
first line in schematic netlist ... 265
in NLE rules file ... 43
in node correspondence file.. 356

Comparison summary report... 283, 372
location noted in log... 370

Comparison type... 257
overriding on command line... 307

COMPARISON TYPE & FILE FORMAT control file options ... 257
Compiling NLE rules file.. 161
Conductive layers ... 95

removing material from.. 100
CONNECT rule .. 96

in example .. 108
location in rule set .. 107
quickly diagnosing missing rule ... 193
report of connected layers in log file .. 166

Console output
logged to file .. 370

CONST rule.. 46
Constants

in NLE rules ... 46
listing of in compiler log .. 166

Constraining bloats of acute angles .. 69
Contact layers ... 97
Contact resistance ... 344
Control file

errors caused by deleting lines ... 311
index of options.. 252
overriding options in command line ... 306
overriding options with device models... 212
overview... 198, 251
preparing for tutorial .. 27
report of options ... 377

Control file options
COMPARISON TYPE & FILE FORMAT.. 257
DIRECTORY PATH & FILE NAME EXTENSION .. 256
filtering devices .. 297
generated schematic netlist... 276
INDIVIDUAL DEVICE OPTIONS... 283
LPE RUNTIME OPTIONS.. 403
LVS RUNTIME OPTIONS ... 259

Index

454 NLE and LVS User Manual

OPTIONAL OUTPUT FILES ... 271
OUTPUT FILES .. 281

Control file override parameters ... 212, 213, 288
CONTROL.LVS... 251
Copying a layer... 62
Could not open file cell_name.P9K.. 183

DCHAIN control file override in device model.. 214
DCOLLAPSE control file override in device model .. 214
Default value parameters .. 243, 346
Degree

defined.. 280, 411
Design rules checks .. 41
Device categories

control file options for specific... 283
table of corresponding types.. 210

Device characteristics parameters... 242
in schematic netlists.. 209

Device collapses
disabling for all devices on a net .. 222, 267
enabling report ... 274
MOSFET merges of different sizes ... 290
naming parallel merged devices ... 270
naming series merged devices .. 269
of devices with dissimilar sizes .. 294
overview... 315
parallel logic... 294, 323
preserving certain nets.. 222, 268
preventing with *.NOCOLLAPSE statement ... 353
preventing with *.PINS statement .. 222, 353
preventing with device model... 215
preventing with node labels.. 351
pseudo devices ... 259, 325
series logic.. 293, 322
simple merges... 287, 289, 318
using to diagnose circuit mismatches ... 421

Device id layer.. 105, 113
errors .. 109
listing of problem devices .. 175
removing from conductive layer... 100

Device Merges.. 318
Device models .. 19

Index

NLE and LVS User Manual 455

adding to layout netlist ... 250
adding to schematic netlist ... 216
control file defaults... 283
control file override parameters.. 212, 245
default value parameters... 243
device characteristics.. 242
device modifier parameters .. 208, 236
example of multiple emitter.. 331
in layout netlist ... 229
in schematic netlists.. 206
layout restriction parameters .. 241
matching model names ... 295
merging different models.. 290, 292
SUBCKT expansions in layout... 332
tolerance parameters... 233

Device Modifiers .. 235
Device names... 226. See also Node labels

merged devices... 318
Device recognition.. 113, 125

listing of problem devices .. 175
tolerance for spacing problems... 123

Device Recognition .. 105
DEVICE rule .. 113

example .. 338
Device sizes ...See also Parameter values

accounting for shrinking or bloating... 208, 236
Device statements in schematic netlist.. 217
Device terminal swapping... 316
Device terminals

avoiding shorts between ... 100
Device transformations .. See also Device collapses
Device Transformations.. 315
Device types ... 232
device_type keywords in MODEL statements .. 210
Devices

correcting length... 120
count of devices recognized by NLE.. 187
definition in NLE.. 113
design errors ... 107, 109
dimension recognition .. 109
id layer.. 105, 108
labeling... 149

Index

456 NLE and LVS User Manual

listing of NLE recognition problems .. 175
locating in the layout .. 389
matched report.. 382
matched report.. 281
NLE definition.. 105
non-rectangular layouts .. 112, 122
non-rectangular layouts .. 238, 241
number of terminals.. 285
terminal order ... 114
terminals shorted by design .. 113
test for duplicate ids ... 180
totals in report .. 372
totals sorted by type.. 376
transistor recognition.. 125
unmatched report.. 379
width recognition by NLE .. 110, 116

Dimensions ... See Parameter values
Directory for LVS reports... 256, 421
DIRECTORY PATH & FILE NAME EXTENSION control file options 256
DISJOINT rule ... 155

listing of settings in log file .. 167
Disk swapping

minimizing during NLE run ... 84
DMODEL control file override in device model .. 214
DRC (Design Rules Checker) ... 38, 106

using to verify non-design layers.. 134
DRC command ... 22, 160, 171, 408
DSIZE control file override in device model.. 214
Dummy layer .. 100, 101, 340

in device recognition .. 132
in resistor recognition... 121
test with TOUCHING rule ... 134

ECC
defined.. 152
disabling ... 153
disabling in NLE command line ... 178
layer used by ECC to report errors ... 154
layers created by... 51
options in NLE command line.. 178, 183
virtual connections ... 155
warning if node labels are missing ... 187

Index

NLE and LVS User Manual 457

ECC error messages
polygon id labels .. 56

ECC node labels ... 145
case... 143
defined.. 138
enabling .. 142

ECC Rules .. 152
Effective dimensions... 235
Electrical connections... 95, 102
Element statements ..See Device statements
Emitter layer

using to calculate device area ... 124
Emitter layer in bipolar transistors.. 98
ENABLE_NO_COLLAPSE_OF_DEVICES... 267
ENABLE_VIRTUAL_CONNECTIONS ... 265

overriding ... 310
End layers for device width recognition ... 116
ENDCMD NLE command line option.. 181
End-sides .. 116

defined.. 110
EPS parameter in DEVICE rule.. 123
EQUIV keyword in LAYOUT_TEXT_MODE.. 261
EQUIV.LVS ... 32
Equivalence file ...See Node correspondence file
ERR = error_layer parameter... 109
ERROR keyword in OUTPUT LAYER rule .. 58
Error layers ... 51, 58, 109, 154, 175, 195

adding NLE layers to cell file... 189
selecting in editor ... 191

Error totals .. 372
ERROR_LAYER rule... 154
Errors

Could not open file cell_name.P9K ... 183
Device was not declared within SUBCKT ... 227
Duplicate node names not allowed ... 225
executing NLE command file ... 189
Gate signal switched... 330
Global node not allowed as subcircuit argument.. 225
Insufficient Memory... 312
listing of problem devices .. 175
locating in layout .. 389
messages from rules compiler .. 165

Index

458 NLE and LVS User Manual

Panel is too small to subdivide further -- check aborted... 87
Parameter error... 343
parameter values... 329, 377
The program could not find a path through the short. .. 179
unmatched devices and nets ... 379

Errors in syntax... 311
Escape key .. 163, 170, 312
Exclusive OR of layers ... 65
Expanding layers .. 67
EXT .. See *.LAYOUT
Extension for LVS report files.. 257
EXTMODEL ...See *.LAYMODEL
Extraction of layout data... 18

Fabrication process
accounting for device shrinkage ... 68, 236
simulating in rules .. 97

False errors
due to units ... 379
swapping terminals... 380

Fatal errors.. 311
Files ..See also Reports

control file options for reports.. 271
default LVS report extension.. 257
Flow of data for LVS.. 18
LVS Output files .. 370
LVS reports directory... 256
names of LVS reports... 412
NLE input files ... 171
NLE options ... 181
NLE output files ... 185
NLE rules file ... 41
overriding LVS input directory .. 308
rules compiler output files .. 164
used in tutorial.. 19, 407

FILTER.LVS .. 32
Filtered devices... 297, 298, 299, 300

adding to generated schematic netlist ... 277
control file options ... 297
list in report .. 280, 387
total in report .. 375

Filtered nets .. 375

Index

NLE and LVS User Manual 459

Floating nets
report .. 383

FORCE_ALL_LAYOUT_LABELS_TO_UPPER_CASE... 260
Forced matches ... 365
Forced node matches

total in report .. 376
Forced node matches report.. 384
Forced points of correspondence .. 349, 366

defined.. 355
effect of errors .. 357
importance in symmetric circuits.. 366
report of forced... 275
total in report .. 375

Gallium arsinide technology
air bridges... 80

GATE keyword in TRANSISTOR rule .. 125
Gate layer

example .. 108
Gate signal position .. 330
Gate signal switched ... 330
GATE_NET control file override in device model... 214
GENERATE_NAME_EQUIVALENCES ... 271

use .. 355
GENERATE_SPICE_NETLIST_FROM_THE_EXTRACTOR_OUTPUT 276
Generated layers ... 166
Global matching algorithm ... 260
Global node labels .. 139, 248, 260, 349

disabling ... 308
Graph coloring.. 313
Ground nets... 221
Groups of layers.. 95, 166

Halting program..See Terminating program
HI color... 191
Hierarchical node names... 226
Hierarchical Processing .. 91
Holes

copying to new layer .. 74
removed with BLOAT rule... 67
representation in NLE .. 50, 62

Index

460 NLE and LVS User Manual

I/O pins ... 268, 374
ICED32™ layout editor

executing NLE command file ... 189
importing NLE layers into.. 57
use in tutorial.. 408
using to execute DRC command .. 22
using to locate nodes .. 33, 389

ICEDMODEL..See *.SCHMODEL
ID keyword in DEVICE rule .. 113
ID keyword of INPUT LAYER rule... 56
IGNORE_ONE_TERMINAL_CONNECTED_deviceS .. 297
IGNORE_SHORTED_deviceS .. 298, 299, 300
IGNORE_TWO_TERMINALS_CONNECTED_deviceS... 297
IGNORE_UNCONNECTED_deviceS... 297
INCELL option of INPUT LAYER rule... 54
INCELL rule... 66

example .. 118
using to identify devices ... 100

INCLUDE rule ... 47
INDIVIDUAL DEVICE OPTIONS control file options .. 283
Inductors ... 243

default device model .. 218
parameter value .. 346

Initial equivalences ...355. See also Initial points of correspondence
INPUT LAYER rule ... 53
Input layers ... 49
INPUT_FILE_OF_NAME_EQUIVALENCES ... 261
Installation .. 14, 15
Insufficient Memory ... 312
INTERACTIVE_MODE .. 264, 366
Interrupting program

LVS .. 312
NLE.. 170
rules compiler... 163

Intersection of layers... 63, 73
Inverse of a layer .. 62
IS_BOX rule ... 75

example .. 342
ISLANDS rule .. 74

Keywords.. 44

Index

NLE and LVS User Manual 461

L=length parameter in device model .. 210, 232
LABEL rule .. 142

example .. 147
required for ECC checking... 152

Labels ..See Node labels
on pads ... 337
using to assign device value ... 346

LABELS.LVS... 33
Layer 0.. 55, 58, 100
Layer 250.. 413

Used by OUTLINER.. 390
Layer Definition Rules.. 49, 51
Layer Generation Rules .. 60
Layer numbers vs. names.. 49, 51
Layer specification lines in DEVICE rule .. 114
Layers

bloating... 67
classifying air bridges... 80
classifying by aspect ratio... 78
classifying by cell name.. 54, 66
classifying by size... 75, 77
classifying by touching other layers ... 71
conductive .. 95
copying... 62
creating inverse .. 62
error layers ... 51, 58
etching .. 63
exclusive OR .. 65
groups... 166
holes ... 74
intersecting ... 63
list of unconnected.. 166
manipulation with NLE rules.. 60
merging during NLE preprocessing.. 49
NLE input layers .. 53
NLE output layers .. 57
NLE scratch layers ... 59
overlap.. 73
overview of NLE rules ... 60
poor conductors.. 102
removing material from.. 100
report on NLE layers in compiler log... 166

Index

462 NLE and LVS User Manual

sharp points .. 69
shrinking... 68
union... 64
vias and contacts... 97

LAYMODEL...See *.LAYMODEL
Layout

extracting data for NLE.. 22
locating errors... 389, 413

Layout netlists... 18, 21
adding node labels.. 248
binary form generated by NLE... 194
combining with device models ... 23, 250
device model parameters .. 232
disabling generation by NLE.. 182
expanding devices .. 233, 270, 332
generating schematic from.. 276, 396
in tutorial .. 409
optional lengthy listing for debug... 175
overriding file name ... 308
overview... 229
overview of steps to run NLE... 160
parameter value calculation.. 344
virtual connections ... 358

Layout nodes
locating in layout .. 33, 389

LAYOUT_TEXT_MODE.. 261
AUTO mode... 350, 366
EQUIV mode ... 356, 366
overriding ... 309

Length... See Parameter values
LIST_RULES NLE command line option.. 177
Local matching algorithm ... 260, 313
LOFFSET ... 120

example .. 240
LOFFSET keyword in device model .. 208, 236
Log file

LVS .. 29, 370
NLE.. 187
NLE options ... 174
rules compiler... 164

LOGBAD NLE command line option .. 109, 175
LOGEXT NLE command line option... 175

Index

NLE and LVS User Manual 463

Logic equivalence..See Device collapses
LPE... 396
LPE command line.. 397
LTLR keyword in device model ... 206, 232, 235
LVL (Layout Vs. Layout) ... 257
LVS (Layout Vs. Schematic) .. 257
LVS command line ... 304

in tutorial .. 29, 409
options and overrides ... 306
order of netlists... 305
using parameters in a file.. 306

LVS control file ... See Control file
LVS node labels.. 145

defined.. 138
LVS RUNTIME OPTIONS in control file ... 259
LVS.LOG ... 29, 370

M=multiplier parameter in device model.. 232, 243
M=multiplier parameter in device model.. 210
Manhattan layouts... 123, 239
Manhattan vs. non-manhattan layouts... 241
MANHATTAN_GM keyword in device model ... 242
Manual Notation ... 201
MATCH.LVS ... 31
MATCH_device_MODELS ... 295
MATCH_device_PARAMETERS ... 296
Matched devices ... 282, 313, 343

matching by model name.. 295
Matched devices report... 281, 382
Matching algorithms ... 260, 313

forced points of correspondence... 349
Memory .. 371

error message if insufficient ... 312
limiting for NLE... 173
limiting in rules compiler command line .. 162
minimizing use of in NLE .. 83

MERGE_deviceS_OF_DIFFERENT_MODELS ... 290
MERGE_DISSIMILAR_SIZED_MOSFETS .. 290
MERGE_PARALLEL_deviceS.. 289
MERGE_SERIES_deviceS... 287
Merges .. See also Device Collapses

enabling .. 218, 287, 289

Index

464 NLE and LVS User Manual

merging different models.. 290, 292
MOSFETS of different sizes .. 290
overview... 315, 318
preventing with node labels.. 351
transistor chains.. 320

Merging of geometry during NLE preprocessing ... 49
MINUS keyword in CAPACITOR rule .. 130
MODEL control file override in device model ... 214
Model names... 207, 216

enabling match of ... 295
MOSFET devices ... 290
MULTI keyword in STAMP rule ... 102
Multiple Emitter or Collector Devices.. 331
Multitasking operating systems... 162, 173
MUST keyword of LABEL rule ... 142

N0 OUTLINER command.. 390, 413
N1 OUTLINER command.. 390
ND OUTLINER command... 390, 413
Nested cells

flattened by NLE .. 91
Nesting rules files ... 47
Net degree report .. 411
Net or node recognition .. 96
NETDEG.LVS.. 32
netlist1 .. 305
netlist2 .. 305
NETONE.LVS.. 33
Nets...See also Nodes

degree report .. 385
degree report from NLE ... 193
finding opens .. 411
locating in layout .. 389
report of node labels in layout .. 271, 272
report of unconnected and floating... 273, 383
totals in report .. 373
unmatched report.. 379

Networks
restrictions for scratch file .. 162
users should not share scratch file .. 173

NLE .. 8, 249
defined.. 38

Index

NLE and LVS User Manual 465

diagram of data flow... 18
overview of steps to generate layout netlist.. 160

NLE command file.. 189
adding commands to... 181
geometry of created layers.. 58
selecting output layers .. 57
specifying ECC error layer ... 154
specifying short error layer... 154

NLE command line
adding commands to command file .. 181
border calculation report .. 176
defined.. 169
disabling check for opens ... 179
disabling ECC .. 178
disabling layout netlist file generation.. 182
disabling node outliner file... 182
disabling test for bad text components ... 179
disabling test for duplicate device ids... 180
disabling unconnected test.. 180
disbling files ... 183
disbling node summary file .. 183
file parameters .. 171
in tutorial .. 23, 408
input depth to search for path through short ... 178
input redirection ... 172
list rules file.. 177
listing device errors .. 175
listing layout netlist .. 175
scratch directory ... 173
screen display ... 174
suppressing warning message... 176
typing shortcuts .. 172
USE option... 173

NLE log file .. 187
command line options... 174

NLE output files ... 185
command line options... 181

NLE passes ... 50
NLE preprocessing ... 49
NLE rules...40. See also Rules

adding listing to NLE log ... 177
compiled rules file .. 162, 164

Index

466 NLE and LVS User Manual

file name... 161
optimization.. 50

NLE rules compiler
command line syntax .. 161
error messages .. 164
log file .. 164
output files.. 164

NLE rules compiler command line
in tutorial .. 22, 408

NLE run time
bloats can cause excessive.. 70
optimizing... 83, 153

NLE.EXE.. 170
NMOS device recognition .. 108, 115, 117, 126
NN OUTLINER command... 390
NO_DUP_ID_CHECK NLE command line option.. 180
NO_ECC NLE command line option ... 178
NO_ECC rule ... 153
NO_NET_LIST NLE command line option... 182
NO_NLE NLE command line option ... 183
NO_NODE_COUNT NLE command line option .. 183
NO_OPEN NLE command line option... 179
NO_RUL NLE command line option ... 176
NO_SAVE rule... 144
NO_SAVE_CONNECTIONS NLE command line option... 182
NO_UNATTACHED NLE command line option .. 179
NO_UNCONNECTED NLE command line option ... 180
Node correspondence file

enabling .. 261, 262
generating from layout.. 271, 388
name of input file ... 261
naming generated file ... 271
overview... 355
setting number of passes before use ... 263
terminating on error.. 307

Node correspondences
report of forced matches... 384
without node correspondence file... 349

Node equivalences ...See Node correspondence file
NODE keyword in DEVICE rule.. 113

example .. 135
NODE keyword in TRANSISTOR rule.. 127

Index

NLE and LVS User Manual 467

Node label overrides... 272, 361, 388
effect of re-executing NLE... 431
in tutorial .. 417

Node labels ... 273, 349
adding without re-executing the NLE... 361
case... 140
case of ECC labels.. 143
case of LVS labels.. 249, 260
chart of three types ... 145
disabling temporarily.. 149
disabling test for uncovered.. 179
enabling/disabling .. 261, 309
forcing every shape to have a label .. 142
global.. 248, 260
global.. 308
ID parameter of INPUT LAYER rule .. 56
labeling devices .. 149
moving to design layers.. 141
placement and processing... 148
polygon id labels .. 56
reports... 271, 272, 388
review... 248
TEXT keyword in INPUT LAYER rule... 56
using for forced points of correspondence ... 261, 262, 355
using for initial points of correspondence .. 349
using for virtual connections .. 266, 350, 358
using to find short... 178
using to prevent device collapse... 267, 269, 351

Node Labels.. 138
Node names

[V,n] syntax.. 266
Node names .. 269, 270, 313

????? syntax ... 282
[P,n] syntax .. 323, 423
[V,n] syntax.. 351
expanded devices.. 270
hierarchical ... 226
overview... 226

Node numbers... 272, 273, 313, 361, 378, 389
in tutorial .. 407
list of equivalent labels... 388
using to locate nets in layout .. 413

Index

468 NLE and LVS User Manual

Node outliner commands .. 147, 389
in tutorial .. 413

Node outliner file.. 194
disabling generation of ... 182
reducing size of .. 144

Node summary file.. 193
disabling generation of ... 183

Nodes
defined.. 96, 226
labels in layout netlist... 248
locating in the layout .. 389
preventing disappearance of net ... 352

NONE keyword in STAMP rule... 102
Non-rectangular devices ... 112, 122
NOT keywords.. 54, 61
Notation .. 44, 201
Notches

removed with BLOAT rule... 67
NPN transistors

sample layer processing.. 98
NUMBER OF DEVICE PARAMETERS NOT COMPUTED .. 373
NUMBER OF ERRORS IN LAYOUT LABELS .. 374
NUMBER OF FLOATING/DEGREE-ONE NETS ... 375
NUMBER OF OUT_OF_ORDER TRANSISTOR CHAINS .. 374
NUMBER OF PAD DEVICES .. 374
NUMBER OF UNCONNECTED NETS ... 375
NUMBER_OF_PINS_FOR_BIPOLAR... 285
NUMBER_OF_PINS_FOR_device.. 212, 217

Offsetting a layer .. 67
OHMS_PER_SQUARE ... 243, 343

example .. 240
OHMS_PER_SQUARE = r_value parameter in device model .. 232
OHMS_PER_SQUARE keyword in device model .. 206
ONE_CNCT control file override in device model .. 214
ONEBIT example ... 22, 407
OPEN control file override in device model... 214
Opens

avoiding false errors ... 350, 359
diagnosing .. 280, 386
diagnosing with net degree report .. 411
disabling NLE test .. 179

Index

NLE and LVS User Manual 469

importance of disabling virtual connections... 310
preventing false errors in ECC ... 155

Opens and shorts
finding with ECC.. 142, 148, 152

Optimization of NLE rules.. 50
Optional forced equivalences.. 355
Optional keywords.. 44
OPTIONAL OUTPUT FILES control file options... 271
OPTIONAL parameters in schematic netlist .. 217
OR rule ... 64
OUTLINE keyword in OUTPUT LAYER rule .. 58
OUTLINER commands .. 33
Out-of-order transistor chains ... 321

listed in report .. 380
total in report .. 374

Output files .. See Reports
OUTPUT FILES control file options.. 281
OUTPUT LAYER rule ... 57
Output layers... 49

adding NLE layers to cell file... 189
OUTPUT_DIRECTORY_PATH ... 256

overriding ... 309
OUTPUT_FILE_NAME_EXTENSION_FOR_LPE ... 403
OUTPUT_FILE_NAME_EXTENSION_FOR_LVS... 257
OUTPUT_FILE_OF_COLLAPSED_DEVICES ... 275
OUTPUT_FILE_OF_DEVICES_WITH_PARAMETER_ERRORS .. 282
OUTPUT_FILE_OF_FILTERED_DEVICES ... 281
OUTPUT_FILE_OF_FINAL_RESULTS_OF_NETLIST_COMPARISON.................................... 283
OUTPUT_FILE_OF_MATCHED_DEVICES_INCLUDING_PARAMETER_ERRORS 282
OUTPUT_FILE_OF_NAME_EQUIVALENCES ... 271
OUTPUT_FILE_OF_NET_DEGREES ... 280
OUTPUT_FILE_OF_NET_LABELS .. 273
OUTPUT_FILE_OF_NETS_WITH_ZERO_AND_ONE_CONNECTIONS................................ 274
OUTPUT_FILE_OF_SPICE_NETLIST.. 276
OUTPUT_FILE_OF_SYMMETRIC_MATCHES .. 275
OUTPUT_FILE_OF_UNMATCHED_DEVICES_AND_NETS .. 282

limiting number of devices ... 264
OVERLAPPING rule ... 73

P8K and P9K files used by outliner commands.. 389
Pad connections .. 335
Pad Devices

Index

470 NLE and LVS User Manual

total in report .. 374
Pad types... 336, 340
Pads .. 233, 268, 352

diagnosing problems with reports... 339
labeling in layout .. 337
listed in report .. 380
protection devices... 340
testpoint pads.. 342
verifying ... 335
verifying unconnected are not shorted.. 155, 156

PADSIZE rule... 156
Panel borders .. 84, 89
Panel boundaries

affect output shapes .. 50
Panel is too small to subdivide further -- check aborted ... 87
Panel processing

border calculations ... 176
using to isolate errors ... 192

Panel Processing ... 83
Panel size .. 88
PANELX and PANELY rules .. 88
PARALLEL control file override in device model ... 214
Parallel logic collapse... 294, 323
Parallel merges ... 270, 289, 318
PARAM control file override in device model ... 214
PARAM.LVS.. 32
Parameter checking

false errors.. 410
Parameter checking..See also Parameter values

enabling verification... 296
false errors.. 208, 236, 410
in collapsed devices.. 329
overview... 343

Parameter error summary.. 377
sample fragment ... 392, 410, 428

Parameter passing
in layout netlist ... 248
in schematic netlist ... 224

Parameter value mismatches
caused by forced match .. 366

Parameter values
area and perimeter recognition by NLE.. 123

Index

NLE and LVS User Manual 471

area multipliers... 243
calculation and verification .. 343
correcting for bent devices ... 238
default values.. 209, 243
dimension recognition by NLE... 109
effect of disabling checking.. 378
effective dimensions vs. as-drawn dimensions ... 236
enabling verification... 296
error report ... 282, 373, 377
in device statements.. 218
layouts for which the NLE may calculate dimensions incorrectly.. 241
offsets ... 208, 236
scaling .. 27, 284, 347
specifying capacitance or resistance... 242
tolerances.. 348
tolerances.. 233
using label to assign ... 346
width extraction by TRANSISTOR rule .. 127
width recognition.. 116

PARAMS parameters in schematic netlist .. 217
Parasitic capacitors ... 233, 279, 300
Passive devices ... 217, 290, 292
PATH DOS environment variable .. 170
PATH_LAYER rule ... 154
PCAP ...See Parasitic capacitors
PEDIT NEAR command .. 191
Perimeter

recognition by NLE.. 123
PERIMETER = perim parameter in device model ... 232
Pins ...335, 374. See also Terminals
PINS keyword in DEVICE rule .. 114
PLUS keyword in CAPACITOR rule ... 130
PMERGE control file override in device model ... 214
POINT_TOLERANCE

Keyword in BRIDGE rule .. 80
Polygon id labels .. 56, 145

defined.. 138
specifying using prefix ... 143

POLYGON keyword in DEVICE rule.. 113, 117
POLYGON keyword in TRANSISTOR rule.. 127
Polygons

classifying by aspect ratio... 78

Index

472 NLE and LVS User Manual

classifying by size... 75, 77
merging during NLE preprocessing.. 49

Poor conductors .. 102
POST_TOLERANCE

keyword in BRIDGE rule ... 80
POSTS

keyword in BRIDGE rule ... 80
Power nets... 221
PRINT_ALL_NETS_WHOSE_DEGREE_GREATER_THAN.. 280
PRINT_ALL_UNLABELED_NETS_WHOSE_DEGREE_GREATER_THAN 273
PRINT_COLLAPSED_DEVICES_IN_A_SEPARATE_FILE.. 274
PRINT_COMMENTS_IN_SPICE_OUTPUT_GENERATED_BY_LPE................................... 403
PRINT_COMMENTS_IN_SPICE_OUTPUT_GENERATED_BY_LVS 277
PRINT_FILTERED_DEVICES_IN_SPICE_OUTPUT_GENERATED_BY_LPE.................... 404
PRINT_FILTERED_DEVICES_IN_SPICE_OUTPUT_GENERATED_BY_LVS.................... 277
PRINT_LIST_OF_FILTERED_DEVICES.. 280
PRINT_MATCHED_DEVICES_AND_NETS.. 281
PRINT_NET_LABELS_IN_A_SEPARATE_FILE .. 272
PRINT_NETS_AND_THEIR_DEGREES .. 280
PRINT_NETS_WITH_ZERO_AND_ONE_CONNECTIONS ... 273
PRINT_SYMMETRIC_MATCHES_IN_A_SEPARATE_FILE... 275
Protection circuitry ... 340
Pseudo devices... See also Device collapses

collapsing ... 325
enabling .. 259, 293, 294
names.. 323
overview... 315
parallel logic collapses ... 323
parameter and gate order verification... 328
report .. 274, 383
series logic collapses .. 322

Pull-Up and Pull-Down Pseudo Devices .. 259, 325

Q:\ICED.. 202

R_CONTACT... 243, 343
example .. 240

R_CONTACT = r_contact parameter in device model .. 232
R_CONTACT keyword in device model.. 206
R2_CONTACT = r2_contact parameter in device model .. 232
R2_WIDTH = r2_width parameter in device model .. 232
Reach .. 85, 176

Index

NLE and LVS User Manual 473

RECOGNIZE_GLOBAL_TEXT_IN_SUBCELLS ... 260
overriding ... 308

Rectangles... 75
Redundant circuits .. 365
Redundant NLE rules.. 50
REPLACE_NLE_NODES_WITH_MATCHED_SCHEMATIC_NODES.................................. 279
Reports.. 31, 370

collapsed devices.. 274, 383
comparison summary.. 283, 372
control file options ... 271, 371, 382
default LVS file extension.. 257
directory ... 256
directory ... 309, 421
error summary .. 372
file names ... 371, 380
filtered devices ... 280, 387
forced matches.. 275, 384
generated node correspondence file ... 271, 388
generated schematic netlist... 276, 385
in tutorial .. 407
LVS log file.. 370
matched devices ... 281, 382
names of LVS reports... 412
net and device degrees.. 280, 385
NLE output file options.. 181
NLE output files ... 185
node labels.. 272, 388
non-optional ... 371
optional... 380
parameter value errors .. 282, 377
reducing size of node outliner file .. 144
rules compiler output files .. 164
unconnected and floating nets .. 273, 383
unmatched devices and nets ... 282, 379

RESERVE command line parameter .. 389
Resistors ... 218, 278, 343

calculating resistance.. 243, 344
correcting length of bent devices.. 239
default device model .. 218
methods of NLE recognition .. 117, 121

REST_GM keyword in device model ... 242
Results ... See Reports

Index

474 NLE and LVS User Manual

RESULTS.LVS .. 31
Rules

adding listing to NLE log ... 177
compiled file name ... 162, 164
compiling.. 161
file name... 161
listing in compiler log... 166
nesting files .. 47
NLE command line options.. 176
order ... 101, 107, 166
syntax ... 43
syntax errors ... 164
table of contents ... 40

Rules file
adding to NLE log .. 177
defined.. 41
example in tutorial.. 21
example of compiling ... 408
missing source file NLE warning ... 176

RULESNLE.EXE ... 161
Running the LPE... 397
Running the LVS .. 304
Running the NLE.. 159
Runtime errors .. 311

terminating on node correspondence file error ... 307
Runtime options in LVS control file... 251

S$D keyword in TRANSISTOR rule.. 125
SAVE rule... 144
SCALE_CHARACTER_FOR_CAPACITORS ... 278
SCALE_CHARACTER_FOR_RESISTORS ... 278
SCALE_device_LENGTH_AND_WIDTH.. 284

example .. 28
Scaling .. 28, 244, 284, 347
Schematic netlists

device statement syntax .. 217
disabling first line as comment ... 265
format ... 307
generated .. 276, 385

comments ... 277
filtered devices ... 277
format... 277, 309

Index

NLE and LVS User Manual 475

parasitic capacitors... 279, 300
scaled resistors and capacitors ... 278

generating from layout.. 396
hierarchical node names ... 226
in SVS comparison... 258
in tutorial .. 409
inserting top-level subcircuit .. 227
overriding file name ... 309
overview... 205
parameter passing... 224
preparing .. 25, 228
specifying format.. 257
specifying top level subcircuit .. 258
supported commands.. 220
verifying subcircuit without editing file.. 310

SCHEMATIC_FILE_FORMAT .. 257
overriding ... 307

SCHMODEL ...See *.SCHMODEL
Scratch file

for NLE .. 173
for rules compiler ... 162

SCRATCH LAYER rule... 59
SCRATCH_DIR NLE command line option.. 173
SCRATCH_DIR parameters in rules compiler command line ... 162
SD_NET control file override in device model .. 214
SEARCH DEPTH NLE command line option ... 178
SECOND_SCHEMATIC_FILE_FORMAT .. 258

overriding ... 308
Semi-custom layouts

filtering unconnected devices ... 297
Series collapse of pseudo devices... 259
SERIES control file override in device model.. 214
Series logic collapse ... 293, 322
Series merges .. 269, 287, 352
SET_NET_SIZE_LIMIT_WHEN_PRINTING_CONNECTIONS ... 264
SET_NO_PROGRESS_LIMIT .. 263

use .. 350, 357
Shared id polygons ... 188
Sharp points .. 69, 86
Shorted devices... 298
SHORTRUN NLE command line option ... 174
Shorts

Index

476 NLE and LVS User Manual

diagnosing .. 280, 386
finding shorts to pads ... 155
isolating .. 192
layer used by ECC to show path... 154
limiting search through short .. 178

Shorts and opens
diagnosing with net degree report .. 411
diagnosing with node summary file .. 193
disabling ECC .. 178
finding with ECC.. 142, 148, 152
from protection circuitry... 341

SHOW_BORDER NLE command line option ... 176
SHRINK rule .. 68
Shrinking

device dimensions .. 208, 236
SHRT control file override in device model... 214
Simulation

generating schematic netlist from layout .. 276
Sizes.. See Parameter values

small polygons removed with SHRINK rule .. 68
using to classify polygons... 75, 77, 78

SKIP keyword in LAYOUT_TEXT_MODE ... 261
SMERGE control file override in device model ... 214
SMETRIC.LVS .. 33
Special characters

not stripped from node name.. 349
SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_A_NET ... 269

indicates pin ... 374
use .. 351

SPECIAL_CHARACTER_FOR_NO_COLLAPSE_OF_DEVICES_CONNECTED_TO_A_NET
.. 267
use .. 351

SPECIAL_CHARACTER_FOR_PRINTING_DEVICES_IN_A_DEVICE_CELL_INSTANCE
.. 270

SPECIAL_CHARACTER_FOR_PRINTING_PARALLEL_MERGES .. 270
SPECIAL_CHARACTER_FOR_PRINTING_SERIES_MERGES... 269
SPECIAL_CHARACTER_FOR_VIRTUAL_CONNECTIONS ... 266

use .. 351
Speed

fixing slow NLE for small designs ... 173
improving NLE speed by disabling ECC tests ... 178
optimizing for rules compiler ... 162

Index

NLE and LVS User Manual 477

optimizing long NLE run times .. 83
Spice files .. See Schematic netlists
SPICE.LVS... 33
SPICE_FILE_FORMAT .. 277

overriding ... 309
STAMP rule.. 102
Stamping node numbers.. 96, 102
STARTCMD NLE command line option ... 181
Subcircuits

verifying without editing files... 310
SUBCKT

creating top-level.. 227
specifying top level .. 258

SUBCKT layout netlist device models ... 233, 270, 332
SVS (Schematic Vs. Schematic) ... 257
SWAP control file override in device model .. 214
SWAP_CAPACITOR_TERMINALS.. 286
SWAP_device_SOURCE_DRAIN... 286
SWAP_EMITTER_AND_COLLECTOR_TERMINALS ... 286
Swapping

gates of logic circuits.. 322
Swapping terminals

control file options ... 286
overriding for specific models.. 213, 317
overview... 316

Symmetric circuits
breaking symmetry ... 263, 264, 355
defined.. 365
enabling forced node correspondences... 262
report of forced matches... 275, 384

Syntax
LPE command line ... 397
LVS command line... 304
LVS statements... 201
NLE command line... 169
NLE rules ... 43
NLE rules compiler command line... 161

Syntax errors... 311, 370
Rules compiler.. 164

TAG.. 189
TAKE_CARE_OF_LOGIC_EQUIVALENCES_WHILE_MATCHING.................................... 259

Index

478 NLE and LVS User Manual

example .. 324
TEDIT SELECT command .. 426
Terminal swapping ... See Swapping terminals
Terminals

avoiding shorts between ... 100
enabling swapping.. 213, 286
listing from NLE .. 193
order in TRANSISTOR rule... 127
setting number for devices.. 285
shorted by design.. 113, 127
specifying in DEVICE rule... 114

Terminating program
LVS .. 312
NLE.. 170
rules compiler... 163

Testpoint pads... 342
Text components...138, 140, 248, 349. See also Node Labels

disabling test for uncovered.. 179
moving to design layers.. 141
placement and processing... 148

TEXT keyword in INPUT LAYER rule ... 56, 148
TEXT parameters in schematic netlist .. 217
Tolerance parameters in device models .. 208
Tolerances... 233, 291, 348, 378

accounting for device shrinkage ... 236
default... 233
for non-manhattan device layouts... 123

Top level cell
listed in report .. 372

Top level subcircuit
listed in report .. 372

Top level subcircuit in schematic netlist... 258
TOP_LEVEL_SUBCKT_IN_SCHEMATIC_FILE... 24, 258

overriding ... 310
TOP_LEVEL_SUBCKT_IN_SECOND_SCHEMATIC_FILE ... 258

overriding ... 310
Totals .. 372
TOUCHING rule .. 71

example .. 132
Touching vs. overlapping ... 73
Transformations...See Device collapses
Transistor chains... 320

Index

NLE and LVS User Manual 479

Transistor design rules.. 129
TRANSISTOR rule .. 125
Transistors

correcting length of bent devices.. 239
terminals shorted by design .. 135

Transmission lines
default device model .. 218

TREAT_FIRST_LINE_IN_SPICE_NETLIST_AS_COMMENT_LINE.................................... 265
Tutorial ... 17, 406
TWO_CNCT control file override in device model ... 214
TYPE keyword

example .. 339
TYPE keyword in device model ... 233
TYPE_OF_COMPARISON... 257

overriding ... 307

Unconnected and floating nets
report .. 383

Unconnected devices
filtering from layout netlist... 297

Unconnected layers... 166
UNCONNECTED rule ... 155

disabling test... 180
listing of settings in log file .. 167

Union of layers ... 64
Units

correcting discrepancies ... 27, 278, 284, 410
UNMATCH.LVS.. 31
Unmatched device report .. 282, 379, 391, 414

limiting number of devices ... 264
USE command line parameter .. 389
USE NLE command line option ... 173
USE parameter

in rules compiler command line ... 162
USE_CASE rule ... 143
USE_EQUIVALENCES_FOR_INITIAL_MATCHING... 262

overriding ... 357
use .. 350, 356, 357

USE_LOCAL_MATCHING .. 260
Using the Node Outliner Commands .. 389

VALUE=value parameter in device model... 232

Index

480 NLE and LVS User Manual

VALUE=value parameter in device model... 210, 243
VALUETLR keyword in device model .. 206, 232
Vias... 97
Virtual connections... 432

*.VIRTUAL command... 223
enabling/disabling .. 265, 310, 358
example in tutorial.. 417
for ECC .. 155
from node labels in layout .. 266, 350
list of methods .. 358
node numbers ... 351
total in report .. 375
using node correspondence file .. 358
without special characters... 359

Voltage sources ignored in schematic netlist .. 219

W=width parameter in device model .. 210, 232
Warnings... 311
Well layer

connecting to other layers... 102
Width .. See Parameter values
Width and length

recognition by NLE.. 110
WIDTH keyword in DEVICE rule ... 116
Width recognition for transistors .. 127
WOFFSET keyword in device model ... 208, 236
WTLR keyword in device model.. 206, 232, 235

XOR rule .. 65

Index

NLE and LVS User Manual 481

Index

482 NLE and LVS User Manual

	Introduction
	Getting Started
	Program Requirements
	Installation
	Quick Tutorial
	Preparing the Layout Netlist
	Preparing the Schematic Netlist
	Preparing the Control File
	Running the Program
	Looking at the Results

	NLE Basics
	NLE Rules Syntax
	Layer Processing
	Layer Definition Rules
	Layer Generation Rules

	Panel Processing
	Hierarchical Processing

	NLE Circuit Recognition
	Electrical Connections
	Device Recognition
	The General Purpose DEVICE Rule
	Specific Device Rules

	Node Labels
	Rules Which Affect Labels
	Uses of the Three Types of Labels
	Placement and Processing of Labels

	ECC Rules

	Running the NLE
	NLE Rules Compilation
	Rules Compiler Command Line Syntax
	Rules Compiler Output Files

	Running the Circuit Extractor
	NLE Command Line Syntax
	The Three File Parameters
	Input Redirection, Memory, and Scratch Directory Options
	Logging Options
	Rules File Options
	ECC and Other Optional Test Keywords
	Output File Options

	NLE Output files

	LVS Basics
	Overview
	LVS Statement Syntax

	LVS Input Files
	Schematic Netlists
	The *.SCHMODEL Statement
	Tolerance Parameters
	Device Modifiers
	Device Characteristics
	Default Value Parameters
	Control File Override Parameters
	Adding *.SCHMODEL Statements to the Schematic Netlist
	Device Statement Restrictions
	Commands Supported in the Schematic Netlist
	Parameter Passing and Syntax Restrictions
	Node Names
	Inserting a Top-Level Subcircuit
	Summary of How to Prepare a Schematic Netlist for the LVS

	Layout Netlists
	The *.LAYMODEL Statement
	Tolerance Parameters
	Device Modifiers
	Layout Restrictions
	Device Characteristics
	Default Value Parameters
	Control File Override Parameters
	Preparing the Model File
	Commands Supported in the Layout Netlist
	Review of Node Labels
	Summary of How to Prepare a Layout Netlist for the LVS

	The LVS Control File
	DIRECTORY PATH & FILE NAME EXTENSION
	COMPARISON TYPE & FILE FORMAT
	LVS RUNTIME OPTIONS
	OPTIONAL OUTPUT FILES
	OUTPUT FILES
	INDIVIDUAL DEVICE OPTIONS
	Summary of How to Prepare the Control File for the LVS

	Running the LVS Circuit Comparison
	Command Line Syntax
	LVS	[path\]control_file_name [path\]netlist1_file_name [path\]netlist2_file_name ...
	... [@file_name] ...
	... [/c format] ...
	... [/e (yes | no)] ...
	... [/f (or /f1) sch_format] ...
	... [/f2 sch2_format] ...
	... [/g (yes | no)] ...
	... [/i in_path] ...
	... [/l (or /l1) ext_file] ...
	... [/l2 ext_file] ...
	... [/m text_mode] ...
	... [/o dir_path] ...
	... [/p sch_out_format] ...
	... [/s sch_file_name] ...
	... [/t (or /t1) sch_subckt] ...
	... [/t2 sch2_subckt] ...
	... [/v (yes | no)]

	Runtime Errors
	Overview of Matching Algorithm
	Device Transformations
	Terminal Swapping
	Device Merges
	Merges of Devices in Chains
	Series Logic Collapses
	Parallel Logic Collapses
	Pull-Up and Pull-Down Pseudo Devices
	Parameter Value and Signal Order Verification of Collapsed Circuits
	Multiple Emitter or Collector Devices

	Pad Connection Verification
	Defining Pads in Schematic Netlist
	Defining Pad Devices in Layout Netlist
	Diagnosing Pad Misconnections
	Variable Pad Types
	Pad Protection Circuitry
	Ignoring Testpoint Pads

	Parameter Calculation
	Resistors
	Capacitors
	Inductors and Other Devices for Which the NLE Cannot Calculate a Value.
	Scaling and Tolerances

	Advanced Uses of Node Labels
	Forced Points of Correspondence
	Virtual Connections in the Layout
	Node Labels Which Prevent Device Collapses

	Using a Node Correspondence File
	Purpose of the File
	File Syntax
	Setting the Control File Options
	Using +/- Flags
	Assigning Virtual Connections

	Using Node Label Overrides
	Symmetric Circuits

	LVS OUTPUT FILES
	Reports Generated by the LVS
	LVS.LOG
	Non-Optional Output Files
	Optional Output Files

	Using the Node Outliner Commands

	The LPE Utility
	LPE Command Line Syntax
	LPE	[path\]control_file_name [path\]layout_netlist_name ...
	... [@file_name] ...
	... [/g (yes | no)] ...
	... [/i in_path] ...
	... [/l ext_file] ...
	... [/o dir_path] ...
	... [/p sch_out_format] ...
	... [/v (yes | no)]

	The LPE Control File

	Advanced Tutorial
	Appendix: Tutorial Schematics
	Index

